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Abstract 17 
 18 

We apply a methodology to identify and count records (events of unprecedented intensity) 19 

in daily precipitation time series to two sets of data: 1) different observational and 20 

reanalysis products for recent decades; and 2) 21st century projections (RCP8.5 and 21 

RCP2.6 scenarios) completed with two regional climate models driven by three global 22 

climate models over nine continental-scale domains. Comparison of the detected (or actual) 23 

number of records with the corresponding number theoretically expected in stationary 24 

climate conditions (or "reference" number of records) provides indications of trends in 25 

daily precipitation extremes, as expected in a changing climate. In particular, we measure 26 

deviations from stationary conditions using the ratio of actual to reference records (RAtR) 27 

as a basic metric. We find that the observational products provide mixed indications of 28 

precipitation record trends across regions, while in the reanalysis products and the model 29 

simulations for the historical period the RAtR value shows a prevailing increasing trend 30 

with time over most continents. The RAtR shows a consistent and pronounced increase in 31 

all RCP8.5 continental-scale projections, when sustained warming occurs throughout the 32 

21st century, while smaller to no significant trends are found in the RCP2.6 scenario, when 33 

the warming stabilizes after about mid-21st century. These results are indicative of an 34 

increase in precipitation extremes with global warming as measured by the higher number 35 

of local precipitation events of unprecedented intensity compared to what expected in 36 

stationary climate conditions, although a marked variability of this response is found across 37 

different regions. Our method can have useful applications in detection and attribution of 38 

hydroclimatic extremes and in impact and vulnerability assessment studies. 39 

 40 

1. Introduction 41 

 42 
One of the most robust responses of the climate system to global warming is an increase in 43 

the intensity of precipitation events and extremes associated with the greater energy and 44 

water vapor content of the atmosphere, the latter being related to the Clausius-Clapeyron 45 

equation (e.g., Trenberth et al. 2003, Giorgi et al. 2011, 2014a, 2019; Held and Soden 2016; 46 
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Martinkova and Kysely 2020). Analysis of global and regional climate model projections 47 

has indeed indicated a pervasive future increase in extreme precipitation events for 48 

different climate warming scenarios, as for example measured by metrics such as the 95th 49 

or 99th percentiles of the daily precipitation distribution, although there is spatial 50 

variability in this response and not all regions will experience equally strong increases in 51 

extreme precipitation (e.g., Sillmann et al. 2013; Giorgi et al. 2014b, 2019; Coppola et al. 52 

2021). Increased occurrence of events of unprecedented intensity has also been reported in 53 

analyses of model projections (e.g., Giorgi et al. 2019), which has profound implications 54 

for implied impacts and vulnerabilities of natural and socio-economic systems.    55 

 56 

In a previous paper, Giorgi and Ciarlo (2022) (hereafter referred to as GC22) adapted a 57 

technique for identifying and counting the number of record breaking events (or more 58 

simply "records", i.e., events of unprecedented intensity) to daily precipitation time series 59 

as a tool to assess the response of precipitation extremes to global warming. This technique 60 

is a variant of an analogous method used for investigating trends in daily temperature 61 

records as an indication of global warming (e.g., Elguindi et al. 2013; Meehl et al. 2016; 62 

Jones 2016; Powell and Delage 2019). Specifically, the variant introduced by GC22 was 63 

designed to account for the occurrence of large numbers of 0 values (dry days) in daily 64 

precipitation time series, differently from temperature time series (see section 2). 65 

 66 

GC22 applied this technique to different observation and reanalysis products for the 67 

European region, along with regional climate model (RCM) projections carried out under 68 

the EURO-CORDEX framework (Jacob et al. 2020). They found a prevailing increase in 69 

the number of precipitation records compared to those theoretically expected under 70 

stationary climate conditions. This finding was especially evident when aggregating results 71 

over the European region, and was found both in observations for the last several decades 72 

and future climate projections under different scenarios. The study of GC22 also revealed 73 

how trends in precipitation records exhibit substantial spatial variability and can depend on 74 

the climatic regime of a region. Therefore, in order to assess the robustness and potential 75 

use of the record methodology, it is important to investigate whether the behavior of 76 

precipitation records across different areas of the globe shows consistent features. 77 

 78 

Based on these considerations, in the present paper we extend the study of GC22 to 79 

different continental-scale regions covering most land areas of the world. After having 80 

analysed four centennial datasets of daily precipitation observed at Italian rain gauges, we 81 

analyse regional gridded observation datasets over seven regions for the historical period 82 

