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Abstract

Symmetries can be used to integrate scalar Ito equation – or reduce sys-
tems of such equations – by the Kozlov substitution, i.e. passing to sym-
metry adapted coordinates. While the theory is well established for so
called deterministic standard symmetries (the class originally studied by
Kozlov), some points need clarification for so called random standard sym-
metries and W-symmetries. This paper is devoted to such clarification;
in particular we note that the theory naturally calls, for these classes of
symmetries, to also consider generalized Ito equations; and that while
Kozlov theory is extended substantially unharmed for random standard
symmetries, W-symmetries should be handled with great care, and can-
not be used towards integration of stochastic equations, albeit they have
different uses.
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1 Introduction

Symmetry reduction is a standard tool in the study of nonlinear deterministic
differential equations [1–6]; it entered in the toolbox of those studying stochastic
differential equations (SDEs in the following) [7–14] thanks to the work of R.
Kozlov in 2010 [15–18]. In fact, he determined the change of random variable
allowing to take full advantage of the existence of a symmetry in the case of
a SDE, pretty much as in the case of deterministic ODEs and PDEs, where
symmetry is used through the introduction of symmetry adapted variables [1–6].
In the case of a scalar SDE, determination of a symmetry (of appropriate form,
see below) leads to its explicit integration.

Kozlov’s result provided a powerful motivation for the study of symmetries
of SDEs; in following years the class of symmetries considered in the litera-
ture was substantially extended. In particular, two major classes of symme-
tries are by now usually considered besides those originally considered by Ko-
zlov, dubbed in contemporary nomenclature deterministic standard symmetries.
These other classes are random standard symmetries [19–21] on the one hand,
and W-symmetries [22] on the other (see below for a precise definition).

A critical analysis of the literature shows that while the situation is very
well clarified for deterministic standard symmetries, and a number of results
are available for random ones [20], still some relevant results are not clearly
established for random standard symmetries, and the role of W-symmetries in
SDE reduction or integration is on an even more shaky basis.

The purpose of this paper is to clarify the situation in this regard. We
anticipate that on the one hand in the case of random deterministic symmetries
we will show that they are “as good as deterministic standard symmetries” for
what concerns symmetry reduction and integration of SDEs (but proving this
when multiple reductions are involved requires a substantial extension of the
discussion holding for deterministic standard symmetries, as discussed in Sect.
2); on the other hand the use of W-symmetries along the same lines of standard
symmetries is alas impossible, contrary to what was maybe hoped when they
were introduced [22]. (This does not mean that they are not useful in general;
we will discuss this point in Sect.9.)

Roughly speaking, the success of the symmetry approach to SDEs rooted
in the use of deterministic standard symmetries is based on two properties of
these:

• Symmetries are preserved under a change of variables;

• A change of variables which straightens the symmetry vector field pre-
serves the class of Ito equations.

As for the first property – which is obvious for deterministic equations but
requires a discussion for stochastic ones – this holds for random standard sym-
metries, while it requires additional conditions (which in general are not sat-
isfied) when it comes to considering W-symmetries. We will also see that the
second property extends to random standard symmetries provided one accepts
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to consider generalized (rather than proper) Ito equations, while in general it
does not hold for W-symmetries. This fact precludes the possibility of using
W-symmetries within the Kozlov scheme, at least remaining within the theory
of (possibly, generalized) Ito equations.

Our discussion in the main text will only consider scalar equations; this will
suffice to make our point, and will avoid unneeded complications (we will slightly
deviate from this line of discussion in one Example in Section 9). However, the
case of higher dimensional systems of Ito equations will be mentioned at several
places as a motivation for our study; we will provide the relevant formulas and
several Examples of higher dimensional systems in Appendix C.1.

Several of the Examples presented here (in particular about W-symmetries)
are taken from [22], but considered under a different light.

Summation over repeated indices will always be understood; the end of a
Remark or an Example will be marked, respectively, by the symbols ⊙ and ♦.

Remark 0. We should stress two points in our approach which could be con-
fusing and hence needs to be clarified.

First, as mentioned above, our approach will consider changes of variables in
Ito equations; these will of course be performed according to the rules of stochas-
tic (Ito) calculus. On the other hand, we will consider symmetries described by
the action of a vector field in the (x, t;w) space (here wi are the Wiener pro-
cesses driving the Ito equation). Vector fields describe diffeomorphisms, and
under a change of variables their components change under the familiar chain
rule. Thus we will have two different rules governing the behavior of equations
and vector fields under the considered change of variables – which, as we will
seen in a moment, will not be the most general smooth changes of variables in
(x, t;w) space. In other words, when considering vector fields we will look at
the w variables on the same footing as the x and t ones; it will be only when
discussing Ito equations that we take into account that the time evolution of
w = w(t) is non-differentiable, and that Ito calculus should come into play.

Second, we attempt at reproducing the approach – and as far as possible the
results – obtained by symmetry theory in the case of deterministic differential
equations (which yields a very transparent construction). A different approach
to symmetry of stochastic equations, also allowing for more general changes of
variables, could be followed and has indeed been considered in the literature.
In this case one does not need to consider vector fields and should instead re-
main within the standard frame of stochastic calculus; in particular, the effect
of (fully general) changes of variables should be taken into account by the clas-
sical Girsanov formula. We refer to [23, 24] for this approach; see also [25–30].
An overall discussion of symmetries of stochastic equations also putting this
approach in perspective is provided in [31]. ⊙
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2 Proper and generalized Ito equations; and why

the latter are relevant in multiple symmetry

reduction of the former

In the following, we will be naturally led to consider, besides proper Ito equations

dx = f(x, t) dt + σ(x, t) dw , (2.1)

also generalized Ito equations, i.e. stochastic differential equations of the form

dx = f(x, t;w) dt + σ(x, t;w) dw ; (2.2)

here and above, w = w(t) is a Wiener process, also called the driving process
for the equation at hand.

We will consider symmetries of SDEs; by this we always mean Lie-point
symmetries, generated by a vector field acting in the (x, t, w) space. These
will not act on the t variable (thus the distinguished role of time is preserved1

[19]) and act on the Wiener processes only by reparametrization. In the one-
dimensional case these requirements mean the vector field will be of the form

X = ϕ(x, t, w) ∂x + r w ∂w ; (2.3)

here r is a real parameter, and ϕ a smooth function. For r = 0 we speak
of standard symmetries, while for r 6= 0 of (proper) W-symmetries. When
considering standard symmetries we further discriminate between deterministic
ones, for which ϕ = ϕ(x, t), and random ones, for which ϕ depends effectively
on w (in early literature, including [22], random standard symmetries are called
simply “random symmetries”). In the case of W-symmetries, when ϕ does not
depend on w we speak of split W-symmetries.

From our point of view, studying symmetries is first of all motivated by
the fact that knowing a symmetry – or more precisely a standard symmetry,
see below – allows to integrate the Ito equation. This is obtained through the
Kozlov substitution, i.e. passing to the variable

y = Φ(x, t, w) =

∫
1

ϕ(x, t, w)
dx (2.4)

while leaving (t, w) unchanged.
A swift computation shows that in the (y, t, w) variables the vector field

X = ϕ∂x reads
X = ∂y ;

correspondingly the Ito equation is transformed into an equation of the form

dy = F dt + S dw (2.5)

1One could consider time reparametrizations [32–34]; but this will not change substantially
the situation, and produce some complication in formulas. We note in passing that a rescaling
of time might be relevant when considering W-symmetries, which produce a rescaling of the
noise term.

4



where F and S can be determined explicitly by Ito calculus (see Remark 3 below
for their explicit form).

If we are dealing with a deterministic standard symmetry, we get F = F (t),
S = S(t), and the transformed equation is hence a new Ito equation, which
moreover is immediately and elementarily integrated.

If we are dealing with a random standard symmetry, we get F = F (t, w),
S = S(t, w), and the transformed equation is hence not an Ito equation, but
can nevertheless be integrated.

In the case of W-symmetries, this question has – as far as I know – not been
considered in the literature. In fact, this is one of the questions we will tackle
in the present work.

Another problem arises when we consider systems of Ito equations; in this
case one could have, and try to use towards partial integration, i.e. reduction,
multiple symmetries. We could thus employ one of these symmetries to reduce
the system (pretty much as we do in the case of symmetric deterministic ODEs
[1–6]). In order to use a second symmetry to further reduce – or integrate in
the case of a two-dimensional system – the first reduced system, we should be
sure the symmetry is preserved in the reduction process. This in turn raises two
kinds of questions:

• Is a symmetry preserved under a change of variables?

• Is a symmetry preserved under a symmetry reduction?

The second question also arises in dealing with deterministic equations [1–6],
and we expect the answer will depend on the Lie algebraic structure of the
symmetry algebra; but this matter will not be studied here, and is postponed
to future work.

Here we should focus on the first question, which just makes no sense (the
answer being trivially positive) in the deterministic context. In fact, when we
consider a change of variables, one object, i.e. the vector field, is transformed
under the standard chain rule, while the other, i.e. the Ito equation, changes
under a different set of rules, i.e. obeying the rules of Ito calculus.2

A general positive answer to this question was given in [35] (see also [36]);
but that paper only considered deterministic standard symmetries (this for the
simple reason that the other types of symmetries mentioned above had not yet
been introduced in the literature). We will thus have to consider and answer
this question both for random standard symmetries and for W-symmetries. Ob-
viously, a negative answer would rule out the possibility of using these types of
symmetry in multiple reduction.

But, as we have seen above, if the first reduction is made using a random
symmetry, the transformed equation is not any more a proper Ito equation:
it will be instead a generalized one. This calls immediately for consideration
of symmetries of generalized Ito equations and for studying their fate under

2Actually, one could argue that it makes no sense speaking of symmetries if these are not
preserved under a change of variables. So this question is essential to the very existence of
symmetries for Ito stochastic equations.
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a change of variables (and under a reduction, albeit this makes sense only in
higher dimension). These matters will also be studied in the present paper.

3 Symmetry of proper and generalized Ito equa-

tions. Determining equations

Let us first consider the action of a (formal) vector field

X = ϕ(x, t;w) ∂x + ξ(x, t;w) ∂w , (3.1)

defined in the (x, t;w) space, on equations of the form (2.2), i.e. on a generalized
Ito equation (we will see proper Ito equations (2.1) as a special subclass of these).

The infinitesimal action of X is given by

x → x + ε ϕ(x, t;w) , w → w + ε ξ(x, t;w) .

Applying X on (2.2) we obtain immediately (see Appendix A for details) that
the equation is invariant if and only if the following determining equations are
satisfied:

ϕt + f ϕx − ϕfx +
1

2
∆(ϕ) = ξ fw + A(x, t;w) , (3.2)

ϕw + σ ϕx − ϕσx − σ ξw = ξ σw + σ2 ξx . (3.3)

Here and below, ∆ denotes the Ito Laplacian [7–14]. In the one-dimensional
case we are considering throughout the paper, this reads simply

∆ =
∂2

∂w2
+ 2 σ

∂2

∂w∂x
+ σ2 ∂2

∂x2
. (3.4)

Moreover, in (3.2) we have defined, for ease of notation,

A(x, t;w) = σ f ξx + σ ξt +
1

2
σ∆ξ .

