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Classical Invasive Description of Informationally-Complete
Quantum Processes

Moritz F. Richter,* Andrea Smirne,* Walter T. Strunz,* and Dario Egloff*

In classical stochastic theory, the joint probability distributions of a stochastic
process obey by definition the Kolmogorov consistency conditions.
Interpreting such a process as a sequence of physical measurements with
probabilistic outcomes, these conditions reflect that the measurements do
not alter the state of the underlying physical system. Prominently, this
assumption has to be abandoned in the context of quantum mechanics, yet
there are also classical processes in which measurements influence the
measured system. Here, conditions that characterize uniquely classical
processes that are probed by a reasonable class of such invasive
measurements are derived. We then analyze under what circumstances such
classical processes can simulate the statistics arising from quantum
processes associated with informationally-complete measurements. It is
expected that this investigation will help build a bridge between two
fundamental traits of non-classicality, namely, coherence and contextuality.
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1. Introduction

Since the inception of quantum physics,
a very fundamental question driving both
its theoretical development and some
of its most impressive applications is
the difference between this theory and
the classical description of the physical
world. In recent years, there has been a
great advancement in the understanding
of two topics at the heart of this question:
coherence theory and contextuality (see
refs. [1] and [2] for reviews).
Coherence theory formalizes the

intuition that superposition in the
number states is a signature of non-
classicality.[1,3] What started as a parallel
development to entanglement theory[3,4]

has since proven useful to develop
deep quantitative connections between coherence and a wide
range of topics, such as fringe visibility,[5,6] state and sub-channel
discrimination tasks,[7–11] power of quantum computation,[12–14]

state conversion in the resource theory of thermodynamics,[15,16]

quantum discord and entanglement,[17–21] quantum steering,[22]

and crucially for the present work, non-classical correlations
in time[23–25] such as those at the basis of the Leggett–Garg
inequalities.[26]

Contextuality sprang to life with the no-go theorem of Kochen
and Specker, proving that one cannot build a hidden variable
theory that assigns truth values to proper finite collections of
projective measurements of a quantum system of dimension
greater than two.[27] The topic has seen a great development
in recent years; for instance, showing how contextuality is a
strictly stronger quantum feature than Bell-non-locality,[28–30]

is important for magic state quantum computation[31,32] as
well as for quantum channel capacity and quantum state
discrimination,[33,34] and is related to non-classical correlations
in time.[35,36]

Among the different definitions of (non)contextuality, here we
rely on the identification of noncontextual statistical models as
those for which there exists a joint probability distribution for
all the measurements involved in the statistics,[37–39] which takes
root in the Kolmogorov consistency conditions of the classical
statistical theory.[40] Explicitly, the Kolmogorov consistency con-
ditions state that probabilities are positive, sum to one, and that
the joint probabilities satisfy a constraint on the marginalization
that reads, taking for simplicity the joint probability associated
with two values x1 and x2,

∑
x1
P(x2, x1) = P(x2), where P(x2) is

the probability that the stochastic process assigns to the value x2
only. These conditions are fundamental in physics because, by
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Figure 1. Sketch of a possible setup for an invasive stochastic measure-
ment: A system particle (large violet sphere) moves randomly according
to Brownian motion due to collisions with environmental particles (small
green spheres). In order to measure its position at a certain time one
shoots a smaller probe particle (small gold sphere) at it, which is detected
later on a screen. By using the position and angle from which it is shot
and the position and angle at which it is detected on the screen one can
compute the position of the Brownian particle. However, due to the impact
of the probe particle the system particle’s momentum is changed. Thus,
the probabilities for subsequent positions and paths (violet arrows point-
ing away from the particle) are altered from what they would be without
having performed the position-measurement via the probe particle (black
arrows).

virtue of the Kolmogorov extension theorem, they guarantee the
existence of an overall classical description of the statistics satis-
fying them. In particular, we investigate the multi-time statistics
associated with sequential measurements at different times, for
which a clearcut connection has been established between quan-
tum coherence and discord on one side and the breaking of the
Kolmogorov consistency conditions in the quantum setting on
the other;[23–25] See also the recent review.[41]

The validity of the Kolmogorov consistency conditions in clas-
sical models refers to the possibility, at least in principle, of per-
forming noninvasive measurements that access the actual value
possessed by physical quantities without disturbing the subse-
quent statistics. While this is indeed generally not possible in the
quantum realm, as measurements modify the state of the sys-
tem, it is also true that even classically, one can think of measure-
ments modifying the system state. As a specific example, one can
think of the measurement of the position of a particle undergo-
ing Brownian motion due to the interaction with, possibly very
small, surrounding particles. Such a measurement might in fact
modify the positions of all the particles involved, and then the
following statistics of the particle’s position would be different
depending on whether the measurement has been performed or
not. A visualization is given in Figure 1.
On the one hand, considering classical invasivemeasurements

opens the door to possible loopholes when trying to certify ex-
perimentally the nonclassicality of a given statistic, such as the

so-called clumsiness loophole in the context of Leggett–Garg
inequalities.[42] On the other hand, it allows an extended no-
tion of classicality, where the Kolmogorov consistency conditions
no longer hold[43] and contextuality is accounted for by classical
models of invasiveness.[2,44,45]

In this paper, we introduce a class of invasive statistical mod-
els, starting from a canonical classical process that satisfies the
Kolmogorov consistency conditions and including invasiveness
via an operational characterization of the disturbance on the
statistics induced by the measurements, along with a restriction
on the accessible multi-time probabilities. We derive concrete
and experimentally verifiable conditions that uniquely character-
ize such invasive classical processes, for the case of up to two
(informationally complete) measurements and preparations for
arbitrary finite-dimensional systems. Furthermore, we provide a
general microscopic description of the statistics that satisfy such
conditions in terms of a system plus environment model. Lastly,
we determine when quantum statistics can be simulated via the
introduced classical invasivemodel, focusing on informationally-
complete POVMs and identifying the key properties of the dy-
namics that is linked to this extended notion of classicality.

2. Classical Invasive Model

In this section, we are going to define what type of invasive mod-
els we consider to be classical. This is analogous to the classical-
ity conditions of Bell,[46] but here we do not consider local ob-
servables. Instead, similarly as in ref. [47], we consider a system
probed multiple times by a measurement. However, differently
from,[47] we do not consider that our measurement is in some
way deterministic, but only ask that it is invasive in a specific way.
To deal with multi-time statistics in the presence of inva-

sive interventions—such as invasive measurements—we use the
notion of contextual probabilities.[48] Intuitively, contextuality
means that the observations of an experiment can depend on the
setting of the experiment that one does not consider to be part
of the actual experiment. In quantum mechanics, for instance,
whether one performs a measurement at a given time can affect
the outcomes at a later time. In this way, each invasive interven-
tion defines a different context and, within a given context, the
Kolmogorov consistency conditions (KCCs) hold. We can restate
this using the Kolmogorov extension theorem:[40] There is a clas-
sical stochastic process that gives rise to the observable proba-
bilities if one does not change the context. However, the collec-
tive probability distribution does not respect the KCC; taking the
marginal over the outcomes of one invasive measurement does
not generally tell us what would happen if that specific measure-
ment was not performed. Again restating this last sentence using
the Kolmogorov extension theorem,[40] we find that, in general,
there is no classical stochastic process that gives rise to the ob-
servable probabilities if one changes the context.
Note that contextual probabilities provide a general formalism

to describe contextual theories and, if defined broadly enough,
they encompass all the predictions of quantum mechanics.[48]

In the following, however, we are going to use them to define
a specific class of contextual theories, which we still understand
as classical in view of the kind of invasiveness allowed.
Besides measurements, we describe explicitly the possibility

to re-prepare the system after any measurement and before the
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following evolution (and further measurement); indeed, such an
intervention can, in general, be invasive. Note that our formal-
ism can be used even if no re-preparations are done. Hence, in
the framework we consider here, contexts are defined by the se-
quence of invasive measurements chosen at different times, to-
gether with the possible re-preparation of the system after the
measurements. In each context, there are non-invasive measure-
ments (at different times) that correspond to the canonical classi-
cal model, where probability distributions referring to the same
sequence of times are related by KCCs. The basic idea is that such
ideal measurements cannot be performed, so only probabilities
involving invasive measurements and re-preparations are actu-
ally observable. On the other hand, invasive measurements can
be characterized with respect to the non-invasive ones, which de-
fines the classical invasive model at hand. In this way, we explic-
itly separate the part of the model that is affected by the invasive-
ness of the measurement and preparation, from the part that is
thought to be only due to the dynamical evolution of the system.

2.1. Instantaneously-Invasive Measurements

Our first aim is to derive consistency conditions referring to dif-
ferent contexts, characterized by which invasive measurements
and state re-preparations are performed. Our model includes the
possibility of re-preparing the system after each invasive mea-
surement, such that a non-invasive measurement would give a
definite outcome with certainty. This means that we can have
optimal control of the states even after the invasive measure-
ments. As we assume that the re-preparation is deterministic,
we condition on the specific choice in order not to carry in the
statistical information that depends solely on a fully controllable
choice in the experiment. All in all, we will consider probabili-
ties of the form PRn−1 ,An−1;…;R1 ,A1 (an,𝓁n;… ; a1,𝓁1|rn−1;… ; r1), that
is, the hypothetical probability of getting outcomes {𝓁1, a1} for
a non-invasive measurement L1 (that cannot be performed in
a real experiment), followed by the invasive one A1 at time t1
and so on until {𝓁n, an} at time tn, with tn ≥ … ≥ t1, conditioned
on the re-preparations R1,…Rn−1 of the system in, respectively,
r1,… , rn−1 instantly after A1,… , An−1. As we are interested in the
effect of the measurements, we only consider the possibility of
either a specific measurement Ai (or re-preparation Ri) being
performed at time ti or not. In the second case, the letter Ai is
omitted in the superscript of P. Whenever A1, R1,… , An−1, Rn−1
are fixed, the standard KCCs apply, so that we have, for ex-
ample,

∑
𝓁1
PR1 ,A1 (a2,𝓁2; a1,𝓁1|r1) = PR1 ,A1 (a2,𝓁2; a1|r1), while, in

general,
∑

a1
PA1 (a2; a1) ≠ P(a2), since the probabilities at the left

and right hand sides of the previous expression refer to two dif-
ferent contexts, one where the invasive measurement A1 at time
t1 is performed and the other where it is not. Also note that
we write PRn−1 ,An−1;…;R1 ,A1 (an,𝓁n;… ; a1,𝓁1|rn−1;… ; r1) rather than
PAn ;Rn−1 ,An−1;…;R1 ,A1 (an,𝓁n;… ; a1,𝓁1|rn−1;… ; r1), that is, we do not
define a context for the last measurement An. This simplification
can be done assuming causality (see Condition 5), as there is
no subsequent probability that could depend on whether or not
the last measurement was performed. Consequently, there is no
need to define a context for the last measurement.
We now enumerate the conditions that characterize the class

of invasive theories we take into account. First, we specify the

operational definition of the invasive measurements in terms of
the hypothetical non-invasive measurements.