1950-2020 and then compare results with three reanalysis products. Then we turn our 83 

attention to the recently completed CORDEX-CORE ensembles of RCM projections for 84 

nine continental scale domains under forcing from two greenhouse gas (GHG) 85 

concentration pathways (see Giorgi et al. 2022 and references therein). Our primary aim 86 

here is to investigate to what extent the conclusions of GC22 are extendable to different 87 

regional contexts both in observations from the past and projections for the future. We 88 

stress that our study is mostly of diagnostic nature, as a process-based investigation of 89 

specific regional responses of precipitation records to projected changes in global climate 90 

would entail targeted analyses that are well beyond the purpose of a single paper.  91 

 92 
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In the next section we first describe the basic features of the methodology devised by GC22 93 

to identify and count daily precipitation records, along with the datasets employed in our 94 

study. The results are then discussed in section 3 and our main conclusions are reported in 95 

section 4. 96 

 97 

 98 

2. Methods and data. 99 

 100 

2.1 The GC22 record identification method 101 
 102 

The identification of a record in a daily time series of a given variable, for example 103 

temperature (e.g. Elguindi et al. 2013), occurs when, at a certain point and for a given day 104 

of the year (e.g., June 15) and a given year, the daily value of the variable is greater than 105 

all corresponding values on the same day of the year in all previous years of the time series. 106 

Under stationary climate conditions, the expected rate of records for any year k, Err(k), is a 107 

function of time after the starting year which follows a theoretical power law given by 108 

(Arnold et al., 1998; Elguindi et al., 2013) 109 

 110 

𝐸rr (k) = 1/k                (1) 111 

 112 

where k is the year beginning from the start of the time series. The number of records for 113 

the year k (Ek), which we refer to as "reference" number of records, is then expressed as 114 

1/k multiplied by the number of days in the year (or season/month, depending on the focus 115 

of the analysis). In other words, in the first year k = 1, and each day of the year is considered 116 

a record, leading to E1 = 365; in the second year k = 2, and records are expected to occur 117 

in half of the days of the year, therefore E2 = E1/2 = 182.5, and so on, following a power 118 

law decrease of the number of reference records. If the actual number of records in a time 119 

series is significantly different from this theoretical estimate, there is a deviation from 120 

stationarity, indicating the presence of trends in the selected time series. Note that the 121 

validity of Eq. (1) depends on the assumption of no autocorrelation in the time series, and 122 

since we are comparing here daily precipitation in different years this assumption can be 123 

considered as appropriate. 124 

 125 

The direct application of this methodology to precipitation is however problematic, since 126 

a specific feature of daily precipitation is that it is characterized by a large and in fact 127 

dominant number of dry days, i.e., days with 0 precipitation (e.g., Trenberth et al. 2007). 128 

The validity of Eq. (1) can thus be called into question because of the excessively small 129 

sample size of significant daily precipitation amounts in a series of k years. To circumvent 130 

this problem, GC22 proposed to use as variable the maximum daily precipitation in a 131 

consecutive 30-day period, which effectively removes most 0 values in the series, since in 132 

most locations it is very likely that at least one rainy day is found in a 30-day period. In 133 

fact, any length of consecutive days can be used in this approach. Therefore, for a given 134 

day of the kth year, the value of Ek is not calculated using the precipitation of that day of 135 

the year (e.g., June 15) but the maximum daily precipitation in a 30-day period centered 136 

around that day (e.g., June 1-30).  137 

 138 
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Specifically, in order to calculate the number of daily precipitation records in a year, we 139 

use the following procedure. For a given point, we first look for the maximum precipitation 140 

value in each 30 day running period of the year centered around a given day, and therefore 141 

we start the calculation on January 15 and end it on December 17, i.e. we cover 337 30-142 

day running periods of the year. For each 30 day running period we then calculate the 143 

maximum daily precipitation and compare it with the analogous values from all previous 144 

years, and if it is the highest one, then we have a record. We then normalize the number of 145 

records thus obtained over the entire year by the total number of running 30-day periods in 146 

the year, i.e. 337. In this way, we obtain a frequency of records per year. Note that this 147 

normalization renders the results comparable not only with the theoretical estimate of Eq. 148 