We are actually interested in the case where

ξ(x, t;w) = r w (3.5)

with r a real (possibly zero) constant; see [22] for a discussion in this sense.
With this form for ξ, we have A(x, t;w) = 0. The determining equations for
W-symmetries of a generalized Ito equation are then

ϕt + f ϕx − ϕfx +
1

2
∆(ϕ) = r w fw , (3.6)

ϕw + σ ϕx − ϕσx − r σ = r w σw . (3.7)

Note that for a proper Ito equation, the right hand sides of these just vanish.
We recover then the familiar determining equations for W-symmetries of an Ito
equation [34].
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The determining equations for standard symmetries are obtained setting
r = 0 in the above. Note that in this case the equations are exactly the same
for proper and generalized Ito equations; they read

ϕt + f ϕx − ϕfx +
1

2
∆(ϕ) = 0 , (3.8)

ϕw + σ ϕx − ϕσx = 0 . (3.9)

4 The Stratonovich counterpart

As well known [7–14], to a (proper) Ito equation (2.1) is associated a Stratonovich
equation3

dx = b(x, t) dt + σ(x, t) ◦ dw ; (4.1)

the drift coefficient f(x, t) of the Ito equation (2.1) and that of the associated
Stratonovich one (4.1), i.e. the Stratonovich drift b(x, t) – are related by the
Stratonovich map

b(x, t) = f(x, t) − 1

2
σ(x, t)σx(x, t) . (4.2)

In the following it will be convenient to also consider the Stratonovich coun-
terparts of our equations.

We may note that as here we are also considering generalized Ito equations
(2.2), we should as well consider generalized Stratonovich equations, i.e. equa-
tions of the form

dx = b(x, t, w) dt + σ(x, t, w) ◦ dw . (4.3)

In particular, we associate to the generalized Ito equation (2.2) the equation
(4.3) with the same noise coefficient σ(x, t, w) and with the drift coefficients f
and b being related by the generalized Stratonovich map

b(x, t, w) = f(x, t, w) − 1

2
[σ(x, t, w)σx(x, t, w) + σw(x, t, w)] . (4.4)

This formula is derived in Appendix B.
Proceeding as for Ito equations (see again Appendix A for details), the deter-

mining equations for symmetries of the generalized Stratonovich equation (4.3)
are

ϕt + b ϕx − ϕ bx = r w bw , (4.5)

ϕw + σ ϕx − ϕσx − r σ = r w σw . (4.6)

Note that the second equation (4.6) is just the same as the corresponding one for
the Ito equation, (3.7). This is not the case if we compare the first determining

3The Ito-Stratonovich correspondence does actually present some subtle points; for these
the reader is referred to [11].
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equations (4.5) and (3.6) in themselves; however these could and should be
thought as defined on the space of solutions to the second determining equation.
A detailed discussion in this regard will be given in the following, see Section 8.

The determining equations for standard symmetries are again obtained set-
ting r = 0 in the above; in particular, the r.h.s. of both equations are then zero.
Note also that in this case (as also occurs for Ito equations) the equations are
exactly the same for proper and generalized Stratonovich equations; they read

ϕt + b ϕx − ϕ bx = 0 , (4.7)

ϕw + σ ϕx − ϕσx = 0 . (4.8)

5 The vector fields point of view. Straightening

When we study symmetry of SDE, we have to consider two kind of objects,
with rather different properties: vector fields, and the Ito equation itself. They
behave differently under a change of variable: vector fields transform according
to the usual properties (that is, the chain rule), while Ito equations not; in
particular, differentials transform according to Ito calculus.4

Pretty much in the same way as when dealing with deterministic equations,
once we have determined a symmetry it is convenient to pass to symmetry-
adapted variables. These are obtained by straightening the vector field [37, 38].

In fact, the Kozlov substitution is exactly the change of variables realizing
the map to symmetry adapted variables.

5.1 Standard symmetries

The kind of vector fields which are mainly useful in considering symmetry (and
integration) of SDEs corresponds to standard symmetries and is of the form

X = ϕ(x, t;w) ∂x . (5.1)

If we consider a change of variable which does not affect (but possibly depend
on) both the t and w variables but only the x, i.e.

y = ψ(x, t;w) , (5.2)

say with inverse x = ξ(y, t;w), then we have ∂x = (∂ψ/∂x)∂y. It results imme-
diately

X = ϕ[ξ(y, t;w), t;w]

(
∂ψ

∂x

)
∂y ; (5.3)

4This could be circumvented passing to consider the Stratonovich equation associated
to the given Ito one. One should again remember that the correspondence between Ito and
Stratonovich equations involve some subtleties [11], and this is one of the reasons why we prefer
to deal with the Ito equation itself. We also recall that correspondence between (determining
equations, and hence) symmetries of an Ito equation and the associated Stratonovich one has
been proved in full generality for standard symmetries in [35]. That proof does not apply
to W-symmetries (which had not been introduced in the literature at the time); see in this
respect the discussion below in Section 7.
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if we choose ψ such that

ϕ[ξ(y, t;w), t;w]

(
∂ψ

∂x

)
= 1, (5.4)

then the symmetry reads, in the new variables,

X = ∂y . (5.5)

The equation for y will then be of the form

dy = F (t;w) dt + S(t;w) dw (5.6)

and hence is immediately integrable. The fact that F and S do not depend on y
is a direct consequence of having (5.5) as a symmetry, and this is turn depends
on having (5.1) as a symmetry of the original equation, and on the fact that
symmetries are conserved under a change of variables.5

For (5.4) to be satisfied, we just choose

ψ(x, t;w) =

∫
1

ϕ(x, t;w)
dx . (5.7)

This, or more precisely the change of variable (5.2) with this choice for ψ, is the
Kozlov substitution which integrates a SDE possessing a standard symmetry.

We note that (5.4) can also be written in the form

X(ψ) = 1 ;

it goes without saying that we also have

X(t) = 0 , X(w) = 0 .

From this point of view, the problem of integrating a symmetric SDE (using
standard symmetries) reduces to a problem in the theory of characteristics for
first order PDEs [37, 38].

Remark 1. It should be noted that when ϕ = ϕ(x, t), i.e. we have a de-
terministic standard symmetry, the Kozlov substitution maps the original Ito
equation into a new (integrable) Ito equation; whereas if ϕ depends effectively
on w, i.e. is random standard symmetry the Kozlov substitution maps the orig-
inal Ito equation into an integrable equation of generalized Ito type (see [19,20];
see also the discussion in [39–42]). This means that when considering multiple
symmetry reduction of a proper Ito equations, we are in general (that is, unless
all the considered symmetries are not only standard ones, but also deterministic
ones) led to consider generalized Ito equations and their symmetries. ⊙

5This is not immediately obvious, given that vector fields transform under the chain rule
and equations transform under the Ito rule; but it can be proven, see [35, 36]. Alternatively,
it becomes obvious considering the Stratonovich representation of the SDE; but one should
then prove that symmetries of Ito and Stratonovich equations coincide.
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Remark 2. It may be worth showing in detail that a symmetry of the form
(2.1) or (2.2) implies that the equation is written – after the Kozlov substitution
– as in (5.6). In fact, the determining equations for the Ito equation (2.1), or
for the generalized Ito equation (2.2) (we recall that, as just remarked, the
transformation (5.7) could map the original Ito equation into a generalized one)
are, in the scalar case we are considering,

ϕt + f ϕx − ϕfx + (1/2)∆(ϕ) = 0 ,

ϕw + σ ϕx − ϕσx = 0 .

In the present framework, these should be seen as equations for f = f(x, t) and
σ = σ(x, t) with ϕ = 1 given; note this implies ∆(ϕ) = 0. Thus they just read

fx = 0 , σx = 0 .

This implies that f(x, t;w) = F (t;w), σ(x, t;w) = S(t;w), as stated. ⊙

Remark 3. We can also easily compute the explicit form of the transformed
equation. If dx = fdt+ σdw and y = Ψ(x, t, w), then

dy = Ψx dx + Ψt dt + Ψw dw +
1

2
∆(Ψ) dt

=

(
Ψt + f Ψx +

1

2
∆(Ψ)

)
dt + (Ψw + σΨx) dw

:= F dt + S dw .

This also shows that if Ψ is chosen as in (5.7) and ϕ, and hence6 Ψ, does not
depend on w – as happens for deterministic standard symmetries – then F and
S will also be independent on w. On the other hand, if ϕ depends on w, then
in general Ψ will also (whatever the integration constant one could introduce)
depend on w, and so will F and S. This shows that, as anticipated, in general
the Kozlov substitution associated to a random standard symmetry will map a
proper Ito equation for x into a generalized Ito equation for y. ⊙

Remark 4. It is clear that the equations obtained under the Kozlov substitu-
tion for a deterministic standard symmetry are immediately integrated: in fact,
we have

y(t) = y(t0) +

∫ t

t0

F (τ) dτ +

∫ t

t0

S(τ) dw(τ) ,

were the first integral is a standard one and the second an Ito integral.
In the case of a random standard symmetry we also obtain a (formally)

integrable, albeit non proper Ito, equation; the solution being

y(t) = y(t0) +

∫ t

t0

F [τ, w(τ)] dτ +

∫ t

t0

S[τ, w(τ)] dw(τ) . ⊙

6Actually, (5.7) defines Ψ up to a constant of integration, i.e. an arbitrary function of w
and t; we are taking this to be zero.
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The following two examples (and other ones later on) are taken from [22].

Example 1. Consider the (proper) Ito equation

dx =

[
e−x − 1

2
e−2x

]
dt + e−x dw . (5.8)

It admits the deterministic standard symmetry

X = e−x ∂x ;

upon passing to the variable

y =

∫
ex dx = ex ,

so that X = ∂y, we get the new proper Ito equation

dy = dt + dw (5.9)

which is readily integrated. ♦

Example 2. The proper Ito equation

dx = ex dt + dw (5.10)

admits no deterministic standard symmetries, but admits the random standard
symmetry

X = ex−w ∂x .

With the Kozlov substitution, i.e. passing to the variable

y =

∫
ew−x dx = − ew−x ,

it is transformed into
dy = ew dt . (5.11)

This is a generalized Ito equation, and it yields

y(t) = y(t0) +

∫ t

t0

exp[w(τ)] dτ .

Note that the original equation is also (trivially) invariant under ∂t and ∂w; these
however are not admitted symmetries (see the discussion in [22]). In particular,
∂t expresses the fact the equation is time-autonomous and is thus trivial, while
the translation generator ∂w maps the Wiener process w(t) into a process with
non-zero mean. ♦
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5.2 W-symmetries

We want now to consider W-symmetries, and attempt to proceed along the same
lines. In this case the vector fields generating the symmetries are of the form

X = ϕ(x, t;w) ∂x + r w ∂w . (5.12)

We can apply the same type of reasoning as above; but now we should also allow
for a change in the variable expressing the driving Wiener process. For greater
generality we could also consider a change in the time variable (which would
then become a random variable itself), i.e. consider the change of variables
(x, t;w) → (y, u; z) with

y = ψ(x, t;w) ,

u = θ(x, t;w) , (5.13)

z = ζ(x, t;w) .

In the new variables, we have

X = [X(ψ)] ∂y + [X(θ)] ∂t + [X(ζ)] ∂z . (5.14)

Thus the straightening change of variables is determined solving the problem

X(ψ) = 1 ; X(θ) = 0 , X(ζ) = 0 . (5.15)

It is immediately apparent that we can just choose θ(x, t;w) = t, i.e. leave
unchanged the time variable, which thus retains its special role (for a discussion
of the general case, see [40]); but we cannot avoid to transform the w variable.

In the case where ϕ in (5.12) does not depend on w, which we will denote as
split W-symmetries7), the corresponding equations can be solved by the method
of characteristics producing a general formula, i.e.

