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CONCAVITY PRINCIPLES FOR NONAUTONOMOUS ELLIPTIC

EQUATIONS AND APPLICATIONS

NOUF ALMOUSA , CLAUDIA BUCUR , ROBERTA CORNALE, AND MARCO SQUASSINA

Abstract. In the study of concavity properties of positive solutions to nonlinear elliptic partial
differential equations the diffusion and the nonlinearity are typically independent of the space
variable. In this paper we obtain new results aiming to get almost concavity results for a relevant
class of anisotropic semilinear elliptic problems with spatially dependent source and diffusion.

1. introduction

A rather natural question in the field of nonlinear partial differential equations is whether a
positive solution with homogeneous Dirichlet boundary conditions is concave on a given convex
domain. Starting from [5] extensive research has been developed in order to deduce symmetry
of solutions from the symmetry of the domain, via the so called Alexandroff-Serrin moving
plane method. When the symmetry of the domain is dropped, one may wonder if the solutions
still inherit some concavity properties from the domain. This was investigated in a series of
pioneering papers [3, 14, 18, 19].

When studying concavity properties of solutions, it becomes evident that aiming for concavity
is often overly demanding: while it can be achieved for the torsion problem, for example, for suit-
able perturbation of ellipsoids [8, 12, 13, 16], the first eigenfunctions of the Laplacian are never
concave, regardless of the considered bounded domain [10, Remark 3.4]. One may instead search
for a strictly increasing function ϕ that, when composed with the solution u, yields a concave
function ϕ(u). In the seminal paper [18] it is shown that the solutions of the torsion problem
−∆u = 1 are such that

√
u is concave. In [3] the authors show that the positive eigenfunctions

of −∆u = λu satisfy that log u is concave. The concavity of solutions to nonlinear equations has
been explored in several subsequent papers [7, 11–13, 15, 17, 20] involving techniques mainly
relying on maximum principles applied to suitably defined convexity functions. For instance if
β ∈ (0, 1), Ω is convex and u is a positive solution to −∆u = uβ with Dirichlet boundary data,

then u(1−β)/2 is concave [12].
Most of the cited papers, however, give assumptions on the nonlinearity in the equation in

order to have a suitable power uγ of the solution u to be concave. Recently, for the problem
−∆u = f(u) (and more generally for quasi-linear problems involving the p-Laplace operator),

under suitable assumptions on f the authors of [2] showed concavity of
´ u
1 1/

√

F (σ)dσ, where
F ′ = f , thus providing a precise connection on how the concavity of the solution is affected
by the nonlinear term f . In [1], these results were then extended to the quasi-linear problem
−div(α(u)∇u) + 1

2α
′(u)|∇u|2 = f(u) related to the so called modified nonlinear Schrödinger
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equation, under suitable joint hypothesis on α and f . More precisely
´ u
µ

√

α(σ)/F (σ)dσ turns

out to be concave for some positive constant µ.
In cases where the assumptions on the function f which guarantee the concavity of a suitable

transformation are not met, some quantitative perturbation results were recently obtained in
[4]. These results establish, in essence, a bound on the loss of concavity of u, controlled in the
supremum norm in terms of the loss of concavity of f .

In general all the results in the current literature only deal with autonomous problems, corre-
sponding to isotropic physical models, namely both the diffusion term in the operator and the
nonlinearity do not explicitly depend upon the space variable and it is expected that concavity
(even up to a transformation) is in general broken due to the x-dependence.

The primary objective of the paper is to establish quantitative perturbation results, which
assert that if both the diffusion term in the operator and the nonlinearity exhibit a small
variation with respect to the spatial variable, then a suitable transformation ϕ(u) is close to
a concave function in the supremum norm, with an error estimate depending precisely on the
spatial variation.

Precisely, taking Ω ⊂ R
n a bounded open strictly convex set with smooth boundary, consider

the semi-linear problem, for β ∈ [0, 1),

(1.1)























−
n
∑

i,j=1

αij(x)D2
iju = a(x)uβ in Ω

u > 0 in Ω

u = 0 on ∂Ω,

with the matrix of coefficients A = {αij}ni,j=1 being symmetric and uniformly elliptic. In the

isotropic cases αij = δij and a = 1 this reduces to the already mentioned classical sublinear

problem −∆u = uβ for which a result in [12] establishes concavity of u(1−β)/2 .
As a by product of a general maximum convexity principle (see Theorem 2.3) we prove in