(1) but also across different approaches, for example using different lengths of running 149 

periods or using non overlapping 12 months in the year (in this latter case, for example, the 150 

normalization factor would be 12). 151 

 152 

One caveat of this approach pointed out by GC22 is that the occurrence of particularly 153 

intense precipitation events in different points may affect records for strings of days, 154 

although this effect is minimized by the normalization described above. In addition, in 155 

relatively dry regions and/or seasons, even over a 30-day period there is still a significant 156 

occurrence of dry events. Finally, for an individual local time series there can be a 157 

substantial number of years without records, along with years with several records, and this 158 

yields a large temporal variability of detected records. This is for example shown by the 159 

time series of the frequency of the centennial daily precipitation records found at four 160 

locations in northern Italy presented in Figure 1, where the interannual variability in the 161 

number of records and the substantial number of years with 0 records is evident (see Marani 162 

and Zanetti 2015, Maugeri et al. 2002, Scolozzi and Eccel 2017 for the series description).  163 

 164 

For all these reasons, the GC22 methodology is best applied at the regionally aggregated 165 

level. Specifically, for a given grid, after using the procedure described above to calculate 166 

at each grid point of a region the number of actual records for each year, we simply sum 167 

the number of records across all grid points of the selected region and normalize this sum 168 

by the total number of grid points in the region. This value of regionally aggregated actual 169 

records can then be compared with the reference value of Eq. (1) by using as metric the 170 

ratio of actual-to-reference number of records (hereafter referred to as RAtR). Note that in 171 

the framework of the GC22 paper, we tested this methodology against using 12 separate 172 

month long periods or choosing a 15 day running period (instead of 30) and found that the 173 

results where qualitatively consistent across the different methods, thereby concluding that 174 

our approach is robust. It should be pointed out, however, that the rolling window approach 175 

is helpful to obtain smoother time series and RAtRs, but the values it produces are not 176 

directly representative of annual daily record count. 177 

 178 

2.2 Observation, reanalysis and climate model data 179 
 180 

Here we apply the GC22 daily precipitation record identification procedure to the 181 

following datasets: i) four regional gridded observation products, i.e. E-OBS (Cornes et al. 182 

2018; here we use the version V23 at 0.1 degree resolution) for Europe, IMD (Pai et al. 183 

2014) for the Indian sub-continent, NAmerEXT (Livneh et al. 2015) covering both the 184 
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North and Central America regions, APHRODITE (Yatagai et al. 2012), covering the East 185 

Asia, Southeast Asia and Middle East regions; ii) three reanalysis products (ERA5, 186 

Hersbach et al. 2020; MERRA-2 (Gelaro et al. 2017, hereafter referred to as MERRA); 187 

JRA-55 (Kobayashi et al. 2015, hereafter referred to as JRA); and iii) the CORDEX-CORE 188 

experiments, including for nine continental domains an ensemble of 12 projections with 189 

two RCMs (the ICTP RegCM4, Giorgi et al. 2012; and the GERICS REMO, Jacob et al. 190 

2012), for two GHG concentration pathways, (the high end RCP8.5 and low end RCP2.6 191 

Moss et al. 2010) and three driving Global Climate Models (GCMs) used in the Climate 192 

Model Intercomparison Project 5 (CMIP5, Taylor et al. 2012): HadGEM (Jones et al. 193 

2011); MPI (Giorgetta et al. 2013); and NorESM (Bentsen et al. 2013), i.e. a high, mid and 194 

low climate sensitivity model, respectively. Note that for a few domains these GCMs were 195 

replaced by other ones due to their poor performance over the selected region (see Giorgi 196 

et al. 2022), and specifically the RegCM runs employed GFDL-ESN2M (Dunne et al. 197 

2012) over the Central America domain instead of NorESM, and MIROC5 (Watanabe et 198 

al. 2010) over the South Asia domain instead of HadGEM. The RCM grid spacing for these 199 

simulations is ~25 km except for the European region, where it is ~ 12 km. For more 200 

information on the CORDEX-CORE ensembles the reader is referred to Giorgi et al. (2022) 201 

and references therein.  202 

 203 

All the observation, reanalysis and projection datasets employed in our analysis are listed 204 

in Table 1. Note that there are global daily precipitation datasets also available, but they 205 

either are defined at coarse spatial resolutions or cover relatively short observation periods, 206 

and therefore they are not used here. Also, we highlight that the E-OBS dataset is 207 

continuously updated and while GC22 used the version V20 at 0.25 degree resolution, here 208 

we use the more recent version V23 at 0.1 degree resolution. The two versions actually 209 

differ significantly in some regions, and these differences affect the full area average, 210 

which may lead to different results compared to GC22. More information on these EOBS 211 

updates can be found at 212 

https://www.ecad.eu/download/ensembles/download.php#datafiles. 213 

 214 

We divide our analysis in two parts. In the first, we compare observations and reanalysis 215 

data over the seven observation sub-domains colored in red in Figure 2, with the purpose 216 

to i) assess the presence of trends of RAtR in the observations over the different regions; 217 

and ii) assess whether the different reanalysis products reproduce these trends and provide 218 

a consistent signal. In the second part of the paper, we move to the model projections over 219 

the nine CORDEX-CORE domains of Figure 2: Europe (EUR), Africa (AFR), South Asia 220 

