
ar
X

iv
:2

30
8.

06
80

3v
2 

 [
gr

-q
c]

  1
1 

O
ct

 2
02

3

A note on Harada’s Conformal Killing gravity
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and I.N.F.N. sezione di Milano, Via Celoria 16, 20133 Milano, Italy.∗

(Dated: 10 oct 2023)

We show that “Gravity at cosmological distances: explaining the accelerating expansion without
dark energy” recently proposed by J. Harada [9] is equivalent to the Einstein equation extended
by the presence of an arbitrary conformal Killing tensor. This turns Harada’s equations of third
order in the derivatives of the metric tensor to second order, and offers a strategy of solution that
covariantly shortcuts Harada’s derivation and obtains both modified Friedmann equations. Another
illustration is presented for the case of flat space and constant curvature.

I. INTRODUCTION

In the recent paper [9] in this journal, Junpei Harada
posed three theoretical criteria for gravitational theo-
ries: 1) the cosmological constant Λ is obtained as a
constant of integration; 2) the stress-energy conservation
law ∇jT

jk = 0 is derived as a consequence of the grav-
itational field equations, rather than being assumed; 3)
a conformally flat metric is not necessarily a solution in
the vacuum.
Based on these criteria, he proposed the new gravita-
tional equations:

Hjkl =8πGTjkl (1)

Hjkl =∇jRkl +∇kRlj +∇lRjk

− 1
3 (gkl∇jR+ glj∇kR + gjk∇lR)

Tjkl =∇jTkl +∇kTlj +∇lTjk

− 1
6 (gkl∇jT + glj∇kT + gjk∇lT )

Rjk is the Ricci tensor with trace R, Tkl is the stress-
energy tensor with trace T . The Bianchi identity
∇jR

j
k = 1

2∇kR implies ∇jT
j
k = 0. Solutions of the

Einstein equation are solutions of the new theory.
Harada solved them in spherical vacuo and in cosmol-

ogy. In the first case, Hjkl = 0, he searched for a static
spherically symmetric solution ds2 = −eνdt2 + e−νdr2 +
r2(dθ2+sin2 dφ2). He obtained eν = 1− 2M

r − Λ
3 r

2− λ
5 r

4

i.e. the Schwarzschild term, a de-Sitter term with cosmo-
logical constant, and a new term that dominates at large
distances. The most general static spherical solution was
shortly after obtained by Alan Barnes [2].
In cosmology, Harada obtained an equation of motion

for the scale factor of a RW spacetime describing the
transition from decelerating to accelerating expansion in
a matter-dominated universe, without dark matter and
cosmological constant. The analysis is deepened in his
subsequent draft [10] where radiation is also accounted
for.
Eq. (1) contains third order derivatives of the metric.

This feature was also present in his Cotton gravity theory
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[8]. However, we showed in [16] that the Cotton theory
is equivalent to an extended Einstein gravity where the
stress-energy tensor in the Einstein equation is modified
by an arbitrary Codazzi tensor. This amounts to an in-
tegration of the Cotton gravity equation, that reduces
to second order with the appearance of a supplemental
term.
In this note we show that eq.(1) can be recast as an Ein-
stein equation with the stress-energy tensor modified by
an arbitrary divergence-free conformal Killing tensor.
We then apply a strategy to solve the modified Einstein
equation in a Robertson-Walker spacetime, and obtain
the modified Friedmann equations. We shortly revisit
the case k = 0, Λ = 0 and zero pressure studied by
Harada, and discuss another soluble case: k = 0, Λ = 0
and ∇kR = 0.

II. CONFORMAL KILLING GRAVITY

Conformal Killing tensors are well known in differential
geometry [5, 11, 19, 20]. They are symmetric tensors Kij

characterized by the condition

∇jKkl +∇kKlj +∇lKjk = ηjgkl + ηkglj + ηlgjk (2)

where the non-vanishing 1-form ηi is the associated con-
formal vector. Killing tensors are recovered whenever
ηi = 0. If ηj = ∇jφ then Kij is a gradient conformal
Killing tensor.
The contraction of (2) with gkl shows that ∇jK

jl = 0 if
and only if ηj =

1
6∇jK, where K is the trace.

The gravity theory proposed by Harada is deeply con-
nected with conformal Killing tensors. Eq.(1) is easily
rewritten (hereafter we set 8πG = 1) as

∇j(Rkl −
R

2
gkl − Tkl) (3)

+∇k(Rlj −
R

2
glj − Tlj) +∇l(Rjk − R

2
gjk − Tjk)

= −1

6
[gkl∇j(R+ T ) + glj∇k(R+ T ) + gjk∇l(R+ T )] .