Proposition 3.2 that if

(1.2) ‖∇a‖L∞(Ω) + max
i,j∈{1,...,n}

‖∇αij‖L∞(Ω) < ε, ε > 0,

then there exists a positive constant C and a concave function w : Ω → R such that
∥

∥

∥
u

1−β
2 − w

∥

∥

∥

L∞(Ω)
≤ Cε,

in light also of a Hyers-Ulam theorem (see Proposition 3.5).
Furthermore, as a second example, consider the problem

(1.3)























−
n
∑

i,j=1

αij(x)D2
iju = a(x)u+ εϕ(u) in Ω

u > 0 in Ω

u = 0 on ∂Ω,

with A = {αij}ni,j=1 symmetric and uniformly elliptic. If (1.2) holds and ϕ is non-increasing,
then there exists a positive constant C and a concave function w : Ω → R such that

‖ log u− w‖L∞(Ω) ≤ Cε.

We obtain this applying Proposition 3.4. We point out that the case ϕ = 0 in problem (1.3),
which corresponds to β = 1 in problem (1.1), is out of reach since our general convexity maximum
principles fail, precisely since assumption (2.7) is not fulfilled.
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In the rest of the paper, we proceed obtaining some maximum principles for concavity func-
tions of solutions of semi-linear equations, which can be viewed as anisotropic counterparts of
the results presented in [13, Lemma 1.4] and [12, Lemma 3.1]. We then discuss some applica-
tions, precisely problems (1.1) and (1.3). We believe that our techniques could be suitable to
investigate other physically relevant anisotropic elliptic problems. To the best of our knowledge
this is the first result in the literature providing almost concavity results for anisotropic problems
in convex domains.

2. Anisotropic convexity principles

In the rest of the paper, let Ω denote a bounded open convex subset of Rn. Denote furthermore
for x1, x3 ∈ Ω, λ ∈ [0, 1],

(2.1) x2 := λx3 + (1− λ)x1 ∈ Ω

and for s1, s3 ∈ R

s2 = λs3 + (1− λ)s1.

For some u : Ω → R, we define the concavity function Cu as

(2.2) Cu(x1, x3, λ) := u(x2)− λu(x3)− (1− λ)u(x1).

For some g : Ω× R → R, the joint-concavity function J Cg is defined by

(2.3) J Cg((x1, s1), (x3, s3), λ) := g(x2, s2)− λg(x3, s3)− (1− λ)g(x1, s1),

and we will also use the notation

(2.4) J Cg(·,u(·))(x1, x3, λ) := g(x2, λu(x3) + (1− λ)u(x1))− λg(x3, u(x3))− (1− λ)g(x1, u(x1))

when si = u(xi). We define the harmonic concavity function, as in [12], in the following way:

(2.5) HCg((y1, s1), (y3, s3), λ) :=



















g(y2, s2)−
g(y1, s1)g(y3, s3)

λg(y1, s1) + (1− λ)g(y3, s3)
,

if λg(y1, s1) + (1− λ)g(y3, s3) > 0

g(y2, s2), if g(y1, s1) = g(y3, s3) = 0.

It should be noted that such definition is applicable to positive functions g, or functions that
can change sign and that meet one of the conditions specified in equation (2.5), at the point
((y1, s1), (y3, s3), λ). Notice also that if g < 0, none of these conditions are satisfied.

We will also use the notation

HCg(·,u(·))(x1, x3, λ) = g(x2, λu(x3) + (1− λ)u(x1))−
g(x1, u(x1))g(x3, u(x3))

λg(x1, u(x1)) + (1− λ)g(x3, u(x3))

when si = u(xi). Notice that Cu,J Cg,HCg ≥ 0 are equivalent to the concavity, joint concavity,
respectively harmonic concavity of the functions.

To ensure clarity, we also point out the following definition.

Definition 2.1. We say that the triple (x1, x3, λ) is an interior point for Cu if each of x1, x2, x3
is in Ω with x2 = λx3 +(1−λ)x1, while we say that the point is on the boundary if at least one
x1, x2, x3 belongs to ∂Ω.

Having established our notations, we point out how we obtain our almost-concavity results for
transformations of the solutions of (1.1), (1.3). It is obvious that if u ∈ C(Ω), then Cu achieves
a maximum in Ω×Ω× [0, 1]. We give in this section maximum convexity principles, which cover
the case in which Cu achieves a positive maximum at an interior point in Ω × Ω × (0, 1). To
follow, in Section 3, after noticing that that the concavity functions associated to our problems,
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due to boundary constraints, cannot achieve the positive maximum on the boundary, with a
direct applications of the maximum convexity principles we obtain the desired conclusion.

