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Abstract: We consider the edge transport properties of a generic class of interacting
quantum Hall systems on a cylinder, in the infinite volume and zero temperature limit.
We prove that the large-scale behavior of the edge correlation functions is effectively
described by the multi-channel Luttinger model. In particular, we prove that the edge
conductance is universal, and equal to the sum of the chiralities of the non-interacting
edge modes. The proof is based on rigorous renormalization group methods, that allow
to fully take into account the effect of backscattering at the edge. Universality arises
as a consequence of the integrability of the emergent multi-channel Luttinger liquid
combined with lattice Ward identities for the microscopic 2d theory.
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1. Introduction

QuantumHall Effect. The integer quantumHall effect (IQHE) is a paradigmatic exam-
ple of topological quantum phenomenon in condensed matter physics: the transverse, or
Hall, conductivity of two-dimensional insulating systems exposed to magnetic fields is
equal to an integer multiple of e2/h, where e is the electric charge and h is the Planck’s
constant. Despite the complexity of the system at the microscopic scale, the IQHE is
measured with astonishing precision. For translation invariant, noninteracting models,
the explanation of the IQHE has been given in [64], see also [4], identifying the Hall
conductivity as the Chern number of a suitable vector bundle. If translation invariance
is broken, quantization can be understood via a noncommutative-geometric framework
[9], or in a more functional-analytic setting [1,6]. In all these approaches, the Hall con-
ductivity is identified as a topological invariant; universality against perturbations is
understood via the stability of an index.

The quantum Hall effect admits dual descriptions, in terms of either bulk or edge
transport properties [48]. The infinite volume, or bulk, Hall conductivity turns out to be
equal to the edge conductance, describing the charge transport along the boundary of the
system. This remarkable fact is called the bulk-edge correspondence. In the absence of
interactions, the edge conductance is equal to the signed number of gapless edge modes,
the sign taking into account the chirality (or direction of propagation) of the edge states.

For noninteracting quantum Hall systems, the bulk-edge correspondence has been
proved in [51] for translation invariant systems, in [29,62] for disordered systems with
a spectral gap, and in [30] for disordered systems with a mobility gap. The positive
temperature extension has been recently discussed in [25]. A general field theoretic
approach to the bulk-edge duality, based on anomaly cancellations, has been introduced
in [36,37].

Concerning many-body systems, the quest for the rigorous understanding of the
quantization of theHall conductivity has been opened for awhile. Recently, two different
approaches have been proposed; see [3] for a review of the problem, and of its solution.
In [50], see also [7], the quantization of the interacting Hall conductivity has been
proved via geometric methods, following earlier insights by [5]. A key assumption is
the spectral gap for the interacting fermionic model, proved later in [26,49] for weak
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interactions. Afterwards, an index theorem for gapped many-body systems has been
introduced in [8]. A different approach has been introduced in [43]. There, quantization
follows from universality, by showing that the interacting Hall conductivity is equal to
the non-interacting one. The proof holds under the assumption that the non-interacting
Hamiltonian is gapped, and that the many-body interaction is weak enough. It is based
on cluster expansion methods, to construct the interacting Gibbs state, and on Ward
identities, to prove universality. The same cluster expansion techniques have then been
used to prove the stability of the spectral gap [26]. More recently, in the context of the
interactingHaldanemodel, the approach of [43] has been combinedwith renormalization
group (RG) methods, to obtain results that hold uniformly in the size of the spectral gap
[41,44].

Much less is known for interacting edge transport. One expects the large-scale prop-
erties of the edge currents to be effectively described by the multi-channel Luttinger
model [65], a relativistic theory for interacting fermions in 1+1 dimensions; see [23,52]
for reviews. It generalizes the Luttinger model, describing interacting fermions with two
opposite chiralities, to an arbitrary number of chiral modes. The Luttinger model and its
variants can be solved by bosonization, as first pointed out in the pioneering work [59],
see [56] for a review.

A striking feature of the exact solution of the Luttinger model [56] is the appearence
of anomalous exponents in the scaling of correlations. These are determined by the so-
called Luttinger parameter K ≡ K (λ), a nontrivial function of the coupling constant λ,
such that K (0) = 1. Besides fixing the anomalous exponents, the Luttinger parameter
also allows to determine the transport properties of the system. In fact, the quantum of
conductance due to a single channel is K (λ)e2/h. More generally, in the multi-channel
Luttinger model every chiral channel comes with its own Luttinger parameter, and their
values strongly depend on whether backscattering is present. In the special case in which
all chiral fermions propagate in the same direction (that is, no backscattering is present),
the conductance of a single chiral mode is universal, and equal to e2/h. The Landauer
conductance, describing the current appearing in the system after putting it in contact
with reservoirs at different chemical potentials, turns out to be equal to the sum of the
absolute values of the conductances of all channels. See [39] for a computation of the
Landauer conductance of the Luttinger model based on Kubo formula, or [54] for a
recent derivation from quantum dynamics.

The Landauer conductance is related to the two-terminal conductance of the Hall bar,
see e.g. [52,53]. In the absence of impurities, one expects this transport coefficient to be
universal only in the absence of backscattering between edge modes. Notice however
that counterpropagating edge modes appear in a wide class of physically relevant sys-
tems, see e.g. [38] for the case of the Hofstadter model. Instead, the edge conductance
of quantum Hall systems, defined as response of the edge modes after a variation of
the chemical potential at the edge, is related to the sum of the signed conductances
of the edge channels, where the sign takes into account the direction of propagation.
This quantity is expected to be stable against backscattering and disorder effects, and
quantized.

The multi-channel Luttinger model is not a fundamental description of the system:
it is an emergent theory, whose validity needs to be proved. It depends on a number
of free parameters, which need to be fixed in order to provide a quantitatively correct
description of the edge physics. It is a key ingredient of a phenomenological theory of the
fractional quantum Hall effect [52,53,65], where counterpropagating edge modes play
an important role. There, the Luttinger parameter is fixed as the inverse of an odd integer,
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as a consistency condition dictated by the fermionic nature of the microscopic theory.
In the absence of backscattering, this choice of the Luttinger parameter yields fractional
values of the quantum of conductance of the form e2/qh with q odd. In principle,
other rational values of the two-terminal conductance might be realized taking into
account counterpropagating modes [52,53]. However, as mentioned above, the many-
body interactions between counterpropagating edge currents might give rise to non-
universal values, in contrast to experimental observations. In order to understand the
quantization of the two-terminal conductance in the Hall bar, disorder effects have been
proposed to play an important role [52,53,63].

Achievements of the present work. The present paper has a two-fold main goal. We
start from an interacting, microscopic 2d Hamiltonian and we rigorously justify the
multi-channel Luttinger liquid description for the edge currents in a wide setting, which
allows to take into account counterpropagating edge modes. As stressed above, coun-
terpropagating edge modes appear typically in topological insulators [38] and play an
important role in the phenomenological theory of the quantumHall effect. This effective
approach needs to be justified from first principle, and this is what is what we do in the
present paper, in the context of the IQHE. We then use this result to compute the edge
conductance of the two-dimensional lattice model, defined as the response of the edge
currents after introducing a local variation of the chemical potential in proximity of the
corresponding boundary. It is worth pointing out that this quantity is, in general, differ-
ent from the conductance of the multi-channel Luttinger model as defined via Landauer
formula, which is not expected to take quantized values in presence of backscattering.
We prove the universality of the edge conductance, for weakly interacting quantum Hall
systems on the cylinder. Universality is guaranteed by the gauge symmetry of the two-
dimensional lattice model, which is lost in the Luttinger liquid approximation for the
edge currents. Combined with earlier work on the universality of the bulk Hall conduc-
tivity [43], and with results about non-interacting models [51], our result allows to lift
the bulk-edge correspondence to the realm of weakly interacting fermionic systems. Our
proof holds at the level of equality of transport coefficients. In the non-interacting case,
it is known that both transport coefficients have the interpretation of topological indices.
Recently, the interpretation of the bulk Hall conductivity for interacting fermions as a
topological index has been established in [8]. It would be of interest to prove a similar
statement for the edge conductance, and to prove the bulk-edge duality as an identity
between topological indices.

In principle, the methods of the present paper could be used to compute all edge
correlation functions and other edge transport coefficients, such as the edgeDrudeweight
and the edge susceptibility,whichwedonot expect to be universal. In addition,webelieve
that the strategy could also be used to rigorously establish the non-universality of the
two-terminal conductance for the Hall bar, as predicted in [52,53] on the basis of the
Landauer formula for the conductance of the multi-component Luttinger model.