(SAS), East Asia (EAS), Southeast Asia (SEA), Australasia (AUS), North America 221 

(NAM), Central America (CAM), and South America (SAM). In this case we employ a 222 

larger number of domains than in the observation analysis for two reasons: i) it is not the 223 

purpose of this paper to compare model simulations and observations over specific regions, 224 

since the model experiments were not set up specifically for the purpose of reproducing 225 

regional patterns; ii) the observation sub-domains do not include important regions such as 226 

Africa, South America and Australia, which are instead present in the CORDEX-CORE 227 

ensemble. Nevertheless, the model analysis regions do not include the full CORDEX-228 

CORE domains but sub-regions that attempt to match the corresponding observation 229 

domains as much as possible (see Figure 2). The main aim of the analysis of the CORDEX-230 

https://www.ecad.eu/download/ensembles/download.php#datafiles
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CORE projections is to assess the behavior of daily precipitation records in a climate 231 

warming context, and to identify whether there are qualitative similarities with the 232 

observed trends.  233 

 234 

Note that for the observation sub-domains we use the same name as the model domain 235 

which encompasses it, even though they do not have the same extent. The only observation 236 

sub-domain which is not fully included in a CORDEX domain is the Middle East (ME) 237 

one. 238 

 239 

 240 

3. Results   241 
 242 

3.1 Analysis of observations and reanalyses for the historical period 243 
 244 

Figures 3a and 3b show two sets of panels for each observation sub-domain,  each 245 

observation dataset and the three reanalysis products: the left panels report the original 246 

yearly values of the frequency of occurrence of actual records, along with the theoretical 247 

reference curve from Eq. (1); the right panels show the 10-year running average of the 248 

yearly RAtR values and the corresponding linear trend fit line, along with its linear 249 

regression coefficient and p-value calculated using the NCL package, which employs an 250 

ANOVA-based approach, as described on the website  251 

https://www.ncl.ucar.edu/Document/Functions/Contributed/regline_stats.shtml.  252 

 253 

The observations (black curves in Figs. 3a and 3b), exhibit a marked variability in the 254 

behavior of records across the different regions. In some regions, most noticeably EAS, the 255 

number of detected records follows the reference curve quite closely in both the 256 

observations and reanalysis datasets, with RAtR values close to 1 and small and not 257 

statistically significant trends. These cases are indicative of a near stationary behavior of 258 

precipitation extremes, and they show that our approach of using 30-day running windows 259 

is indeed capable of capturing such stationary conditions. In other cases, namely EUR, 260 

SAS, and ME, the actual and reference values diverge in the observations after 1-2 decades 261 

from the beginning of the time series, with RAtR being mostly greater than 1 and showing 262 

positive linear trends, although statistically significant at the 95% confidence level only in 263 

EUR. This indicates an increase in precipitation records compared to the reference value, 264 

and it is thus suggestive of an increase in maximum precipitation intensity during recent 265 

decades. Finally, for the SEA, NAM and CAM regions, the RAtR is predominantly greater 266 

than 1, but with negative trend lines. Therefore, the observation datasets do not indicate a 267 

consistent behavior of precipitation records across regions, although a prevalence of RAtR 268 

values greater than 1 is seen. This regional variability may also be associated with the 269 

possibly large uncertainties underlying station-based precipitation products due to the 270 

sparsity and heterogeneity of station locations along with measurement problems, e.g., the 271 

gauge undercatch (Adam & Lettenmaier, 2003).  272 

 273 

We can put our observation results in a broader context by a qualitative comparison with 274 