We introduce now the model problem for which we obtain maximum convexity principles.

Problem 1. For all i, j ∈ {1, . . . , n} let the functions

aij : Ω× R
n → R

be such that aij(·, ξ) ∈ C1(Ω) and A = [aij(x, ξ)]ni,j=1 is a symmetric positive semidefinite matrix

for all (x, ξ) ∈ Ω×R
n. Let b : Ω×R×R

n → R be such that b(x, ·, ξ) is differentiable in R \ {0},
for all (x, ξ) ∈ Ω× R

n. Consider the equation

(2.6) Lu = 0, Lu = aij(x,Du)uij − b(x, u,Du),

where we use the notation

aijuij :=

n
∑

i,j=1

aijuij.

The next result, an anisotropic maximum convexity principle, can be viewed as the anisotropic
counterpart of [4, Lemma 2.3], both variations of the classical convexity principle in [13, Lemma
1.4].

Theorem 2.2. Let Ω ⊂ R
n be a bounded open convex set. Let u ∈ C2(Ω) be a solution of Problem

1. Assume that Cu achieves a positive interior maximum at (x1, x3, λ) ∈ Ω×Ω× (0, 1). If there
is some σ > 0 such that for all x on the segment [x1, x3] and s on the segment [u(x1), u(x3)] it
holds that

(2.7)
∂b

∂s
(x, s,Du(x1)) ≥ σ,

then

Cu(x1, x3, λ) ≤ −
JCb(·,u(·),ξ)(x1, x3, λ)

σ
+

Cε(D(u(x1))

σ
,

where

(2.8) ε(Du(x1)) := max
i,j∈{1,...,n}

sup
x∈[x1,x3]

|Dxa
ij(x,Du(x1))|

and

(2.9) C := n2 max
i,j∈{1,...,n}

max
k∈{1,3}

|uij(xk)|diam(Ω) > 0.

Proof. Notice that if x1 = x3, then the inequality trivially holds. We may hence assume that
x1, x2, x3 are distinct. Since Cu achieves a maximum at (x1, x3, λ), recalling (2.1) and (2.2), we
get that

(Dx1Cu)(x1, x3, λ) = (Dx3Cu)(x1, x3, λ) = 0

hence

(1− λ)Du(x2)− (1− λ)Du(x1) = λDu(x2)− λDu(x3) = 0.

Let us set

ξ := Du(x1) = Du(x2) = Du(x3),

and consider the auxiliary function ϕ̄ : Rn → R defined as

ϕ̄(v) := Cu(x1 + v, x3 + v, λ) = u(x2 + v)− λu(x3 + v)− (1− λ)u(x1 + v).

Since ϕ̄ has a local maximum at v = 0, we get that

∇vϕ̄(0) = 0 and [D2
vϕ̄(0)] ≤ 0.
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We recall that if A and B are two n × n real symmetric positive semidefinite matrices, then
Tr(AB) ≥ 0 (see [12, Lemma A.1]). Since A = [aij(x2, ξ)]

n
i,j=1 is positive semidefinite, it follows

that
aij(x2, ξ)(uij(x2)− λuij(x3)− (1− λ)uij(x1)) ≤ 0.

Denote

(2.10)
e1 = (aij(x2, ξ)− aij(x1, ξ))uij(x1),

e3 = (aij(x2, ξ)− aij(x3, ξ))uij(x3).

and using the equation (2.6), we have

b(x2, u(x2), ξ) = aij(x2, ξ)uij(x2) ≤ λaij(x2, ξ)uij(x3) + (1− λ)aij(x2, ξ)uij(x1)

= λaij(x3, ξ)uij(x3) + λe3 + (1− λ)aij(x1, ξ)uij(x1) + (1− λ)e1

= λb(x3, u(x3), ξ) + (1− λ)b(x1, u(x1), ξ) + (1− λ)e1 + λe3.

So we get in turn
b(x2, u(x2), ξ)− b(x2, λu(x3) + (1− λ)u(x1), ξ) ≤

λb(x3, u(x3), ξ) + (1− λ)b(x1, u(x1), ξ)− b(x2, λu(x3) + (1− λ)u(x1), ξ) + (1− λ)e1 + λe3.

Using the Lagrange’s theorem, we can estimate

(2.11) max{|e1|, |e3|}} ≤ Cε(ξ),

so we get that
(1− λ)e1 + λe3 ≤ (1− λ)|e1|+ λ|e3| = Cε(ξ).