Rigorous renormalization. The main technical tool used in our work is a rigorous
formulation of the Wilsonian renormalization group. In its application to condensed
matter systems, this method has been pioneered in [13,34], see [14,55,61] for reviews.
These techniques have been used to study interacting fermionic systems with extended
Fermi surface, in dimension greater than one, at finite temperature or with asymmetric
Fermi surface, in [10,27,28,33]. For one-dimensional systems, these techniques can be
used to construct the ground state correlations of interacting models. The first results
have been obtained in [15], for spinless fermions, and in [22], for spinful fermions.
Both works crucially rely on the exact solvability of the Luttinger model [59], which
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describes the scaling limit of the lattice models of [15,22], and which ultimately allows
to control the infrared fixed point of the renormalization group flow. The use of the
exact solution represented an important limitation of the approach. Such restriction has
been overcome in [18,19,57], via a completely different strategy. Instead of relying
on exact solutions, the approach combines RG with Ward identities (WIs); together
with the Schwinger–Dyson equation for the four-point function, these allow to control
non-perturbatively the flow of the effective marginal couplings, and to construct the
RG fixed point. A major technical difficulty is the rigorous control of the anomalies in
the Ward identities of the Luttinger liquid, which unavoidably appear in the rigorous
formulation of the QFT. This ultimately allows to solve the Schwinger–Dyson equation,
and to determine the non-trivial fixed point of the RGwithout relying on exact solutions.
Furthermore, the combination of emergent WIs and of Hamiltonian (or lattice) WIs
allowed to prove a number of long-standing conjectures. We mention here the proof
of the Haldane relations for transport coefficients of 1d quantum systems [20] and the
Kadanoff relations for classical 2d spin systems [21]. Further extensions include the
results [31,46] for interacting dimers, and [2] for the edge transport coefficients of a
class of single-mode 2d topological insulators.

Recently, related methods have been used to study transport in two- and three-
dimensional quantum systems, with gapped spectrum or with pointlike Fermi surface.
The work [40] considered the two-dimensional Hubbard model on the hexagonal lat-
tice at half-filling, as a model for interacting graphene, and used RG methods to prove
the analyticity of the ground state correlations of the system. In [42], the combination
of RG methods and of lattice Ward identities allowed to prove the universality of the
longitudinal conductivity for interacting graphene from a microscopic model, in agree-
ment with the experimental observations of [60]; universality holds thanks to the subtle
combination of high and low energy modes, and it is missed in the effective relativistic
approximation of graphene, widely used in the theoretical physics literature. Concern-
ing the quantum Hall effect, cluster expansion techniques, lattice Ward identities and
Schwinger–Dyson equations have been used to prove the universality of the Hall con-
ductivity for weakly interacting fermions on two-dimensional lattices [43]. Furthermore,
the combination of the strategy of [43] with RG techniques allowed to study quantum
Hall transitions in the Haldane-Hubbard model [41,44], a prototypical example of in-
teracting topological insulator. In particular, the method allows to fully characterize the
interacting phase diagram, and to prove the universality of the longitudinal conductivity
on the transition curves. Finally, concerning three-dimensional systems with pointlike
Fermi surface, the combination of RGwith lattice and emergentWard identities has been
used to establish the non-renormalization of the lattice analogue of the chiral anomaly
for Weyl semimetals [45]. In all these works, an important simplification is provided by
the fact that the interaction is irrelevant in the RG sense, which allows to construct the
RG fixed point of the theories in a considerably simpler way.

In our present setting, themany-body interaction between the edgemodes ismarginal,
as in 1d quantum systems. The major difference with respect to previous works is that
the low-energy properties of the model are not described by the Luttinger model: it
is a genuinely new case. One has to consider an arbitrarily large number of marginal
couplings (their number depends on the number of edgemodes), and it is a priori not clear
at all that the RG flow can be controlled. Furthermore, even if such control is achieved,
the proof of universality of edge transport coefficients requires detecting an enormous
cancellation between an arbitrarily large number of marginal parameters, impossible to
achieve in perturbation theory, and that cannot be inferred by previous results. These
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problems are solved in the present paper, thus establishing a major advance with respect
to the previous literature on rigorous RG. In the next paragraph, we give an outline of
the main new ideas introduced in the present work.

Outline of the proof. This work generalizes [2,58]. In [2] we considered the special
case of one chiral edge mode, up to spin degeneracy, while in [58] we considered the
special case of two counterpropagating edge modes, with opposite spins. The models of
[2,58] fall into the universality classes of the chiral Luttinger model and of the helical
Luttinger model, respectively, and can be studied thanks to the methods of [32] and
of [19]. In the present paper we allow for an arbitrary number of edge states, without
any constraint on their velocities. The main novelty of the present work with respect to
[2,58] is the control of the backscattering of the edge modes. In particular, we prove
that the edge conductance is unaffected by backscattering. To achieve this, we extend
the proofs of the vanishing of the beta function of [19,32] to a much larger class theories
describing relativistic chiral fermions. The extension is non-trivial, and requires a critical
revisitation of the method of [19].

Let us give a brief overview of the strategy of the proof. We start by proving that the
real-time edge transport coefficients can be analytically continued to imaginary-time,
via a rigorous version of the Wick rotation. The argument streamlines and generalizes
the one in [2]. Imaginary-time correlation functions can then be studied via rigorous RG
methods. Our analysis allows to quantitatively compare the edge correlation functions
with the correlations of a suitably regularized version of the multi-channel Luttinger
model, where the regularization is introduced by a momentum cut-off to be removed at
the end. This QFT plays the role of reference model in our work, and it underlies the
scaling limit of the edge correlation functions. With respect to the original lattice theory,
the reference model enjoys an extra chiral gauge symmetry, associated to independent
phase transformations for the chiral fermions. The reference model is also studied via
RG; a main technical achievement of the present work is the proof of the vanishing of
the beta function, by a nontrivial extension of [19]. This ultimately allows to control the
RG flow of the reference model, which in turn can be used to control the RG flow of
the original lattice model. A consequence of this result is the construction of the Gibbs
state of the lattice model, in terms of a convergent renormalized series. In particular,
we are able to express the edge conductivity of the 2d lattice model in terms of the
density-density correlation functions of the multi-channel Luttinger model, up to finite
renormalizations, which are a priori impossible to compute explicitly.

To access the precise value of the edge conductance, we make use once more of
the chiral gauge symmetry of the reference model, to derive closed equations for the
density-density correlation functions. These equations take the form of Ward identities,
which are anomalous due to the presence of the momentum regularizations. By the
analog of the Adler-Bardeen non-renormalization property for the chiral anomaly, we
are able to solve the equations, and to find explicit expressions for the density-density
correlation functions. However, this analysis is not sufficient to prove the universality of
the edge conductance. In fact, the edge conductance is still dependent on various non-
universal parameters, entering the definition of the reference model, which have to be
fine-tuned in order to capture the correct large-scale behavior of the edge correlations. A
key observation is to combine the Ward identity for the lattice vertex function together
with the anomalous Ward identity for the vertex function of the reference model, to
derive constraints on the various renormalized parameters. These relations ultimately
imply a remarkable cancellation in the expression of the edge conductance, from which
universality follows.
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Structure of the paper. The paper is structured as follows. In Sect. 2 we introduce the
class of many-body lattice systemswe consider; in particular, Assumption 2.1 specifies a
generic structure of the noninteracting edge states. Informally, Assumption 2.1 restricts
to models exhibiting configurations of edge modes which give rise to a bosonizable
many-body interaction, from the emergent field theory viewpoint. Next, in Sect. 3 we
define the edge conductance, the Schwinger functions, and we prove some important
identities among correlations that follow from the lattice conservation laws (latticeWard
identities). In Sect. 4 we state our main result, Theorem 4.1, about the universality of the
edge conductance for many-body fermionic systems on a cylinder. The rest of the paper
is devoted to the proof of the result. In Sect. 5 we prove the Wick rotation. In Sect. 6
we introduce the Grassmann integral formulation of the Gibbs state, which can then
be studied via cluster expansion and multiscale methods. In particular, in Sect. 6.2 we
recall the rigorous mapping of the Grassmann field theory in terms of a 1d theory, and
in Sect. 6.3 we sketch its RG analysis. Sections 6.2, 6.3 summarize the analysis of [2].
The reference model is introduced in Sect. 7, and its RG analysis is discussed in Sect. 8.
In Sect. 9 we prove the vanishing of the beta function for the reference model, which
allows to construct its infrared RG fixed point. In Sect. 10 we compare the original lattice
model with the reference model. In particular, in Proposition 10.2 we recall a result of
[2], that allows to express the edge correlation functions of the lattice model in terms of
those of the reference model, up to finite multiplicative and additive renormalizations.
Finally, in Sect. 11 we collect all the ingredients, and we give the proof of our main
result, Theorem 4.1.

2. The Model

2.1. The Hamiltonian and the Gibbs state. Let L ∈ N and let us consider the square
lattice:

�L = {
x ∈ Z

2 | 0 ≤ xi ≤ L − 1 , i = 1, 2
}

. (2.1)

We equip the lattice with periodic boundary conditions in the direction of x1, and Dirich-
let boundary conditions in the direction of x2. The wave function of a single particle is
f ∈ �2(�L ;C

M ), where the parameter M takes into account the possible presence of
internal degrees of freedom, such as the spin or the sublattice label. The wave function
f (x) = ( f1(x), . . . , fM (x)) satisfies the following boundary conditions:

fρ(x) = fρ(x + nLe1) , fρ((x1, 0)) = fρ((x1, L − 1)) = 0 , ρ = 1, . . . , M .