Fig. SPM-3 of IPCC (2021), which reports regions where significant changes in heavy 275 

precipitation (defined as the 95th or 99th percentile of 1-day or 5-day precipitation, 276 

https://www.ncl.ucar.edu/Document/Functions/Contributed/regline_stats.shtml
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depending on the study) during recent decades have been observed. IPCC reports 277 

significant increases of heavy precipitation over most of Europe, the Middle East and India 278 

regions, with non significant changes over most of Central and North America, results that 279 

are qualitatively in line with our record analysis. On the other hand, while we do not find 280 

significant trends in RAtR values over East and Southeast Asia, IPCC reports significant 281 

increases in heavy precipitation.   282 

 283 

Moving to the reanalyses, we can first see from the right panels of Figure 3 that in the 284 

majority of cases (with some notable exceptions such as NAM) there is a general agreement 285 

in the RAtR interdecadal variations between the observation and reanalysis data, as for 286 

example is particularly evident in the European region. This points to the fact that, at least 287 

for these regional cases, the reanalyses offer a reasonably good representation of the 288 

observed variability of extremes. Despite this agreement, however, the trends are in some 289 

instances quite different between observations and reanalyses, or across reanalysis 290 

products, not only in magnitude but also in sign.  291 

 292 

As a matter of fact, although in the reanalyses there is a more pronounced prevalence of 293 

positive trends than in the observations, both the observations and the reanalysis products 294 

do not indicate a fully consistent signal in terms of RAtR trends across regions. It is difficult 295 

to attribute these different behaviors to specific factors, however we can hypothesize that 296 

a significant factor is that the reanalysis precipitation data are still a product of models 297 

utilizing different physics parameterizations and data assimilation procedures, and these 298 

may evidently have an effect on the simulation of precipitation extremes, thereby 299 

representing an important element of uncertainty.  300 

 301 

3.2 Analysis of the model projections 302 

 303 
We now turn our attention to the model projections analyzed over the nine domains shown 304 

in Figure 2. As an illustrative example, Figure 4 shows for the RCP8.5 scenario and all 305 

nine continental scale domains of Figure 2 (land only) the 10-yr running average and trend 306 

fit lines for the RAtR in the RegCM4, REMO and driving MPI CORDEX-CORE 307 

projections, i.e., the projections driven by the intermediate sensitivity GCM. The data are 308 

reported from 1970 to 2099 and are separated in two segments for which different trend 309 

lines are calculated: 1970-2020, to represent the historical period; and 2020-2099, to 310 

represent the future period. For the historical period, trends are calculated for the GCM and 311 

RCM projections as well as the three reanalysis products, where we stress that for these 312 

calculations the domains and analysis periods are different from those used in Figure 3 and 313 

thus in some instances different trends are found even for the same reanalysis product. 314 

 315 

The most ubiquitous and consistent signal in Figure 4 is a strong and highly statistically 316 

significant increase in RAtR in both the GCM and RCM projections for the future period, 317 

with RAtR values greater than 1 and mostly statistically significant positive trends. This is 318 

a clear indication of a pronounced deviation from stationary climate conditions induced by 319 

the sustained 21st century warming in the RCP8.5 scenario, resulting in a much greater 320 

number of daily precipitation records (up to factors exceeding 2) compared to the stationary 321 

reference conditions.  322 
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 323 

Some exceptions to this behavior, however, do occur. The main one is the Australia region, 324 

where we find pronounced interdecadal variations in the RAtR values with low statistical 325 

significance of trends in the MPI and REMO runs. A possible reason for this behavior is 326 

that most of the Australia region is covered by desert and semi-desert regions, with large 327 

numbers of dry days, so that even some relatively small numbers of precipitation 328 

occurrences can affect the regional average number of records, thereby enhancing the 329 

interdecadal variability. Other cases of low statistical significance of trends are the CAM 330 

(REMO and RegCM runs) and AFR (MPI and REMO runs) regions, which also include 331 

large desert and semi-desert areas. 332 

 333 

Although a predominant increasing RAtR signal is found in the projections, Figure 4 also 334 

shows that the trend can be different across the GCM and RCM simulations. In particular, 335 

over several regions the RAtR trends are greater in the driving MPI model than in the 336 

corresponding nested RCM simulations, and are mostly greater in the RegCM4 than the 337 

REMO simulations, even though these RCMs are driven by the same GCMs. It is difficult 338 

to identify unambiguously the reasons for this behavior, which however illustrates the 339 

sensitivity of simulated extreme precipitation to the different model configurations and 340 

physics parameterizations.  341 

 342 

Figure S1 shows the same statistics as Figure 4, but for the RCP2.6 scenario, for which the 343 

warming essentially stabilizes, or is even slightly reduced, after the mid-decades of the 21st 344 

century (Teichmann et al. 2021). In this case we find that, although in most cases the RAtR 345 

values are still greater than 1, the trends calculated over the 21st century are either 346 

negligible (and statistically not significant) or negative. Again, this result is consistent with 347 

the fact that the warming in the RCP2.6 scenario is mostly stable throughout the late portion 348 

of the 21st century, with no significant changes in precipitation extremes.  349 

 350 

The RAtR trends for the historical period show more mixed results, also affected by the 351 

pronounced interdecadal variability of the RAtR signal over some regions. We find a mix 352 

of cases with trends of different sign, magnitude and statistical significance, not only across 353 

regions, but also across models and reanalysis products. We should note that precipitation 354 

extremes are characterized by pronounced temporal and spatial variability, and this clearly 355 

influences the relatively wide spread of results. Reducing this uncertainty through methods, 356 

such as ours, aimed at extracting and quantifying relevant information on extremes is 357 

important for developing adaptation policies. 358 

 359 

In order to obtain a clearer overall picture of the RAtR trends in the historical period, Figure 360 