Then we can apply Lagrange’s theorem to obtain that there exists s̄ on the segment [u(x2), λu(x3)+
(1− λ)u(x1)], thus on the segment [u(x1), u(x3)], such that

σCu(x1, x3, λ) ≤
∂b

∂s
(x2, s, ξ) (u(x2)− λu(x3)− (1− λ)u(x1)) ≤ −JCb(·,u(·),ξ)(x1, x3, λ) +Cε(ξ),

concluding the proof of the Theorem. �

We have now the second anisotropic approximate convexity principle, counterpart of [4,
Lemma 2.9], both variations of the classical Convexity Principle in [12, Lemma 3.1].

Theorem 2.3. Let Ω ⊂ R
n be a bounded open convex set. Let u ∈ C2(Ω) be a solution of

Problem 1. Assume that Cu achieves a positive interior maximum at (x1, x3, λ) ∈ Ω×Ω× (0, 1),
and additionally that there is some ν, σ > 0 such that for all x on the segment [x1, x3] and s on
the segment [u(x1), u(x3)] it holds that

(2.12) b(x, s,Du(x1)) ≥ ν

and

(2.13)
∂b

∂s
(x, s,Du(x1)) ≥ σ.

If b is jointly concave (i.e. J Cb ≥ 0), then

Cu(x1, x3, λ) ≤
1

σ

[

Cε(Du(x1)) +
C2ε2(Du(x1))

ν

]

,

otherwise

Cu(x1, x3, λ) ≤
1

σ

[

−HCb(·,u(·),ξ)(x1, x3, λ) + Cε(Du(x1))

(

1−
J Cb(·,u(·),ξ)(x1, x3, λ)

ν

)

+
C2ε2(Du(x1))

ν

]

,

where notations (2.8) and (2.9) are in place.
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Proof. As in Theorem 2.2, we denote by ξ the common value of Du at the points x1, x2, x3. Let
us also define the 2n× 2n matrices

C := [D2Cu(x1, x3, λ)] =
[

D2
x1
Cu(x1, x3, λ) D2

x1,x3
Cu(x1, x3, λ)

D2
x1,x3

Cu(x1, x3, λ) D2
x3
Cu(x1, x3, λ)

]

(which is negative semidefinite since (x1, x3, λ) is a maximum for Cu in the interior), and

B :=

[

s2aij(x2, ξ) staij(x2, ξ)
staij(x2, ξ) t2aij(x2, ξ)

]

for s, t ∈ R. The matrix B is positive semidefinite by hypothesis, therefore the trace of BC is
non-negative. That is, denoting

α := Tr(aij(x2, ξ)D
2
x1
Cu), β := Tr(aij(x2, ξ)D

2
x1,x3

Cu),

γ := Tr(aij(x2, ξ)D
2
x3
Cu),

we have that

αs2 + 2βst+ γt2 ≤ 0,

i.e.

(2.14) α, γ ≤ 0, β2 ≤ αγ.

Then we obtain

α = (1− λ)2aij(x2, ξ)uij(x2)− (1 − λ)aij(x2, ξ)uij(x1),

γ = λ2aij(x2, ξ)uij(x2)− λaij(x2, ξ)uij(x3),

β = λ(1− λ)aij(x2, ξ)uij(x2).

Denote for k ∈ {1, 2, 3}
Qk = aij(xk,Du(xk))uij(xk)

and use once more the notations in (2.10). Then we have that

α = (1− λ)2Q2 − (1− λ)(Q1 + e1),

γ = λ2Q2 − λ(Q3 + e3),

β = λ(1− λ)Q2.

Using (2.14), we obtain

(2.15) Q2 ≤
1

1− λ
(Q1 + e1), Q2 ≤

1

λ
(Q3 + e3),

and

Q2

(

(1− λ)Q3 + λQ1

)

≤ Q1Q3 + e3

(

− (1− λ)Q2 +Q1 + e1

)

+ e1

(

− λQ2 +Q3 + e3

)

− e1e3.

Recalling that b > 0, hence (1− λ)Q3 + λQ1 > 0, then

Q2 ≤
Q1Q3

(1− λ)Q3 + λQ1
+

e3

(

− (1− λ)Q2 +Q1 + e1

)

+ e1

(

− λQ2 +Q3 + e3

)

− e1e3

(1− λ)Q3 + λQ1
.