ψ(x, t;w) =

∫
1

ϕ(x, t)
dx + α(χ, t) , (5.16)

ζ(x, t;w) = β(χ, t) . (5.17)

Here α and β are arbitrary functions (provided they define a non-singular change
of variables, see below) of t and of the characteristic function χ, given by

χ := w exp

[
−

∫
r

ϕ(x, t)
dx

]
. (5.18)

The requirement that these function ψ and ζ define a proper change of
variables rules out the possibility to choose β ≡ 0, or more generally β = const
(note that we can instead choose α ≡ 0). Thus the simplest choice is

β(χ, t) = χ .

7Since now the (x, t) and the w variables transform independently of each other under the
action of X. Split W-symmetries were already introduced and considered in [22]; see there for
some of their properties. A discussion of the use of (split) W-symmetries in the integration of
proper Ito equations is also given in Appendix B to [40].
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In any case, it follows from the previous general formulas that the new ran-
dom variable z = ζ(x, t;w) is not a Wiener process, and actually its statistical
properties depend on the process x(t) (that is, on the solution to our SDE)
itself.

In other words, albeit we will in this way manage to write our equation in
the form

dy = F (t; z) dt + S(t; z) dz , (5.19)

not only this equation will not be in proper Ito form (since the drift and the
noise coefficient will depend on the driving process z), but moreover the driving
process z(t) will not be a Wiener one, and its statistical properties are undeter-
mined.

Remark 5. We would like to clarify one point. We have allowed a reparametriza-
tion of the Wiener process w(t); the form (5.12) of allowed generators clar-
ifies that this corresponds to a rescaling of w(t). This poses a problem, as
〈[w(t1)− w(t0)]

2〉 = |t1 − t0|, while a rescaling by a factor λ would introduce a
factor λ2 in this formula, i.e. transform w(t) into a process which is not, strictly
speaking, a Wiener one. On the other hand, it is also clear that a map w → λw
can be reinterpreted – as far as the Ito equation (2.1) is concerned – as a map
leaving w untouched and mapping σ into λσ. It is for this reason that rescalings
of w(t) can be accepted. We refer to [22] for a more detailed discussion. ⊙

Remark 6. The argument used in Remark 5 becomes less simple in the case
of generalized Ito equations. In fact, in this case a rescaling of w does on one
hand produce a rescaling of dw, which can be discharged into a multiplying
factor for the noise coefficient σ. But on the other hand such a rescaling will
also, in general (i.e. unless the dependence of these on w is very simple), affect
the functional form of f = f(x, t, w) and of σ = σ(x, t, w). We cannot exclude
apriori that despite this the equation remains invariant – through the change
in the x variable – but we should expect W-symmetries to be even more rare
for generalized Ito equations than for standard ones. ⊙

Remark 7. We note that a different kind of full straightening can also be
considered: that is, search for new variables (y, z) – with again z the driving
stochastic process and y the driven dynamical random variable – such that in
these the vector field reads as X = ∂z. This corresponds to just interchanging
the role of y and z seen above, and by just the same computations we get that
again the new driving process is in general not a Wiener one. Thus the same
considerations apply. ⊙

Remark 8. We have focused on split W-symmetries; this assumption allowed
to solve the characteristic equation and determine explicitly (through an elemen-
tary integration) the characteristic variable χ. Needless to say, if we consider a
non-split W-symmetry, the whole situation gets more involved, and determining
the functions ψ and ζ solving (5.15) might be a highly nontrivial task. In any
case, straightening will require introducing a new driving process z(t) which
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will depend on both x(t) and w(t), and which will not be a Wiener process. So
the observation that the transformed equation is not an Ito one in any sense
remains valid. ⊙

Remark 9. As discussed above, we can not find a change of variables (x,w) →
(y, z) taking a W-symmetry vector field X = ϕ∂x + rw∂w to the form X = ∂y
without ending up with a stochastic equation whose driving noise depends on
the solution to the equation itself (which makes it untractable).

The situation is different if we want to take the vector field X to a different
standard form. In particular, if X is a split W-symmetry we can always take it
in a harmless way to the form X = ∂y + rw∂w by the Kozlov substitution (5.7);
or to the scaling form X = r(y∂y + w∂w) by the modified Kozlov substitution

y = exp

[∫
r

ϕ(x, t)
dx

]
. (5.20)

This will be shown and discussed in Section 6. Unfortunately these forms,
including the scaling standard form, seem to be useless as far as integrating the
equation is concerned – at least in the usual way.8 ⊙

Remark 10. One should also remember that integration (or reduction, in
the case of system) is not the only use of symmetries; in particular, they also
map solutions to solutions, and in this sense a W-symmetry shows that if we
have solutions to a given equation for given realizations of the Wiener process,
these will also provide solutions to the same equation for rescaled realizations
of the Wiener process; or, more interestingly, solutions to a different equation
(obtained by rescaling the noise coefficient σ; see Remark 5) for the same real-
ization of the driving process. This will be discussed in Section 9. ⊙

Example 3. Consider the equation (with a and b both nonzero, but possibly
constant)

dx = [a(t) x] dt +
[
b(t)

√
x
]
dw ; (5.21)

note that the half-line R+ is invariant under this dynamics, so we can restrict to
x ≥ 0 (and dispense with absolute value signs in the argument of logarithms).

This equation admits symmetries with generator

X = ϕ(x, t;w) ∂x + r w ∂w (5.22)

with r an arbitrary number, provided we choose

ϕ = 2 r x ; (5.23)

8It is conceivable that different way of integrating SDEs exist, in the same way as for de-
terministic equations (think of the Arnold-Liouville versus the Lax approach). In this sense,
it can be hoped that (generalized) Ito equations which are invariant under a scale transforma-
tion can be handled more effectively than generic equations, e.g. using renormalization group
techniques to look at the equilibrium distribution (see e.g. [43]), or a path integral approach
(see e.g. [44]).
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thus we have W-symmetries, while no standard symmetries are present. We
can, with no loss of generality, take r = 1, and just consider

X = 2 x∂x + w ∂w . (5.24)

The characteristic variables for this vector field are time t and

z := w/
√
x . (5.25)

In order to straighten the vector field, we should pass to the variable

y =
1

r
log[

√
x] ; (5.26)

in fact, in these variables we have

X = ∂y .

Let us thus consider the change of variables (x, t, w) → (y, t, z). We have, by
Ito calculus,

dy =

(
1

4x

) [
(2ax − b2) dt + 2, b

√
x dw

]
,

dz =

(
1

8x
√
x

) [(
3b2w − 4axw − 4b

√
x
)
dt +

(
8x − 4bw

√
x
)
dw

]
.

We can use the second equation to express dw in terms of dz and dt; with this,
and considering also the inverse change of variables

x = e2y , w = ey z ,

we obtain the transformed equation, which reads

dy =

(
8 a − b e−2y z

8 (2 − b z)

)
dt +

(
b

2 − b z

)
dz . (5.27)

In this equation, the drift and noise coefficients are both independent of y;
thus straightening the vector field led in fact to an equation which is formally
integrable. Note that both the drift and the noise coefficients depend on z.
Moreover, and more relevantly, as obvious from the explicit expression (5.25) of
z, this is not a Wiener process. Hence (5.27) is not an Ito equation, not even
in the generalized sense.9

Thus it makes no sense to wonder if the transformed vector field X = ∂y
formally satisfies the determining equations for symmetries of the transformed
equation (which in reality is not the case), as we do not know how to compute
symmetries of a non-Ito equation. ♦

9The formulas above are slightly simplified by taking a(t) = b(t) = 1; this simplified setting
does not change the relevant facts.
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Example 4. Consider again eq. (5.21) and its symmetry (5.24). Passing to
variables

y =
w√
x
, z =

1

r
log

[√
x
]
, (5.28)

this reads X = ∂z. In fact, via standard Ito calculus, the equation reads now

dy =
b

8
e−z y dt . (5.29)

This looks again like a generalized Ito equation, but again one should note that
z is not a Wiener process and thus (5.29) is not an Ito equation in any sense.
♦

5.3 Discussion

Summarizing our discussion in this Section, we have shown that:

• Random standard symmetries of a proper Ito equation determine, through
the Kozlov substitution (5.7) x → y, a map to a generalized Ito equation
for the random dynamical variable y(t) in which both the drift and noise
coefficients do not depend on y, and which is therefore (at least formally)
integrable; considering the change of variables inverse to Kozlov one, i.e.
y → x, we obtain a solution to the original equation. In this sense ran-
dom standard symmetries are (nearly) “as good as deterministic standard
symmetries” for what concerns integration of an Ito equation.

• W-symmetries produce, through straightening of the symmetry vector
field via the Kozlov substitution (5.7), a map to an equation which is
in no sense an Ito equation. This entails that W-symmetries are of no use
in the integration (or reduction, in the case of systems) of Ito equations
through passing to symmetry-adapted variables.10

6 W-symmetries in standard scaling form

In Section 5 we have considered straightening of the symmetry vector field in the
same sense as in the straightening theorem (or flow box theorem) in Dynamical
Systems. That is, we searched for a change of variables transforming the flow
of the symmetry vector field in a rigid translation (in one of the variables, i.e.
the dynamical variable).

We can modify this approach and look for a change of variables mapping
the symmetry vector field into one with a definite (and convenient) form, not
necessarily a translation. In particular, we can consider changes to variables in
which the symmetry vector field is a scaling one11.

10One cannot exclude they can be used for integration of the equation via a different mech-
anism, see also the footnote to Remark 9. I am not aware of any result in this direction.

11We note in passing that this is also, usually, a preliminary step in the proof of the straight-
ening (or “flow-box”) theorem [37].
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It turns out this problem can be solved in a simple way, as described below;
unfortunately, the solution does not give any help towards integration of an
equation possessing a W-symmetry.

We look for functions ψ and ζ, see (5.13), such that in the new variables
(y, t, z) we have

X = r y ∂y + r w ∂w . (6.1)

These are obtained as solutions to the set of equations

X(ψ) = r ψ , X(t) = 0 , X(ζ) = r ζ . (6.2)

It should be noted that the last two equations are satisfied if we leave z =
ζ(x, t, w) = w, so that we only have to look for a change in the dynamical
variable, which changes from x to y = ψ(, t, w). This guarantees automatically
that we do not affect the Wiener character of the driving process, and hence
the major problem encountered above (see Sect.5.2) will not show up.

Thus we only have to solve X(ψ) = rψ. Here again split W-symmetries lead
to a simpler problem. In fact, for

X = ϕ(x, t) ∂x + r w ∂w (6.3)

the solution to X(ψ) = rψ is given by

ψ(x, t, w) = exp

[
r

∫
1

ϕ(x, t)
dx

]
+ α(χ, t) , (6.4)

where the characteristic variable χ is as in (5.18). We can choose α ≡ 0, so that
– as in Remark 9, see (5.20) – we get

y = exp

[
r

∫
1

ϕ(x, t)
dx

]
:= ψ(x, t) . (6.5)

We will refer to the above as the modified Kozlov substitution. This substitution
allows to get the symmetry vector field in the standard scaling form (6.1).