Condition 1. Whatever the previous (or subsequent) sequence of mea-
surements, if a non-invasive measurement L would give the out-
come 𝓁 with certainty, then the probability to get an outcome a
when performing instead an invasive measurement A is

Prob(invA → a|non − invL → 𝓁) = Ma;𝓁 (1)

The so definedmatrixM will be called an invasive measurement
matrix or just IMM and it is indeed a stochastic matrix.
A practical interpretation of this condition is the following: As-

sume for a moment that, in principle, we were able to perform
hypothetical non-invasive measurements on the system. Further,
assume that if we prepare the system in a fixed way, when mea-
suring, we always get the same outcome 𝓁 determined by the
system state. In such a situation, the condition states that the
probability of the invasive measurement to result in outcome a
will be P(a) = Ma;𝓁 . This means that while the invasive measure-
ment measures the same physical quantity as a hypothetical non-
invasive one, itmight disturb themeasured state. Therefore, even
a well-defined state will not necessarily give always the same out-
come, when measured by such an invasive measurement.
More specifically, Condition 1 implies that we consider inva-

sive theories where the influence of themeasurement on the sub-
sequent statistics is “instantaneous,” that is, it does not depend
on the previous (neither on the following) sequence of measure-
ment outcomes. This is indeed a fully motivated restriction from
a physical point of view and can be seen as the counterpart of
the use of a sequence of quantum instruments to describe sub-
sequent measurements on a quantum system (see also the next
section).
A simple example where this condition is not satisfied is the

following: Suppose that the same measurement device is used
in two subsequent measurements, and in the second one the de-
vice does not measure the system at all, but simply shows the
outcome of the first measurement. In this case, the probability
distribution of the second measurement will depend on the first
one and in general cannot be described solely by the state of the
system just before the secondmeasurement. This condition thus
formalizes the confidence of a careful experimentalist that such
unwanted dependencies between measurements do not happen
in the experiment.
Explicitly, Condition 1 means that ∀k = 2,… n,

P(ak,𝓁k) = Mak ;𝓁k
P(𝓁k) (2)

PRk−1 ,Ak−1;…;R1 ,A1 (ak,𝓁k;… ; a1,𝓁1|rk−1;… ; r1) (3)

= Mak ;𝓁k
PRk−1 ,Ak−1;…;R1 ,A1 (𝓁k;… ; a1,𝓁1|rk−1;… ; r1)

which clarifies the role ofMak,𝓁k
as the conditional probability re-

lating a sequence of measurements ending with 𝓁k with the one
obtained by adding ak. The IMM M can be fully reconstructed
from the probabilities associated with the invasivemeasurement.
In fact, if we can prepare the system in a way such that a subse-
quent non-invasive measurement (for example, at time t1) would
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result in P(𝓁1) = 𝛿𝓁1 ,𝓁 for any of the possible outcomes 𝓁, Equa-
tion (2) then gives us

Ma1;𝓁
= P(a1|𝓁1 = 𝓁) (4)

that is,Ma1;𝓁1
can be reconstructed by preparing the state 𝓁1 and

registering the probability associated with the subsequent inva-
sive measurement with outcome a1.
The second condition of the invasive measurement concerns

its completeness.

Condition 2. The invasive measurement is informationally com-
plete (IC) (but not over-complete), that is, {P(a)}a allows us to
infer the one-step statistics of any other measurement (invasive
or not) performed at the same time.

The informational completeness of the measurements, both
invasive ones as well as the (actually not performable) non-
invasive ones, implies that the probability distributions PAk (ak)
and P(𝓁k) both represent the same abstract underlying state—
in the first case measured invasively and in the second case hy-
pothetically non-invasively. This implies a one-to-one correspon-
dence, that is, a bijection, between both representations given by
the IMMM and thus,Mmust be invertible. This condition basi-
cally says that while ourmeasurements are not ideal, in the sense
that they do alter themeasured system, they at least give us full in-
formation. Informational completeness corresponds to the well-
known situation in quantum mechanics where one performs a
(minimal) tomography: any prediction of the statistics of any pos-
sible measurement can be inferred from that information. In fu-
ture work, we plan to investigate what happens when such an
assumption is weakened to include, on the one hand, also case
of orthogonal projective measurements in quantum mechanics
(which are not complete), or, on the other hand, situations where
the measurements are over-complete. Over-complete just means
that the measurement gives at least the necessary information to
recover the state.
The next two conditions characterize the influence that re-

preparing the system may have on the statistics. The first one
fixes the interplay between the different interventions (invasive
and non-invasive ones), in this way connecting probabilities re-
ferring to different contexts.

Condition 3. Given a sequence of a non-invasive measurement,
an invasive one, and a re-preparation procedure, all at the same
time, the invasive measurement does not affect the subsequent
statistics; explicitly, if said sequence occurs at all times t1,… tn−1,
one has

PRn−1 ,An−1;…;R1 ,A1 (𝓁n;… ; a1,𝓁1|rn−1;… ; r1) (5)

= Man−1;𝓁n−1
…Ma1;𝓁1

PRn−1;…;R1 (𝓁n;… ;𝓁1|rn−1;… ; r1)

Intuitively, after a system is re-prepared to a given state, the
evolution should not depend on the outcome of themeasurement
before the re-preparation. That is because the outcome has been
discarded in the re-preparation. Condition 3 reflects this thought.
However, the condition is not trivial. Essentially, it means that the
invasive measurement only affects the degrees of freedom of the
measured system. We will come back to this after introducing a

picture of the statistics based on the interaction of the measured
system with an environment.
The next condition concerns our ability to prepare the system

in a way such that if we do not alter the system’s state (that has
a meaningful definition due to Condition 2), we do not alter the
subsequent evolution.

Condition 4. The statistics stemming from re-preparing the sys-
tem in a state labeled by a1 after getting the measurement out-
come a1 cannot be distinguished from only measuring a1; for
instance:

PA1 (a2; a1) = PR1 ,A1 (a2; a1|r1 = a1) (6)

To be explicit, this condition is in general not valid if the re-
preparation affects the setting of the experiment. In other words,
it formalizes the experimentalist capability to affect only the in-
tended degrees of freedom in the re-preparation.
Finally, we also assume the following:

Condition 5. Actions later in time do not affect earlier actions,
meaning that one can always take the marginal over later actions
to get the former ones; for instance:∑
𝓁2

PR1 (𝓁2;𝓁1|r1) = P(𝓁1) ∀r1 (7)

This condition is nothing else than the causality condition,
which is usually required in general probability theories, and has
been named the arrow-of-time condition in the framework of se-
quential measurements at different times.[49]

Although some of the conditions presented here might seem
trivial, we need to assume them explicitly. This is because the ob-
ject we want to analyze is the statistics, which per se do not need
to satisfy any of the conditions. In fact, we do not assume any
background theory that may have some of these conditions al-
ready incorporated. Instead, given the statistics, we ask whether
it is possible that it stems from a classical invasive process with
instantaneous invasive and informationally-complete measure-
ments. Hence, we ask whether the given statistics fulfills all the
conditions presented above and are consistent with a classical
stochastic process. Moreover, we stress that the class of invasive
theories defined by the conditions above does not cover any pos-
sible description that can be considered a classical simulation
of temporal correlations appearing in quantum mechanics. In
particular and quite significantly, compared, for example, to the
approach put forward in refs. [50, 51], classical invasive models
we consider invasiveness is fully encoded into the IMM, whose
dimensionality is limited by the number of possible measure-
ment outcomes.

2.2. Necessary and Sufficient Conditions for the Existence of the
Invasive-Measurement Description

Before proceeding, we clarify which probabilities are directly ac-
cessible in the invasive theories we describe. From here on, we
restrict ourselves to the case where one can perform (or not) inva-
sive measurements A1 and A2 only at two different fixed instants
of time t1 and t2 ≥ t1, that is, n = 2, leaving for future investiga-
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tion the extension to a generic number n of invasive measure-
ments at n subsequent times.
The very notion of invasive theory we are using means that

statistics referring to non-invasive measurements cannot be ac-
cessed directly, so that, for example, one cannot obtain the prob-
ability PR1 ,A1 (a2,𝓁2; a1,𝓁1|r1) from empirical data. On the con-
trary, one can indeed access the probabilities where only invasive
measurements are involved, such as P(ai) and P

A1 (a2; a1). In ad-
dition, probabilities involving only invasive measurements and
re-preparations can be accessed, as in PR1 ,A1 (a2; a1|r1), which is
the probability of getting the outcome a2 for an invasive mea-
surement at time t2 and a1 for an invasive measurement at time
t1, conditioned on having re-prepared the system in state r1 after
the first invasive measurement. Analogously, we can also simply
perform a state preparation at time t1, but without any invasive
measurement at that time, in this way accessing PR1 (a2|r1).
Finally, we stress that there are probabilities that cannot be ac-

cessed directly but that can still be reconstructed from observable
probabilities. Indeed, P(𝓁1) is an example of this due to the Con-
dition 2; denoting as (M−1)𝓁;a the matrix elements of the inverse
ofM, we have in fact (from the sum over 𝓁1 of Equation (2))

P(𝓁1) =
∑
a1

(M−1)𝓁1;a1P(a1) (8)

that is, the statistics associated with the non-invasive measure-
ment at time t1 can be inferred from the statistics associated with
the invasive measurement at the same time. Note that the possi-
bility to do so depends on the invertibility of the IMM M and
is thus a consequence of the informational completeness of the
measurement. Similarly, we have

PR1 ,A1 (𝓁2; a1|r1) = ∑
a2

(M−1)𝓁2;a2P
R1 ,A1 (a2; a1|r1) (9)

Condition 3 is the key element that allows us to connect
probabilities referring to different contexts, that is, to situations
where there is or there is not the intermediate invasive measure-
ment at time t1. In particular, Equation (5) for n = 2, along with∑

a1
Ma1 ,𝓁1

= 1 (M is a stochastic matrix), Equation (3) and the
KCCs with respect to 𝓁1 and 𝓁2 imply

PR1 (a2|r1) = ∑
a1

PR1 ,A1 (a2; a1|r1) (10)

that is, one can apply the standard KCC with respect to A1 when
both the invasive measurement and the re-preparation are in-
volved at time t1. Moreover, as shown in Appendix A, Equation (5)
also implies

P(a2) =
∑
a1 ,r1

(M−1)r1;a1P
R1 ,A1 (a2; a1|r1) (11)

Crucially, these relations involve only probabilities that refer to
invasive measurements and a state re-preparation and are thus
accessible (see the remark at the beginning of this paragraph and
Equation (4) for the assessment ofM).
We now have all the ingredients we need to formulate the first

main result of the paper.