Denoting

ζ(x1, x3, λ) :=
e3

(

− (1− λ)Q2 +Q1 + e1

)

+ e1

(

− λQ2 +Q3 + e3

)

− e1e3

(1− λ)Q3 + λQ1
,
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we use the equation (2.6) and get that

b(x2, u(x2), ξ) − b(x2, (1 − λ)u(x1) + λu(x3), ξ)

≤ b(x1, u(x1), ξ)b(x3, u(x3), ξ)

(1− λ)b(x3, u(x3), ξ) + λb(x1, u(x1), ξ)
− b(x2, (1− λ)u(x1) + λu(x3), λ) + ζ(x1, x3, λ).

According to (2.2), (2.5) and using the Lagrange theorem, we have that

(2.16) ∂sb(x2, s̄, ξ)Cu(x1, x3, λ) ≤ −HCb(·,u(·),ξ)(x1, x3, λ) + ζ(x1, x3, λ),

for some s̄ on the segment [u(x2), λu(x3)+ (1− λ)u(x1)]. To estimate ζ(x1, x3, λ), we use (2.11)
together with (2.15) and get that
(2.17)

ζ(x1, x3, λ) ≤
|e3|

(

− (1− λ)Q2 +Q1 + e1

)

+ |e1|
(

− λQ2 +Q3 + e3

)

− e1e3

(1− λ)Q3 + λQ1

= C
ε(ξ)

(

λQ1 + (1− λ)Q3 + (1− λ)Q1 + λQ3 −Q2

)

+ (|e3|e1 + |e1|e3 − e1e3)

(1− λ)Q3 + λQ1

≤ Cε(ξ)

(

1 +
(1− λ)Q1 + λQ3 −Q2

(1− λ)Q3 + λQ1

)

+
C2ε2(ξ)

ν
,

using also (2.12) and that

|e3|e1 + |e1|e3| − e1e3 ≤ |e1e3| ≤ C2ε2(ξ).

Now, using again the equation satisfied by u, notice that

(1− λ)Q1 + λQ3 −Q2

= (1− λ)b(x1, u(x1), ξ) + λb(x3, u(x3), ξ) − b(x2, (1 − λ)u(x1) + λu(x3), ξ)

+ b(x2, (1− λ)u(x1) + λu(x3), ξ)− b(x2, u(x2), ξ)

= − JCb(·,u(·),ξ)(x1, x3, λ)− ∂sb(x2, s, ξ)Cu(x1, x3, λ),

according to (2.4) and to Lagrange’s theorem. Since Cu(x1, x3, λ) ≥ 0, thanks to (2.13) the
second term is non-positive, so

(1− λ)Q1 + λQ3 −Q2 ≤ −J Cb(·,u(·),ξ)(x1, x3, λ).

Therefore, plugging this into (2.17) and (2.16), we have reached

∂sb(x2, s̄, ξ)Cu(x1, x3, λ) ≤ −HCb(·,u(·),ξ)(x1, x3, λ) + Cε(ξ)

(

1−
J Cb(·,u(·),ξ)(x1, x3, λ)

(1− λ)Q3 + λQ1

)

+
C2ε2(ξ)

ν
.

We point out that HCb ≥ JCb, hence if J Cb ≥ 0, i.e. b is jointly concave, then b is also harmonic
concave and in that case,

∂sb(x2, s, ξ)Cu(x1, x3, λ) ≤ ε(ξ) +
ε2(ξ)

ν
.

Otherwise, if J Cb ≤ 0, using also (2.12), we get that

Cu(x1, x3, λ) ≤
1

σ

[

−HCb(·,u(·),ξ)(x1, x3, λ) + Cε(ξ)

(

1−
JCb(·,u(·),ξ)(x1, x3, λ)

ν

)

+
C2ε2(ξ)

ν

]

.

This concludes the proof. �
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3. Application to semi-linear equations

We investigate two applications of our general maximum convexity principles. We point out
that the characteristics of these applications, particularly the boundary conditions, drive the
convexity function Cu of the solution to attain a positive maximum within the interior of the
domain. Then we readily apply Theorems 2.2, 2.3 to obtain the estimates on the loss of concavity
of a transformed of the solution u.

It is worth mentioning that, in the classical case, the concavity of the solution depends on
the (harmonic)-concavity of the nonlinearity. In both our subsequent applications, Problem 2
and 3, already a direct use of the maximum convexity principles in Theorems 2.2, 2.3 provides
this connection. We give a bound on the convexity of the nonlinearity in terms of the spatial
variation, to emphasize the role of the introduced anisotropy, see also subsequent Remark 3.3.