The equation defines Kjk = Rjk− R
2 gjk−Tjk, with trace

K = −R−T , as a gradient conformal Killing tensor with
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associated conformal vector ηj =
1
6∇jK.

Eq.(1) is thus equivalent to

Rjk − R

2
gjk = Tjk +Kjk (4)

∇jKkl +∇kKlj +∇lKjk (5)

=
1

6
(gkl∇jK + glj∇kK + gjk∇lK).

Harada’s gravitational equation (1) is equivalent to the
Einstein equation in which the stress-energy tensor is
modified by a divergence-free conformal Killing tensor.
• The property ∇jK

jl = 0 ensures that ∇jT
jl = 0.

• The third order character of eq.(1) reduces to second
order in (4) with the appearance of a conformal Killing
tensor in the Einstein equation.
We may name the new theory Conformal Killing gravity.

Being appropriate, the name was adopted by Harada in
his subsequent paper on cosmology [10].
Two interesting remarks:
1) The vacuum equation of Conformal Killing grav-

ity is Hjkl = 0 i.e. the Ricci tensor is itself conformal
Killing. An example are the Sinyukov spacetimes, de-
fined by ∇jRkl =

1
18 (4gkl∇jR+gjl∇kR+gjk∇lR). They

have zero Cotton tensor, and were studied by Formella
[7]. They are one of the seven symmetry classes in Gray’s
decomposition of ∇jRkl [14].
2) Theorem 1 in [19] gives the explicit construction of

conformal Killing tensors from conformal Killing vectors,
∇iXj + ∇jXi = 2ψgij , where the function ψ is named
conformal factor. With a single vector, the tensor is

Kij = αXiXj + βgij (6)

where α is a constant and β is a function. The additional
condition ∇iK

i
j = 0 constrains β.

Such vectors frequently characterize spacetimes, with a
wide range of possibilities. For example Bang Yen Chen
characterized generalized Robertson-Walker spacetimes
through a time-like vector ∇iXj = ψgij [4]. Ramos et al.
characterized the ample class of doubly warped space-
times by conformal Killing vectors [15, 18].

III. CONFORMAL KILLING TENSOR FOR
COSMOLOGY

To find solutions of eq.(4) we apply the same strategy
in our study of Cotton gravity [16]. We first fix a physi-
cally appropriate form of the conformal Killing tensor (5).
This fixes the spacetime, where the form of the Ricci ten-
sor is then determined. Finally, the stress-energy tensor
is obtained by eq.(4).
In doing so for a cosmological solution, we obtain in nat-
ural and easy fashion the results by Harada.
The cosmological principle stages any gravitational

theory in a Robertson-Walker spacetime, which is quasi-
Einstein i.e. the Ricci tensor has the perfect fluid form.

We then consider a tensor of the same form, and pretend
that it is a conformal Killing tensor,

Kij =
K − λ

3
gij +

K − 4λ

3
uiuj

with ujuj = −1, ∇juk = ∇kuj . K is the trace and λ
is an eigenvalue: Kiju

j = λui. We also require that the
associated conformal vector is ηj =

1
6∇jK.

There are two useful facts proven in the survey [12].
The first one is:

Lemma 1 (Lemma 4.2 in [12]) Let Kij a conformal
Killing tensor and Kiju

j = λui, ujuj = ±1. If
uk∇kuj = 0 then the associated conformal vector is
ηj = ∇jλ.

The Lemma implies the important relation 1
6∇jK = ∇jλ

i.e. K = 6λ + 2Λ, where Λ is an integration constant.
The updated conformal Killing tensor

Kij =
5λ+ 2Λ

3
gij +

2λ+ 2Λ

3
uiuj (7)

by construction fulfils (5) and ∇jK
jl = 0.

The other useful statement characterises the spacetime
that hosts this conformal Killing tensor.
Let us recall that a generalized Robertson-Walker (GRW)
spacetime is characterized by the metric

ds2 = −dt2 + a2(t)g⋆ρν(x)dx
ρdxν

where a(t) is the scale function, g⋆ρν is the metric tensor
of the Riemannian space sub-manifold. An equivalent
description is the existence of a velocity field uj, u

juj =
−1 that is shear, rotation and acceleration free:

∇iuj = H(uiuj + gij) (8)

with H a scalar function such that ∇jH = −Ḣuj . In
coordinates (t,x), H is only a function of time: H(t) =
ȧ/a, and has the same role as the Hubble parameter in
Robertson-Walker (RW) spacetimes. A RW spacetime is
the special case where the Weyl tensor is zero.
Note that the velocity is closed, so that the acceleration
uk∇kuj is zero.