Remark 11. We can reverse our point of view and wonder what is the most
general form of equations admitting (6.1) as a symmetry. This requires to solve
the determining equations (3.6), (3.7) as equations for f and σ with ϕ = rx.
This is an easy task, and we get

f(x, t, w) = x f̂(χ, t) , σ(x, t, w) = σ̂(χ, t) ; χ := w/x . (6.6)

Note that if we want a proper Ito equation, then necessarily f̂(χ, t) = f̃(t) and
σ̂(χ, t) = σ̃(t). This corresponds to a trivially integrable equation. The same
holds a fortiori if we just consider time-autonomous equations, in which case
the equations we get are simply

dx = λxdt + µ dw ,

with λ and µ real constants. ⊙
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Example 5. Consider the equation

dx = λxdt + µ dw , (6.7)

with λ and µ two nonzero constants. This admits symmetries of the form (6.3)
with

ϕ(x, t, w) = r x + κ eλt ,

where κ is a constant.
It may be noted that setting R = 0 we get a standard symmetry; if we use

this (say with κ = 1) we can – as well known [15, 16] – integrate equation (6.7)
by using symmetry. In fact with the (standard) Kozlov substitution we get

y =

∫
1

ϕ
dx =

∫
e−λt dx = e−λt x ; (6.8)

correspondingly, (6.7) is transformed into

dy = µ e−λt dw . (6.9)

This is readily integrated,

y(t) = y(t0) + µ

∫ t

t0

e−λτ dw(τ) ,

with y(t0) = e−λt0x(t0), and the solution to (6.7) is provided by

x(t) = eλt y(t) = x(t0) + µ eλt
∫ t

t0

e−λτ dw(τ) . (6.10)

The case where λ and µ are not constants, but only depend on t, is dealt with
in the same way.

Let us now focus on proper W-symmetries; we thus set κ = 0, disregarding
the standard part of the symmetry. We are left with

X = r (x∂x + w ∂w) .

In this case, the symmetry vector field is already in scaling form. Note also that
applying the (modified) Kozlov substitution (6.5) we just get

y = exp

[∫
r

ϕ
dx

]
= exp [log(x)] = x .

It is also interesting, in particular in connection with the discussion in Section
7 to see how the symmetry vector fields are transformed under the change of
variables. We have, as seen above, two symmetry generators; in the original
coordinates these are written as

X0 = eλt ∂x , X1 = x∂x + w ∂w ;
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they satisfy the commutation relation [X0, X1] = X0. With the change of
variable (6.8), we get

X0 = ∂y , X1 = y ∂y + w ∂w .

It is immediate to check that the transformed equation (6.9) still admits both
X0 and X1 as symmetry generators. ♦

7 Persistence of W-symmetries under changes

of variables

As mentioned in the Introduction and in Section 5, we are not sure apriori
that symmetries of an equation, including W-symmetries, remain such after a
change of variables, both in general and when considering specifically the Kozlov
substitution (5.7), or the modified Kozlov substitution (6.5).

This question can be investigated using the Stratonovich equation [7–14]
corresponding to the Ito equation we are considering, i.e. (4.1). Thus the
discussion in this Section is strongly related to that of the following Section 8.

We note that – as well known and already mentioned – a Stratonovich equa-
tion transforms geometrically, i.e. following the familiar chain rule, under diffeo-
morphisms; in fact this is the main advantage of the Stratonovich formulation
(modulo the usual warning about subtleties arising when one considers in more
detail the correspondence between Ito and Stratonovich equations [11]). Thus
Stratonovich equation and symmetry vector fields transform in the same way,
and it follows that symmetries of a Stratonovich equation are obviously persis-
tent under diffeomorphisms.

In this way our question can be reformulated as the problem of determining
if W-symmetries of an Ito equation are also W-symmetries of the corresponding
Stratonovich equation; if this is the case, we are guaranteed that symmetries
of the Ito equation are preserved under smooth changes of variables. We recall
that the problem has been solved in general for deterministic standard symme-
tries in the Thesis by C.Lunini (unpublished); see also [35, 36]. The proof for
random standard symmetries can be obtained along the same lines as the one
for deterministic ones, and is given in Sect.8.

As for W-symmetries, it was observed already in [22] that in general this is
not the case. In particular, Theorem 1 and its Corollary in [22] dealt with the
n-dimensional case, hence with the Ito systems

dxi = f i(x, t) dt + σi
j(x, t) dw

j ; (7.1)

they tell us that we should look more carefully at the R matrix embodying the
coefficients appearing in the map wi → zi = Ri

jw
j associated to the action on

w variables of a W-symmetry vector field

X = ϕi(x, y,w)
∂

∂xi
+ Ri

jw
j ∂

∂wi
;

19



note that in the one-dimensional case only dilation type W-symmetries can be
present.

Proposition (Theorem 1 in [22]). All the rotation linear W-symmetries of an
Ito equation are also symmetries of the associated Stratonovich equation, and
vice versa. Dilation W-symmetries of an Ito equation are also symmetries of
the associated Stratonovich equation (and vice versa) if and only if the diffusion
matrix is spatially constant.

Corollary (Corollary 1 in [22]). If the diffusion matrix S with entries σi
k in

(7.1) is constant with respect to space variables, then all W-symmetries of the
Ito equation are also symmetries of the corresponding Stratonovich equation.

These results can be restated in the present restricted scalar case – thus
dealing with (2.1) rather than with the system (7.1) – as follows (note that for
σx = 0 we have b = f):

Lemma 1. W-symmetries of the proper Ito equation (2.1) are also W-symmetries
of the associated Stratonovich equation (4.1) if and only if σx = 0.

Corollary. For σx = 0, W-symmetries of the Ito equation (2.1) are preserved
under diffeomorphisms. This is in general not the case if σx 6= 0.

We will give a fresh discussion of this point, i.e. the interrelations between
symmetries of an Ito equation and of the associated Stratonovich equation in
the scalar case, in the next Section 8; this will also consider generalized Ito and
Stratonovich equations. For the moment, it suffices to note that our Corollary
means we are not guaranteed symmetries determined in the analysis of an Ito
equation – or a system of Ito equations – will be still present after we pass
to symmetry adapted variables (both when these are adapted to a different
symmetries, and also when they are adapted to the very symmetry we are
looking at). This point will be made clear by Example 6.

Remark 11. Our conclusion in this respect is that even if one was ever able
to find a way to integrate Ito equations through W-symmetries, they could be
safely used to this aim only in the case where the equations under study have
spatially constant noise coefficient. ⊙

Example 6. We consider a slight – but, as we will see, not innocent – gener-
alization of Example 5 above, i.e. the equation

dx = λxdt + µxα dw , (7.2)

with α 6= 0 a new constant (for α = 0 we get Example 5 again). We will assume
also α 6= 1, for a reason arising in a moment.

This equation admits the W-symmetries generated by

X = r (x∂x + (1 − α)w ∂w) ; (7.3)
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such a vector field generates the one-parameter scaling group (γ ∈ R)

x → γ x , w → γ1−α w . (7.4)

Note that for α = 1 we are reduced to a standard symmetry, actually a deter-
ministic one; we will hence assume α 6= 1. Note also that for α = 0 the vector
field X is already in standard scaling form.

We will now consider the change of variable taking X to its standard scaling
form

X = r (y ∂y + w ∂w) , (7.5)

and enquire if it will still be a symmetry of the transformed equation. Note
that to fit our general formalism for the modified Kozlov substitution we should
rewrite the vector field (7.3) in the equivalent form

X =
r

1− α
x ∂x + r w ∂w , (7.6)

i.e. we have

ϕ =

(
r

1− α

)
x . (7.7)

The modified Kozlov substitution (6.5) yields then

y = exp

[∫
r

ϕ
dx

]
= x(1−α) ; (7.8)

as expected, for α = 0 we get y = x, while for α = 1 the result is not acceptable
(this corresponds to the fact that for α = 1 we have no W-symmetry). Ito
calculus yields the transformed equation, i.e. the equation for the new variable,
in the form

dy = F dt + S dw ; (7.9)

F :=
1− α

2

[
2λ y − αµ2 y−1

]
,

S := (1 − α) µ .

When we express the determining equations – and the vector field – in terms
of the new variables, we obtain that the second one, eq.(3.7), is satisfied; the
first one, (3.6), reads instead

(
− 1

y

)
(1 − α) αµ2 r = 0 . (7.10)

That is, the equation is satisfied, and hence our equation (7.2) recast in the
(y, t, w) variables – that is, in the form (7.9) – admits the scaling vector field
(7.5) as a symmetry only for α = 0 (in this case, as we have seen, y = x and
indeed we just get dy = λydt + µdw) and for α = 0; that is, respectively, only
when we fall back into Example 5 or when X is already in standard scaling form
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and does not act on w, see (7.3), so that no change of variable should occur. ♦

Example 7. Consider the equation

dx = λdt + µ dw , (7.11)

with λ and µ nonzero real constants (the cases with vanishing λ or µ are trivial).
As shown in Example 11 in [22], this admits the W-symmetries

XΘ := r [((x − λ t) + Θ(ζ)) ∂x + w ∂w] (7.12)

where Θ is an arbitrary smooth function of its argument

ζ := w −
(
1

µ

)
x +

(
λ

µ

)
t .

If Θ 6= 0, this is a non-split W-symmetry. One can check that for Θ 6= 0
the modified Kozlov substitution (6.5) (which, we recall, only applies for split
W-symmetries) does not provide a scaling form for XΘ.

On the other hand, choosing Θ = 0 we get a split W-symmetry, and (6.5),
which now reduces to

y = x − λ t , (7.13)

yields in fact the scaling form (6.1) for our X .
The transformed equation is just

dy = µ dw ; (7.14)

this is trivially invariant under X = y∂y + w∂w . ♦

8 On the relation between determining equa-

tions for symmetries of generalized Ito versus

Stratonovich equations

We want now to discuss the relation between the determining equations for
symmetries, in general W-symmetries, of a (generalized) Ito equation and those
for the corresponding (generalized) Stratonovich equation. We will limit to
consider, as always in the present paper, the one-dimensional case.

As already observed, the second equation in both sets, i.e. (3.7) and (4.6),
is just the same. This can be used to express ϕw and its derivatives ϕxw, ϕww

in terms of ϕ, ϕx and ϕxx. In this way we get

ϕw = −φx σ + r σ + ϕσx + r σw w ,

ϕxw = −ϕxx σ − ϕx σx + r σx + ϕx σx + ϕσxx + r σxw w , (8.1)

ϕww = −ϕxw σ − ϕx σw + r σw + ϕw σx + ϕσxw + r σww w + r σw .

22



We can then substitute these in the first equation (3.6), using the explicit
expression of the Ito Laplacian. In this way (3.6) reads, up to an overall 1/2
factor,

2φt − 2fxϕ+ 2fϕx − ϕxσw + 2rσw − ϕxσσx + 2rσσx + ϕσ2
x

+ϕσxw + ϕσσxx − 2fwrw + rσwww + rσwσxw + rσσxww = 0 .(8.2)

We can now look at the first equation in the Stratonovich case, i.e. (4.5).
Here the Ito Laplacian plays no role, but we should substitute for b and its
derivatives by choosing the b corresponding to f for the Ito equation, i.e. ac-
cording to the appropriate generalization of the Stratonovich map formula (see
Appendix B for its derivation), i.e.

b = f − (1/2) (σ σx + σw) , (8.3)

bx = fx − (1/2)
(
σ σxx + σ2

x + σxw
)
,

bw = fw − (1/2) (σw σx + σ σxw + σww) .

In this way (4.5) reads (again up to an overall 1/2 factor)

2ϕt − 2fxϕ+ 2fϕx − ϕxσw − ϕxσσx + ϕσ2
x

+ϕσxw + ϕσσxx − 2fwrw + rσwww + rσwσxw + rσσxww = 0 .(8.4)

Now we are wondering if (8.4) is the same as (8.2); or more precisely if they
admit the same set of solutions. Subtracting (8.4) from (8.2), or equivalently de-
termining say ϕt by (8.4) and substituting for it in (8.2), we obtain the (simple,
but nonlinear) condition

r (σw + σ σx) = 0 . (8.5)

Several special cases are worth discussing.

1. First of all we note that fw does not appear here (at difference with σw);
thus the difference between proper and generalized equations is actually
present only depending on the w dependence of the noise coefficient σ.

