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Isolated mitochondrial respiratory chain Complex IV (Cytochrome c Oxidase or
COX) deficiency is the second most frequent isolated respiratory chain defect.
Causative mutations are mainly identified in structural COX subunits or in proteins
involved in thematuration and assembly of the COX holocomplex. We describe an
Italian familial case of mitochondrial myopathy due to a variant in the COX
assembly factor 8 gene (COA8). Patient 1 is a 52-year-old woman who
presented generalized epilepsy and retinitis pigmentosa at 10 years of age.
From her early adulthood she complained about cramps and myalgia after
exercise, and bilateral hearing loss emerged. Last neurological examination
(52 years of age) showed bilateral ptosis, muscle weakness, peripheral
neuropathy, mild dysarthria and dysphonia, cognitive impairment. Muscle
biopsy had shown the presence of ragged-red fibers. Patient 2 (Patient 1’s
sister) is a 53-year-old woman presenting fatigability, myalgia, and hearing loss.
Neurological examination showed ptosis and muscle weakness. Muscle biopsy
displayed a diffuse reduction of COX activity staining and ragged-red fibers. Both
sisters presented secondary amenorrhea. After ruling out mtDNA mutations,
Whole Exome Sequencing analysis identified the novel homozygous COA8
defect c.170_173dupGACC, p.(Pro59fs) in the probands. Loss-of-function
COA8 mutations have been associated with cavitating leukoencephalopathy
with COX deficiency in 9 reported individuals. Disease course shows an early-
onset rapid clinical deterioration, affecting both cognitive and motor functions
over months, followed by stabilization and slow improvement over several years.
Our findings expand the clinical spectrum of COA8-related disease. We confirm
the benign course of this rare disorder, highlighting its (intrafamilial) clinical
variability.
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1 Introduction

Mitochondrial disorders (MD) are generally characterized by a
wide clinical variability which reflects the heterogenous biochemical
and molecular defects underlying clinical symptoms. Indeed, the

establishment of a definitive diagnosis can be challenging (Chinnery,
1993).

In affected tissues, the prevalent reduction of the residual activity
of Cytochrome c Oxidase (COX, the mitochondrial respiratory
chain Complex IV) constitutes the biochemical hallmark of

FIGURE 1
Clinical, instrumental, and genetic findings. (A) Pedigree and genotypes of the family investigated. Affected members are represented by black
symbols (+/+: homozygous for the alternative allele; −/−: homozygous for the wild-type allele). (B) T2 weighted brain MRI scans of P2 showing normal
findings in the sagittal (left), coronal (middle) and transverse (right) sections. (C–F) Histological and histochemical analysis of P2’s muscle biopsy
compared to a control biopsy (inset). (C, D)Hematoxylin eosin (HE, (C) andModified Gomori Trichrome (MGT, (D) staining show a preservedmuscle
structure. Asterisks show ragged red fibers. (E)Cytochrome c oxidase (COX) staining reveal a severe and diffuse reduction of COX activity in themuscle of
the patient. (F) Succinate dehydrogenase (SDH) staining shows an increase of SDH activity in somemuscle fibers. Scale bar: 50 µm. Scale bar inset: 25 µm.
(G) Schematic representation of the COA8 gene containing the pathogenic variants identified so far. Electropherogram showing the presence of the
novel homozygous (C) 170_173dupGACC, p.P59Tfs*3 variant detected in genomic DNA and complementary DNA (extracted from muscle) of Patient 2.
(H) Histograms showing relative levels of COA8 transcript, normalized to the beta actin housekeeping gene ACTB, in Patient 2’s muscle compared to a
group of controls (n = 5).
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isolated COX deficiency. This condition can be due to molecular
defects in mitochondrial and nuclear encoded COX structural
subunits or, more frequently, with variants in nuclear genes
encoding Complex IV assembly factors. Despite the common
biochemical signature, disorders featuring isolated COX
deficiency might display heterogenous symptoms with variable
age at onset ranging from neonatal forms to adult-onset clinical
phenotypes (Rak et al., 2016; Brischigliaro et al., 2019; Brischigliaro
and Zeviani, 2021). To date, molecular defects in about 30 genes
have been reported as the likely cause of isolated or prevalent COX
deficiency (Brischigliaro and Zeviani, 2021).