(2.2)
Thus, we shall think of�L as lying on a cylinder, and we shall say that the function f of
(2.2) satisfies cylindric boundary conditions. It is convenient to introduce the following
notion of distance on �L , compatible with the cylindric boundary conditions:

‖x − y‖L = inf
n∈Z ‖x − y − nLe1‖ , ∀x, y ∈ �L , (2.3)

with ‖ · ‖ the usual Euclidean norm on Z
2. Let:

S
1
L :=

{
k = 2π

L
n | n = 0, 1, . . . , L − 1

}
. (2.4)

We introduce the partial Fourier transform of f as:

f (x1, x2) = 1

L

∑

k∈S1L
e−ikx1 f̂ (k, x2) ⇐⇒ f̂ (k, x2) =

L−1∑

x1=0

eikx1 f (x1, x2) . (2.5)
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We consider a class of interacting fermionic models on �L , that we define in second
quantization as follows. The Fock space Hamiltonian is:

HL =
∑

x,y∈�L

M∑

ρ,ρ′=1

a+x,ρHρρ′(x; y)a−y,ρ′ + λ
∑

x,y∈�L

M∑

ρ,ρ′=1

(
nx,ρ − 1

2

)
wρρ′(x, y)

(
ny,ρ′ − 1

2

)

≡ H0
L + λVL , (2.6)

wherea±x,ρ are theusual fermionic creation/annihilationoperators, actingon the fermionic
Fock space,F =⊕

n≥0 h∧n ,withh = �2(�L ;C
M ). The fermionic creation/annihilation

operators satisfy the canonical anticommutation relations:

{a−x,ρ, a−y,ρ′ } = {a+x,ρ, a+y,ρ′ } = 0 , {a−x,ρ, a+y,ρ′ } = δx,yδρ,ρ′ . (2.7)

Furthermore, the fermionic operators are compatible with the periodic boundary condi-
tions:

a±x,ρ = a±x+ne1L ,ρ , ∀x ∈ �L . (2.8)

We shall introduce the partial Fourier transform of the fermionic operators, as follows:

a±x,ρ = 1

L

∑

k∈S1L
e±ikx1 â±k,x2,ρ ⇐⇒ â±k,x2,ρ =

L−1∑

x1=0

e∓ikx1a±x,ρ . (2.9)

The first term in (2.6),H0
L , is the second-quantization of the single particle Hamiltonian

H on h, H = H∗. The second term in (2.6), VL , is the second-quantization of the
many-body interaction, defined by a real-valued two-body potentialw. The symbol nx,ρ
denotes the density operator, defined as nx,ρ = a+x,ρa

−
x,ρ . The parameter λ ∈ R is the

coupling constant of the model. The Hamiltonian H and the two-body potential w are
compatible with the periodic boundary condition in the e1 direction, and we can suppose
that they act trivially on the boundary, in view of the Dirichlet boundary condition (2.2).
That is:

Hρρ′(x; y) = wρρ′(x; y) = 0 if x2 = 0, L − 1 or y2 = 0, L − 1

Hρρ′(x, y) = Hρρ′(x + nLe1, y + mLe1) ,

wρρ′(x, y) = wρρ′(x + nLe1, y + mLe1) . (2.10)

Also, we will suppose that both Hρρ′(x; y) and wρρ′(x; y) are finite-ranged:
Hρρ′(x; y) = wρρ′(x; y) = 0 if ‖x − y‖L > D (2.11)

for some finite D > 0, and translation-invariant:

Hρρ′(x; y) ≡ Hρρ′(x1 − y1; x2, y2) , wρρ′(x; y) ≡ wρρ′(x1 − y1; x2, y2) . (2.12)

Without loss of generality, we suppose that the Hamiltonian only involves nearest and
next-to-nearest neighbour hopping terms. That is,

Hρρ′(x; y) = 0 if ‖x − y‖L >
√
2. (2.13)
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Longer range hoppings can be taken into account enlarging the number of internal
degrees of freedom M . Next, we introduce the partial Fourier transforms:

Ĥ(k; x2, y2) =
L−1∑

z1=0

eikz1H(z1; x2, y2) , ŵ(k1; x2, y2) =
L−1∑

z1=0

eikz1w(z1; x2, y2) .

(2.14)
The first identity defines the partial Bloch decomposition of H ,

H =
⊕

k∈S1L
Ĥ(k) , (2.15)

where Ĥ(k) is an effective one-dimensional Schrödinger operator on �2([0, L − 1] ∩
Z;C

M ). The self-adjointness of H implies the self-adjointness of Ĥ(k), and the finite-
range of H implies the analyticity of k �→ Ĥ(k).

The grand-canonical Gibbs state of the model is defined in the usual way, for inverse
temperature β > 0:

〈O〉β,μ,L := 1

Zβ,μ,L
TrF Oe−β(HL−μNL ) , (2.16)

where μ ∈ R is the chemical potential of the system, and NL is the number operator:

NL :=
∑

x∈�L

M∑

ρ=1

nx,ρ . (2.17)

Being the fermionic Fock space finite-dimensional, the Gibbs state (2.16) is well-defined
for finite β and finite L and any λ ∈ R. The factors −1/2 in (2.6) amount to a O(λ)

shift of the chemical potential, that we introduce in order to simplify the Grassmann
representation of the model later on.

We will now make some important assumptions of the single-particle Hamiltonian
H . We view H as the single-particle Schrödinger operator for a quantum Hall system.
By the bulk-edge duality, these systems display an insulating behavior in the bulk, and a
metallic behavior in proximity of the edges. For a systemwith no boundary, the insulating
behavior follows by requiring that the spectrum of H is gapped, and that the chemical
potential lies in the spectral gap. In our setting, the model comes with Dirichlet boundary
conditions in the x2 direction; a nontrivial bulk topological phase implies the presence
of edge modes, understood as solutions of the Schrödinger equation that are extended
along the edges and integrable in the bulk:

ψ(x1, x2) = eik1x1 ξ̂ (k1; x2) , (2.18)

where ξ̂ (k1) is a �2-normalized solution of:

Ĥ(k1)ξ̂ (k1) = ε(k1)ξ̂ (k1) , (2.19)

compatible with the Dirichlet boundary conditions, ξ̂ (k1; x2) = 0 for x2 = 0, L − 1.
Edge modes correspond to solutions of (2.19) associated to isolated eigenvalues ε(k1).
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This implies, in particular, that ξ̂ (k1) decays exponentially fast away from the boundary
of the system:

|ξ̂ (k1; x2)| ≤ Ce−c|x2| , |ξ̂ (k1; x2)| ≤ Ce−c|x2−L| (2.20)

where the decay rate c > 0 depends on the distance between ε(k1) and the rest of the
spectrumof Ĥ(k1). Notice that, in general, theremight bemultiple edgemodes branches,
corresponding to dispersion relations k1 �→ εω(k1), for ω = 1, 2 . . .. As L → ∞,
these dispersion relations intersect the Fermi level μ at Fermi points kω

F , εω(kω
F ) = μ.

If non-intersecting, the functions εω(k1) are smooth for k1 in a neighbourhood of the
corresponding Fermi point kω

F , as a consequence of the smoothness of Ĥ(k1). Of course,
if the system is defined on a finite lattice the notion of smoothness has to be properly
interpreted, due to the discreteness of the momenta k1. The next assumption specifies
the class of Hamiltonians H we will consider; in particular, it specifies the properties of
the edge mode branches we will consider in our analysis.

Assumption 2.1. There exists δ > 0, δ̃ > δ such that for all L large enough the following
is true.

(a) Let Iδ̃ = (μ − δ̃, μ + δ̃). We suppose that all the spectrum in this interval of
energies consists of edge mode branches. That is, consider a pair (E, ξ̂E ) solving
the Schrödinger equation for energies in Iδ̃:

Ĥ(k1)ξ̂E = E ξ̂E , E ∈ Iδ̃ . (2.21)

Then, E belongs to an edgemode branch, E = εω(k1). Let ∂k1 the discrete derivative,
∂k1 f (k1) = L

2π ( f (k1 + 2π/L) − f (k1)). The edge mode branches satisfy:

max
k1:|εω(k1)−μ|≤δ

|∂nk1εω(k1)| ≤ Cn , ∀n ∈ N ,

min
k1:|εω(k1)−μ|≤δ

|∂k1εω(k1)| > 0 . (2.22)

(b) Let ξ̂ ω(k1) be a solution of (2.21), with eigenvalue εω(k1). It satisfies the bounds:

‖∂nk1 ξ̂ ω(k1; x2)‖ ≤ Cne
−c|x2| or ‖∂nk1 ξ̂ ω(k1; x2)‖ ≤ Cne

−c|L−x2| . (2.23)

We shall denote by ne the total number of edge modes intersecting the Fermi level,
localized at the lower edge (that is satisfying the first bound in (2.23)).