Theorem 1. Let the probabilities P(a1), P(a2), PR1 (a2|r1) and
PR1 ,A1 (a2; a1|r1), as well as an invertible matrix of transition
probabilities M, be given. Then, i) P(𝓁1) :=

∑
ai
(M−1)𝓁i ;aiP(ai)

and PR1 (𝓁2;𝓁1|r1) := ∑
a1 ,a2

(M−1)𝓁2;a2 (M
−1)𝓁1;a1P

R1 ,A1 (a2; a1|r1) are
probability distributions, and ii) Equations (6), (7), (10), and
(11) hold if and only if there exists a probability distribution
PR1 ,A1 (a2,𝓁2; a1,𝓁1|r1), from which the probabilities above can be ob-
tained by Conditions 1 to 5 together with the KCCs over the corre-
sponding 𝓁is.

In other terms, we have some definite conditions on experi-
mentally accessible probabilities that, if satisfied, guarantee the
existence of an underlying contextual model that accounts for
the given statistics and, by satisfying Conditions 1 to 5, de-
scribes instantaneously-invasive informationally-complete mea-
surements.
Quite interestingly, the proof of the statement, see Appendix A,

is constructive and consists in the introduction of further de-
grees of freedom (an environment) interacting with the system
the statistics are referring to. As depicted in Figure 2, the global
evolution of the system together with the environment can be
modeled as a stochastic evolution, where one needs to account
for the stochastic intervention of the measurements on the sys-
tem whenever one performs them. As shown in Appendix A,
such a model exists whenever the conditions (i) and (ii) stated
in the theorem are satisfied. It is then easy to verify that the re-
duced dynamics on the system give a contextual model that de-
scribes instantaneously-invasive, informationally-complete mea-
surements, reproduces the statistics, and satisfies the conditions
stated in the theorem. Thus, the equivalence of the two models
with conditions (i) and (ii) of the theorem is shown.
As a further remark, we comment on the question, “What if the

statistics stem from an experiment where no re-preparation has
been done?” In this case, one can still apply the theorem to tell
whether the statistics could be reproduced by a classical stochas-
tic process probed by instantaneously-invasive, informationally-
complete measurements. One still just needs to check Equa-
tions (6), (7), (10), and (11) together with the KCCs over the cor-
responding 𝓁is for the statistics one has. However, Equation (6)
is trivial in that case and Equations (7) and (10) get substantially
weakened (as one cannot check whether they are fulfilled for any
re-preparation). However, one could still check whether the prob-
abilities without re-preparation can be embedded in a statistics
including re-preparation and such that the assumptions of the
theorem hold.
Finally, note that the proof also shows that if P(𝓁1)

and PR1 (𝓁2;𝓁1|r1) are quasi probability distributions (i.e.,
they can have negative entries), the theorem holds up to
PR1 ,A1 (a2,𝓁2; a1,𝓁1|r1) having negative entries.
3. Quantum Processes with
Informationally-Complete Quantum
Measurements

In the following, we discuss the application of the concepts devel-
oped above to the statistics of quantum sequentialmeasurements
at different times; that is, we investigate to what extent the pre-
dictions of quantummechanics can be reproduced via classically
invasive models as those defined in the previous section.
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Figure 2. This figure shows the stochastic model of system S plus environment E that can explain the statistics gathered in register R, exactly if there is a
corresponding contextual model that describes instantaneously-invasive informationally-complete measurements. The model starts with a hypothetical
system state s0 at time t0 that evolves to the (not measurable) state 𝓁1 on the system and e1 on the environment under the action of the stochastic map
V𝓁1 ,e1;s0 at time t1. Then there is a measurement on the system side, which changes the system’s state under the action of the stochastic mapMa1;𝓁1 to
a1. If the system is re-prepared in state r1, state a1 is lost. The evolution then continues analogously during time t2. The model is able to reproduce the
statistics if the stochastic matrices of the evolutions V are independent of whether one measures or re-prepares the system at any time.

In contrast to the classical case, mutually exclusive outcomes
in quantum mechanics—that is, an orthogonal measurement
set-up—cannot reveal the full information about the state of a
quantum system, and informationally complete quantum mea-
surements have overlapping outcomes. The idea is then to in-
terpret this overlap as stochastic invasiveness of the kind intro-
duced above. Consequently, we will define conditions for a quan-
tum stochastic process associated with informationally complete
measurements to provide statistics that obey the properties and
conditions of consistency as discussed above. Furthermore, we
will connect the fulfillment of such conditions to a definite prop-
erty of the evolution of a quantum system interacting with an
environment and realizing the process at hand.

3.1. IC-POVM

We start by recalling the definition of informationally complete
quantum measurements.[52,53] A rank-one informationally com-
plete positive operator valuedmeasure (IC-POVM) is a set of positive
operators {𝜓 = K†

𝜓
K𝜓 = 1

c𝜓
|𝜓⟩⟨𝜓|} where {|𝜓⟩⟨𝜓|} =:  is a

frame on the space of bounded operators() (called a quantum
frame[52,54]), that is, any operators, like density operators, have a
decomposition

𝜌̂ =
∑
𝜓

f𝜓 |𝜓⟩⟨𝜓| (12)

and c𝜓 is chosen such that
∑

𝜓 𝜓 = 𝟙. For simplicity, we assume
the quantum frame (and IC-POVM) to be minimal, that is, a
(non-orthogonal) basis.
Under this assumption, the frame decomposition coefficients

(FDCs) f𝜓 of density operators representing mixed quantum

states are f𝜓 ∈ ℝ due to the hermiticity of 𝜌̂ and
∑

𝜓 f𝜓 = 1 since
𝜌̂ is trace-one. Thus, using a quantum frame, one can express
any quantum state 𝜌̂ as an at least quasi-stochastic mixture of a
fixed set of pure quantum states {|𝜓⟩⟨𝜓|}. In the case of an open
quantum system S coupled to an environment E, that is, giv-
ing a global space  = S ⊗E, it is possible to combine a
system quantum frame S := {|𝜓⟩⟨𝜓|S} and an environmental
frame E := {|𝜖⟩⟨𝜖|E} to an overall multi-partite quantum frame
 := S ⊗ E = {|𝜓⟩⟨𝜓|S ⊗ |𝜖⟩⟨𝜖|E} such that,
𝜌̂ =

∑
𝜓 ,𝜖

f(𝜓 ,𝜖)|𝜓⟩⟨𝜓|S ⊗ |𝜖⟩⟨𝜖|E = ∑
𝜓

f S
𝜓
|𝜓⟩⟨𝜓|⊗ 𝜖𝜓 (13)

where f S
𝜓
are the FDCs of 𝜌̂S := TrE[𝜌̂] and the operators 𝜖𝜓 ∈

(E) are hermitian, trace-one but not necessarily positive semi-
definite. Consider performing a measurement given by an IC-
POVM on S. If the system S before the measurement was in
the state 𝜌̂ and the outcome is 𝜓 , the state after the measurement
is given by

𝜓 (𝜌̂) = (K𝜓 ⊗ 𝟙)𝜌̂(K𝜓 ⊗ 𝟙)† (14)

As in this example we are considering the Kraus operators to be
rank one, the state after the measurement can also be expressed
as

Π𝜓 (𝜌̂) = |𝜓⟩⟨𝜓|S ⊗ 𝜌̂E (15)

Moreover, we consider an intermediate evolution between sub-
sequent measurements, as given by a unitary map  acting on
system and environment ((𝜌̂) = V 𝜌̂V†, with V ∈  () a uni-
tary operator). Let us assume, without loss of generality, that the
input state at time t1 is generated by a unitary 0 out of an ini-

Ann. Phys. (Berlin) 2023, 2300304 2300304 (6 of 14) © 2023 The Authors. Annalen der Physik published by Wiley-VCH GmbH

 15213889, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/andp.202300304 by U

niversita D
i M

ilano, W
iley O

nline L
ibrary on [28/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.ann-phys.org


www.advancedsciencenews.com www.ann-phys.org

tial state 𝜌̂0 at time t0, while the unitary between time t1 and t2
is denoted by 1. That we assume an already evolved state 0(𝜌̂0)
entering the very first measurement is motivated by typical as-
sumptions from open quantum theory. Using this construction,
we can initially assume, for example, product states 𝜌̂0 = 𝜌̂S ⊗ 𝜏
with a certain system state 𝜌̂S coupled to some thermal state 𝜏 of
some bath as environment and nevertheless allow for entering
arbitrarily correlated states at the moment of the first measure-
ment.