In this section, let Ω ⊂ R
n be a bounded open strongly convex set with C1 boundary.

Problem 2. Let
a : Ω → (0,+∞)

and for all i, j ∈ {1, . . . , n} let the functions

αij : Ω → (0,+∞)

be such that there exists ζ > 0 such that
n
∑

i,j=1

αij(x)pipj ≥ ζ|p|2, for all p ∈ R
n,

and a, αij(·) ∈ C1(Ω). Consider the equation






















−
n
∑

i,j=1

αij(x)D2
iju = a(x)uβ , β ∈ [0, 1) in Ω

u > 0 in Ω

u = 0 on ∂Ω.

We recall the following property of convex sets [13].

Proposition 3.1. Let Ω ⊂ R
n be bounded strongly convex set with C1 boundary. Then there

exist r0 > 0 such, that for every ρ ∈ (0, ro], the set

Ωρ :=
{

x ∈ Ω : d(x, ∂Ω) > ρ
}

.

is convex with C1 boundary.

We recall once more that, when the coefficients αij do not depend on x and when a(x) = 1,
the power function uα, for some α := α(β), is concave. We want to understand the impact of
introducing a dependency on x in the equation. We are able to obtain a precise quantitative
result about the extent to which the transformed solution deviates from concavity.

Proposition 3.2. Let u ∈ C2(Ω) ∩ C1(Ω) be a solution of Problem 2, assuming additionally
that

‖∇a‖L∞(Ω) + max
i,j∈{1,...,n}

‖∇αij‖L∞(Ω) < ε,

for some ε > 0. Then
max

Ω×Ω×[0,1]
C
−u

1−β
2

(x, y, t) ≤ Cε,

for some C > 0.
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Proof. Let

v := −u
1−β
2 .

We point out that v < 0, v ∈ C2(Ω) and we focus on deriving the equation satisfied by v. We

have that u = (−v)
2

1−β , and

Diu = − 2

1− β
(−v)

1+β
1−βDiv

where Di =
∂
∂xi

, and

D2
iju =

2(1 + β)

(1− β)2
(−v)

2β
1−βDivDjv −

2

1− β
(−v)

1+β
1−βD2

ijv

where D2
ij =

∂2

∂xi∂xj
. This gives that

n
∑

i,j=1

αij(x)D2
iju =

2(1 + β)

(1− β)2
(−v)

2β
1−β

n
∑

i,j=1

αij(x)DivDjv −
2

1− β
(−v)

1+β
1−β

n
∑

i,j=1

αij(x)D2
ijv.

Thus we obtain

−2(1 + β)

(1− β)2
(−v)

2β
1−β

n
∑

i,j=1

αij(x)DivDjv +
2

1− β
(−v)

1+β
1−β

n
∑

i,j=1

αij(x)D2
ijv = a(x)(−v)

2β
1−β .

Dividing by 2
1−β (−v)

1+β
1−β yields

(3.1)

n
∑

i,j=1

αij(x)D2
ijv = (−v)−1

(a(x)(1− β)

2
+

1 + β

1− β

n
∑

i,j=1

αij(x)DivDjv
)

,

that is
n
∑

i,j=1

αij(x)D2
ijv − b(x, v,Dv) = 0,

where

(3.2) b(x, s, ξ) := (−s)−1fξ(x),

and for any ξ ∈ R
n, fξ : Ω → R is

fξ(x) :=
a(x)(1 − β)

2
+

1 + β

1− β

n
∑

i,j=1

αij(x)ξiξj.

If C−u(1−β)/2 ≤ 0 in Ω×Ω×[0, 1], then there is nothing to prove. Otherwise, from [4, Corollary 3.2],
we have that C−u(1−β)/2 , cannot achieve any positive maximum on the boundary, i.e. the positive
maximum of Cv is attained at some point (x1, x3, λ) ∈ Ω×Ω× (0, 1). Recalling Proposition 3.1,
let

ρ := min{r0, d(x1,Ω), d(x3,Ω)},
then (x1, x3, λ) ∈ Ωρ × Ωρ × (0, 1) and define

mρ := ‖v‖C(Ωρ)
, Mρ := ‖Dv‖C(Ωρ)

.

Notice that

fξ(x) ≥
1 + β

1− β
ζ|ξ|2 + 1− β

2
min
Ωρ

a(x) ≥ 1− β

2
min
Ωρ

a(x) > 0.
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We have that for all x ∈ Ωρ, s ∈ [−mρ, 0), ξ ∈ BMρ

b(x, s, ξ) ≥ 1− β

2mρ
min
Ωρ

a(x) := ν > 0, ∂sb(x, s, ξ) ≥
1− β

2m2
ρ

min
Ωρ

a(x) := σ > 0.