(c) The functions εω(k1) converge, as L →∞, to C1 functions of k1 ∈ Iδ . We shall set
vω := ∂k1εω(kω

F ). The second inequality in (2.22) implies that vω �= 0.
(d) For any fixed k1 ∈ S

1
L and E ∈ Iδ̃ , the eigenvalue equation (2.21) has at most one

solution. Also, we suppose that the momentum conservation associated to the two-
fermion scattering at the Fermi level is satisfied by at most two different edge modes.
That is, the Fermi momenta kω

F associated to the edge states localized on a given edge
satisfy, modulo 2π ,

kω1
F = kω2

F

kω1
F − kω2

F = kω3
F − kω4

F (2.24)
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only if: for the first line, ω1 = ω2; for the second line ω1 = ω2 and ω3 = ω4 or
ω1 = ω3 and ω2 = ω4. For all the other choices of Fermi momenta, there exists
γ > 0 independent of L such that:

|kω1
F − kω2

F | ≥ γ

|(kω1
F − kω2

F ) − (kω3
F − kω4

F )| ≥ γ . (2.25)

Remark 2.2. (a) The assumptions a)–c) can be proved to hold for the class of finite-
ranged Hamiltonians we are considering, and for generic choices of the chemical
potential μ.

(b) We expect assumption d) to be generically true, unless the Hamiltonian satisfies
extra symmetries, usually not present for quantum Hall systems. For an explicit
example, consider the direct sum of Haldane’s zero-flux Hamiltonians HH [47] on
the cylinder in a nontrivial topological phase, with an energy shift: H = HH ⊕
(HH + ε1)⊕ (HH + η1). The resulting system has three edge modes, that satisfy the
assumption for generic choices of ε and η. Notice also that the assumption is trivially
true for quantumHall systems with two edge modes, at non-exceptional values of the
chemical potential (to avoid special degeneracies of the Fermimomenta). See e.g. [38]
for numerical results about the edge spectrum of the Hofstadter model. Assumption
d) implies that the effective interactions between edge modes in the emergent QFT
description are of density-density type; from a non-rigorous viewpoint, these could
be studied via bosonization. Herewe shall pursue a rigorous approach, based onWard
identities.

(c) The assumption d) rules out the case of multiple edge modes with spin degeneracy.
For the case of a single chiral edge mode with spin degeneracy, see [2]. For the case
of two counterpropagating edge modes with fixed spins, see [58].

(d) From now on, we will drop the μ-dependence of the Gibbs state. We will suppose
that μ is compatible with all the assumptions above, and we will write:

〈·〉β,μ,L ≡ 〈·〉β,L . (2.26)

3. Lattice Current, Transport Coefficients and Conservation Laws

3.1. Lattice current. To begin, let us define the current operator. Let nx =∑
ρ a

+
x,ρa

−
x,ρ

be the total density operator, and consider its time-evolution:

nx (t) = eiHL t nxe
−iHL t . (3.1)

The time-evolution of the density operator satisfies:

∂t nx (t) = i[HL , nx (t)]
= ieiHL t [H0

L , nx ]e−iHL t , (3.2)

where H0
L is the second quantization of H , and where we used that [VL , nx ] = 0. A

simple computation gives:

i[H0
L , nx ] =

∑

y∈�L

i(a+y , H(y; x)a−x ) − i(a+x , H(x; y)a−y ) (3.3)
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where we used the notation (a+, Aa−) =∑
ρ,ρ′ a

+
ρ Aρρ′a

−
ρ′ . We shall also write:

i[H0
L , nx ] = −

∑

y∈�L

j(x,y) , j(x,y) = i(a+x , H(x; y)a−y )− i(a+y , H(y; x)a−x ) (3.4)

where j(x,y) is the bond current associated with the bond (x, y). Notice that j(x,y) =
− j(y,x). For our purposes, it will be convenient to rewrite the continuity equation (3.2)
in a divergence form. Consider the lattice derivatives and the lattice divergence:

di f (x) = f (x) − f (x − ei ) , divx �f = d1 f1(x) + d2 f2(x) . (3.5)

Equation (3.2) can be rewritten as:

∂t nx (t) +
∑

i=1,2

∑

α=±
j(x,x+αei )(t) +

∑

α=±

∑

β=±
j(x,x+αe1+βe2)(t) = 0 , (3.6)

which we can reformulate as, using the discrete derivative and the lattice divergence:

∂t nx (t) + divx �jx (t) = 0 , (3.7)

where �jx = ( �j1,x , �j2,x ) is the current operator. In terms of the bond currents:

j1,x = j(x,x+e1) +
1

2
( j(x,x+e1−e2) + j(x,x+e1+e2)) +

1

2
( j(x−e2,x+e1) + j(x+e2,x+e1))

j2,x = j(x,x+e2) +
1

2
( j(x,x−e1+e2) + j(x,x+e1+e2)) +

1

2
( j(x−e1,x+e2) + j(x+e1,x+e2)). (3.8)

Clearly, the definition of �jx is far from being unique: we could always replace �jx by
�jx + curlxαx , where αx is a quadratic operator in Fock space, and where curlxαx =
(d2αx ,−d1αx ), without affecting the conservation law (3.7). The results we will obtain
will not depend on this choice.

3.2. Edge conductance. We are interested in the transport properties of the system in
proximity of the lower edge of the cylinder, located at x2 = 0. Due to the edge states for
the noninteracting Hamiltonian, we expect to observe a quasi-one dimensional metallic
behavior. In order to probe the transport properties of the edge states, we introduce a
local variation of the chemical potential, for t ≤ 0, and η > 0:

HL → HL +
∑

x∈�L

eηtμ(x)nx ≡ HL(t) , (3.9)

where μ(x) is supported for x2 ≤ a, with a the width of a strip adjacent the x2 = 0
edge, 1 � a � L . The parameter η fixes the time-scale on which the perturbation acts,
and will be eventually sent to zero. The state of the system evolves according to the von
Neumann equation:

i∂tρ(t) = [HL(t), ρ(t)] , ρ(−∞) = ρβ,L . (3.10)

We shall denote by 〈·〉t the time-dependent state associated to ρ(t):

〈·〉t = Tr · ρ(t) . (3.11)
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We are interested in the linear response of the current operator in proximity of the lower
edge, at the time t = 0. Let a′ < a. We shall suppose that 1 � a′ � a � L . Duhamel
formula gives, at first order in the perturbation μ(·):
〈
∑

x2≤a′
j1,x

〉

t

−
〈
∑

x2≤a′
j1,x

〉

β,L

= −i
∫ 0

−∞
dt eηt

∑

y

μ(y)
∑

x2≤a′
〈[ny(t), j1,x ]〉β,L +h.o.t.

(3.12)
For simplicity, suppose that μ(x) ≡ μ(x1) for x2 ≤ a and μ(x) = 0 for x2 > a. We
rewrite the first term in the right-hand side of (3.12) as, setting O≤a

x1 :=∑
x2≤a Ox :

−i
∫ 0

−∞
dt eηt

∑

y1

μ(y1)〈[n≤ay1 (t), j≤a
′

1,x1
]〉β,L ≡ 1

L

∑

p∈S1L
e−i px1μ̂(−p)Ga(η, p) ,

(3.13)
where Ga(η, p) is given by (using translation invariance in the x1-direction):

G
a
β,L(η, p) := −i

∫ 0

−∞
dt eηt

∑

y1

e−i py1〈[n≤ay1 (t), j≤a
′

1,0 ]〉β,L . (3.14)

Equivalently, by translation invariance, we can rewrite (3.14) as:

G
a
β,L(η, p) = −i

∫ 0

−∞
dt eηt 1

L

∑

y1,x1

e−i p(y1+x1)eipx1〈[n≤ay1+x1(t), j≤a
′

1,x1
]〉β,L

≡ −i
∫ 0

−∞
dt eηt 1

L
〈[n̂≤a−p1(t), ĵ

≤a′
1,p1

]〉β,L . (3.15)

Let:
Ga(η, p) := lim

β→∞ lim
L→∞G

a
β,L(η, p) . (3.16)

Notice that the left-hand side is defined for p ∈ R, while the right-hand side is defined
for p ∈ 2π

L Z. In the L → ∞ limit, it has to be understood that a sequence pL → p
is taken, with pL ∈ 2π

L Z and p ∈ R (the limit will not depend on the choice of the
sequence, as a byproduct of our analysis). We define the edge conductance as:

G := lim
a′→∞

lim
a→∞ lim

p→0
lim

η→0+
Ga(η, p) . (3.17)

This quantity describes the response of the edge currents to slowly varying perturbations,
in space and in time. A few remarks are in order.

Remark 3.1. (a) Proving the existence of the limits in (3.17) is nontrivial, due to the fact
that the spectral gap of the Hamiltonian is closed by the presence of the edge states:
this fact implies a slow algebraic decay of correlations in the direction of the edge.
Not only we will prove that the limit is finite; our main result, presented in Sect. 4,
will provide an explicit expression of the edge conductance.

(b) The order of the limits in (3.17) is important. The parameter a defines the width of
the strip where the perturbation is supported, while the parameter a′ defines the width
of the strip where the edge current is supported. We think the external perturbation as
living on a macroscopic/mesoscopic scale; instead, the edge current probes the edge
modes, which live on a microscopic scale. This justifies the order of limits a → ∞
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and then a′ → ∞. Furthermore, our analysis will be able to quantify the error
introduced by not sending to infinity the parameters a and a′. Finally, concerning the
relative order of the limits η → 0+ and p → 0: the rationale is that we are interested
in the response of the system to a static perturbation. As we will see, exchanging the
limits would produce a vanishing result.