Theorem 2 (Theorem 4.3. in [12]) A Lorentzian
manifold is a GRW spacetime if and only if there is a
conformal Killing tensor of the form Kij = Agij+Buiuj,
where A, B are scalar fields, B 6= 0, uju

j = −1 and
∇juk = ∇kuj.

The associated conformal vector is ηj = ∇jA+ Ḃuj.

The velocity field satisfies ∇juk = Ḃ
2B (ujuk + gjk), and

∇jB = −Ḃuj.

According to the theorem, Kij in (7) is a conformal
Killing tensor if and only if the spacetime is a GRW. In
this circumstance the Hubble parameter is

H =
ȧ

a
=

λ̇

2λ+ 2Λ
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and ∇jλ = −λ̇uj. The conformal vector is ηj =
1
3∇j(5λ) +

1
3 (2λ̇)uj = ∇jλ as expected. The equation

for H has the solution (C is a constant):

2λ+ 2Λ = C a2 (9)

In a GRW spacetime the Ricci tensor is ([12], eq.17)

Rkl =
R− 4ξ

3
ukul +

R− ξ

3
gkl − 2Cjklmu

jum (10)

The last term is the electric component of the Weyl ten-
sor, that vanishes in a RW spacetime. ξ = 3(Ḣ +H2) =
3ä/a is the eigenvalue (Riju

j = ξui) and the curvature
scalar is

R =
R⋆

a2
+ 6

ȧ2

a2
+ 6

ä

a
(11)

where R⋆ is the curvature scalar of the space sub-
manifold. The Ricci and the conformal Killing tensors
in eq.(4) give the stress-energy tensor:

Tjk = Rjk − R

2
gjk −Kjk (12)

= −1

3
(
R

2
+ ξ + 5λ+ 2Λ)gjk +

1

3
(R− 4ξ − 2λ− 2Λ)ujuk

The tensor describes a “cosmological” perfect fluid cor-
rected by the geometry of the new theory. Comparison
with the fluid parameterization Tjk = pgjk +(p+ ρ)ujuk
gives the first and second modified Friedmann equations,
where we reintroduce Newton’s constant:

8πGp =− R

6
− ξ

3
− 5

3
λ− 2Λ

3

=− R⋆

6a2
− ȧ2

a2
− 2

ä

a
+ Λ− 5

6
Ca2 (13)

8πGρ =
R

2
− ξ + λ

=
R⋆

2a2
+ 3

ȧ2

a2
− Λ +

1

2
Ca2 (14)

With C = 0 they are the standard Friedmann equations
with cosmological constant Λ, that here entered as an
integration constant.
Elimination of C gives eq.32 by Harada [9]

4πG
5ρ+ 3p

3
=
R⋆

3a2
+ 2

ȧ2

a2
− ä

a
− Λ

3
(15)

with the identification R⋆/6 = k.
With an equation of state p = wρ, the equation of con-
tinuity gives ρ(a) = ρ0(a0/a)

3(w+1). With a(−t0) = 0,
a(0) = a0, D ≡ 8πGρ0a

3
0, eq.(14) is formally integrated:

t+ t0 =

∫ a

0

dx

[

Da3w0
x3w+1

− R⋆

6
+

Λ

3
x2 − 1

6
Cx4

]

−

1

2

(16)

Remark 3 The conformal Killing tensor (7) may be ob-
tained through eq.(6) from the time-like conformal Killing

vector Xi = Fui ([6], thrm 1). The equation implies

ψ = FH = Ḟ i.e. F = ca(t). In Kij = (αF 2)uiuj + βgij
the condition of zero-divergence poses β = 5

2αF
2 − Λ:

Kij = (αF 2)uiuj + (
5

2
αF 2 − Λ)gij

that is (7) with K = 9αF 2 − 4Λ and λ = 3
2αF

2 − Λ.
In a GRW space-time the torse-forming vector field ui

with Ḣ 6= 0 is unique ([17] thrm.B). Then the time-like
conformal Killing vector is unique.

A. Model p = 0 (matter dominated universe)

There is consensus that the large scale universe is char-
acterized by a spatial curvatureR⋆ very near zero [21, 22].
Harada studied the continuity equation and (15) in the
case p = 0 (dust matter M), R⋆ = 0 and Λ = 0.
We rewrite eq.(13) for p = 0 without restrictions:

0 = 2
d

dt
(ȧ
√
a) +

5

6
Ca7/2 − Λa3/2 +

R⋆

6
√
a

Multiplication by ȧ
√
a gives a total derivative. Then:

H2(a) = −C
6
a2 +

Λ

3
− R⋆

6a2
+
D

a3
(17)

where D is an integration constant. With Λ = R⋆ = 0 it
is eq.41 in [9]. Eq.(13) becomes: ä

a = Λ
3 − 1

3Ca
2 − D

2a3 .