COA8 (previously known as APOPT1) encodes a 206-amino
acid protein whose precise function has not been elucidated yet.
COA8 localizes to mitochondrial matrix in proximity of inner
mitochondrial membrane where it was initially suspected to
stimulate the release of cytochrome c as a pro-apoptotic
factor. The absence of COA8 (or its orthologues) was
consistently associated with COX deficiency in human tissues
(OMIM #616003), cells and in animal models (Yasuda et al.,
2006; Sun et al., 2008; Signes et al., 2019; Brischigliaro and
Zeviani, 2021).

Biallelic mutations in COA8 were found responsible of a
distinctive form of encephalopathy associated with COX
deficiency (OMIM #220110) (Melchionda et al., 2014; Sharma
et al., 2018; Hedberg-Oldfors et al., 2020) in 9 subjects from
8 different families (Melchionda et al., 2014; Sharma et al., 2018;
Hedberg-Oldfors et al., 2020; Chapleau et al., 2023). Most of the
patients reported presented progressive ataxia and spastic
tetraparesis with cavitating leukodystrophy.

Here we expand the clinical and molecular findings associated
with COA8 variants by reporting two novel Italian patients
presenting heterogenous clinical presentations.

2 Patients and methods

2.1 Patients

The study was approved by the institutional review board of the
Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico. The
patients provided written informed consent for all aspects of the
study.

Patient 1 (P1, Figure 1A) is a 52-year-old woman, fourth-born to
non-consanguineous and healthy parents of Italian origin. The
prenatal and perinatal history was unremarkable. At 10 years of
age, she was diagnosed with generalized epilepsy and retinitis
pigmentosa. Secondary amenorrhea appeared at the age of 18.

Since her early adulthood, she complained of lower limbs
exercise-induced fatigue, cramps, and myalgia.

Electromyography (EMG), performed at the age of 49 years,
showed a chronic demyelinating sensorimotor polyneuropathy.
Serum creatine kinase (CK) levels were normal. A muscle biopsy,
performed elsewhere, had showed the presence of ragged-red
fibers.

Cardiological examination revealed normal findings with an EF
of 55% at the echocardiography. The last spirometry performed, at
the age of 52, showed a Forced Expiratory Volume in the first second
(FEV1) of 82%, slightly reduced compared to previous findings.

Brain Magnetic Resonance Imaging (MRI) was performed and
showed unspecific alterations of gliotic significance, presumably due
to a chronic vascular damage.

At last follow-up (52 years of age), she showed mild lower limb
muscle weakness with bilateral paresthesia (“stocking” pattern).
Bilateral ptosis, hypomimia, mild dysarthria and dysphonia, as
well as bilateral hearing loss were observed. Walking appeared
cautious, possible both on toes and heels, albeit with some
difficulties. Tandem walking was impaired.

The patient currently reports muscle fatigability accompanied
by cramps and pain, exacerbated after exercise.

Patient 2 (P2) is the 53-years old Patient 1’s sister.
In her early adulthood she complained of generalized asthenia,

with fatigability and myalgias but never underwent medical
evaluation.

At the age of 32 she developed a slowly progressive lower and
upper limb muscle weakness. Premature ovarian failure at 34 years
old was also reported.

The last cardiological assessment (with echocardiography and
electrocardiogram, ECG) was normal except for palpitations and
moderate hypertension, pharmacologically treated.

Her serum creatine kinase (CK) levels were normal or slightly
elevated (last dosage at 53 years old: 110 UI/L). Serum lactate
dehydrogenase (LDH) was 2.97 mmol/L, with a normal value
range of 0.7–2.10 mmol/L.

At 53 years of age, a brain MRI was performed without revealing
any specific alteration (Figure 1B).

Amuscle biopsy, performed at the age of 32 showed the presence
of ragged-red fibers and a diffuse reduction of COX activity (Figures
1C–F). Increased lipid content was noted in ragged-red fibers.

Latest neurological examination (at the age of 53 years) showed
normal muscle strength, with full MRC. Mild bilateral ptosis
(without ocular motility impairment) was still present.