2. For standard symmetries (so r = 0) the condition is identically satisfied.
This confirms the results in [19, 22] and [35, 36]. Note that actually this
also applies for generalized equations.

3. Consider proper equations (fw = 0 = σw) and proper W-symmetries
(r 6= 0). In this case our condition (8.5) reduces to σσx = 0. Thus it
is satisfied if and only if σx = 0, i.e. if and only if the noise coefficient
is spatially constant. This confirms the result in [22] (see Theorem 1
therein); see also [39] (Appendix D therein). Note this is also the case if
we have a generalized equation with fw 6= 0 and σw = 0.

4. Finally, in the general case (generalized equations, proper W-symmetries)
symmetries for the generalized Ito equations are also symmetries for the
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corresponding generalized Stratonovich equation if and only if the condi-
tion (8.5) is satisfied. Note that in this case, as we assumed r 6= 0, eq.
(8.3) yields b = f .

Remark 12. The condition (8.5) for proper W-symmetries – that is, for r 6= 0
– is just the Euler transport equation ut + uux = 0 with σ taking the place of
the velocity field u and w taking the place of t (in our case t has a parametric
role). As well known, it is not possible to obtain the general solution u = u(x, t)
for the Euler equation in explicit form; hence we are not able to provide the
most general form of noise coefficients σ(x, t, w) satisfying (8.5). ⊙

Remark 13. It is well known (see e.g,. [13]) that a proper Ito equation can
always be transformed into one with a unit noise coefficient, just by introducing
the new dynamical variable

ξ =

∫
1

σ(x, t)
dx .

A simple computation shows that this is not possible for generalized Ito equa-
tions. Thus the w dependence of the noise coefficient cannot be eliminated by
this standard procedure.

One could of course attempt to generalize this by considering

ξ =

∫
Φ dx

with Φ to be determined depending on σ. However, it turns out the equation
for ξ will be of the form

dξ = F (x, t, w) dt + S(x, t, w) dw

with F a function whose explicit expression is not relevant here, and

S = Φσ −
∫

Φw dx .

Thus in order to get S = 1 we should solve an integro-differential equation for
Φ. Differentiating this w.r.t. x we get

Φw = ∂x (Φσ) ,

but substituting back into our equation we get a trivial identity. ⊙

Remark 14. In the one-dimensional case, proper W-symmetries are quite rare
for proper Ito equations, as discussed in [39], except for nearly trivial cases as
the one considered in following Example 8 below.

On the other hand, one should bear in mind that we are requiring our vec-
tor field, in particular those generating W-symmetries, to leave the t variable
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untouched. This may be too strict a requirement for W-symmetries. E.g., it is
immediate to check that the equation (7.11) seen in Example 7 does not admit
W-symmetries with this requirement; but it is equally immediate that dropping
such a requirement we get the W-symmetry with generator

X = x∂x + t ∂t + w ∂w .

This yields the one-parameter group

x→ λx , t→ λ t , w → λw ;

and it is immediate to check this leaves indeed (7.11) invariant. ⊙

Example 8. The proper Ito equation considered in Example 5

dx = λxdt + µ dw ,

with λ and µ nonzero real constants, admits the proper W-symmetry with
generator

X = r (x∂x + w ∂w) ;

this corresponds to the scaling group (x,w) → (sx, sw). It is immediate to see
that X is also a symmetry for the corresponding Stratonovich equation. Note
in this case we have σx = 0. ♦

Example 9. Consider again the proper Ito equation (7.2) studied in Example
6, i.e. dx = λxdt+µxαdw, where we assume α 6= 0, α 6= 1. As seen in Example
6, this admits the W-symmetry (7.3), which generates the one-parameter scaling
group (7.4).

The Stratonovich equation associated to (7.2) is

dx =

(
λx − 1

2
αµ2 x(2α−1)

)
dt + µxα ◦ dw . (8.6)

It is immediately apparent that the scaling (7.4) leaves invariant the Stratonovich
equation only for α = 1, i.e. when our W-symmetry (7.3) reduces to a (deter-
ministic) standard symmetry.

We can verify this fact also through the determining equations for sym-
metries of the Stratonovich equation, see (4.5), (4.6) above. While (4.6) is
immediately satisfied (as obvious, since it is just the same as the corresponding
determining equation for the Ito equation), the first one (4.5) yields

α (α − 1) µ2 x2α−1 = 0 , (8.7)

which again is satisfied (recalling we need µ 6= 0 in order to have a stochastic
equation, and α 6= 0 in order not to fall back into Example 5) only in the
uninteresting case α = 1, see above.

That is, in this case W-symmetries (7.3) of the Ito equations (7.2) are not
symmetries of the associated Stratonovich equation. ♦
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Example 10. Consider, as in [22], the family of generalized Ito equations

dx = [x + g(t, ζ)] dt +

[
x + e−t ̺(t, ζ)

w

]
dw , (8.8)

where g and ̺ are arbitrary smooth functions of their arguments and we have
defined

ζ := w − e−t x .

In this case the symmetry determining equations (3.6), (3.7) admit the solution
ϕ = retw, i.e. the proper (for r 6= 0) W-symmetry generated by

X = r
(
et w ∂x + w ∂w

)
;

note that X(ζ) = 0.
When considering the corresponding generalized Stratonovich equation we

get, by (8.3),

b(x, t, w) = [x+ g(t, ζ)]− e−t

2w
̺ζ(t, ζ) +

1

2w2

[
e−2t x ρζ(t, ζ) + e−3t ̺(t, ζ) ̺ζ(t, ζ)

]
.

Plugging this into the first determining equation (4.5) for the Stratonovich equa-
tion corresponding to (8.8), we get

(
r e−t

w2

) [(
e2t ζ − ̺(t, ζ)

)
ρζ(t, ζ)

]
= 0 .

As we assume r 6= 0, this is satisfied only for

̺(t, ζ) =

{
̺(a)(t, ζ) = η(t) ,

̺(b)(t, ζ) = e2t ζ .

In these cases we get respectively

σ(x, t, w) =

{
σ(a) = [x + e−t η(t)]/w ,

σ(b)(t, ζ) = et .

It is immediate to check that (8.5) is satisfied in both cases. ♦

9 On the relevance of W-symmetries

The net result of our study, for what concerns W-symmetries, is that they are
no good at integrating Ito equations. Strictly speaking, we have been discussing
only scalar equations, but it is clear that the problem met in this setting will
also appear for systems of equations.

This should not be a surprise: in the scalar case W-symmetries can act on
the driving Wiener process only by a scaling. But already when W-symmetries
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were introduced [22], and the limitations on the possible form of the R matrix
determined, it was clear that this, being a matrix in the algebra of the linear
conformal group, is made of a combination of a rotation matrix and of a dila-
tion one. And it was observed there (see Section VII.C therein, in particular
theorems 1 and 2) that while rotation type W-symmetries behave nicely under
change of variables, and are common to a proper Ito equation and the associated
Stratonovich one, the same does not hold for dilation type W-symmetries.

Thus our present discussion confirms the shortcomings of W-symmetries
when it comes to scalar equations, and in general to dilation type W-symmetries;
note that while in previous work [22] only proper Ito equations were considered,
here we dealt also with generalized ones.

On the other hand, one should bear in mind that this lack of effectiveness
of W-symmetries in the scalar case is related, indeed, to the fact they are ne-
cessarily of dilation type; in other words, in higher dimension there is space for
the (rotation type) W-symmetries to come handy.

In fact, it suffices to consider the stochastic isotropic linear oscillator (here
κ and σ are positive real constants)

dxi = −κxi dt + σ dwi (9.1)

discussed at length in [22] (see in particular Example 7 therein). If we are not
considering W-symmetries, the (obvious) rotational symmetry of the system can
not be taken into account.

But, there are other ways in which W-symmetries may be useful. In fact,
one should recall that integration of a symmetric equation is only one of the
ways in which symmetries can be used. Another way is that symmetries map
solutions into solutions, so once we have determined a solution to a symmetric
equation, we immediately obtain also all the symmetry-related solutions. This
is a well known fact for deterministic equations, and also for standard symme-
tries of stochastic equations; but in the case of stochastic equations and proper
W-symmetries, it is worth discussing it in some detail, both for proper and
generalized Ito (or Stratonovich) equations.

First of all, Remark 5 shows that a proper W-symmetry should actually
be seen as mapping a proper Ito equation dx = f(x, t)dt + σ(x, t)dw into a
different Ito equation, with a rescaled noise coefficient σ and the same driving
process. This shows that in this case a W-symmetry will map a solution to the
original equation for a given realization of the driving process into a solution to
the transformed equation for the same realization of the driving process. This
has only trivial applications in the scalar case (see Examples 11 and 12 below),
but in higher dimension this is essential to recover the vectorial character of
isotropic Ito equations (see Example 13).

Thus, all in all, albeit W-symmetries can not be used to integrate an equa-
tion, at least in the usual way (see Section 5 above), they are useful in mapping
solutions to solutions.

Example 11. The equation

dx = αxdt + β dw (9.2)
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(where α, β are real constants) admits, as seen above, the proper W-symmetry
X = x∂x + w∂w. This acts by

x → λ x , w → λ w (λ ∈ R) , (9.3)

hence maps our equation into the new equation

dx = αxdt + λβ dw . (9.4)

In this case, W-symmetry analysis just provides the trivial information that for
a given realization w̃(t) of the driving process and a solution x̃(t) of the initial
equation (9.2) with initial datum x̃(0) = x̃0, we also have a solution

x̂(t) = λ x̃(t)

with initial datum x̂(0) = x̂0 = λx̃0 for the transformed equation (9.4). This
result is fully trivial: in fact, by writing

x = λ ξ

the equation (9.4) is mapped into (9.2) (for the dynamical variable ξ). ♦

Example 12. The equation

dx = a x dt + b
√
x dw (9.5)

(where a, b are nonzero real constants) admits the W-symmetry generated by
X = 2x∂x + w∂w ; the action of this is a map (here λ = exp(s) ∈ R+)

x → λx , w → λw .

It is a simple matter to check that this map just leaves invariant the equation
(9.5): each of its three terms gets multiplied by the same factor λ2.

In this case the W-symmetry tells us that if we have a solution x(t) to this
equation for a realization w(t) of the driving process, we also have a solution
x̂(t) = λ2x(t) for a realization ŵ(t) = λw(t) of the driving process.

We can of course also reinterpret the situation in the same terms as in
Example 11 above; that is, consider – together with (9.5) – the equation

dξ = a ξ dt + λ b
√
ξ dw . (9.6)

Then for the same realization of the driving process w(t), any solution x(t) to
(9.5) will correspond to a solution ξ(t) = λ2x(t) to (9.6). ♦

Example 13. Consider the n-dimensional system of proper Ito equations

dxi = −α(ρ2)xi dt + β(ρ2) dwi , (9.7)

where we have written

ρ2 =
n∑

i=1

(
xi
)2

.
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This admits (i) a full O(n) group of simultaneous rotations in the x and the w;
and (ii) only for α and β actually constant the group of simultaneous homoge-
neous dilations x → λx, w → λw.

In this case, applying the W-symmetries gives a trivial and a non fully trivial
result:

(i) The dilation symmetry permits – in the case of linear equations, see above
– to relate solutions to the equation (9.7) with a given initial condition
x0 and a given realization of the driving process w(t) to solutions with
initial condition x̂0 = λx0 and the realization ŵ(t) = λw(t) of the driving
Wiener process; such a relation is analogous to those seen above and is
quite trivial.