The results for H2 and ä/a in eq.(14) give, as expected:
8
3πGρ = D/a3. With present time values a0, H0, ρ0 it is

D = 8
3πGρ0a

3
0.

The integral (16) with w = 0, R⋆ = 0 and Λ = 0 gives
Harada’s result:

t+ t0 =
2

3
√
D
a3/22F1

(

1

2
,
3

10
;
13

10
;
C

6D
a5
)

. (18)

With the (standard) definitions in [9] the constants are:

C

6
=
H2

0

a20
(ΩM − 1),

C

6D
=

1

a50

ΩM − 1

ΩM

In [10] Harada solved the modified Friedmann equa-
tions (4)(5) by also including radiation. He finds that
the far future evolution is dominated by the conformal
Killing term, with a phantom energy w = −5/3.

B. Model R⋆ = 0 and R constant

In [13] we studied a RW spacetime with R⋆ = 0 and R

constant. Eq.(11) is d2

dt2 a
2 = (R/3)a2. With the initial

condition a(0) = 0, the solution is

a2(t) = A2 sinh θ, θ = t

√

R

3
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where A is a constant and the constant curvature R is a
time-scale. Then

H(t) =
ȧ

a
=

1

2

√

R

3
cothθ (19)

This time-evolution is fixed by the RW geometry with
R⋆ = 0 and ∇kR = 0.
The Friedmann equations yield the pressure p(t) and en-
ergy density ρ(t) of the cosmological fluid. The outcome
with Λ = 0, is an equation of state p = wρ with w → 1/3

in the early universe (t
√
R ≪ 1) and w = −1 in the late

universe (t
√
R ≫ 1), i.e. a transition from a radiation

era to a dark energy era in a time-lag that, with Planck’s
data, is compatible with the age of the universe.

Now we study the same geometric conditions (yielding
same function a2(t)) in conformal Killing gravity.
Eq.(9) is 2λ(t) = Ca2(t). The Friedmann equations are
modified by the conformal Killing tensor by terms pro-
portional to C. They control the late evolution:

8πGρ(t) =
R

4
coth2 θ +

CA2

2
sinh θ (20)

8πG(ρ(t) − 3p(t)) = R+ 3CA2 sinh θ (21)

The equations describe a radiation dominated universe
p ≈ 1

3ρ for t
√
R ≪ 1, and a phantom energy era [3]

p ≈ − 5
3ρ for t

√
R ≫ 1, as in Harada’s model [10].

The detailed evolution is obtained by assuming that
the universe is filled with radiation R, matter M and a
dark fluid D with unknown function D(x), D(1) = 1:

ρR(t)

ρR0
=

[

a

a0

]

−4

,
ρM (t)

ρM0
=

[

a

a0

]

−3

,
ρD(t)

ρD0
= D

(

a(t)

a0

)

The Friedmann equation (14) with ρ = ρR + ρM + ρD

and R⋆ = 0 is:

H2

H2
0

= ΩR

[

a(t)

a0

]

−4

+ΩM

[

a(t)

a0

]

−3

+ΩDD(
a(t)

a0
)− Ca20

6H2
0

[

a(t)

a0

]2

(22)

where ΩR = (8πG/3H2
0 )ρR0 and similar for ΩM and ΩD.

The ratio H/H0 is fixed by the geometry, eq.(19). Then
we obtain D (here written as a function of θ):

ΩDD(θ) =th2θ0

[

1 +
1− α

sinh2θ
− αΩM

Ω
3/4
R (α− ΩR)1/4

1

sinh3/2θ

]

+
Ca20
6H2

0

sinhθ

sinhθ0

where we defined α = ΩRcosh
2θ0 ([13]). The above equa-

tion extends eq.24 in [13].
For a = a0 we read in (22) the present-time balance of
the various components:

ΩR +ΩM +

[

ΩD − Ca20
6H2

0

]

= 1

In parenthesis is the dark term of the theory, with an
explicit contribution from the conformal Killing term
(C 6= 0) and a remaining part that emerges from the
extended Einstein equation.
In this model we used a non-standard approach by fix-

ing a-priori the geometry with the reasonable constraint
R⋆ = 0 and the simple condition ∇kR = 0. The stan-
dard approach to cosmology in GR is to give a specific
equation of state for the dark sector, which together with
matter and radiation determine the ratio H(z)/H0. A
general discussion, where the dark sector is described by
an equation of state with w a function of the redshift z
is found in [1].
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