3.2. Correspondence between Classical Invasive and Quantum
Models

All probabilities that define the observable quantities in the in-
vasive model defined in Section 2 can be expressed via Born’s
rule applied to the proper sequence of maps—note that the in-
dices ai,𝓁i, ri now refer to the elements of the quantum frame
indexed by {𝜓}, where |𝜓⟩⟨𝜓| labels the projectors defining the
IC-POVM. For instance,

PR1 ,A1 (a2; a1|r1) = Tr
[
a2

1Πr1
a1

0(𝜌̂0)
]

=
Tr

[
a2

1Πr1
a1

0(𝜌̂0)
]

Tr
[
Πr1

a1
0(𝜌̂0)

] Tr
[
a1

0(𝜌̂0)
]

(16)

where a describes the state transformation due to a measure-
ment with outcome a according to Equation (14), while Πr is the
re-preparation in the state one gets after ameasurement with out-
come r according to Equation (15). From P(a1) = Tr[a1

0(𝜌̂0)]
and setting

Ma;𝓁 := Tr
[
a|𝓁⟩⟨𝓁|] = Tr

[
Ka|𝓁⟩⟨𝓁|K†

a

]
(17)

one can derive (see Appendix B)

P(𝓁1) = f S𝓁1 (18)

Thus, the (inaccessible) probability ofmeasuring outcome 𝓁1 in a
(hypothetically) non-invasive measurement L1 (see Equation (8))
in the invasive-stochastic model is given by the FDC f S𝓁1 of the re-
duced system state (see Equation (13)). The frame decomposition
at time t1 reads

0(𝜌̂0) =
∑
(𝜓 ,𝜖)

(
V0 f⃗0

)
(𝜓 ,𝜖)

|𝜓⟩⟨𝜓|S ⊗ |𝜖⟩⟨𝜖|E (19)

where we understand f⃗0 as a vector like representation of 𝜌̂0 based
on its FDCs and V0 accordingly as a matrix like representation of
0 as similarly suggested, for example, by refs. [55, 56]. Conse-
quently, we will neglect the indices S and E and use the conven-
tion that the first factor of a tensor product refers to S and the
second one toE. In Appendix B, the following lemma is shown.

Lemma2. Aquantum stochastic process using IC-POVMswith prob-
abilities as defined above fulfills Equations (6), (7), (10), and (11).
Furthermore, PR1 (𝓁2;𝓁1|r1) := ∑

a1 ,a2
(M−1)𝓁2;a2 (M

−1)𝓁1;a1P
R1 ,A1 (a2;

a1|r1) and P(𝓁1) are quasi probability distribution (they sum to one
but are not necessarily positive).

Lemma 2 shows that a probability distribution produced by
such a quantum process using IC-POVMs is at least quasi-
stochastic, that is, consistency holds, and even objects like P(𝓁1)
are real and sum up to one but might be negative. To charac-
terize the cases in which all entities really behave like proper—
positive—probabilities, we introduce the following definitions.

Definition 1. A quantum state 𝜌̂ on  = S ⊗E is called S-
separable if and only if it has a decomposition 𝜌̂ =

∑
𝜓 f

S
𝜓
|𝜓⟩⟨𝜓|⊗

𝜖𝜓 with f S
𝜓
≥ 0 and 𝜖𝜓 is a proper environmental quantum state

∀|𝜓⟩⟨𝜓| ∈ S. A unitary evolution  ∈  () is called S-separable
if and only if it maps S-separable states to such states again.

The following theorem, which is proved in Appendix C, char-
acterizes S-separability as the key property that allows us to re-
produce the predictions of quantum mechanics via the classical
invasive models introduced in the previous section.

Theorem 3. A quantum process using anS-based IC-POVM onS
as measurement, S-separable initial state 𝜌̂0 and S-separable uni-
taries 0,1 ∈  () as initial and intermediate evolutions produces
a proper stochastic probability distribution for all contexts.

3.3. Markovian and Non-Markovian Processes

Theorem 3 states that a process at hand can be simulated via
invasive stochastic probabilities whenever the condition of S-
separability is ensured. Analogously to what happens in the case
of ideal projective measurements,[23,43] there is an important
class of processes for which S-separability reduces to a simpler
condition, expressed in terms of the dynamical maps acting on
the open system only; namely, this is the case for Markovian pro-
cesses.
Here, what we mean with Markovianity is that the whole hi-

erarchy of probability distributions, and hence in particular the
probabilities involved in our analysis, is fixed by the completely
positive trace-preserving (CPTP) dynamical maps between two
subsequent measurements i and i + 1 defined as

Λi(𝜌̂) = TrE
[
i(𝜌̂ ⊗ 𝜏i)

†
i

]
(20)

where 𝜏i is a reference state of the environment (possibly differ-
ent at different times).Hence,Markovianity is here understood in
terms of a property of multi-time probability distributions, anal-
ogously to the definition for classical stochastic processes; for a
comparison among different notions of quantum Markovianity,
we refer the reader to ref. [57]. This setting means that for any
measurement time, all relevant information for the subsequent
statistics is stored in the system state 𝜌̂S ∈ (S) only and can
hence be encoded in a simple frame vector f⃗ for the system frame
S corresponding to the IC-POVM at hand. In turn, the frame-
representation of a CPTPmap is simply a matrix VΛ which maps
the frame vector of the input state to the frame vector of the out-
put state. As a consequence, VΛ has to be a quasi-stochastic ma-
trix, that is, all entries are real and each column sums up to one.
Now, if a quantum state has only non-negative FDCs (i.e., f⃗

has non-negative entries), we say that it is S-positive and, ac-
cordingly, we define S-positivity of a CPTP map by requiring
that it maps S-positive states to S-positive states again; indeed,

Ann. Phys. (Berlin) 2023, 2300304 2300304 (7 of 14) © 2023 The Authors. Annalen der Physik published by Wiley-VCH GmbH

 15213889, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/andp.202300304 by U

niversita D
i M

ilano, W
iley O

nline L
ibrary on [28/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.ann-phys.org


www.advancedsciencenews.com www.ann-phys.org

Figure 3. A quantum frame SIC = {|𝛼⟩⟨𝛼|,… , |𝛿⟩⟨𝛿|} corresponding to a
symmetric-informationally-complete-POVM (or SIC-POVM) on a qubit rep-
resented by the Bloch ball. In gray the convex hull of SIC is given as a
regular tetrahedron. All quantum states 𝜌̂ inside this tetrahedron is SIC-
positive states and any CPTP map mapping this tetrahedron into itself are
SIC-positive dynamical maps.

this is equivalent to the requirement that the corresponding VΛ
is a proper stochastic matrix (all entries are non-negative). Even
more, when the quantum process is Markovian, this is enough to
ensure simulability via invasive processes. It is in fact easy to see
that requiring an S-separable initial quantum state 𝜌̂0 in Theo-
rem 3 reduces for product states to the necessity of an S-positive
quantum state 𝜌̂S on the system side, and that S-positivity is the
Markovian reduction of S-separability of Definition 1. An equiv-
alent characterization of S-positivity is that such a state 𝜌̂ is in
the convex hull conv[S] of the frame and that such a CPTP map
sends its convex hull into its convex hull again. For an illustration
of a convex hull of a quantum frame for a qubit, see Figure 3.
Thus, the probability distribution of any quantum Markovian
process using anS-based IC-POVM, an initial state 𝜌̂ ∈ conv[S]
and an intermediate CPTP map Λ : conv[S] → conv[S] fulfills
all conditions for a stochastically invasive statistic.
In the non-Markovian case, the dynamical maps are no longer

enough to infer the multi-time probabilities,[43] and thus the
possibility to simulate them via an invasive classical stochas-
tic model. Consider the following simple example of a non-
Markovian process that, despite being associated with an S-
positive dynamical map, cannot be simulated via the stochastic
representation based on invasive measurements defined in Sec-
tion 2.We have a two-level open quantum system,S, interacting
with a two-level environment, E , so that the global evolution is
fixed by the unitary map that acts between any considered time
interval, that is from t0 to t1 as well as from t1 to t2,

 = e−
i
2 (𝜎x⊗𝜎x+𝜎y⊗𝜎y+2𝜎z⊗𝜎z) (21)

and the initial environmental state 𝜏0 = 𝟙∕2. The resulting open-
system CPTP map defined via Equation (20) is easily seen to
be a contraction of the Bloch ball, isotropic along the x − y plan
by an amount cos(1) cos(2) while along the z-axis by an amount
cos(1)2, so that the convex hull of the IC-POVM defined by the

Table 1. Values of
∑

a1
PR1 ,A1(𝓁2; a1|r1) for different 𝓁2 (rows) and r1

(columns); indeed the negative values (in boldface) for fixed r1,𝓁2 mean
that at least one of the corresponding PR1 ,A1(𝓁2; a1|r1) is negative, and it
cannot be thus associated with a probability distribution.

r = 0 r = 1 r = 2 r = 3

l = 0 0.34 0.05 0.25 −0.15
l = 1 0.61 0.56 0.78 0.78

l = 2 0.18 0.08 −0.15 0.28

l = 3 −0.13 0.31 0.12 0.09

pure states {|0⟩, 1√
3
|0⟩ +√

2
3
ei2k𝜋∕3|1⟩}k=1,2,3 is mapped into it-

self, that is, the map is S-positive. On the other hand, a direct
evaluation of PR1 ,A1(a2; a1|r1) via Equation (16), shows that the
quantity PR1 ,A1(𝓁2; a1|r1) = ∑

a2
(M−1)𝓁2;a2P

R1 ,A1(a2; a1|r1) is not a
probability distribution, since it takes on negative values, see
Table 1; more details are given in Appendix D. Thus, because of
Theorem 1 there is no instantaneously-invasive informationally-
complete stochastic process accounting for the same statistics;
indeed, Theorem 3 implies that this is due to the lack of S-
separability of the overall evolution.