She currently suffers from anxious-depressive syndrome and
complains of vertigo with acumen, headaches, and palpitations. She
also presents moderate bilateral sensorineural hearing loss at mid-
high frequencies.

2.2 Histological and histochemical analysis

Tissue specimen was frozen in isopentane-cooled liquid
nitrogen and processed according to standard techniques, as
previously described. For histological analysis, 8 µm-thick
cryosections were picked and processed for routine staining with
Haematoxylin and Eosin (H&E), Modified Gomori Trichrome
(MGT), myosin ATPase (pH 9.4-4.6-4.3), cytochrome c oxidase
(COX), succinate dehydrogenase (SDH), phosphatase acid, NADH,
Oil Red O, Periodic Acid Schiff (PAS). Images fields were acquired at
20X using optical microscope Leica DM4000B equipped with
DFC420C camera.

2.3 Molecular studies

After written informed consent, genomic DNA was extracted
from peripheral blood samples of proband and parents using
standard procedures. The exonic regions and flanking splice
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junctions of the genome were captured using the Clinical Research
Exome v.2 kit (Agilent Technologies, Santa Clara, CA). Sequencing
was done on a NextSeq500 Illumina system with 150bp paired end
reads. Reads were aligned to human genome build GRCh37/
UCSC hg19.

Total RNA was extracted from Patient 2’s muscle biopsy by
using Nucleozol reagent (Macherey Nagel). RNA was
retrotranscribed into cDNA using Maxima Reverse Transcriptase
(Thermo Scientific). RT-PCR amplification followed by sequencing
was performed by using the primers: RT-F: 5′-GGAAGAAGACCT
TTCTCC and RT-RC: 5′ GTCAGAGTGGACTCCTAGTT. For
quantitative experiment, we performed SYBR green qRT-PCR
relative quantification analysis on a 7500 Real-Time PCR System
(Applied Biosystems). The deltadeltaCt method was used to
calculate the relative quantification (RQ) values of COA8
transcript (primers qRT-F: 5′- GAGATTGGTACAAGCGCAATT
T and qRT-RC: 5′- ACTCCTAGTTGCTCCTCTTCT) after
normalization to the housekeeping gene ACTB, encoding beta-
actin (primers qRT_ACTB-F: 5′-ACGGCTCCGGCATGTGCA
AG and qRT_ACTB-RC: 5′-TGACGATGCCGTGCTCGATG).

Muscle mtDNA was assayed by Southern blot and long-PCR
analysis as previously described (Ronchi et al., 2012). MtDNA
content and integrity were investigated by relative quantification
on an ABI 7500 Real Time PCR System (Ronchi et al., 2012).
MtDNA sequencing was performed by Sanger method.

2.4 Biochemical and protein studies

Enzymatic activities of mitochondrial respiratory chain
complexes I–IV and citrate synthase (CS) were measured by
spectrophotometry in the mitochondrial fractions isolated from
patient’s and controls’ muscle biopsies. The specific activity of
each complex was normalized to that of citrate synthase. Each
experiment was performed in triplicate.

A cocktail of antibodies was used to assess mitochondrial
respiratory chain subunits (Abcam ab110411, 1:1000). Additional
antibodies were used for COX-I (Abcam ab14705, 1:2000), COX-III
(Abcam, ab110259, 1:500), and COX-IV (Life Technologies,
A21347, 1:1000) subunits. The mitochondrial PORIN (VDAC)
was assayed by using a specific antibody (Abcam ab15895, 1:
1500). Protein signals were detected using fluorescent secondary
antibodies (LI-COR IR-DYE 800–680 CW). Actin (Sigma A2066)
was used for normalization purpose.

3 Results

We ruled out muscle mtDNA macro rearrangements and
sequence variations in Patient’s 2 muscle biopsy (haplogroup U2e1).

We performed affected-only Whole Exome Sequencing (WES)
analysis and we filtered for rare variants shared by patients 1 and
2 with a coding effect compatible with a recessive inheritance. The
homozygous chr14:104038005-/GACC insertion, corresponding to
c.170_173dupGACC (NM_001370595, exon 2) in COA8, was
prioritized (Supplementary Figure S1). This variant is expected to
alter COA8 reading frame, introducing a premature stop codon at
codon 62, p.Pro59Thrfs*3 (Figure 1G).