5a reports the RAtR regional trend values in all GCM, RCM and reanalysis products for 361 

the period 1970-2020, while Figure 5b shows the corresponding multi-model averages of 362 

RCM, GCM and reanalysis trends (note that for MERRA the trends are calculated over a 363 

shorter time period). The latter should filter out some of the natural variability of the 364 

individual time series. Clearly, there is a large predominance of positive trends, although a 365 

number of these trend values are small and with low statistical significance. In six out of 366 

nine regions there is either full agreement in the sign of the trend across models and 367 

reanalyses (NAM, EUR, EAS) or only one outlier (SAM, SAS, SEA). Over SAM and EUR 368 
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the trends are more significant in the reanalysis than the models, while the opposite is found 369 

over EAS, SEA and NAM. As also found in Section 3.1, the regions for which the signal 370 

is more mixed are AUS, AFR, and CAM, which encompass large desert areas. 371 

 372 

The multi-model average trends (Figure 5b) show good agreement in sign, and for some 373 

cases magnitude, across models and reanalyses over all regions except AUS and AFR, 374 

where one case of negative value is found. Therefore, Figure 5b shows that an increase of 375 

the frequency of daily precipitation records compared to the reference value is a prevailing 376 

signal also for the historical period across most regions in the model simulations and 377 

reanalysis products. 378 

 379 

Figures 6 and 7 finally summarize the future period (2020-2099) linear trend values of the 380 

RAtR for the RCP8.5 and RCP2.6 scenarios, respectively, in all RegCM4 and REMO 381 

projections. We find that in the RCP8.5 scenario, (Fig. 6) for all regions and model 382 

combinations, except the GFDL-driven RegCM4 CAM run, the trends are  positive, with 383 

largest  values over the North America, East Asia and Southeast Asia regions, and lowest 384 

values in Central America. In the vast majority of cases the positive trends are statistically 385 

significant at the 95% confidence level. We also find that the Australian region is the only 386 

one in which the NorESM driven projections, i.e., those employing the GCM with lowest 387 

climate sensitivity, present larger positive trends than the other ones.  388 

 389 

By comparison, the RCP2.6 scenario (Figure 7) produces small RAtR trends, mostly not 390 

statistically significant, and fairly equally distributed between positive and negative values. 391 

The most noticeable cases are the East Asia and Southeast Asia regions, where the trends 392 

are predominantly negative and statistically significant. We recall that in the RCP2.6 393 

scenario global warming stabilizes or even tends to decrease after the mid-21st century, 394 

and therefore the presence of negative RAtR trends is not inconsistent with the 395 

corresponding global warming trend. In fact, stabilization of global temperatures would 396 

imply a decrease in records in line with Eq. 1 and a reduction of temperatures would lead 397 

to record values even lower than those obtained from Eq. 1. 398 

 399 

As already mentioned, the increase of heavy precipitation in climate projections, in 400 

particular for the high end GHG concentration pathways, is a consolidated result (e.g. 401 

Sillmann et al. 2014; Giorgi et al. 2014;2019; IPCC 2021) and is generally in line with our 402 

findings. Both the models and the reanalysis products also indicate a prevalence of positive 403 

and increasing RAtR values during the historical period, which is also in line with the 404 

assessment of IPCC (2021), as is a less clear signal over regions such as Australia, Africa 405 

and central America. Therefore, we conclude that our record-based analysis is at least 406 

qualitatively consistent with the results from the use of more traditional extreme 407 

precipitation analyses. 408 

 409 

 410 

4. Summary and Conclusions 411 
 412 

In this paper we have used the methodology recently described by GC22 to identify and 413 

count records (i.e., events of local unprecedented intensity) in time series of daily 414 
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precipitation events. This is a variant of the standard record detection method used for 415 

temperature and is designed to account for the occurrence of large numbers of zero values 416 