4. Conclusion

In this paper, we have fully characterized a class of stochastic
models that are invasive but whose invasiveness can still be in-
terpreted as having a classical origin. In particular, we have pro-
vided definite conditions that allow one, by looking at the statis-
tics of the measurement outcomes, to tell whether such a clas-
sical model exists or not. Additionally, as our proof is construc-
tive, one can use it to construct an explicit model, if one exists.
We then identified a significant class of quantum processes that
can be simulated by such a classical model. The analysis is fo-
cused on processes associated with sequential measurements of
rank-one informationally-complete POVMs, deriving a sufficient
condition to represent them via an invasive classical model that
is connected with a definite property of the dynamics of the mea-
sured system. Furthermore, we have also shown, by means of an
explicit example, that there are indeed quantum processes that
cannot be simulated via the invasive models defined here.
This point deserves special attention, since the fact that in

quantummechanics the measurement of a system alters its state
is often understood as a major difference from classical physics
or even the peculiarity of quantum physics. However, our model
and example suggest that the difference between classical and
quantumphysics ismuchmore subtle than just the invasive char-
acter of measurements in the latter one. In this connection, it is
also interesting to consider recent results that show how quan-
tum mechanics can be modeled by a classical stochastic model,
such as those presented in refs. [50, 51]. In this respect, a cru-
cial constraint of our approach is the dimensionality of the clas-
sical invasive models taken into account. The very definition of
the invasive measurement matrix in Condition 1, along with the
completeness of the measurement expressed by Condition2 and
the connectionwith themulti-time statistics in Condition3 essen-
tially make the dimensionality of the classical model limited by
the number of outcomes of the measured quantity. On the other
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hand, in refs. [50, 51] the internal state of the system that fixes
the classical invasive model is not a-priori limited in dimension-
ality, which leads to the possibility to simulate all distributions
that satisfy temporal ordering, thus including all quantum ones.
It will be an interesting task to generalize our results in vari-

ous ways and deepen their connection to the existing literature.
Recently, for instance, a generalization of the Kolmogorov consis-
tency conditions has been brought forward with the idea of char-
acterizing quantum processes.[43] As the conditions presented
here characterize an extended class of stochastic processes—and
hence are also direct generalizations of the same consistency
conditions—it will be interesting to study how these generaliza-
tions differ. In addition, we hope that the recent results on the
dynamics of basis-dependent discord and coherence,[23–25] in re-
lation to the non-classicality of time-correlations, can be seen as
a limiting case of what we have investigated here. Indeed, the
main difference consists in the type of measurement applied, as
orthogonal (but not complete) measurements were considered,
while here we analyze complete (but not orthogonal) measure-
ments. A further connection that is certainly worth investigat-
ing is with the theory of epsilon-transducers,[2,44] which has been
used to calculate the memory needed to simulate a contextual ex-
periment by a non-contextual one.[58]

Finally, we note that the statistics considered in this paper refer
to experiments and measurements that alter the state of a given
system in a stochastic way, such that the result does not show the
state before the measurement, but the state after it. Such mea-
surements do not only appear in quantum mechanics, but may
also be important in different scenarios,[59] where the fact that
one does a measurement or experiment changes the outcomes.
This is, for instance, a common problem in behavioral experi-
ments, where the experiment does not show the natural behavior
of the subjects but their behavior under the experimental condi-
tions.

Appendix A: Extended Statement and Proof of
Theorem 1

We begin by defining the two-time measurement-and-prepare statistics
as the statistics that contain all (in principle) experimentally accessible
probability distributions as laid out in the main text.

Definition A1. A two-time measurement-and-prepare statistics from
invasive measurements is the collection of probability distributions:
(P(a1), P(a2), P

A1 (a2; a1), P
R1 (a2|r1), PR1 ,A1 (a2; a1|r1),Ma1;𝓁1 = P(a1|𝓁1),

Ma2;𝓁2 = P(a2|𝓁2)), where the meaning of the different labels is explained in
detail in the main text.

Having clarified what quantities are considered, we now proceed by
defining two models that may be used to explain the observed statistics.
The first model is more in line with statistical descriptions, like the one
used in Kolmogorov’s theorem, while the second is directly defined in
terms of an open system, an environment, and their interaction.

Definition A2. We say that two-time measurement-and-prepare statistics
from invasive measurements can be simulated by a contextual model with
instantaneously-invasive informationally-complete (IIIC) measurements if and
only if there is a probability distribution PR1 ,A1 (a2,𝓁2; a1,𝓁1|r1) that is consis-
tent with the conditions 1–5 in the main text and from which the probabilities
above can be obtained by Equation (5) together with the KCCs over the corre-
sponding 𝓁is.

Definition A3. We say that a two-time measurement-and-prepare statistics
from invasive measurements can be simulated by an open system stochastic

evolution with IIIC measurements if and only if there are stochastic matrices
T1((e1,𝓁1);𝓁0) (with

∑
e1 ,𝓁1

T1((e1,𝓁1);𝓁0) = 1 ∀𝓁0) and T2(𝓁2; (e1,𝓁1))
(with

∑
𝓁2

T2(𝓁2; (e1,𝓁1)) = 1 ∀e1,𝓁1), and a probability distribution P(𝓁0)
such that all the above probabilities can be calculated from the corresponding
evolutions from P(𝓁0) under the action of T1 and T2 by applying the measure-
ments Ma1 ,𝓁1 and Ma2 ,𝓁2 . That is,

PR1 ,A1 (a2; a1|r1) = ∑
𝓁2 ,𝓁1 ,e1 ,𝓁0

Ma2;𝓁2T2(𝓁2; (e1, r1))Ma1;𝓁1

×T1((e1,𝓁1);𝓁0)P(𝓁0) (A1)

PR1 (a2|r1) = ∑
𝓁2 ,𝓁1 ,e1 ,𝓁0

Ma2;𝓁2T2(𝓁2; (e1, r1))T1((e1,𝓁1);𝓁0)P(𝓁0)

(A2)

P(a2) =
∑

𝓁2 ,𝓁1 ,e1 ,𝓁0

Ma2;𝓁2T2(𝓁2; (e1,𝓁1))T1((e1,𝓁1);𝓁0)P(𝓁0)

(A3)

PA1 (a2; a1) =
∑

𝓁2 ,𝓁1 ,e1 ,𝓁0

Ma2;𝓁2T2(𝓁2; (e1, a1))Ma1;𝓁1

×T1((e1,𝓁1);𝓁0)P(𝓁0) (A4)

P(a1) =
∑

𝓁1 ,e1 ,𝓁0

Ma1;𝓁1T1((e1,𝓁1);𝓁0)P(𝓁0) (A5)

The above two models certainly feel very much related. Indeed, one can
test either of the two models by simply checking four conditions, as stated
in the following theorem, which entails Theorem 1 of the main text

Theorem. Let S=(P(a1), P(a2), PA1 (a2; a1), PR1 (a2|r1), PR1 ,A1 (a2; a1|r1),
Ma1;𝓁1 = P(a1|𝓁1),Ma2;𝓁2 = P(a2|𝓁2)) be a two-time measurement-and-
prepare statistics from invasive measurements. Furthermore, let M be invert-
ible.

Let P(𝓁1) :=
∑

a1
(M−1)𝓁1;a1P(a1) and PR1 (𝓁2;𝓁1|r1) := ∑

a1 ,a2
(M−1)𝓁2;a2 (M

−1)𝓁1;a1P
R1 ,A1 (a2; a1|r1). Then, the following three state-

ments are equivalent.

1. The probability distributions associated with S satisfy

P(𝓁1) ≥ 0 and
∑
𝓁1

P(𝓁1) = 1 (A6)

PR1 (𝓁2;𝓁1|r1) ≥ 0 and
∑
𝓁2 ,𝓁1

PR1 (𝓁2;𝓁1|r1) = 1 (A7)

∑
𝓁2

PR1 (𝓁2;𝓁1|r1) = P(𝓁1) ∀r1 (A8)

PR1 (a2|r1) = ∑
a1

PR1 ,A1 (a2; a1|r1) (A9)

P(a2) =
∑
a1 ,r1

(M−1)r1;a1P
R1 ,A1 (a2; a1|r1) (A10)

PA1 (a2; a1) = PR1 ,A1 (a2; a1|r1 = a1) (A11)

2. S can be simulated by an open system stochastic evolution with IIIC mea-
surements.

3. S can be simulated by a contextual model with IIIC measurements.

In the case that P(𝓁1) and PR1 (𝓁2;𝓁1|r1) are quasi probability dis-
tributions (and can have negative entries), the theorem holds up to
PR1 ,A1 (a2,𝓁2; a1,𝓁1|r1) having negative entries, and the corresponding evo-
lutions can be quasi-stochastic.

We will prove this theorem by the steps 1 ⇒ 2, 2 ⇒ 3, and 3 ⇒ 1. For
the first step, we will take a simple initial state P0(𝓁0) :=

∑
a1
P(a1)𝛿a1 ,𝓁0

Ann. Phys. (Berlin) 2023, 2300304 2300304 (9 of 14) © 2023 The Authors. Annalen der Physik published by Wiley-VCH GmbH
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(which is basically the same as the state P(a1)) and explicitly construct
the matrices T1 and T2. We then proceed to show that these are indeed
stochastic matrices and that all the conditions in statement 2 are satis-
fied. By construction, the probabilities one can generate from these maps
satisfy conditions 1 to 5 in the main text, and directly from the conditions,
we get the right probabilities. The last step is outlined in the main text to
motivate the conditions of statement 1, and here we will provide the de-
tails.