3.3. Schwinger functions. Themain part of our technical analysis will focus on the study
of the Euclidean correlation functions of the model, also called Schwinger functions.
These correlations involve the imaginary-time evolution of the fermionic creation and
annihilation operators; for these operators, space-time decay estimates can be proved.
Notice that, in general, these bounds cannot be used to directly study real time cor-
relations. Nevertheless, suitable time integrals of real-time correlation functions can
be rewritten as integrals of imaginary time correlations, via analytic continuation (also
called Wick rotation). As we shall see in Sect. 5, an example of expression that can be
analytically continued to imaginary times is the edge conductance, Eq. (3.14).

Let x0 ∈ [0, β), and let x = (x0, x) ∈ [0, β)×�L . Let us define the imaginary-time
evolution of the fermionic operators as:

a±x,ρ = ex0(HL−μNL )a±x,ρe−x0(HL−μNL ) . (3.18)

Notice that a+x,ρ is not the adjoint of a−x,ρ , if x0 �= 0. More generally, given a local Fock
space operator OX we define its imaginary-time evolution as:

O(x0,X) = ex0(HL−μNL )OXe
−x0(HL−μNL ) . (3.19)

Given a collection of imaginary-time evolved fermionic operators, we define the time-
ordered product as:

Taε1
x1,ρ1 · · · aεn

xn ,ρn = sgn(π)a
επ(1)
xπ(1),ρπ(1) · · · aεπ(n)

xπ(n),ρπ(n)
, (3.20)

where the permutation π is such that x0,π(1) ≥ . . . ≥ x0,π(n). If some times are equal,
the operator T acts as normal ordering. We define the n-point Schwinger function as:

Sβ,L
n;ρ1,...,ρn (x1, ε1; . . . ; xn, εn) := 〈Taε1

x1,ρ1 · · · aεn
xn ,ρn 〉β,L , (3.21)

and we will set
Sn(·) := lim

β→∞ lim
L→∞ Sβ,L

n (·) , (3.22)

provided the limits exist. So far, the Schwinger functions are defined for imaginary times
in [0, β). It turns out that the object defined in (3.21) satisfies antiperiodic boundary
conditions in the time variables. It is then natural to antiperiodically extend the n-point
Schwinger function to all times in R. From now on, it will be understood that such
antiperiodic extension has been taken.

In the absence of interactions, λ = 0, the Gibbs state is quasi-free and all n-point
Schwinger functions can be computed from the two-point Schwinger function, thanks to
the Wick rule. Suppose that x0− y0 �= nβ. Let M

F
β be the set of frequencies compatible

with antiperiodicity with period β, also called the fermionic Matsubara frequencies:

M
F
β =

{
k0 = 2π

β

(
n +

1

2

)
| n ∈ Z

}
. (3.23)
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Let us introduce the notation:

k = (k0, k1) ∈ M
F
β × S

1
L . (3.24)

Then, the two-point function Sβ,L
2;ρ,ρ′(x; y) ≡ Sβ,L

2;ρ,ρ′(x,−; y,+) is given by, in the ab-
sence of interactions, see e.g. [35, Section 7] or [61, Section 4.2.4]:

Sβ,L
2;ρ,ρ′(x; y)

∣∣
λ=0 =

1

βL

∑

k∈MF
β×S

1
L

e−ik·(x−y)
( 1

−ik0 + Ĥ(k)− μ

)

ρ,ρ′
(x2; y2) . (3.25)

If instead x0 − y0 = nβ, the two-point function is the antiperiodic extension of the
two-point function at equal times, which is defined via normal ordering. That is:

Sβ,L
2 ((y0 + nβ, x); y) = (−1)n lim

y0−x0→0−
Sβ,L
2 (x; y) . (3.26)

Besides the interacting two-point function, we will be interested in the current-current
correlation function and in the vertex function. These last two correlations are defined
as follows. For μ = 0, 1, 2, let us define the space-time current jμ,x, with j1,x and j2,x
the imaginary-time evolution of (3.8), and let us set j0,x := nx. We define the connected
current-current correlation function as:

Sβ,L
0,2;μ,ν

(x; y) = 〈T jμ,x ; jν,y〉β,L . (3.27)

Trivially, Sβ,L
0,2;μ,ν

(x; y) = Sβ,L
0,2;ν,μ

(y; x). Also, we define the connected vertex function
as:

Sβ,L
1,2;μ,ρ,ρ′(z; x; y) = 〈T jμ,z ; a−x,ρ ; a+y;ρ′ 〉β,L . (3.28)

Being the current operators even in the number of fermionic operators, the expressions in
(3.27), (3.28) are extended periodically in the time variables appearing at the argument
of the currents. Let us introduce the set of frequencies compatible with periodicity with
period β, also called the bosonic Matsubara frequencies:

M
B
β =

{
p0 = 2π

β
n
∣∣∣ n ∈ Z

}
. (3.29)
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We set, for p = (p0, p1) = M
B
β × S

1
L , and k ∈ M

F
β × S

1
L :

Ŝβ,L
2;ρ,ρ′(k; x2, y2) :=

∫ β

0
dx0

L−1∑

x1=0

eik·x Sβ,L
2;ρ,ρ

(x; (0, y2)) ,

Ŝβ,L
0,2;μ,ν

(p; x2, y2) :=
∫ β

0
dx0

L−1∑

x1=0

ei p·x Sβ,L
0,2;μ,ν

(x; (0, y2)) ,

Ŝβ,L
1,2;μ,ρ,ρ′(p, k; z2, x2, y2) :=

∫ β

0
dz0

∫ β

0
dx0

L−1∑

z1,x1=0

ei p·z+ik·x Sβ,L
1,2;μ,ρ,ρ′(z; x; (0, y2)).

(3.30)

As we shall see in the next section, the conservation of the lattice current (3.7) implies
nontrivial identities for these objects.

3.4. Lattice Ward identities. The lattice conservation law (3.7) implies nonperturbative
identities between Schwinger functions, called Ward identities, that will play a crucial
role in our analysis. Here we shall derive identities for the current-current correlation
and for the vertex function.

Current-current identity. Consider the Euclidean current-density correlation function,
for x0 �= y0, 0 ≤ x0, y0 < β:

〈Tnx ; ji,y〉β,L = θ(x0 − y0)〈nx ; ji,y〉β,L + θ(y0 − x0)〈 ji,y ; nx〉β,L , (3.31)

where θ(x0 − y0) is 1 for x0 − y0 > 0 and zero otherwise. Taking the derivative with
respect to x0, and using the lattice continuity equation (3.7), we get:

i∂x0〈Tnx ; ji,y〉β,L = −divx 〈T �jx ; ji,y〉β,L + iδ(x0 − y0)〈[nx, ji,y]〉β,L . (3.32)

This identity will have important consequences on the structure of the edge response
function. Let us take the Fourier transform of (3.32):

p0 Ŝ
β,L
0,2;0,i (p; x2, y2) = −(1− eip1)Ŝβ,L

0,2;1,i (p; x2, y2) − dx2 Ŝ
β,L
0,2;2,i (p; x2, y2)

+ i
∑

x1

eip1x1〈[nx , ji,(0,y2)]〉β,L (3.33)

where we used the periodicity in x0, to get rid of the boundary terms arising after
integration by parts in the left-hand side. In particular, for p0 �= 0:

L−1∑

x2=0

Ŝβ,L
0,2;0,i ((p0, 0); x2, y2) = 0 , (3.34)

where we used the Dirichlet boundary conditions at x2 = 0 and x2 = L − 1, and the
fact that [NL , ji,y] = 0.

Vertex identity. Another useful consequence of the lattice continuity equation is the
following identity, for the vertex function:

i∂z0〈Tnz ; a−x,ρ ; a+y,ρ′ 〉β,L

= −divz〈T �jz ; a−x,ρ ; a+y,ρ′ 〉β,L+iδ(y−z)〈Ta−x,ρa+y,ρ′ 〉β,L − iδ(x − z)〈Ta−x,ρa+y,ρ′ 〉β,L ,

(3.35)
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where δ(x) = δ(x0)δx,0. Taking the Fourier transform:

p0 Ŝ
β,L
1,2;0,ρ,ρ′(p, k; z2, x2, y2)
= −(1− eip1)Ŝβ,L

1,2;1,ρ,ρ′(p, k; z2, x2, y2) − dz2 Ŝ
β,L
1,2;2,ρ,ρ′(p, k; z2, x2, y2)

+ iδy2,z2 Ŝ
β,L
2;ρ,ρ′(k; x2, y2) − iδx2,z2 Ŝ

β,L
2;ρ,ρ′(k + p; x2, y2) . (3.36)

Finally, summing over z2, and using the Dirichlet boundary conditions:

p0

L−1∑

z2=0

Ŝβ,L
1,2;0,ρ,ρ′(p, k; z2, x2, y2)

= − (1− eip1)
L−1∑

z2=0

Ŝβ,L
1,2;1,ρ,ρ′(p, k; z2, x2, y2) + i Ŝβ,L

2;ρ,ρ′(k; x2, y2)

−i Ŝβ,L
2;ρ,ρ′(k + p; x2, y2) . (3.37)

This identity will play a key role in the proof of the universality of the edge
conductance.