The variant was not found in an unaffected sister, the only family
members available for molecular testing. According ACMG
guidelines (Richards et al., 2015) the variant satisfied the criteria
PVS1 (null variant in a gene where Loss-of-function is a known
mechanism of disease) and PM2 (variant not found in the Gnomad
database) reaching a classification level of Likely Pathogenic. The
variant was detectable in Patient 2’s muscle extracted cDNA
(Figure 1G). Quantitative RT-PCR showed a moderate reduction
of COA8 transcript in Patient 2’s muscle (Figure 1H).

Biochemical assay revealed marked increase of citrate synthase
(CS) activity in muscle homogenate (patient: 329.2 pmol/min/mg;
controls: 137.3 ± 15.0 pmol/min/mg), resulting in reduced values of
all the respiratory chain activities when normalized to CS. In muscle,
the defect in COX activity was notably more severe respect to other
respiratory chain complexes (<5% of the controls’mean, Figure 2A).

By protein analyses, we identified profound deficiency of
subunits COX-II, COX-III, COX-IV and, to a lesser extent, of
COX-I which are integral to the assembly of complex IV
(Figures 2B, C).

4 Discussion

By identifying a likely causative novel pathogenic variant in a
familial case of mitochondrial myopathy, this study expands the
clinical and molecular features of COA8-related disorders. Complex
IV is under a double genetic control. The three large subunits COX-
I, COX-II and COX-III are encoded by mitochondrial DNA and,
after local translation inside mitochondria, constitute the catalytic
core of the enzyme (Fontanesi et al., 2006; Soto et al., 2012). Eleven
additional subunits, with regulatory or stabilizing functions, are
encoded by nuclear genes and imported into mitochondria after
cytosolic translation. Finally, a set of additional proteins, known as
COX auxiliary proteins, participate in the multistep pathway for
maturation and assembly of the COX holocomplex. Mutations in
their coding genes, all belonging to nuclear genome, result in
recessively inherited clinical presentations with primary
involvement of central and peripheral nervous system, skeletal
and cardiac muscles (Chinnery, 1993; Zeviani and Di Donato,
2004; Russell et al., 2020). Symptoms onset usually occurs in
neonatal or pediatric stage of life but growing evidence support
the existence of late-onset clinical presentations (Weraarpachai
et al., 2009; Richman et al., 2016; Sferruzza et al., 2021).

COA8 was initially identified as the pro-apoptotic factor
APOPT1 but this function was not confirmed in further
experiments. The gene is ubiquitously expressed with highest
levels in skeletal muscle. The expression of COA8/
APOPT1 protein, which seems actively degraded in physiological
conditions, is induced by oxidative stress (Brischigliaro et al., 2019;
Signes et al., 2019; Brischigliaro and Zeviani, 2021).

Its precise role in COX assembly is still unknown but it is
evolutionarily conserved since the ablation of COA8 orthologues
resulted in reduction of COX activity and levels in flies and mice
(Brischigliaro et al., 2019; Brischigliaro and Zeviani, 2021). These
biochemical defects were also associated with a neurological
phenotype in the models.

Nine patients from eight independent families have been
reported harboring pathogenic COA8 variants (Melchionda et al.,
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2014; Sharma et al., 2018; Hedberg-Oldfors et al., 2020; Chapleau
et al., 2023) so far (Supplementary Table S1).

Symptoms onset is within 5 years of age in all the patients but
one. The main clinical manifestations are encephalopathy with a
peculiar posterior, supra-tentorial cavitating leukodystrophy, spastic
tetraparesis, ataxia and sensorimotor polyneuropathy. Muscle
weakness was reported in two patients (Melchionda et al., 2014;
Hedberg-Oldfors et al., 2020). Disease course shows an early-onset
rapid clinical deterioration, affecting both cognitive and motor
functions over months, followed by stabilization and slow
improvement over several years. Cavitating leukoencephalopathy
at brain MRI was consistently observed in all the patients. An
additional ninth adult case with a similar clinical presentation
has been recently reported but the lack of functional validation
and the benign classification of the identified missense variant
question its pathogenicity (Mu et al., 2019).