Proof. “1 ⇒ 2”:
We define

P0(𝓁0) :=
∑
a1

P(a1)𝛿a1 ,𝓁0 (A12)

T1((e1,𝓁1);𝓁0) := 𝛿e1 ,𝓁0𝛿𝓁1 ,𝓁0 (A13)

T2(𝓁2; (e1, r1)) :=
∑

a1 ,a2
(M−1)𝓁2;a2 (M

−1)e1;a1P
R1 ,A1 (a2; a1|r1)∑

a1
(M−1)e1;a1P(a1)

=
PR1 (𝓁2;𝓁1 = e1|r1)

P(𝓁1 = e1)
(A14)

with the convention that 0∕0 = 1∕nL2, with nL2 the dimension of the space
labelled by 𝓁2. It directly follows from the definition that T1 is a stochastic
matrix and from Equation (A6) that P0(𝓁0) is a probability distribution. T2
is a stochastic map; it is positive, if both the nominator and denomina-
tor are positive, which is true by Equations (A6) and (A7). Furthermore,
by Equations (A8) and (A6) T2 is a conditional probability and as such a
stochastic map. From the above definitions we get that∑
𝓁2 ,𝓁1 ,e1 ,𝓁0

Ma2;𝓁2T2(𝓁2; (e1, r1))Ma1;𝓁1T1((e1,𝓁1);𝓁0)p(𝓁0)

=
∑

𝓁2 ,𝓁1 ,e1 ,𝓁0

Ma2;𝓁2

∑
a′1 ,a

′
2
(M−1)𝓁2;a′2

(M−1)e1;a′1
PR1 ,A1 (a′2; a

′
1|r1)∑

a′1
(M−1)e1;a′1

P(a′1)

×Ma1;𝓁1

∑
a′′1

𝛿e1 ,𝓁0𝛿𝓁1 ,𝓁0 (M
−1)𝓁1;a′′1

P(a′′1 )

=
∑
𝓁1

∑
a′1 ,a

′
2
𝛿a2 ,a′2

(M−1)𝓁1;a′1
PR1 ,A1 (a′2; a

′
1|r1)∑

a′1
(M−1)𝓁1;a′1

P(a′1)

×Ma1;𝓁1

∑
a′′1

(M−1)𝓁1;a′′1
P(a′′1 )

=
∑
𝓁1

∑
a′1
(M−1)𝓁1;a′1

PR1 ,A1 (a2; a
′
1|r1)

P(𝓁1)
Ma1;𝓁1P(𝓁1)

=
∑
𝓁1

∑
a′1

(M−1)𝓁1;a′1
PR1 ,A1 (a2; a

′
1|r1)Ma1;𝓁1

=
∑
a′1

𝛿a1 ,a′1
PR1 ,A1 (a2; a

′
1|r1) = PR1 ,A1 (a2; a1|r1) (A15)

This proves the first condition of Definition A3. The second condition then
easily follows by using condition (A11),

PA1 (a2; a1) =PR1 ,A1 (a2; a1|r1 = a1)

=
∑

𝓁2 ,𝓁1 ,e1 ,𝓁0

Ma2;𝓁2T2(𝓁2; (e1, a1))Ma1;𝓁1T1((e1,𝓁1);𝓁0)p(𝓁0).

(A16)

For the third condition, we can insert the identity [
∑

a1
(M−1)r1;a1Ma1;𝓁1 ] =

𝛿r1 ,𝓁1 , to get

∑
𝓁2 ,𝓁1 ,e1 ,𝓁0

Ma2;𝓁2T2(𝓁2; (e1,𝓁1))T1((e1,𝓁1);𝓁0)p(𝓁0)

=
∑

𝓁2 ,𝓁1 ,e1 ,𝓁0 ,r1

Ma2;𝓁2T2(𝓁2; (e1, r1))

×

[∑
a1

(M−1)r1;a1Ma1;𝓁1

]
T1((e1,𝓁1);𝓁0)p(𝓁0)

=
∑
a1 ,r1

(M−1)r1;a1P
R1 ,A1 (a2; a1|r1) = P(a2) (A17)

where the last line follows from Equation (A10). The condition P(a1) =∑
𝓁1 ,e1 ,𝓁0

Ma1;𝓁1T1((e1,𝓁1);𝓁0)p(𝓁0) is trivially satisfied.
For the second last identity, we have that

∑
𝓁2 ,𝓁1 ,e1 ,𝓁0

Ma2;𝓁2
T2(𝓁2; (e1, r1))T1((e1,𝓁1);𝓁0)p(𝓁0)

=
∑

𝓁2 ,𝓁1 ,e1 ,𝓁0

Ma2;𝓁2

∑
a′1 ,a

′
2
(M−1)𝓁2;a′2 (M

−1)e1;a′1P
R1 ,A1 (a′2; a

′
1|r1)∑

a′1
(M−1)e1;a′1P(a

′
1)

×
∑
a′′1

𝛿e1 ,𝓁0𝛿𝓁1 ,𝓁0 (M
−1)𝓁1;a′′1 P(a

′′
1 )

=
∑
𝓁1

∑
a′1 ,a

′
2
𝛿a2 ,a′2

(M−1)𝓁1;a′1P
R1 ,A1 (a′2; a

′
1|r1)∑

a′1
(M−1)𝓁1;a′1P(a

′
1)

∑
a′′1

(M−1)𝓁1;a′′1 P(a
′′
1 )

=
∑
𝓁1

∑
a′1

(M−1)𝓁1;a′1P
R1 ,A1 (a2; a

′
1|r1) = ∑

a′1

PR1 ,A1 (a2; a
′
1|r1) = PR1 (a2|r1)

(A18)

where we have used thatM is a stochasticmatrix and hence the columns of
its inverse sum to one and Equation (A9). The last identity follows directly
from the definitions. With this we have proven “1 ⇒ 2.”

The proof of “2 ⇒ 3” is relatively straightforward. We define PR1 ,A1 (a2,
𝓁2; a1,𝓁1|r1) := ∑

e1 ,𝓁0
Ma2;𝓁2T2(𝓁2; (e1, r1))Ma1;𝓁1T1((e1,𝓁1); 𝓁0)p(𝓁0).

The statistics is then consistent with Conditions 1, 2, 3, and 5 by construc-
tion, while condition 4 directly follows fromM being invertible. Finally, we
get all of the probability distributions of Definition A2 directly from the
ones of Definition A3. In detail:

PR1 ,A1 (a2; a1|r1) = ∑
𝓁2 ,𝓁1 ,e1 ,𝓁0

Ma2;𝓁2
T2(𝓁2; (e1, r1))Ma1 ;𝓁1

T1((e1,𝓁1);𝓁0)P(𝓁0)

=
∑
𝓁2 ,𝓁1

PR1 ,A1 (a2,𝓁2; a1,𝓁1|r1), (A19)

meaning that the marginal over the unknown states 𝓁1 and 𝓁2 yields the
measured probability distribution for the case of doing all interventions.

PA1 (a2; a1) =
∑

𝓁2 ,𝓁1 ,e1 ,𝓁0

Ma2;𝓁2T2(𝓁2; (e1, a1))Ma1;𝓁1T1((e1,𝓁1);𝓁0)P(𝓁0)

=
∑
𝓁2 ,𝓁1

PR1 ,A1 (a2,𝓁2; a1,𝓁1|a1), (A20)
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meaning that not re-preparing yields the same result as re-preparing in the
measured state.

PR1 (a2|r1) = ∑
𝓁2 ,𝓁1 ,e1 ,𝓁0

Ma2;𝓁2T2(𝓁2; (e1, r1))T1((e1,𝓁1);𝓁0)P(𝓁0)

=
∑

𝓁2 ,𝓁1 ,e1 ,𝓁0

Ma2;𝓁2T2(𝓁2; (e1, r1))

×

(∑
a1

Ma1;𝓁1

)
T1((e1,𝓁1);𝓁0)P(𝓁0)

=
∑

a1 ,𝓁2 ,𝓁1

PR1 ,A1 (a2,𝓁2; a1,𝓁1|r1), (A21)

which means that we can take the marginal over a1 in the usual way, as we
delete the correlations with the environment by re-preparing the system.

P(a2) =
∑

𝓁2 ,𝓁1 ,e1 ,𝓁0

Ma2;𝓁2T2(𝓁2; (e1,𝓁1))T1((e1,𝓁1);𝓁0)P(𝓁0)

=
∑

𝓁2 ,𝓁1 ,e1 ,𝓁0 ,r1

Ma2;𝓁2T2(𝓁2; (e1, r1))𝛿r1 ,𝓁1T1((e1,𝓁1);𝓁0)P(𝓁0)

=
∑

𝓁2 ,𝓁1 ,e1 ,𝓁0 ,r1

Ma2;𝓁2T2(𝓁2; (e1, r1))

×

(∑
a1

(M−1)r1;a1Ma1;𝓁1

)
T1((e1,𝓁1);𝓁0)P(𝓁0)

=
∑

a1 ,r1 ,𝓁2 ,𝓁1

(M−1)r1;a1
∑
e1 ,𝓁0

Ma2;𝓁2T2(𝓁2; (e1, r1))

× (Ma1;𝓁1T1((e1,𝓁1);𝓁0)P(𝓁0)

=
∑

a1 ,r1 ,𝓁2 ,𝓁1

(M−1)r1;a1P
R1 ,A1 (a2,𝓁2; a1,𝓁1|r1) (A22)

where we do need to take into account the correlations with the environ-
ment at time 1. Finally,

P(a1) =
∑

𝓁1 ,e1 ,𝓁0

Ma1;𝓁1T1((e1,𝓁1);𝓁0)P(𝓁0)

=
∑

𝓁1 ,e1 ,𝓁0

(∑
a2

Ma2;𝓁2

)(∑
𝓁2

T2(𝓁2; (e1, r1))

)

×Ma1;𝓁1T1((e1,𝓁1);𝓁0)P(𝓁0)

=
∑

a2 ,𝓁2 ,𝓁1

PR1 ,A1 (a2,𝓁2; a1,𝓁1|r1) (A23)

which is just causality.
We are left with showing “3⇒ 1.” First note that Equation (A7) implies

Equation (A6) by virtue of condition 5, and Equation (A6) follows from the
fact that

PR1 (𝓁2;𝓁1|r1) = ∑
a1 ,a2

PR1 ,A1 (a2,𝓁2; a1,𝓁1|r1) (A24)

with PR1 ,A1 (a2,𝓁2; a1,𝓁1|r1) a probability distribution by assumption.
Equation (A8) is a direct consequence of causality (Condition 5). Equa-

tion (A9) follows directly from Condition 3 and the fact that the columns
ofM−1 sum to one (being the inverse of a stochastic matrix), while Equa-
tion(A11) follows from Condition 4. The only condition left to check is

Equation(A10).∑
a1 ,r1

(M−1)r1;a1P
R1 ,A1 (a2; a1|r1) = ∑

a1 ,r1 ,𝓁1

(M−1)r1;a1P
R1 ,A1 (a2; a1,𝓁1|r1)

=
∑

a1 ,r1 ,𝓁1

(M−1)r1;a1Ma1;𝓁1P
R1 (a2;𝓁1|r1) = ∑

r1 ,𝓁1

𝛿r1 ,𝓁1P
R1 (a2;𝓁1|r1)

=
∑
𝓁1

PR1 (a2;𝓁1|r1 = 𝓁1) =
∑
𝓁1

P(a2;𝓁1) = P(a2) (A25)

where the first equation follows from the KCC, the second equation from
Condition 3, the fifth from Condition 5 and the last from the KCC.