(ii) The rotation symmetry guarantees that once we have a solution x(t) for
a given initial condition x0 and a given realization of the vector Wiener
process w(t), we also have a “rotated” solution for the “rotated” initial
condition x̂0 = Rx0 and the “rotated” realization of the Wiener process,
ŵ(t) = Rw(t); and this for any R ∈ O(n). This fact is in a way also
trivial, but can be recovered in symmetry terms only by considering W-
symmetries [22].

♦

10 Discussion and conclusions

Our work is set within the framework of the symmetry approach for (Ito)
stochastic differential equations [7–14], with a focus on integration of these by
exploiting their symmetry properties [15–22,32–36]. We have noted that while
the literature dealing with deterministic standard symmetries presents a com-
plete theory, the same cannot be said for random standard symmetries [19–21]
and for W-symmetries [22].

In particular we have noted that:

1. The Kozlov substitution related to a random standard symmetry will in
general transform a proper Ito equation into a generalized Ito equation;
thus if one aims at exploiting multiple symmetries – when dealing with
systems of Ito equations – it is necessary to consider also symmetries of
generalized Ito equations.

2. The determining equations for symmetry of these are (slightly) different
from those for proper Ito equations; this requires to rework a number of
results.

3. For random standard symmetries the standard proof showing that de-
terministic standard symmetries are preserved under change of variables
does not apply directly (also for proper Ito equations), and one has to
extend this proof to the random symmetry case, besides extending it to
generalized Ito equations.
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4. Related to the point above is the fact that the correspondence between
symmetries of a given Ito equation and of the corresponding Stratonovich
one has been firmly established (even for proper Ito and Stratonovich equa-
tions) for deterministic standard symmetries, and one has to extend that
proof to the framework of random standard symmetries, besides extending
it to generalized Ito and Stratonovich equation.

5. The latter task also requires to consider the Ito–Stratonovich map in the
case of generalized Ito equations, which is not necessarily the same as for
proper ones.

6. Besides standard symmetries, the literature also considers so called W-
symmetries. These are essential in accounting for scaling and rotation
symmetries involving both the dynamical variables and the “noise vari-
ables” modeled by Wiener processes [22]. But, while the Kozlov sub-
stitution allows to integrate equations possessing a standard symmetry,
the use of W-symmetries with respect to integration is not studied in the
literature.

7. An essential property for using W-symmetries in this direction would be
their preservation under changes of variables (this is the equivalent for W-
symmetries of the problems mentioned in items 3 and 4 above for random
standard symmetries); but this has not been studied previously.

In the present work we have considered the problems raised by the observations
above. In particular, as a needed tool for our study we have derived the deter-
mining equations for symmetries of generalized Ito and Stratonovich equations.
We have also determined the Ito–Stratonovich map in this case.

Our conclusions have been of different nature for the two classes of symme-
tries we have been considering:

• For random standard symmetries, we have shown that Kozlov theory is
extended basically unharmed to this more general framework, both for
proper and generalized Ito equations.

• For W-symmetries there is nothing like this. In particular, they are not
always preserved under changes of variables. Moreover they cannot be
taken to the Kozlov form without affecting (too) deeply the nature of the
equation under study; and the standard scaling form to which they can
be brought – at least for split W-symmetries – in a routine way are of no
use towards integration.

We hope our study, albeit limited to scalar equations, will be of general use in
the symmetry study of stochastic differential equations.

In particular, it should suggest to researchers dealing with (scalar or possibly
n-dimensional systems of) Ito equation to disregard W-symmetries – at least
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until a different use for them, e.g. along the lines mentioned in the footnote to
Remark 9, is found.

On the other hand, our study should suggest to focus instead on standard
symmetries, considering deterministic and random ones on the same level.

When considering systems of Ito equations and multiple reductions, we have
shown that one should be ready to consider generalized Ito equations; but also
that these can be dealt without hard problems – at least from the symmetry
viewpoint.

A number of topics, albeit related to our subject and quite natural in its
light, have remained outside our study. Thus e.g. we have not considered the
special – but physically most relevant – case of equations issued by a (stochastic)
variational problem [45–47], or the case of Ito equations arising from introducing
stochastic terms in a “second order” equation [16].

Limitations to the scalar case has also allowed not to face problems which are
inherent to the case of multiple symmetries and multiple symmetry reductions;
in particular, how the Lie algebraic properties of the symmetry algebra would
enter in multiple reductions. This problem is also present in the study of deter-
ministic equations [1–6], and one should expect at least the same limitations as
in the deterministic case.12
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A Derivation of the determining equations

In the main body of the text, we have given the determining equations without
detail of their derivation. These will be given here, for both the Ito and the
Stratonovich case. We will work directly with generalized Ito and Stratonovich
equation;the proper case will be obtained by setting the w derivatives of f , b,
and σ to zero; similarly, equations for standard symmetries will be obtained by
setting r = 0.

We will repeat some formulas already appearing in the main text, for ease
of reference.

A.1 Ito equations

We consider a general vector field

X = ϕ(x, t, w) ∂x + r w ∂w ; (A.1)

its infinitesimal action in(x, t, w) space is given by

x → x + ε ϕ(x, t, w) , t → t , w → w + ε r w .

We will consider the infinitesimal action of X given by (A.1) on a generalized
Ito equation

dx = f(x, t, w) dt + σ(x, t, w) dw . (A.2)

At first order in ε, and omitting the functional dependencies for ease of writing
(it is understood that f , σ and their derivatives are always evaluated in (x, t, w)),
we have

dx + ε dϕ = [f + ε (ϕfx + r w fw)] dt

+ [σ + ε (ϕσx + r w σw)] (1 + ε r) dw

= f dt + σ dw

+ ε [(ϕfx + r w fw) dt + (ϕσx + r w σw + r σ) dw] .

On solutions to (A.2), terms of order zero in ε cancel out, and we are left with

dϕ = (ϕfx + r w fw) dt + (ϕσx + r w σw + r σ) dw . (A.3)

We should now recall that in general

dϕ = ϕx dx + ϕt dt + ϕw dw +
1

2
∆(ϕ) dt ;

restricting again to solutions to (A.2) we get

dϕ = ϕx (f dt + σ dw) + ϕt dt + ϕw dw +
1

2
∆(ϕ) dt . (A.4)

32



Putting together (A.3) and (A.4) we get
(
ϕt + f ϕx − ϕfx +

1

2
∆(ϕ) − r w fw

)
dt

+ (ϕw + σ ϕx − ϕσx − r σ − r w σw) dw = 0 .

As dt and dw are independent, hence their coefficients should vanish separately,
we get the two equations

ϕt + f ϕx − ϕfx +
1

2
∆(ϕ) = r w fw , (A.5)

ϕw + σ ϕx − ϕσx − r σ = r w σw . (A.6)

These are exactly the determining equation (3.6), (3.7) given in Section 3.

Remark A.1. In Section 3, we have also given eqs. (3.2) and (3.3). These
apply to transformations more general than those generated by X in (A.1); in
fact they refer to X as in (3.1). In order to obtain (3.2), (3.3) we proceed as
above; now (considering directly only terms of order ε)

dϕ = (ϕfx + ξfw) dt + (ϕσx + ξσw) dw + σ dξ . (A.7)

Recalling that with the present general functional dependencies we have

dϕ = ϕtdt+ ϕxdx+ ϕwdw +
1

2
(∆ϕ)dt ,

dξ = ξtdt+ ξxdx+ ξwdw +
1

2
(∆ξ)dt ,

and substituting in (A.7) we obtain easily the equations (3.2), (3.3). ⊙

A.2 Stratonovich equations

We proceed in the same way for Stratonovich equations. Now the action of
(A.1) on the generalized Stratonovich equation

dx = b(x, t, w) dt + σ(x, t, w) ◦ dw (A.8)

is given, at first order in ε and with the same shorthand notation as above, by

dx + ε dϕ = [b + ε (bx ϕ + bw r w)] dt

+ [σ + ε (σx ϕ + σw r w + r σ)] dw .

Terms of order zero in ε cancel out on solutions to (A.8), and we are left with

dϕ = (bx ϕ + bw r w) dt + (σx ϕ + σw r w + r σ) dw . (A.9)

On the other hand, recalling that now we should use standard calculus rather
than Ito one, as we are working in the Stratonovich framework, we have

dϕ = ϕx dx + ϕt dt + ϕw dw ;
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on solutions to (A.8) this reads

dϕ = (ϕt + b ϕx) dt + (ϕw + σ ϕx) ◦ dw . (A.10)

Putting together (A.9) and (A.10), and recalling again that dt and dw are
independent, we get the two equations

ϕt + b ϕx − ϕ bx = r w bw , (A.11)

ϕw + σ ϕx − ϕσx − r σ = r w σw . (A.12)

These are exactly the determining equation (4.5), (4.6) given in Section 4.
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B The relation between generalized Ito versus

Stratonovich equations

In Section 8 we have used formula (8.3), i.e. (repeating it here again for ease of
reference)

b = f − 1

2
(σ σx + σw) , (B.1)

providing the correspondence between a generalized Ito equation and the equiv-
alent generalized Stratonovich equation.

We are now going to derive this formula through a simple computation; this
just follows the steps of the usual derivation of the Ito-Stratonovich correspon-
dence.

We consider three times t− < t0 < t+, and correspondingly we will write
x− = x(t−), x0 = x(t0), x+ = x(t+); w− = w(t−), w0 = w(t0), w+ = w(t+).
We will also denote differences as follows:

dt = t+ − t− , δt− = t0 − t− , δt+ = t+ − t0 ,

dx = x+ − x− , δx− = x0 − x− , δx+ = x+ − x0 ,

dw = w+ − w− , δw− = w0 − w− , δw+ = w+ − w0 .

Let us now focus on the case where dt = (t+− t−) is an infinitesimal. In the
(non-anticipating) Ito description we have

dx = f(x−, t−, w−) dt + σ(x−, t−, w−) dw . (B.2)

On the other hand, from the Stratonovich point of view we obtain x± as

x± = x0 ± [b(x0, t0, w0) δt± + σ(x0, t0, w0) δw±] . (B.3)

This entails13

dx = x+ − x− = b(x0, t0, w0) (δt+ + δt−) + σ(x0, t0, w0) (δw+ + δw−)

= b(x0, t0, w0) dt + σ(x0, t0, w0) dw . (B.4)

We should now compare (B.2) and (B.4), i.e. the Ito and the Stratonovich
determination of dx. However, in (B.2) the functions f and σ are expressed in
terms of (x−, t−, w−), while in (B.4) the variables used are (x, t, w). Using the
assumption that dt is an infinitesimal, we expand f and σ in a Taylor series:

f(x−, t−, w−) =

[
f −

(
∂f

∂x
δx− +

∂f

∂t
δt− +

∂f

∂w
δw−

)]

(x0,t0,w0)

,

σ(x−, t−, w−) =

[
σ −

(
∂σ

∂x
δx− +

∂σ

∂t
δt− +

∂σ

∂w
δw−

)]

(x0,t0,w0)

.

13We are not using the notation σ ◦ dw because now we are dealing with real numbers, not
with stochastic differential equations.
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We can now proceed to compare (B.2) and (B.4); all functions and derivatives
are now evaluated in (x0, t0, w0). We get

b dt + σ dw = f dt + σ dw −
(
∂f

∂x
δx− +

∂f

∂t
δt− +

∂f

∂w
δw−

)
dt

−
(
∂σ

∂x
δx− +

∂σ

∂t
δt− +

∂σ

∂w
δw−

)
dw . (B.5)

We can now cancel the term σdw appearing on both sides. Moreover, we should
express δx− in terms of δt− and δw−. Using the Stratonovich description, we
have

δx− = b(x0, t0, w0) δt− + σ(x0, t0, w0) δw− . (B.6)

Thus we obtain (again functions and derivatives are evaluated in (x0, t0, w0))

b dt = f dt −
(
∂f

∂x
(b δt− + σ δw−) +

∂f

∂t
δt− +

∂f

∂w
δw−

)
dt

−
(
∂σ

∂x
(b δt− + σ δw−) +

∂σ

∂t
δt− +

∂σ

∂w
δw−

)
dw .