(i.e., dry days) in the time series. The method uses as indicator the maximum precipitation 417 

amount in a rolling window of 30-days and therefore it should be recognised that the values 418 

it produces are not directly representative of annual daily record counts, as for example in 419 

the analogous approach for daily temperature records.  420 

 421 

We applied the technique to different station-based observation datasets and reanalysis 422 

products for recent decades, along with 21st century RCM projections under the RCP8.5 423 

and RCP2.6 scenarios completed as part of the CORDEX-CORE project (Giorgi et al. 424 

2022). The analysis is carried out for two sets of domains. The CORDEX-CORE data, 425 

along with corresponding reanalysis data for the historical period, are analyzed over nine 426 

continental scale regions (land only areas) encompassed within the corresponding 427 

CORDEX-CORE domains. The analysis of observations and corresponding reanalyses is 428 

instead carried out over a smaller set of sub-domains where high resolution observations 429 

are actually available.  430 

 431 

The basic scientific question we address here is whether the increase in intensity of 432 

precipitation expected under global warming conditions (e.g., Sillmann et al.2013, Giorgi 433 

et al. 2019) is reflected into a widespread increase in the occurrence of daily precipitation 434 

records with respect to those expected from stationary climate conditions (Eq. 1), and how 435 

this response varies across regions. 436 

 437 

The station-based observation datasets for the last decades provide mixed results, in the 438 

sense that the RAtR exhibits both positive and negative trends over different regions, 439 

although a prevalence of RAtR values treater than 1 is found. Corresponding record counts 440 

from the reanalysis products show interdecadal variations mostly in line with observations, 441 

however the actual trends are sometimes different between observations and reanalyses or 442 

across reanalysis products. The extension of the analyses to all CORDEX domains for the 443 

common period 1970-2020 shows prevailing positive trends during the historical period 444 

1970-2020, but still with significant variability across regions, reanalysis and model 445 

products. In particular, Australia, central America and Africa emerge as the regions 446 

characterized by the most pronounced interdecadal variability of the RAtR values, resulting 447 

in more mixed trend results. This could at least to some extent be due to the presence of 448 

large desert areas with small numbers of precipitation events which can affect the regional 449 

averages. In addition, the pronounced natural variability of regional precipitation, and 450 

especially extremes, likely contributes to the pronounced spread found in the historical 451 

period. 452 

 453 

Coming to the projections, in the high-end RCP8.5 scenario a consistent and mostly 454 

statistically significant signal of positive RAtR trend is found in all regions, except for one 455 

projection over Central America. The RAtR trends are small, of both signs, and mostly not 456 

statistically significant in the RCP2.6 scenario, where the warming does not increase in the 457 

second half of the century, implying stabilised conditions of precipitation extremes.  458 

 459 
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Overall, our more extensive and globally based analysis supports the findings of GC22 in 460 

that the use of our modified precipitation record identification method can be an effective 461 

tool to detect the occurrence of precipitation events of unprecedented local intensity (i.e. 462 

precipitation records) associated with global warming. This conclusion is especially 463 

evident when sustained warming occurs, such as in the RCP8.5 scenario. In cases of more 464 

moderate warming, such as during recent decades, the results from observation data, 465 

reanalyses and model simulations are less conclusive, although with a prevalence of 466 

positive RAtR trends. In addition, the results are characterized by substantial variability 467 

across regional climatic regimes, and in particular the method may need to be refined for 468 

application to semi-arid regions characterized by small numbers of precipitation events and 469 

pronounced interannual variability.  470 

 471 

As daily precipitation observation time series increase in length and quality of coverage, 472 

we thus assess that the GC22 approach can give an important contribution to detection and 473 

attributions studies of hydroclimatic extremes, an area of increasing interest within the 474 

global warming debate. The method can clearly also have useful applications in the 475 

assessment of the impact of extremes, especially when the emphasis is on extremes of 476 

unprecedented intensity. 477 

 478 
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Tables 672 

 673 

Table 1: List of datasets used in the analysis and corresponding regional covers. 674 

 675 

Figure Captions 676 

 677 

Figure 1. Time series of the frequency of daily precipitation records (see text) found at 4 northern 678 

Italian sites: Cavalese, Milano, Padova, Trieste (see Table 1). 679 

 680 

Figure 2. Red areas show the observation analysis sub-domains, while boxes show the model 681 

analysis domains (land only), which are included in the corresponding CORDEX-CORE 682 

simulation domains. 683 

 684 

Figure 3. Frequency of occurrence of actual records along with the curve defined by Eq. (1) (left 685 

panels) and 10-year running average of the ratio of actual-to-reference frequency of daily 686 

precipitation records (RAtR, right panels) based on different gridded station observation datasets 687 

and aggregated over seven regions: 3a, from top to bottom, Europe (EUR), North America 688 