It follows directly from the proof, that quasi probability distributions
P(𝓁1) and PR1 (𝓁2;𝓁1|r1), correspond to a quasi probability distribution
PR1 ,A1 (a2,𝓁2; a1,𝓁1|r1) and quasi-stochastic evolutions. □

Appendix B: Proof of Lemma 2

For convenience we reiterate the lemma here:
Lemma (2). A quantum stochastic process using IC-POVMs with

probabilities as defined in the main text fulfills Equations (6), (7),
(10), and (11). Furthermore, PR1 (𝓁2;𝓁1|r1) := ∑

a1 ,a2
(M−1)𝓁2;a2 (M

−1)𝓁1;a1
PR1 ,A1 (a2; a1|r1) and P(𝓁1) are quasi probability distribution (they sum to
one, but are not necessarily positive).

Proof. To start, note that

Ka10(𝜌̂0) =
∑
𝜓 ,𝜖

(
V0 f⃗0

)
(𝜓 ,𝜖)

Ka1 |𝜓⟩⟨𝜓|K†
a1
⊗ |𝜖⟩⟨𝜖|

=
∑
𝜓 ,𝜖

Ma1;𝜓

(
V0 f⃗0

)
(𝜓 ,𝜖)

|a1⟩⟨a1|⊗ |𝜖⟩⟨𝜖| (B1)

and hence

Πr1a10(𝜌̂0) =
∑
𝜓 ,𝜖

Ma1;𝜓

(
V0 f⃗0

)
(𝜓 ,𝜖)

|r1⟩⟨r1|⊗ |𝜖⟩⟨𝜖| (B2)

Furthermore, with the quantum mechanical model given in the main text,
we get the following expressions for the probabilities of interest:

P(a1) = Tr
[
a10(𝜌̂0)

]
(B3)

P(a2) = Tr
[
a210(𝜌̂0)

]
(B4)

PA1 (a2; a1) = Tr
[
a21a10(𝜌̂0)

]
(B5)

PR1 (a2|r1) = Tr
[
a21Πr10(𝜌̂0)

]
(B6)

PR1 ,A1 (a2; a1|r1) = Tr
[
a21Πr1a10(𝜌̂0)

]
(B7)

For the lemma we have to proof that for a quantum process using an IC-
POVM as quantum measurement the equations

PA1 (a2; a1) = PR1 ,A1 (a2; a1|r1 = a1) (B8)∑
𝓁2

PR1 (𝓁2;𝓁1|r1) = P(𝓁1) ∀r1 (B9)

PR1 (a2|r1) = ∑
a1

PR1 ,A1 (a2; a1|r1) (B10)

P(a2) =
∑
a1 ,r1

(M−1)r1;a1P
R1 ,A1 (a2; a1|r1) (B11)

hold.
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For Equation (B8), we have that

PR1 ,A1 (a2; a1|r1 = a1) = Tr
[
a21Πa1a10(𝜌̂0)

]
= Tr

[
a21a10(𝜌̂0)

]
= PA1 (a2; a1), (B12)

since Πa1a1 = a1 , as the preparation simply discards any former state
on the system and prepares the new one, but here both are identical.

For Equation (B9), we have that∑
𝓁2

PR1 (𝓁2;𝓁1|r1) = ∑
𝓁2 ,a1 ,a2

(M−1)𝓁2;a2 (M
−1)𝓁1;a1P

R1 ,A1 (a2; a1|r1)
=

∑
𝓁2 ,a1 ,a2

(M−1)𝓁2;a2 (M
−1)𝓁1;a1 Tr

[
a21Πr1a10(𝜌̂0)

] (B13)

To continue, we will introduce some notation to help the reader following
our next steps. Let1Πr1a10(𝜌̂0) =

∑
(𝜓 ,𝜖) f

′
(𝜓 ,𝜖)|𝜓⟩⟨𝜓|⊗ |𝜖⟩⟨𝜖|. Accord-

ingly we find

a21Πr1a10(𝜌̂0) =
∑
(𝜓 ,𝜖)

Ma2;𝜓 f
′
(𝜓 ,𝜖)|a2⟩⟨a2|⊗ |𝜖⟩⟨𝜖| (B14)

Within the trace operation this gives

Tr
[
a21Πr1a10(𝜌̂0)

]
= Tr

[∑
(𝜓 ,𝜖)

Ma2;𝜓 f
′
(𝜓 ,𝜖)|a2⟩⟨a2|⊗ |𝜖⟩⟨𝜖|]

=
∑
(𝜓 ,𝜖)

Ma2;𝜓 f
′
(𝜓 ,𝜖)Tr [|a2⟩⟨a2|⊗ |𝜖⟩⟨𝜖|]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=1

=
∑
(𝜓 ,𝜖)

Ma2;𝜓 f
′
(𝜓 ,𝜖)Tr [|𝜓⟩⟨𝜓|⊗ |𝜖⟩⟨𝜖|]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=1

=
∑
(𝜓 ,𝜖)

Ma2;𝜓 Tr
[
f ′(𝜓 ,𝜖)|𝜓⟩⟨𝜓|⊗ |𝜖⟩⟨𝜖|],

(B15)

where we have used that Tr[|a2⟩⟨a2|⊗ |𝜖⟩⟨𝜖|] = 1 = Tr[|𝜓⟩⟨𝜓|⊗ |𝜖⟩⟨𝜖|] and
hence we can exchange both expressions with each other. Thus, going back
to the main calculation,∑
𝓁2

PR1 (𝓁2;𝓁1|r1)
=

∑
𝓁2 ,a1 ,a2 ,(𝜓 ,𝜖)

(M−1)𝓁2;a2 (M
−1)𝓁1;a1Ma2;𝜓 Tr

[
f ′(𝜓 ,𝜖)|𝜓⟩⟨𝜓|⊗ |𝜖⟩⟨𝜖|]

=
∑

𝓁2 ,a1 ,(𝜓 ,𝜖)

(∑
a2

(M−1)𝓁2;a2Ma2;𝜓

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

= (𝟙)𝓁2;𝜓 = 𝛿𝓁2;𝜓

(M−1)𝓁1;a1 Tr
[
f ′(𝜓 ,𝜖)|𝜓⟩⟨𝜓|⊗ |𝜖⟩⟨𝜖|]

=
∑
a1

(M−1)𝓁1;a1 Tr

[∑
(𝜓 ,𝜖)

f ′(𝜓 ,𝜖)|𝜓⟩⟨𝜓|⊗ |𝜖⟩⟨𝜖|]

=
∑
a1

(M−1)𝓁1;a1 Tr
[
1Πr1a10(𝜌̂0)

]
=
∑
a1

(M−1)𝓁1;a1 Tr
[
a10(𝜌̂0)

]
=
∑
a1

(M−1)𝓁1;a1P(a1) = P(𝓁1) (B16)

and to solve the sum over a1 we have used the same procedure as for the
sum over a2 described above.

Equation (B10) is straightforward:∑
a1

PR1 ,A1 (a2; a1|r1) = ∑
a1

Tr
[
a21Πr1a10(𝜌̂0)

]

= Tr

[
a21Πr1

∑
a1

a10(𝜌̂0)

]
= Tr

[
a21Πr10(𝜌̂0)

]
= PR1 (a2|r1),

(B17)

where we have used
∑

a1
a1 = 𝟙.

Finally, to prove Equation (B11), note that∑
a1 ,r1

(M−1)r1;a1P
R1 ,A1 (a2; a1|r1) = ∑

a1 ,r1

(M−1)r1;a1 Tr
[
a21Πr1a10(𝜌̂0)

]

= Tr

[
a21

(∑
a1 ,r1

(M−1)r1;a1Πr1a10(𝜌̂0)

)]
(B18)

which is equal to P(a2) = Tr[a210(𝜌̂0)], if
∑

a1 ,r1
(M−1)r1;a1Πr1a1

0(𝜌̂0) = 0(𝜌̂0). This last equation can be seen by applying the frame de-
composition:∑
r1 ,a1

(M−1)r1;a1Πr1a10(𝜌̂0)

=
∑
𝜓 ,𝜖

∑
r1

(∑
a1

(M−1)r1;a1Ma1;𝜓

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=𝛿r1 ,𝜓

(
V0 f⃗0

)
(𝜓 ,𝜖)

|r1⟩⟨r1|⊗ |𝜖⟩⟨𝜖|

=
∑
𝜓 ,𝜖

(
V0 f⃗0

)
(𝜓 ,𝜖)

|𝜓⟩⟨𝜓|⊗ |𝜖⟩⟨𝜖| = 0(𝜌̂0) (B19)

That PR1 (𝓁2;𝓁1|r1) := ∑
a1 ,a2

(M−1)𝓁2;a2 (M
−1)𝓁1;a1P

R1 ,A1 (a2; a1|r1)
and P(𝓁1) :=

∑
a1
(M−1)𝓁1;a1P(a1) are quasi probability distributions,

follows directly from the fact that P(a1) and PR1 ,A1 (a2; a1|r1) are prob-
ability distributions, while Mai ;𝓁i = Tr[ai |𝓁i⟩⟨𝓁i|] = Tr[Kai |𝓁i⟩⟨𝓁i|K†

ai
]

are stochastic matrices due to the normalization condition∑
ai
Tr[Kai |𝓁i⟩⟨𝓁i|K†

ai
] = Tr[

∑
ai
K†
ai
Kai |𝓁i⟩⟨𝓁i|] = Tr[|𝓁i⟩⟨𝓁i|] = 1 (and hence

their inverse are quasi-stochastic matrices). □

Appendix C: Proof of Theorem 3

Theorem (3). A quantum process using an S-based IC-POVM on S
asmeasurement, aS-separable initial state 𝜌̂0 andS-separable unitaries
0,1 ∈  () as initial and intermediate evolutions produce a proper
stochastic probability distribution for all contexts.