We take now the limit dt → 0, which also means dw → 0. Discarding higher
order infinitesimals, we get

b dt = f dt −
(
∂σ

∂x
σ +

∂σ

∂w

)
(δw−) dw (B.7)

Passing to consider expectations, we should recall dw = δw+ + δw−, and
that δw+ and δw− are independent. Thus we have

〈(δw−) · (δw+ + δw−)〉 = 〈(δw−) ·(δw+)〉 + 〈(δw−)
2〉 = 〈(δw−)

2〉 = (δt−) .
(B.8)

Note that so far t0 can be any point in the interval (t−, t+) (such generalization
of the Stratonovich approach is considered e.g. in [48,49]). In the Stratonovich
approach, everything is time-symmetric under time inversion, and t0 = (t− +
t+)/2 is the central point of the interval. With this choice, δt− = δt+ = dt/2,
and we get

b dt = f dt − 1

2

(
∂σ

∂x
σ +

∂σ

∂w

)
dt . (B.9)

Again here all functions and derivatives are evaluated in (x, t, w) = (x0, t0, w0).
We have thus shown that for generalized Ito and Stratonovich equations,

the noise terms are equal in both formulations, and the correspondence between
their drift terms is exactly the one provided by (B.1).
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C The higher dimensional case

Our discussion has been confined to the one dimensional case, but the higher
dimensional setting has been repeatedly mentioned as the motivation behind a
number of the questions we discussed.

We will now have a glance at the higher dimensional setting; in particular,
we briefly consider some simple (linear) examples to illustrate how the theory
developed here is relevant in this higher dimensional context.

In this Appendix all indices will run from 1 to n (the generalization to the
case where the dimension of the x = (x1, ..., xn) and the w = (w1, ..., wn) vectors
are not equal would be immediate), and summation over repeated indices will
be understood. We have to consider partial derivatives w.r.t. different xi and
wk variables; our shorthand notation for these will be

∂i := ∂/∂xi , ∂̂k := ∂/∂wk . (C.1)

C.1 The determining equations

We have, first of all, to write down the symmetry determining equations in the
case of systems of (proper or generalized) Ito equations

dxi = f i(x, t,w) dt + σi
k(x, t,w) dwk . (C.2)

In this case one proceeds exactly in the same way as shown in Appendix A and
obtains, with the notation (C.1),

∂tϕ
i + f j ∂jϕ

i − ϕj ∂jf
i +

1

2
∆(ϕi) = Rj

ℓ w
ℓ ∂̂jf

i , (C.3)

∂̂kϕ
i + σj

k ∂jϕ
i − ϕj ∂jσ

i
k − σi

j R
j
k = Rj

ℓ w
ℓ ∂̂jσ

i
k . (C.4)

In this higher-dimensional case, the Ito Laplacian is given by

∆(φ) :=

n∑

i,j=1

[
δij

(
∂2φ

∂wi∂wj

)
+ 2 σi

j

(
∂2φ

∂xi∂wj

)
+

n∑

k=1

σi
kσ

j
k

(
∂2φ

∂xi∂xj

)]
.

(C.5)
Similarly, for systems of Stratonovich equations

dxi = bi(x, t,w) dt + σi
k(x, t,w) ◦ dwk , (C.6)

one obtains

∂tϕ
i + bj ∂jϕ

i − ϕj ∂jb
i = Rj

ℓ w
ℓ ∂̂jb

i , (C.7)

∂̂kϕ
i + σj

k ∂jϕ
i − ϕj ∂jσ

i
k − σi

j R
j
k = Rj

ℓw
ℓ ∂̂jσ

i
k . (C.8)

Details of computations (in both cases) are left to the reader. Note that
again the second set of determining equations is just the same in the Ito and in
the Stratonovich cases.
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C.2 The Stratonovich map

For the sake of completeness, we will also mention that – again proceeding
exactly as above, i.e. in this case as in Appendix B – the relation between
a system of (possibly generalized) Ito equations (C.2) and the corresponding
system of (possibly generalized) Stratonovich equations (C.6) is obtained though
the n-dimensional generalized Stratonovich map

bi = f i − 1

2

(
∂σi

k

∂xj
σj

m +
∂σi

k

∂wm

)
δkm , (C.9)

where summation over repeated indices is understood, and δkm is the Kronecker
delta.

In order to prove this formula, we proceed nearly verbatim as in Appendix B,
except that we have to introduce indices, and consider vectors x = (x1, ..., xn)
and w = (w1, ..., wn). Thus (B.2) and (B.3) now read respectively

dxi = f i(x−, t−,w) dt + σi
k(x−, t−,w−) dw

k , (C.10)

xi± = xi0 ±
[
bi(x0, t0,w0) δt± + σi

k(x0, t0,w0) δw
k
±

]
. (C.11)

This entails

dxi = xi+ − xi− = bi(x0, t0,w0) (δt+ + δt−) + σi
k(x0, t0,w0)

(
δwk

+ + δwk
−

)

= bi(x0, t0,w0) dt + σi
k(x0, t0,w0) dw

k . (C.12)

Again we have to compare (C.10) and (C.12) in the case where dt is an
infinitesimal, which we do by expanding f i and σi

k as Taylor series. This yields

f i(x−, t−,w−) =

[
f i −

(
∂f i

∂xj
δxj− +

∂f i

∂t
δt− +

∂f

∂wm
δwm

−

)]

(x0,t0,w0)

,

σi
k(x−, t−,w−) =

[
σi

k −
(
∂σi

k

∂xj
δxj− +

∂σi
k

∂t
δt− +

∂σi
k

∂wm
δwm

−

)]

(x0,t0,w0)

.

Comparing (B.2) and (B.4) – and simplifying notation as now all functions and
derivatives are evaluated in (x0, t0,w0) – we get

bi dt + σi
k dw

k = f i dt + σi
k dw

k

−
(
∂f i

∂xj
δxj− +

∂f i

∂t
δt− +

∂f i

∂wm
δwm

−

)
dt

−
(
∂σi

k

∂xj
δxj− +

∂σi
k

∂t
δt− +

∂σi
k

∂wm
δwm

−

)
dwk .(C.13)

We can now cancel the term σi
kdw

k appearing on both sides. Moreover, we

should express δxj− in terms of δt− and δwm
− . Using the Stratonovich descrip-

tion, we have

δxj− = bj(x0, t0,w0) δt− + σj
m(x0, t0,w0) δw

m
− . (C.14)
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Thus we obtain (again functions and derivatives are all evaluated in (x0, t0,w0))

bi dt = f i dt −
(
∂f i

∂xj
(bj δt− + σj

m δwm
− ) +

∂f i

∂t
δt− +

∂f i

∂wm
δwm

−

)
dt

−
(
∂σi

k

∂xj
(bj δt− + σj

m δwm
− ) +

∂σi
k

∂t
δt− +

∂σi
k

∂wm
δwm

−

)
dwk .

We take now the limit dt→ 0, which also means dwℓ → 0. Discarding higher
order infinitesimals, we get

bi dt = f i dt −
(
∂σi

k

∂xj
σj

m +
∂σi

k

∂wm

)
(δwm

− ) dwk . (C.15)

Passing to consider expectations, we should recall dwℓ = δwℓ
+ + δwℓ

−, and
that δwm

+ and δwm
− are independent. Thus we have

〈(δwm
− ) · (dwk)〉 = 〈(δwm

− ) · (δwk
+ + δwk

−)〉
= 〈(δwm

− ) · (δwk
−) + 〈(δwm

− ) · (δwk
+)〉

= 〈(δwm
− ) · (δwk

−)〉 = δmk (δt−) , (C.16)

where of course δmk is the Kronecker delta.
As in the discussion of the one-dimensional case given in Appendix B, so far

t0 can be any point in the interval (t−, t+). In the Stratonovich approach we
take t0 = (t− + t+)/2; with this choice, δt− = δt+ = dt/2, and we get

bi dt = f i dt − 1

2

(
∂σi

k

∂xj
σj

m +
∂σi

k

∂wm

)
δmk dt . (C.17)

Again here all functions and derivatives are evaluated in (x, t,w) = (x0, t0,w0).
We have thus shown that for generalized Ito and Stratonovich equations in

arbitrary dimension n, the noise terms are equal in both formulations, and the
correspondence between their drift terms is exactly the one provided by (C.9).

C.3 Some two-dimensional examples

We will now discuss some very simple two-dimensional examples, in order to
illustrate how the theory discussed in the main text enters in the analysis of
this framework. We will consider time-autonomous systems for the sake of
simplicity; this will set a number of smooth functions of time to be actually real
constants.

We adopt a simplified notation as we just have two dynamical variables
and two driving processes; that is, we will denote the dynamical variables as
(x, y) = (x1, x2) and the driving Wiener processes as (w, z) = (w1, w2).
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Example C.1 Consider the linear system

dx = (a11 x + a12 y) dt + (k111 x + k112 y) dw + (k121 x + k122 y) dz ,

(C.18)

dy = (a21 x + a22 y) dt + (k211 x + k212 y) dw + (k221 x + k222 y) dz ,

(C.19)

where w and z are independent Wiener processes, and aij , kijℓ are numerical
constants.

This system is obviously symmetric under the scaling vector field

X = x∂x + y ∂y ; (C.20)

a characteristic function for this vector field can be chosen as z := y/x. We will
thus pass to variables

η := log[|x|] , ζ := y/x . (C.21)

In the new variables, the symmetry vector field is just

X = ∂η .

The change of variables is singular in x = 0, so let us restrict our attention to
the half-plane x > 0.

We will choose

k221 = 0, k211 = 0; k212 = k111, k121 = k222 , (C.22)

and moreover
a21 = 0; a22 = a11 . (C.23)

In this way the original system is written as

dx = (a11 x + a12 y) dt + (k111 x + k112 y) dw + (k222 x + k122 y) dz ,

dy = (a11 y) dt + (k111 y) dw + (k222 y) dz . (C.24)

It can easily be checked that this admits a second symmetry, given by

Y = x∂y . (C.25)

Actually, (C.24) is the more general linear system admitting Y as a second
symmetry.

Note that the two symmetry vector fields commute, [X,Y ] = 0; moreover,
X and Y are both deterministic standard symmetries.

The expression of Y in the new variables is

Y = ζ ∂η − ζ2 ∂ζ = ζ (∂η − ζ ∂ζ) . (C.26)
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For x and y evolving according to (C.24) the equations for the new dynamical
variables are

dη =

(
a11 −

k2111
2

+ (a12 − k111k112) ζ − k2112
2

ζ2
)
dt

+ (k111 + k112ζ) dw + (k222 + k122ζ) dz , (C.27)

dζ =
(
ζ
(
−k2222 − k122k222ζ + (k112(k111 + k112ζ)ζ − a12)

))
dt

−
(
k112ζ

2
)
dw −

(
k122ζ

2
)
dz . (C.28)

We should check if Y is still a symmetry for these, i.e. if the determining
equations (C.24) are satisfied. This check amounts to a straightforward (and
rather boring, hence omitted) computation, which shows this is indeed the case.
Note that this had to be expected on the basis of our general results (actually,
on the basis of previous results in the literature [35,36]), as we are dealing with
deterministic standard symmetries.