For clarity, we point out that we have [x1, x3] ⊂ Ωρ, [v(x1), v(x3)] ⊂ [−mρ, 0) andDv(x1) ∈ BMρ ,

thus the hypothesis (2.12), (2.13) in Theorem 2.3 are fulfilled. Denote for all ξ ∈ BMρ ,

m := min
Ωρ

fξ(x), M = max
Ωρ

fξ(x)

and remark that, for some x̄, x̃ ∈ Ωρ and z̄ on the segment [x̄, x̃] lying in Ωρ,

M−m = fξ(x̄)− fξ(x̃) ≤ |∇fξ(z̄)|diam(Ωρ)

≤ ε

(

1− β

2
+

1 + β

1− β
n2M2

ρ

)

:= εC.

Let υρ := minΩρ
(−v) > 0, there holds1

HCb(·,v(·),ξ)(x1, x3, λ)

≥ 1

λ(−v)(x3) + (1− λ)(−v)(x1)
(

fξ
(

(1− λ)x1 + λx3
)

− fξ(x1)fξ(x3)
λ(−v)(x3) + (1− λ)(−v)(x1)

λfξ(x1)(−v)(x3) + (1− λ)fξ(x3)(−v)(x1)

)

≥ 1

λ(−v)(x3) + (1− λ)(−v)(x1)

(

m− fξ(x1)fξ(x3)

m

)

≥ 1

λ(−v)(x3) + (1− λ)(−v)(x1)

(

m− M
2

m

)

≥ 1

υρ

m
2 −M

2

m
= −ε

C

υρ

M+m

m
.

Also we have that

J Cb(·,(−v)(·),ξ)(x1, x3, λ) ≥
m

mρ
− M

υρ
:= −α.

According to Theorem 2.3, we have that for all (x, y, t) ∈ Ω× Ω× [0, 1],

max
Ω×Ω×[0,1]

C
−u

1−β
2

(x, y, t) = C
−u

1−β
2

(x1, x3, λ)

= Cv(x1, x3, λ) ≤
1

σ

[

C

υρ

M+m

m
ε+ Cε

(

1− α

ν

)

+
C2ε

ν

]

:= Cρε,

when ε is small enough. �

Remark 3.3. We point out the difference with what is obtained for the autonomous model case
−∆u = uβ. There, the transformation u(1−β)/2 is concave, since the right hand side of (3.1), the
transformed equation, is harmonic concave. In our case, we control the ”loss of concavity” by
the variation of the introduced anisotropy, and this is the best one can hope for: the function
b defined in (3.2) is never harmonic concave, jointly in the two variables (x, s). Indeed, it is
known that a positive function b is harmonic concave if and only if B = 1/b is convex. However,
even in the plane, the hessian of the function B(x, s) = sg(x) is negatively defined, hence B is
nor convex, nor concave, unless g is constant.

1We thank Marco Gallo for pointing out a preliminary version of this estimate.
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Problem 3. Let

a : Ω → (0,+∞)

and for all i, j ∈ {1, . . . , n} let the functions

αij : Ω → (0,+∞)

be such that there exists ζ > 0 such that
n
∑

i,j=1

αij(x)pipj ≥ ζ|p|2, for all p ∈ R
n,

and a, αij(·) ∈ C1(Ω). Let ϕ : (0,+∞) → (0,+∞) be such that ϕ ∈ C1(0,+∞) and ϕ′(t) ≤ 0.
Consider, for ε > 0, the problem























−
n
∑

i,j=1

αij(x)D2
iju = a(x)u+ εϕ(u) in Ω

u > 0 in Ω

u = 0 on ∂Ω.

This can be considered as a perturbation of the nonautonomous version of the eigenvalue problem
for second order elliptic operators. We remark that the condition on ϕ can be loosened to
accommodate other perturbations, in particular one can require ϕ ∈ C1(R+,R+) be such that,
esϕ(e−s) − ϕ′(e−s) ≥ γ > 0, for all s ≥ −R, for some R > 0, e.g. ϕ(t) = tβ, β ∈ [0, 1) can also
be considered.

We have the following result.

Proposition 3.4. Let u ∈ C2(Ω) ∩ C(Ω) be a solution of Problem 3. Assume that

‖∇a‖L∞(KΩ) + max
i,j∈{1,...,n}

‖∇αij‖L∞(Ω) < ε.