In all the muscle biopsies available a diffuse reduction of
histochemical COX reaction with normal SDH staining was
observed. Similar findings in our patients and the absence of
mtDNA defects, prompted us to look for candidate variants in
nuclear DNA.

WES analysis disclosed the presence of a novel nonsense
COA8 defect. Six different mutations have been so far detected.

Most of them are homozygous null variants, as those detected in
our family. Other defects include a homozygous splice site
mutation, resulting in the loss of a large portion of the
protein, and a homozygous missense variant affecting the
highly conserved Phe118 residue (Melchionda et al., 2014). No
obvious genotype-phenotype correlation emerged from the
reports so far published. Indeed, in our patient symptoms
onset occurred during early adulthood, with lower limbs
fatigability, cramps and myalgia slowly progressing to mild
muscle weakness over the following two decades. Both the
patients displayed mild bilateral ptosis (but not
ophthalmoparesis), a symptom unreported in other patients.
In addition, brain imaging in our patients did not show
evidence of cavitating leukodystrophy, which was considered a
neuroradiological hallmark of COA8 mutations.

Intrafamilial clinical heterogenicity was observed in the only
other reported familial case (Melchionda et al., 2014), associated
with the homozygous truncating variant c.235C>T, p.(Arg79*).
Indeed, one of the two COA8-mutated siblings had developed
early-onset severe neurological impairment and became
wheelchair bound at 26 years of age, while her younger sister
showed a normal neurological examination at 14 years of age,
although the presence of white matter abnormalities at MRI and

FIGURE 2
Biochemical findings collected in P2’smuscle biopsy. (A) Spectrophotometric analysis of respiratory chain complexes activities normalized to citrate
synthase levels. Complex IV (COX) activity is reduced by >95% in P2’s muscle compared to control. (B)Western blot analysis of representative subunits of
mitochondrial respiratory chain. (C) Histograms show densitometric analysis (arbitrary units) expressed as mean ± standard deviation, revealing the
selective reduction of the steady state levels of Complex IV subunits COX-II, COX-III and COX-IV patient’s muscle compared to control biopsies.
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COX deficiency in the muscle biopsy suggested a subclinical
involvement.

Clinical heterogeneity was also found in our family: dysarthria
and sensorimotor polyneuropathy were reported only in P1. We did
not observe any further regression in our patients: the clinical course
of P1 is stable while P2 showed an improvement and complete
remission of muscle impairment, with almost full MRC score at the
last clinical evaluation. Our two patients are 1 year apart ruling out
the hypothesis of an age-related manifestation of symptoms onset.

A reduction of COX activity was observed in muscle, and to a
lesser extent in primary fibroblasts of COA8-mutated subjects.
Native experiments in immortalized fibroblasts and models also
documented a severe impairment of cIV holocomplex and cIII + cIV
supercomplex species which was exacerbated by induced oxidative
stress. Since the stable downregulation of COA8 mRNA in human
cell lines does not produce COX biochemical impairment, these
findings support the hypothesis that COA8 might protect
intermediate assemblies during COX maturation from oxidant
species. In our patient we also observed the selective reduction of
COX subunits levels leading to a severe COX activity deficiency.
Increased CS levels affected the normalized activities of other
respiratory chain complexes, as previously observed in case S2
(Supplementary Table S1) of (Melchionda et al., 2014), without
approaching the severity of COX activity impairment.

Mitochondrial presentation due to mutations in nuclear genes
were initially suspected to display a more homogenous clinical
phenotypes compared to those related to pathogenic mtDNA
variants (Lax et al., 2011; Stenton and Prokisch, 2020). The
increase of diagnostic yield of rare nuclear-related mitochondrial
forms made possible in the last years by NGS sequencing protocols
in a clinical setting challenged this idea and huge clinical variability
is now commonly observed in patients presenting mutations in the
same gene, even for patients with nuclear mutations. Our findings
reinforce this concept also for COA8 and prompt the consideration
of this gene even in patients presenting primary mitochondrial
myopathy as the preeminent clinical manifestation.
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