4. Main Result and Sketch of the Proof

4.1. Main result. Our main result concerns the edge conductance, as defined in (3.17).
Already in the absence of interactions, the computation of this quantity is nontrivial.
The next theorem provides the exact expression of the edge conductance for weakly
interacting lattice models, satisfying the Assumption 2.1.

Theorem 4.1. (Main result.)For the class of latticemodels satisfying theAssumption2.1,
there exists λ0 > 0 such that for |λ| < λ0 the following is true. The limits in (3.14),
(3.17) exist and are finite. In particular,

G =
∗∑

ω

sgn(vω)

2π
, (4.1)

where the asterisk denotes summation over all the edge modes localized at the lower
edge x2 = 0.

Remark 4.2. (a) The result proves the universality of the edge conductance against weak
many-body interactions: the expression in (4.1) is completely specified by the chi-
ralities of the noninteracting edge modes. Combined with the universality of bulk
transport [43], our result lifts the bulk-edge correspondence for this class of lattice
models to the realm of weakly interacting fermionic models.

(b) The proof of the theorem actually gives much more information about the system
that just the value of the edge conductance. It allows to prove the validity of the
multi-component Luttinger liquid description of the edge currents, an effective QFT
playing an important role for the description of both the integer and the fractional
quantum Hall effect. In particular, our result covers cases in which backscattering is
present, and hence the Luttinger parameters of the chiral edge modes are not 1. In
principle, the method could be used to compute all edge correlation functions, and
various other transport coefficients such as the susceptibility and the Drudeweight. In
these cases we expect a non-universal behavior, in contrast to the edge conductance.
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(c) Compared to our previous works, [2,58], Theorem 4.1 allows to consider an arbi-
trary number of edge modes. In fact, [2] was restricted to the case of quantum Hall
systems with single-channel chiral edge modes (up to spin degeneracy), while [58]
focused on the case to two counterpropagating edge modes, a setting relevant for
time-reversal invariant topological insulators. The proofs of [2,58] heavily relied on
special integrability features of the chiral Luttinger model and of the helical Luttinger
model. Technically, they used the vanishing of the beta function property for these
models to rigorously control the RG flow. With respect to [2,58], a main technical
innovation of the present work is the generalization of the proof of the vanishing of
the beta function property for the multi-component Luttinger model.

4.2. Sketch of the proof. Let us give a short and informal overview of the proof of
the main result. We start by proving that the real-time edge conductance (3.16) can be
represented in terms of Euclidean correlation functions. This mapping is useful, because
Euclidean correlation functions can be efficiently studied via field-theoretic methods. In
particular, our method provides a quantitative approximation of the edge conductance
in terms of the density-density correlation functions of a regularized version of the
multi-channel Luttinger model, which plays the role of reference model in our analysis.
Formally, the partition function of this 1 + 1 dimensional reference model is:

Z =
∫

D� e−S(�)

S(�) =
∑

ω

∫

R2
dx Zωψ+

x,ω(∂0 + ivω∂1)ψ
−
x,ω

+
∑

ω,ω′
λω,ω′ ZωZω′

∫

R2×R2
dxdy ψ+

x,ωψ−
y,ωψ+

y,ω′ψ−
x,ω′v(x − y) , (4.2)

for a smooth and short-ranged potential v(·), such that v̂(p) = 1. The parameters Zω, vω

have to be fine-tuned, in order to make sure that this QFT correctly describes the scaling
limit of the edge correlation functions. The label ω should be understood as indexing the
different edge states. The correct definition of the model involves infrared and ultraviolet
cutoffs, needed in order to make sense of the functional integral.

At the classical level, the above QFT is invariant under the global chiral gauge sym-
metry:

ψ±
x,ω → e±iαωψ±

x,ω . (4.3)

This symmetry is absent in the original lattice model. Noether’s theorem implies the
conservation of the chiral current:

(∂0 + ivω∂1)nx,ω = 0 , nx,ω = ψ+
x,ωψ−

x,ω . (4.4)

In the quantization of the field theory, the analogous conservation law follows from
the covariance of the theory under local chiral gauge transformations. This symmetry,
however, turns out to be broken in the quantized field theory; already in the absence of
many-body interactions, λω,ω′ = 0, we have:

(−i p0 + vω p1)〈n̂ p,ω ; n̂−p,ω′ 〉 = δω,ω′
1

Z2
ω

(i p0 + vω p1)

4π |vω| . (4.5)
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Eq. (4.5) is an example of anomalous Ward identity. This identity can be used to com-
pute the density-density correlations in the non-interacting theory. The breaking of the
conservation law is due to the fact that in order to give a meaning to the expressions in
(4.2) one has to introduce cutoffs, which make the model finite-dimensional, but which
break the chiral gauge symmetry of the system. This affects the conservation of the chiral
current; the extra terms appearing in the continuity equation do not vanish in the limit
of cutoff removal, and produce the result (4.5). We stress that the proof of this identity
is non-trivial already in the absence of interactions, and it is reviewed in Sect. 9.2, see
discussion after (9.40).

Remarkably, a similar identity can be proven in the interacting theory. The analysis
is much more involved; it relies on the vanishing of the beta function of the QFT, and
the non-renormalization of the chiral anomaly. We eventually find, for λω,ω′ �= 0 small
enough:

〈n̂ p,ω ; n̂−p,ω′ 〉 = Tω,ω′(p)
1

Z2
ω′

1

4π |vω′ |
i p0 + vω′ p1
−i p0 + vω′ p1

, (4.6)

where the matrix T (p) is explicit:

( 1

T (p)

)

ω,ω′ = δω,ω′ +
i p0 + vω p1
−i p0 + vω p1

1

4π |vω|
1

Zω

λω,ω′ Zω′ . (4.7)

Another useful anomalous Ward identity relates the vertex function with the two-point
function:

〈n̂ p,ω ; ψ̂−
k,ω′ ; ψ̂+

k+p,ω′ 〉 = Tω,ω′(p)
1

Zω′Dω′(p)

(〈ψ̂−
k,ω′ψ̂+

k,ω′ 〉 − 〈ψ̂−
k+p,ω′ψ̂+

k+p,ω′ 〉) .

(4.8)
Let us denote by Sref0,2;ω,ω′(p) the correlation function in (4.6). Our analysis allows to
express the edge conductance in terms of the density-density correlation function of the
reference model. Let Ga′(p) = lima→∞ Ga(p), recall1 the definition Eq. (3.16). By a
rigorous renormalization group analysis of the edge correlation functions of the model
we find, for p = (η, p1), ‖p‖ small:

Ga′(p) = ( �Z0, S
ref
0,2(p) �Z1

)
+ Ra′(p) + O(e−ca′) , (4.9)

where (�a, �b) =∑∗
ω aωbω and the asterisk restricts the sum to the edge modes localized

at the lower edge. The quantities Z0,ω, Z1,ω are the renormalized parameters that allow
to relate the density and the current of the lattice model, for momenta k close to the
space-time Fermi point kω

F = (0, kω
F ), to the densities of the reference model.

Asmanifest from (4.6), thefirst term in the right-hand side of (4.9) is singular at p = 0.
Instead, the second term turns out to have better regularity properties; in particular, it is
Hölder continuous at p = 0. Now, lattice conservation laws imply that:

Ga′((η, 0)) = 0 . (4.10)

This identity can be used to compute the value at p = 0 of the error term. We obtain:

Ra′(0) = − lim
η→0+

lim
p1→0

(
Z0, S

ref
0,2(p)Z1

)
+ O(e−ca′) . (4.11)

1 We will prove that the a →∞ limit can be interchanged with the p → 0 limit.
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In particular, by the Hölder continuity of Ra′(p):

Ga′(p) =
(
Z0,

[
Sref0,2(p)− lim

η→0+
lim
p1→0

Sref0,2(p)
]
Z1

)
+ O(a′‖p‖θ ) + O(e−ca′) . (4.12)

Hence, we find the following remarkable expression for the edge conductance:

G = lim
a′→∞

lim
p1→0

lim
η→0+

Ga′(p)

≡ (
Z0,AZ1

)
(4.13)

where thematrixA captures the discontinuity of the density-density correlation functions
of the reference model:

A = lim
p1→0

lim
η→0+

Sref0,2(p) − lim
η→0+

lim
p1→0

Sref0,2(p) . (4.14)

Eq. (4.13) is an exact expression for the edge conductance in terms of a number of non-
universal parameters, given by a convergent series in the coupling, essentially impossible
to compute explicitly. Hence, it is a priori unclear why the expression in (4.13) should be
quantized. The key observation at this point is to combine the lattice Ward identities for
the original model (3.37), together with the anomalous Ward identities for the reference
model (4.8). More precisely, by our renormalization group analysis we can rigorously
approximate the correlation functions of the lattice model with those of the reference
model; we find that, for k′, p small, up to subleading terms:

S2;ρ,ρ′(k
′ + kω

F ; x2, y2) � Sref2;ω(k′)ξω
ρ (kω

F , x2)ξω
ρ′(k

ω
F , y2)

∑

z2

S1,2;μ,ω,ρ,ρ′(p, k
′; z2, x2, y2) �

∑

ω′
Zμ,ω′ Sref1,2;ω′,ω(p, k′)ξω

ρ (kω
F , x2)ξω

ρ′(k
ω
F , y2) ,

(4.15)

where

Sref2;ω(k′) = 〈ψ̂−
k,ω′ψ̂+

k,ω′ 〉 , Sref1,2;ω′,ω(p, k′) = 〈n̂ p,ω′ ; ψ̂−
k,ω ; ψ̂+

k+p,ω〉 , (4.16)

are the two-point and thevertex functionof the referencemodel.Using the �2-normalization
of the edge modes, it is not difficult to see that the lattice Ward identity (3.37) together
with (4.15) implies, up to subleading terms for ‖p‖, ‖k′‖ small:

∑

μ=0,1

(−i)δμ,0 pμ

∑

ω′
Zμ,ω′ Sref1,2;ω′,ω(p, k′) � Sref2;ω(k′) − Sref2;ω(k′ + p) . (4.17)

The simultaneous validity of (4.17) together with (4.8) ultimately implies the following
nontrivial relation among renormalized parameters:

�Z0 = (T T (0−))−1 �Z , �Z1 = (T T (0+))−1v �Z , (4.18)

where (v �Z)ω = vωZω and:

T (0−) = lim
p1→0

lim
η→0+

T (p) , T (0+) = lim
η→0+

lim
p1→0

T (p) . (4.19)
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Plugging the relations (4.18) into (4.13), and using the explicit expression of the discon-
tinuity matrix A, the universality of G follows. This concludes the sketch of the proof
of Theorem 4.1.

As a final comment,we stress the importance of the gauge symmetry of the original 2d
lattice model, and of the contribution of the bulk degrees of freedom, which are typically
neglected in the existing effective field theory descriptions of the edge currents. In fact, it
is only thanks to the lattice conservation law (4.10) and to the bulk contribution Ra′(p)
that we are able to obtain the expression (4.13). Also, the key input for universality
follows from the lattice Ward identity for the vertex function, which allows to prove the
relations (4.18).

5. Wick Rotation

To begin, let us discuss how to rewrite the edge conductance (3.14) in terms of Euclidean
correlations. The next result generalizes Lemma B.1 of [2].

Proposition 5.1. (Wick rotation.) The following identity holds true, for all T > 0:

∫ 0

−T
dt eηt

1

L
〈[n̂≤ap1 (t), ĵ≤a

′
1,−p1

]〉β,L = i
∫ β

0
dt e−iηβ t 1

L
〈T n̂≤ap1 (−i t) ; ĵ≤a′1,−p1

〉β,L + Eβ,L (T, η, p1) ,

(5.1)

with ηβ ∈ 2π
β

Z is such that |η − ηβ | = minη′∈ 2π
β
Z
|η − η′| and where:

|Eβ,L(T, η, p1)| ≤ Caa′

η3β
+ Ke−ηT . (5.2)

The constant C is independent of β, L , T, η, p1, while the constant K is independent of
T .

Remark 5.2. (a) The above proposition implies that, recall Eq. (3.15):

G
a
β,L(η, p) =

∫ β

0
dt e−iηβ t 1

L
〈T n̂≤ap1 (−i t) ; ĵ≤a′1,−p1

〉β,L + O
( aa′

η3β

)

≡
a∑

x2=0

a′∑

y2=0

Ŝβ,L
0,2;0,1(p; x2, y2) + O

( aa′

η3β

)
(5.3)

with p = (ηβ, p). The argument of the double sum in the right-hand side is the
Fourier transform of the current-current Euclidean correlation function, (3.30).

(b) An important consequence of the identity (5.1) is that:

lim
β→∞ lim

L→∞G
a
β,L(η, p) =

a∑

x2=0

a′∑

y2=0

lim
β→∞ lim

L→∞ Ŝβ,L
0,2;0,1(p; x2, y2) . (5.4)

In particular, the existence of the limits in the left-hand side follows from the existence
of the limits in the right-hand side. This last result is nontrivial, and will follow
from the renormalization group analysis of the Euclidean correlation functions of the
model.
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(c) Compared to Lemma B.1 of [2], the statement (5.1) does not require any assumption
on the Euclidean correlations. Detailed control on these correlations is then of course
needed in order to prove the existence of the limits in the right-hand side of (5.4).

Proof. The proof is based on a complex deformation argument. To begin, we write:
∫ 0

−T
dt eηt

1

L
〈[n̂≤ap1 (t), ĵ≤a

′
1,−p1

]〉β,L =
∫ 0

−T
dt eηβ t 1

L
〈[n̂≤ap1 (t), ĵ≤a

′
1,−p1

]〉β,L + E(1)
β,L (T, η, p1) ,

(5.5)
where E (1)

β,L takes into account the error introduced replacing eηt with eηβ t . We then
rewrite the main term as:

∫ 0

−T
dt eηβ t 1

L
〈[n̂≤ap1 (t), ĵ≤a

′
1,−p1

]〉β,L ≡
∫ 0

−T
dt eηβ t 1

L
〈[n̂≤ap1 (t) ; ĵ≤a′1,−p1

]〉β,L , (5.6)

where [A; B] = [A− 〈A〉; B − 〈B〉] (a shift by a constant does not change the commu-
tator). Next, we rewrite the right-hand side of (5.6) as:2

∫ 0

−T
dt eηβ t 1

L
〈[n̂≤ap1 (t) ; ĵ≤a′1,−p1

]〉β,L

=
∫ 0

−T
dt
[
eηβ t 〈n̂≤ap1 (t) ; ĵ≤a′1,−p1

〉β,L − eηβ t 〈 ĵ≤a′1,−p1
; n̂≤ap1 (t)〉β,L

]

=
∫ 0

−T
dt
[
eηβ t 〈n̂≤ap1 (t) ; ĵ≤a′1,−p1

〉β,L − eηβ(t−iβ)〈n̂≤ap1 (t − iβ) ; ĵ≤a′1,−p1
〉β,L

]
.

(5.7)

The last step follows from the KMS identity, and from the trivial (but crucial) fact
eiηββ = 1. For β, L finite the function

f (z) := eηβ z〈n̂≤ap1 (z) ; ĵ≤a′1,−p1
〉β,L (5.8)

is entire. Therefore, by Cauchy theorem the integral of f (z) along the closed complex
path

0 →−iβ →−T − iβ →−T → 0 (5.9)

is zero. We use this observation to rewrite:
∫ 0

−T
dt eηβ t 1

L
〈[n̂≤ap1 (t) ; ĵ≤a′1,−p1

]〉β,L = i
∫ β

0
dt e−iηβ t 1

L
〈n̂≤ap1 (−i t) ; ĵ≤a′1,−p1

〉β,L + E(2)
β,L (T, η, p1) ,

(5.10)

where E (2)
β,L takes into account the contribution of the path integration on −T − iβ →

−T . Eqs. (5.5), (5.10) imply the claim (5.1), with Eβ,L(T, η, p1) = E (1)
β,L(T, η, p1) +

E (2)
β,L(T, η, p1). Let us bound these error terms. We have:

E (1)
β,L(T, η, p1) =

∫ 0

−T
dt (eηt − eηβ t )

1

L
〈[n̂≤ap1 (t), ĵ≤a

′
1,−p1

]〉β,L . (5.11)

2 Recall that 〈A ; B〉 = 〈(A − 〈A〉)(B − 〈B〉)〉.
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Consider the average of the commutator. We can estimate this quantity using Lieb–
Robison bounds; the argument is standard, and we repeat it for completeness. The com-
mutator is of the form: [ ∑

x :x2≤a
Ax (t) ,

∑

y:y2≤a′
By

]
, (5.12)

for Ax , By bounded and local (meaning that they depend on a finite number of lattice
sites around x and y). The Lieb–Robinson bound tells us that, for some constantsC, c, v:

‖[Ax (t), By]‖ ≤ Cevt−c‖x−y‖L . (5.13)

Therefore, we rewrite:
[ ∑

x :x2≤a
Ax (t) ,

∑

y:y2≤a′
By

]
=

∑

x :x2≤a

∑

y:y2≤a′
χ(|x1 − y1|L ≤ Kt)

[
Ax (t), By

]

+
∑

x :x2≤a

∑

y:y2≤a′
χ(|x1 − y1|L > Kt)

[
Ax (t), By

]
.