Then

max
Ω×Ω×[0,1]

C− log u(x, y, t) ≤ Cε,

for some C > 0.

Proof. Letting u = e−v we have v = − log u. We notice that v ∈ C2(Ω) and that by a direct
calculation we obtain

n
∑

i,j=1

αij(x)D2
ijv = b(x, v,Dv),

where

b(x, s, ξ) :=
n
∑

i,j=1

αij(x)ξiξj + a(x) + εesϕ(e−s).

If Cv ≤ 0 in Ω × Ω × [0, 1], then there is nothing to prove. Otherwise, using [10, Lemma 3.11],
we have that Cv, cannot achieve any positive maximum on the boundary, i.e. the maximum of
Cv is attained at some point (x1, x3, λ) ∈ Ω× Ω× (0, 1). Recalling Proposition 3.1, let

ρ := min{r0, d(x1,Ω), d(x3,Ω)},
then (x1, x3, λ) ∈ Ωρ × Ωρ × (0, 1) and define

mρ := ‖v‖C(Ωρ)
, Mρ := ‖Dv‖C(Ωρ)

.
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Notice that for all x ∈ Ωρ, s ∈ [−mρ,mρ], ξ ∈ BMρ , using the hypothesis on ϕ,

∂sb(x, s, ξ) ≥ ε(esϕ(e−s)− ϕ′(e−s)) ≥ εe−mρϕ(emρ) := σ.

For clarity, we observe that we have [x1, x3] ⊂ Ωρ, [v(x1), v(x3)] ⊂ [−mρ,mρ] andDv(x1) ∈ BMρ ,
thus the hypothesis (2.7) in Theorem 2.2 are fulfilled. We have that

|J Cb(·,v(·),ξ)(x1, x3, λ)| ≤ C(‖∇αij‖L∞(Ωρ) + ‖∇a‖L∞(Ωρ) + ε) ≤ Cε.

Applying Theorem 2.2 yields the conclusion. �

Finally, we recall the following [9, Theorem 2]

Proposition 3.5. (Hyers-Ulam) Let X be a space of finite dimension and D ⊂ X convex.
Assume that f : D → R is δ-convex, i.e. for all (x, y, t) ∈ D ×D × [0, 1]

Cf (x, y, t) ≤ δ.

Then there exists a convex function g : D → R such that ‖f − g‖L∞(D) ≤ δkn, where kn > 0
depends only on n = dim(X).

By using this result, based upon the estimates of Propositions 3.2 and 3.4 we obtain the
approximate concavity results stated in the introduction for the transformations u(1−β)/2 in the
case β ∈ (0, 1) and log u for the case β = 1.

Remark 3.6. The constant C appearing in the conclusions of Proposition 3.2 and 3.4 is related
to the C introduced in formula (2.9) which depends on n, diam(Ωρ) and on the supremum norms
of the second order derivatives of the transformation v on Ωρ and hence (since u is bounded away
from 0 on Ωρ) on the supremum norms of D2

iju on Ωρ. By the classical Schauder estimates for

second order linear elliptic operators (see [6, Theorem 6.2]), in turn C depends on n, diam(Ωρ),
the ellipticity constant ζ, ‖αij‖C0,α(Ωρ), ‖a‖C0,α(Ωρ) and ‖u‖C0,α(Ωρ) for some α ∈ (0, 1).

References

[1] N. Almousa, J. Assettini, M. Gallo, M. Squassina, Concavity properties for quasilinear
equations and optimality remarks, Differential Integral Equations (2023), to appear. 1

[2] W. Borrelli, S. Mosconi, M. Squassina, Concavity properties for solutions to p-Laplace equa-
tions with concave nonlinearities, Adv. Calc. Var. (2022), doi.org/10.1515/acv-2021-0100. 1

[3] H. J. Brascamp, E. H. Lieb, On extensions of the Brunn-Minkowski and Prékopa-Leindler
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Università Cattolica del Sacro Cuore

Italy, Brescia, Via della Garzetta 48, 25133

Email address: roberta.cornale01@unicatt.it
Email address: marco.squassina@unicatt.it

mailto:claudia.bucur@unimi.it
mailto:nmalmousa@pnu.edu.sa
mailto:marsquassina@pnu.edu.sa
mailto:roberta.cornale01@unicatt.it
mailto:marco.squassina@unicatt.it

	1. introduction
	2. Anisotropic convexity principles
	3. Application to semi-linear equations
	References