To prove the theorem, we need to show that PR1 (𝓁2;𝓁1|r1) := ∑
a1 ,a2

(M−1)𝓁2;a2 (M
−1)𝓁1;a1P

R1 ,A1 (a2; a1|r1) and P(𝓁1) :=
∑

a1
(M−1)𝓁1;a1P(a1)

are proper probability distributions with only positive entries. The theo-
rem then follows directly from the lemma and Theorem 1.

As explained in the main text, we can decompose a generic probability
distribution in its frame decomposition

𝜌̂ =
∑
(𝜓 ,𝜖)

f(𝜓 ,𝜖)|𝜓⟩⟨𝜓|⊗ |𝜖⟩⟨𝜖| = ∑
𝜓

f S𝜓 |𝜓⟩⟨𝜓|⊗ 𝜖𝜓 (C1)

If 𝜌̂ is S-separable f
S
𝜓 ≥ 0 and 𝜖𝜓 is a proper quantum state (in general

𝜖𝜓 is trace-one and hermitian for a minimal frame S, but might be a in-
definite or negative operator). Let us now define, for simplicity,

𝜌̂ :=
∑
𝜓

f S𝜓 |𝜓⟩⟨𝜓|⊗ 𝜖𝜓 := 0(𝜌̂0) (C2)
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𝜌̂′a1 ,r1
:=

∑
𝜓

f ′S𝜓 (a1, r1)|𝜓⟩⟨𝜓|⊗ 𝜖′𝜓 (a1) :=
1Πr1a10𝜌0

Tr
[
a10𝜌0

] (C3)

If 𝜌̂0, 0, and 1 are S-separable the states 𝜌̂ and 𝜌̂
′
a1 ,r1

are as well and

hence, f S𝜓 , f
′S
𝜓 (a1, r1) ≥ 0 and 𝜖𝜓 , 𝜖

′
𝜓 (a1) are proper quantum states.

WithMai ;𝓁i = Tr[ai |𝓁i⟩⟨𝓁i|] = Tr[Kai |𝓁i⟩⟨𝓁i|K†
ai
], we get that

P(𝓁1) :=
∑
a1

(M−1)𝓁1;a1P(a1) =
∑
a1

(M−1)𝓁1;a1 Tr
[
a10𝜌0

]

=
∑
a1

(M−1)𝓁1;a1 Tr

[
a1

∑
𝜓

f S𝜓 |𝜓⟩⟨𝜓|⊗ 𝜖𝜓

]

=
∑
a1

(M−1)𝓁1;a1
∑
𝜓

Ma1;𝜓 f
S
𝜓 =

∑
𝜓

𝛿𝓁1 ,𝜓 f
S
𝜓 = f S𝓁1

≥ 0

(C4)

and therefore

PR1 (𝓁2;𝓁1|r1) := ∑
a1 ,a2

(M−1)𝓁2;a2 (M
−1)𝓁1;a1P

R1 ,A1 (a2; a1|r1)
:=

∑
a1 ,a2

(M−1)𝓁2;a2 (M
−1)𝓁1;a1 Tr

[
a21Πr1a10𝜌0

]
=

∑
a1 ,a2

(M−1)𝓁2;a2 (M
−1)𝓁1;a1 Tr

×

[
a2

∑
𝜓

f ′S𝜓 (a1, r1)|𝜓⟩⟨𝜓|⊗ 𝜖′𝜓 (a1) Tr
[
a10𝜌0

]]

=
∑
a1 ,a2

(M−1)𝓁2;a2 (M
−1)𝓁1;a1

∑
𝜓

Ma2;𝜓 f
′S
𝜓 (a1, r1)P(a1)

=
∑
a1

f ′S𝓁2
(a1, r1)(M

−1)𝓁1;a1P(a1) ≥ 0,

which ends the proof.

Appendix D: Classically Non-Simulable Process

We report here more details on the process that cannot be simulated
via classical invasive measurements discussed in the main text.

Both the system and the environment are two-level systems, S =
E = ℂ2, and the global evolution is fixed by the unitary

 = e
− i
2

(
𝜎x⊗𝜎x+𝜎y⊗𝜎y+2𝜎z⊗𝜎z

)
(D1)

while the initial environmental state is 𝜏0 = 𝟙∕2. The CPTP dynamical
maps that fix the open-system evolution in the absence of any interven-
tion are thus given by—compare with Equation (20) –

Λ(𝜌̂) = TrE
[
(𝜌̂ ⊗ 𝟙∕2)†]

= 1
2

(
Tr [𝜌̂]𝟙 + cos(1) cos(2)(𝜎x Tr [𝜎x 𝜌̂] + 𝜎y Tr

[
𝜎y𝜌̂

]
)

+ cos(1)2𝜎z Tr [𝜎z𝜌̂]
)

(D2)

which corresponds to a contraction of the Bloch ball, isotropic along the
x − y plan by an amount cos(1) cos(2) and by an amount cos(1)2 along the
z-axis; here 𝜎j, j = x, y, z, are indeed the Pauli matrices and 𝟙 is the identity
on ℂ2.

Table D1. For the IC-POVM fixed by the pure states {|𝜓⟩} = {|0⟩, 1√
3
|0⟩ +√

2
3
ei2k𝜋∕3|1⟩}k=1,2,3, this table lists the FDCs according to  = {|𝜓⟩⟨𝜓|}

of the frame elements evolved by the CPTP map Λ, i.e. f𝜓 [Λ(|𝜓 ′⟩⟨𝜓 ′|) ].
The rows are indexed by 𝜓 and the columns by 𝜓 ′ using the abbreviations
a = cos(1) cos(2) ≈ −0.22 and b = cos(1)2 ≈ 0.29.

|𝜓 ′⟩ = |0⟩ 𝜓 ′(k = 1) 𝜓 ′(k = 2) 𝜓 ′(k = 3

|𝜓⟩ = |0⟩ 1
4
(1 + 3b) 1

4
(1 − b) 1

4
(1 − b) 1

4
(1 − b)

𝜓(k = 1) 1
4
(1 − b) 1

12
(3 + 8a + b) 1

12
(3 − 4a + b) 1

12
(3 − 4a + b)

𝜓(k = 2) 1
4
(1 − b) 1

12
(3 − 4a + b) 1

12
(3 + 8a + b) 1

12
(3 − 4a + b)

𝜓(k = 3) 1
4
(1 − b) 1

12
(3 − 4a + b) 1

12
(3 − 4a + b) 1

12
(3 + 8a + b)

Considering the IC-POVM fixed by the pure states {𝜓} = {|0⟩, 1√
3
|0⟩ +√

2
3
ei2k𝜋∕3|1⟩}k=1,2,3, the maps in Equation (D2) are S-positive with re-

spect to the corresponding frame, that is, it maps the regular tetrahedron
corresponding to the convex hull of {|𝜓⟩⟨𝜓|} into itself. This can be veri-
fied by evaluating the FDCs of each of the four states given by Λ(|𝜓⟩⟨𝜓|).
Using frame theory, for any state 𝜌̂ the corresponding FDCs can be evalu-
ated via the relation

f𝜓 (𝜌̂) = ⟨𝜓|𝕊−1[𝜌̂]|𝜓⟩ (D3)

where 𝕊−1 is the inverse of the map

𝕊(𝜌̂) =
∑
𝜓

Tr [|𝜓⟩⟨𝜓|𝜌̂]|𝜓⟩⟨𝜓| (D4)

Using the Pauli matrices {𝟙, 𝜎x , 𝜎y, 𝜎z} as orthonormal basis for the space

of Hermitian 2 × 2 matrices we know 𝜌̂ = 1
2
(Tr[𝜌̂] + Tr[𝜎x 𝜌̂] + Tr[𝜎y𝜌̂] +

Tr[𝜎z𝜌̂]) andwe ca represent 𝜌̂ by a vector 𝜌𝜎 = 1
2
(1, Tr[𝜎⃗𝜌̂])T . One can show

that in this orthonormal basis the super operator 𝕊 takes the form

𝕊 =

⎛⎜⎜⎜⎜⎝
2 0 0
0 2

3
0 0

0 0 2
3

0

0 0 0 2
3

⎞⎟⎟⎟⎟⎠
and 𝕊−1 =

⎛⎜⎜⎜⎜⎝
1
2

0 0

0 3
2

0 0

0 0 3
2

0

0 0 0 3
2

⎞⎟⎟⎟⎟⎠
(D5)

Accordingly we find

𝕊(𝜌̂) = Tr [𝜌̂]𝟙 + 1
3
(𝜎x Tr [𝜎x 𝜌̂] + 𝜎y Tr

[
𝜎y𝜌̂

]
+ 𝜎z Tr [𝜎z𝜌̂]𝜎z) (D6)

so that

𝕊−1(𝜌̂) = 1
4
Tr [𝜌̂]𝟙 + 3

4
(𝜎x Tr [𝜎x 𝜌̂] + 𝜎y Tr

[
𝜎y𝜌̂

]
+ 𝜎z Tr [𝜎z𝜌̂]𝜎z) (D7)

and the FDCs coefficients of the four evolved states {Λ(|𝜓⟩|𝜓⟩)} are re-
ported in Table D1, from which one can see their positivity.

From the global unitary evolution in Equation (D1), we can indeed also
evaluate all the multi-time probabilities associated with possible measure-
ments and re-preparations at intermediate times. In particular, from Equa-
tion (16) we get PR1 ,A1(a2; a1|r1); moreover, the matrix M with elements
Ma;𝓁 = Tr[Ka|𝓁⟩⟨𝓁|K†

a ] for the chose IC-POVM reads

M = 1
6

⎛⎜⎜⎜⎝
3 1 1 1
1 3 1 1
1 1 3 1
1 1 1 3

⎞⎟⎟⎟⎠ (D8)
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and then one gets the values of
∑

a1
PR1 ,A1(𝓁2; a1|r1) = ∑

a2
(M−1)𝓁2;a2

PR1 ,A1(a2; a1|r1) reported in Table 1 in the main text.
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