It may also be noted that in this system the r.h.s. does not depend on η
(which is indeed the purpose of changing variables); thus we have an autonomous
equation for the dynamical variable ζ. Note this has the symmetry Y , but
depends on two independent Wiener processes, so we are not guaranteed to be
able to integrate it; see [40] for a discussion of this framework. If we are able
to get a solution ζ(t) for this equation, for a given realization of the Wiener
processes w(t) and z(t), then the equation for η(t) is also easily solved. ♦

Example C.2 A simpler – but nontrivial – situation is obtained by choosing,
in the Example C.1 above,

k112 = 0 .

We will also set, for ease of notation,

a11 = α, a12 = β ; k111 = κ1, k122 = κ2, k222 = κ3 .

In this way the original system reads

dx = (αx + β y) dt + κ1 x dw + (κ3 x + κ2 y) dz ,

dy = αy dt + κ1 y dw + κ3 y dz ;

the equations for the new variables (η, ζ) are

dζ =
(
κ2κ3 − β + κ22ζ

)
ζ2 dt − κ2 ζ

2 dz ,

dη =

(
α + β ζ − 1

2
(κ21 + κ23 + 2κ2κ3 + κ22ζ

2)

)
dt

+ κ1 dw + (κ3 + κ2ζ) dz .

Now the equation for ζ(t) depends on a single Wiener process z(t), and hence
the symmetry under Y = ζ2∂ζ allows to integrate this equation via the Kozlov
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substitution; the equation for η is then a reconstruction equation, which is readily
integrated:

η(t) = η(0) +

∫ t

0

(
α + β ζ(t) − 1

2
(κ21 + κ23 + 2κ2κ3 + κ22ζ

2(t))

)
dt

+ κ1

∫ t

0

dw(τ) +

∫ t

0

(κ3 + κ2ζ(τ)) dz(τ) . (C.29)

In fact, the Kozlov substitution yields the new variable

χ = −
∫

1

ζ2
dζ = ζ−1 , (C.30)

and Ito calculus yields in turn

dχ = (β − κ2 κ3) dt + κ2 dz .

This is promptly integrated, providing

χ(t) = χ(0) + (β − κ2 κ3) t + κ2 [z(t) − z(0)] ;

in order to obtain ζ(t) we should then just invert (C.30) to get ζ(t) = 1/χ(t).
At this point η(t) is obtained through the formula (C.29) above. ♦

Example C.3 (random standard symmetry) We will consider again linear sys-
tems of the general form (C.18), (C.19), thus admitting the scaling symmetry
X = x∂x + y∂y. We will however choose coefficients so that the system also ad-
mits a second symmetry Y , which we want to be a random standard symmetry
(the case where the second symmetry is a W-symmetry will be considered in
the next Example).

We will consider the system

dx =
1

2
[x dt + (x − y) dw + (x + y) dz] , (C.31)

dy =
1

2
[y dt + (y − x) dw + (x + y) dz] , . (C.32)

This is homogeneous of degree one in x and y, hence invariant under the scaling
vector field

X = x∂x + y ∂y ; (C.33)

this system also admits a second symmetry vector field, given by

Y = (ew + ez) ∂x − (ew − ez) ∂y . (C.34)

Note thatX is a deterministic standard symmetry, while Y is a random standard
symmetry. The commutator gives

[X,Y ] = − Y . (C.35)
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We change variables so to straighten the vector field X , i.e. pass to (η, ζ)
defined in (C.21) above. In the new variables,

X = ∂η , Y = e−η [(ew + ez) ∂η − ((ew − ez) + (ew + ez) ζ) ∂ζ ] .
(C.36)

The dynamical equations, which are standard Ito one, for the new variables are

dη =
1

4
(1 − ζ2) dt +

1

2
(1− ζ) dw +

1

2
(1 + ζ) dz , (C.37)

dζ = − 1

2
(1− ζ2) ζ dt − 1

2
(1 − ζ2) dw +

1

2
(1 − ζ2) dz . (C.38)

Note that X is obviously still a symmetry for this system. Thus we have to solve
the equation for ζ(t), which plays the role of the “symmetry-reduced equation”;
once we have solved this the equation for η(t) is a – promptly integrated –
reconstruction equation. In this special case the noise coefficients for dw and dz
are just the same up to a sign; thus we can perform a further change of variable
and introduce

ξ =

∫ −2

1− ζ2
dζ = log

[
ζ − 1

ζ + 1

]
;

by Ito calculus we get
dξ = dw − dz .

Our goal was, however, not to integrate equations (C.31), (C.32); but to
investigate the fate of the second symmetry (in this setting, Y ) when we reduce
the equation using the first one (in this setting, X).

To this aim, we now have to check if the set of equations (C.7), (C.8) hold
with x1 = η, x2 = ζ, w1 = w, w2 = z, and f i, σi

j , ϕ
i defined by the formulas

above for dη, dζ, and Y . The check amounts to a straightforward computation.
It turns out that all the equations (C.8) are satisfied; as for (C.7), the equation
for i = 1 is satisfied, but the equation for i = 2 – which is our reduced equation,
see above – yields

1

4
e−η (ew + ez) (1 − ζ2) ζ = 0 ,

hence is not satisfied.
We conclude that the symmetry Y does not persist under the change of

variables (x, y) → (η, ζ).
This appears to be in contradiction with our conclusions in Sect.7; but the

situation is actually a bit more complex. First of all, our discussion in Sect.7
only regarded scalar equations; but this is not the problem, and indeed we know
from other sources [35, 36] that random standard symmetries should behave
nicely under changes of variables also in higher dimension.

The problem here lies in the Lie-algebraic structure of the symmetry algebra.
As we have noted above, the commutator is given by (C.35). Thus we expect,
on the basis of general Lie-theoretic considerations (also holding for symmetries
of deterministic equations [1–6]) that while the X symmetry is preserved when
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we operate a symmetry reduction under Y , the converse is not true. We have
just seen this second part of the statement in action, so to conclude – showing
the first part of the statement in action for this example – our discussion of
the system (C.31), (C.32) we should consider symmetry reduction under Y and
check that X is still a symmetry for the reduced system.

We will thus not use (C.21) but consider instead a different change of vari-
ables, and introduce the new coordinates

ξ =
x

ew + ez
, θ =

(ew − ez)x + (ew + ez) y

ew + ez
. (C.39)

In these variables, the vector fields read

X = ξ ∂ξ + θ ∂θ , Y = ∂ξ . (C.40)

The evolution equations for the new variables are

dξ =
1

2

ew − ez

(ew + ez)2
θ dt − 1

2

θ

(ew + ez)
dw +

1

2

θ

(ew + ez)
dz , (C.41)

dθ =
1

2

(ew − ez)2

(ew + ez)2
θ dt +

ez

(ew + ez)
θ dw +

ew

(ew + ez)
θ dz . (C.42)

Note they are generalized Ito equations.
The r.h.s. of these do not depend on ξ (hence Y is a symmetry); the equation

for θ(t) is the reduced equation, and if this is solved we promptly obtain ξ(t),
the equation for it being just a reconstruction equation. ♦

Example C.4 We now come to consider an Example with a W-symmetry. Let
us take the system

dx = (αx − βy) dt + a dw − b dz ,

dy = (β x + αy) dt + b dw + a dz . (C.43)

It is immediate to check that this system admits the scaling symmetry

X = x∂x + y ∂y + w ∂w + z ∂z ,

and the rotational symmetry

Y = −y ∂x + x∂y − z ∂w + w ∂z .

Both of these are W-symmetries, and they commute: [X,Y ] = 0.
As discussed at length in the main text, see Sect.6, we cannot straighten these

vector fields remaining within the class of (possibly generalized) Ito equations.
We can, however, change variables so to put at least the dynamical variables
part in a convenient form. In particular we can consider the change of variables
suggested by the X symmetry, i.e.

(x, y) → (η, ζ) , η = log(|x|) , ζ = y/x .
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In these coordinates – that is, in the coordinates (η, ζ, w, z) – we have

X = ∂η + w ∂w + z ∂z , (C.44)

Y = −ζ ∂η + (1 + ζ2) ∂ζ − z ∂w + w ∂z . (C.45)

According to our discussion, see Sect.7, we are not guaranteed in general that
the W-symmetries X and Y are still symmetries after the change of variables.
Note, in this regard, that here the noise coefficients do not depend on the
dynamical variables x and y, so that the discussion in Sect.7 – in particular
the Corollary to Lemma 1 – would imply that W -symmetries are preserved
under change of variables. But one should remember that the discussion given
there (and in the papers cited there, e.g. [22]) does only apply to scalar Ito
equations, actually with a single noise term. Thus one should explicitly check
if symmetries survive the change of variables, and it is not clear what to expect
apriori.

The equations for the dynamical variables η and ζ are

dη =
[
(α + β ζ) − (1/2) e−2η (a2 + b2)

]
dt

+ e−η [a dw + b dz] , (C.46)

dζ =
[
e−2η (a2 + b2) ζ − β

(
1 + ζ2

)]
dt

− e−η [(aζ + b) dw + (bζ − a) dz] . (C.47)

Having the explicit form for the dynamical equations, i.e. (C.46), (C.47),
and the explicit form for the vector fields, i.e. (C.44), (C.45), we just have to
verify if the determining equations are satisfied14. Note we are not granted they
are satisfied not only for the vector field Y , but also for the vector field X which
we have been (partially) straightening with the change of variables.

When we perform the required computations, it turns out that the deter-
mining equations are indeed satisfied, both for X and for Y . ♦

Example C.5 We finally consider an example where the equations have non-
constant noise coefficients and admit a W-symmetry. Note that (for scalar
equations) while in the case of spatially constant noise coefficients we know
the W-symmetries are preserved, our discussion of Sect.7 did not reach any
definite conclusion in the case of noise coefficients depending on the dynamical
(i.e. “spatial”) variables. Thus we expect that, depending on concrete cases,
W-symmetries can be preserved or lost when passing to adapted variables.

We consider the equations

dx = (a11 x + a12 y) dt + r k1 x dw + k1 x dz ,

dy = (a21 x + a22 y) dt + r (k2 x + k3 y) dw + (k2 x + k3 y) dz .(C.48)

14It is a trivial remark – but it may be worth recalling, to avoid any possible confusion –
that whenever we change variables, the Ito Laplacian ∆ is defined using the noise coefficients
for the equations of the new variables.
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Note this is degenerate, in the sense the matrices of the r and the σ coefficients
are both degenerate.

Our system (C.48) admits as symmetries the scaling (now acting only on
dynamical variables) vector field

X = x∂x + y ∂y (C.49)

and the additional vector field

Y0 = w ∂w − r z ∂z .

It may be nicer to consider instead Y = qX + Y0 with Q an arbitrary constant;
that is,

Y = q x ∂x + q y ∂y + w ∂w − r z ∂z . (C.50)

Straightening the field X , i.e. passing to the variables (η, ζ) as above, we get

dη =
(
a11 − (k21/2) (1 + r2) + a12 ζ

)
dt + k1 r dw + k1 dz ,

dζ =
(
a21 − k1 k2 (1 + r2) + (a22 − a11 + k1(k1 − k3)) ζ − a12 ζ

2
)
dt

+ r (k2 + (k3 − k1) ζ) dw + (k2 + (k3 − k1)ζ) dz .

The symmetry vector fields read, in these variables, as

X = ∂η , Y = q ∂η + w ∂w − r w ∂z .

Again we just have to verify if the determining equations are satisfied. With
straightforward computations, it turns out they are, both for X and for Y . ♦
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[40] G. Gaeta and M.A. Rodŕıguez, “Integrable autonomous scalar Ito equations
with multiple noise sources”, Open Comm. Nonlin. Math. Phys. (OCNMP)
2 (2022), 122-153
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