(NAM), Central America (CAM), Middle East (ME); 3b, from top to bottom, East Asia (EAS), 689 

https://doi.org/10.1175/bams-d-11-00122.1
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Southeast Asia (SEA), South Asia (SAS). Also shown in the right panels are the coefficient (units 690 

of 1/decade) and p-value of the linear trend fit line of the 10-year running mean values. 691 

Underlining indicates cases of statistically significant trends at the 95% confidence level.   692 

 693 

Figure 4. 10-year running mean and corresponding linear trend fit line of the RAtR values for the 694 

different GCM and RCM CORDEX-CORE simulations over the nine model analysis domains for 695 

the period 1970-2099 for the RCP8.5 scenario. The trends are calculated separately for the 1970-696 

2020 historical period and 2020-2099 future period, and for the historical period also 697 

corresponding data for the three reanalysis products are reported. The coefficient and p-values of 698 

the trend lines (units of 1/decade) are also reported for each dataset (first and second number in 699 

parentheses, respectively). Underlining indicates cases of statistically significant trends at the 700 

95% confidence level.   701 

 702 

Figure 5. 5a: Linear trend value (units of 1/decade) of the 10-yr running average of the RaAtR 703 

value for the historical period 1970-2020 for different reanalysis products, GCM and RCM 704 

simulations, over the nine model analysis domains. For the MERRA reanalysis the trend is 705 

calculated over the shorter period 1980-2020. Hatching indicates that the trend is statistically 706 

significant at the 95% confidence level. 5b: Reanalysis, RCM and GCM multi-model average of 707 

the trend values (units of 1/decade) over the period 1970-2020 over the nine model analysis 708 

domains. 709 

 710 

Figure 6. Coefficients of the linear trend fit line (units of 1/decade) of the 10-year running 711 

average RAtR for the period 2020-2099 over the nine model analysis domains and for all 712 

RegCM4 and REMO projections in the RCP8.5 scenario. Hatching indicates that the coefficient 713 

is statistically significant at the 95% confidence level. Note that for the RegCM4 SAS simulation 714 

the driving GCM is not HadGEM but MIROC5 and for the RegCM4 CAM and NAM simulations 715 

it is not NorESM but GFDL, which are highlighted with an asterisk in the figure.   716 

 717 

Figure 7. Same as Figure 6 but for the RCP2.6 scenario.  718 
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Tables 719 

 720 
Table 1: List of datasets used in the analysis and corresponding regional covers. 721 

 722 
Northern Italy 

Stations 
Period  References 

 

CAVALESE 1920-2020 Scolozzi et al., 2017  

MILANO 1920-2020 Maugeri et al., 2002  

PADOVA 1920-2019 Marani et al., 2015  
TRIESTE 1924-2020 Cicogna (OSMER)  

       

Observations Period  Regions  References 

APHRO-MA 1951-2007 Monsoon Asia Yatagai et al., 2012 

APHRO-ME 1951-2007 Middle East Yatagai et al., 2012 

E-OBS 1950-2020 Europe Cornes et al., 2018 

IMD 1950-2016 India Pai et al., 2014 

NAmerEXT 1950-2013 North America Livneh et al., 2015 

  

Reanalyses Period  Regions  References 

ERA5 1950-2020 
NAM, CAM, SAM, EUR, SAS, 

AFR, EAS, SEA, AUS 
Hersbach et al., 2020 

MERRA-2 1980-2021 
NAM, CAM, SAM, EUR, SAS, 

AFR, EAS, SEA, AUS 
Gelaro et al., 2017 

JRA-55 1958-2021 
NAM, CAM, SAM, EUR, SAS, 

AFR, EAS, SEA, AUS 
Kobayashi et al., 2015 

     

RCMs Period  Regions  References 

RegCM 1970-2099 
NAM, CAM, SAM, EUR, SAS, 

AFR, EAS, SEA, AUS 
Giorgi et al., 2012 

REMO 1970-2099  
NAM, CAM, SAM, EUR, SAS, 

AFR, EAS, SEA, AUS 
Jacob et al., 2012 

 driven by the GCMs  References 

 HadGEM2-ES Jones et al., 2011 

 MPI-ESM-LR Giorgetta et al., 2013 

 MPI-ESM-MR Giorgetta et al., 2013 

 NorESM1-M Bentsen et al., 2013 

 MIROC5 Watanabe et al., 2010 

 GFDL-ESM2M Dunne et al., 2012 

  723 
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