(5.14)

Taking K large enough, the second term is bounded as:
∑

x :x2≤a

∑

y:y2≤a′
χ(|x1 − y1|L > Kt)

∥∥[Ax (t), By
]∥∥

≤
∑

x :x2≤a

∑

y:y2≤a′
χ(|x1 − y1|L > Kt)Ce−(c/2) |x1−y1|L

≤ CLaa′e−(c/2) Kt . (5.15)

Consider now the first term in (5.14). We use the following trivial bound, implied by the
boundedness of the fermionic operators:

∥∥∥
∑

x :x2≤a

∑

y:y2≤a′
χ(|x1 − y1|L ≤ Kt)

[
Ax (t), By

]∥∥∥ ≤ CLaa′|t |K . (5.16)

We are now ready to estimate E (1)
β,L . Using that, for fixed η and for β large enough:

|eηt − eηβ t | ≤ C |t |
β

eηt , (5.17)

we have, possibly for a different constant C > 0:

|E (1)
β,L(T, η, p1)| ≤ C

β

∫ 0

−T
dt |t |eηt

[
aa′e−(c/2) Kt + aa′|t |K

]

≤ C̃aa′

η3β
. (5.18)

This estimate corresponds to the first contribution to the right-hand side of (5.2). To
conclude, let us consider the error term E (2)

β,L(T, η, p1), corresponding to the complex
path −T − iβ →−T :

|E (2)
β,L(T, η, p1)| ≤ e−ηT

∫ β

0
dt

1

L

∣∣〈n̂≤ap1 (−T − i t) ; ĵ≤a′1,−p1
〉β,L

∣∣ . (5.19)
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All we have to do is to find an estimate for the argument of the integral which is sub-
exponential in T . To do this, we apply Cauchy-Schwarz inequality for traces, to get:

∣∣〈n̂≤ap1 (−T − i t) ; ĵ≤a′1,−p1
〉β,L

∣∣2

≤ ∣∣〈n̂≤ap1 (−T − i t) ; n̂≤ap1 (−T − i t)∗〉β,L
∣∣∣∣〈 ĵ≤a′∗1,−p1

; ĵ≤a′1,−p1
〉β,L

∣∣ . (5.20)

The second factor is T independent, and it is trivially bounded since β and L are finite.
For the first factor, we use that:

〈n̂≤ap1 (−T − i t) ; n̂≤ap1 (−T − i t)∗〉β,L = 〈n̂≤ap1 (−i t) ; n̂≤a−p1(i t)〉β,L , (5.21)

which is independent of T , and also trivially bounded. Therefore:

|E (2)
β,L(T, η, p1)| ≤ Ke−ηT , (5.22)

for some finite constant K that might depend on all parameters but not on T . This
estimate corresponds to the second contribution in (5.2). End of proof. ��

6. Functional Integral Formulation of the Model

6.1. Grassmann field theory. The low temperature and large volume limit of the Gibbs
state will be investigated using multiscale analysis and renormalization group. To do so,
it is convenient to map the statistical mechanics problem into the study of a Grassmann
field theory. Themapping is exact, in the sense that all correlation functions of the system
have a Grassmann counterpart. We will follow closely the discussion of Section 5 of [2].

Let χ(s) be a smooth, even, compactly supported function, such that χ(s) = 0 for
|s| > 2 and χ(s) = 1 for |s| < 1. Let N ∈ N, and

M
F∗
β = {k0 ∈ M

F
β | χ(2−Nk0) > 0} , D

∗
β,L = M

F∗
β × S

1
L . (6.1)

The setMF∗
β is finite. The parameter N plays the role of ultraviolet cutoff for theMasubara

frequencies of the model. We consider the finite Grassmann algebra generated by the
the Grassmann variables {�̂±

k,q}with k ∈ D
∗
β,L , q = 1, . . . , ML . The label q is an index

for the eigenstates of Ĥ(k1), which is an LM × LM matrix in a finite volume. The
eigenvalue equation reads:

Ĥ(k1)ϕ
q(k1) = eq(k1)ϕ

q(k1) , eq(k1) ∈ R , ϕq(k1) ∈ C
LM . (6.2)

We shall denote byϕ
q
ρ (k1; x2) the components of the eigenvectorϕq (k1).We shall always

suppose that ϕq(k1) is normalized, ‖ϕq(k1)‖ = 1.
The Grassmann Gaussian integration

∫
PN (d�) is a linear functional acting on the

Grassmann algebra as follows. Its action on a given monomial
∏n

j=1 �̂
ε j
k j ,q j

is zero

unless |{ j : ε j = +}| = |{ j : ε j = −}|, in which case:
∫

PN (d�)�̂−
k1,q1

�̂+
p
1
,q ′1

· · · �̂−
kn ,qn

�̂+
p
n
,q ′n = det[C(k j , q j ; pk, q ′k)] j,k=1,...,n, (6.3)

where C(k, q; p, q ′) = βLδk,pδq,q ′ ĝ(≤N )(k, q) and

ĝ(≤N )(k, q) := χN (k0)

−ik0 + eq(k1) − μ
, χN (k0) ≡ χ0(2

−Nk0) . (6.4)
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Eq. (6.4) defines the free propagator of the Grassmann field. Thanks to the fact that
k0 ∈ 2π

β
(Z + 1

2 ), the propagator (6.4) is bounded uniformly in k, q. Next, we define the
configuration space Grassmann fields as:

�+
x,ρ := 1

βL

∑

k∈D∗
β,L

ML∑

q=1

eik·x ϕ
q
ρ (k1; x2)�̂+

k,q ,

�−
x,ρ := 1

βL

∑

k∈D∗
β,L

ML∑

q=1

e−ik·x ϕq
ρ (k1; x2)�̂−

k,q . (6.5)

We then have: ∫
PN (d�)�−

x,ρ�+
y,ρ′ = g(≤N )

ρ,ρ′ (x, y), (6.6)

where

g(≤N )

ρ,ρ′ (x, y) = 1

βL

∑

k∈D∗
β,L

ML∑

q=1

e−ik·(x−y)ϕq
ρ (k1; x2)ϕq

ρ′(k1; y2)ĝ(≤N )(k, q). (6.7)

As N → ∞ and for x0 �= y0, the propagator converges pointwise to the two-point
Schwinger function of the noninteracting lattice model, Eq. (3.25). Notice that the prop-
agator is periodic in the x1 direction with period L , antiperiodic in the x0 direction with
antiperiod β, and it satisfies the Dirichlet boundary conditions.

If needed,
∫
PN (d�) can be written explicitly in terms of the usual Berezin integral∫

d�, which is the linear functional on the Grassmann algebra acting non trivially on a
monomial only if the monomial is of maximal degree, in which case

∫
d�

∏

k∈D∗
β,L

ML∏

q=1

�̂−
k,q�̂

+
k,q = 1.

The explicit expression of
∫
PN (d�) in terms of

∫
d� is

∫
PN (d�)

( · ) = 1

Nβ,L ,N

∫
d� exp

{
− 1

βL

∑

k∈D∗
β,L

ML∑

q=1

�̂+
k,q

[
ĝβ,L ,N (k, q)

]−1
�̂−
k,q

}( · ),

with normalization Nβ,L ,N =
∏

k∈D∗
β,L

ML∏

q=1

[βL]ĝ(≤N )(k, q) . (6.8)

The Grassmann counterpart of the many-body interaction is:

V (�) := λ

∫ β

0
dx0

∑

x,y∈�L

M∑

ρ,ρ′=1

nx,ρδ(x0 − y0)wρρ′(x, y)ny,ρ′ , (6.9)

where nx,ρ = �+
x,ρ�−

x,ρ is the Grassmann counterpart of the density operator. With
respect to (2.6), notice the absence of the −1/2 factors. The partition function of the
Grassmann field theory is:

ZN ,β,L :=
∫

PN (d�) e−V (�) . (6.10)
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For finite N , β, L , the right-hand side of Eq. (6.10) is a polynomial in λ with bounded
coefficients, due to the finiteness of the Grassmann algebra, and to the boundedness
of the fermionic propagator (6.4). Next, let us introduce the generating functional of
correlations. Let ei = (0, ei ), for i = 1, 2. We define the Grassmann counterpart of the
current operator as:

J1,x := Jx,x+e1 +
1

2
(Jx,x+e1−e2 + Jx,x+e1+e2) +

1

2
(Jx−e2,x+e1 + Jx+e2,x+e1)

J2,x := Jx,x+e2 +
1

2
(Jx,x−e1+e2 + Jx,x+e1+e2) +

1

2
(Jx−e1,x+e2 + Jx+e1,x+e2) ,

with the Grassmann bond current, recall Eq. (3.4):

Jx,y := i(�+
x , H(x; y)�−

y )− i(�+
y , H(y; x)�−

x ) . (6.11)

We then define the source terms as:

B(�;φ) :=
∫ β

0
dx0

∑

x∈�L

M∑

ρ=1

(φ+
x,ρ�−

x,ρ + �+
x,ρφ−

x,ρ) ,

�(�; A) :=
∫ β

0
dx0

∑

x∈�L

∑

μ=0,1,2

Aμ,x Jμ,x , (6.12)

where φ±
x , Aμ,x are, respectively, Grassmann and a complex valued external fields. The

generating functional of correlations WN ,β,L(A, φ) is defined as:

WN ,β,L(A, φ) := log
∫

PN (d�)e−V (�)+�(�;A)+B(�;φ) . (6.13)

For small ‖A‖∞ and for small |λ|, the argument of the log is nonzero, thanks to the
finiteness of the Grassmann algebra.

It is well-known that the Schwinger functions of the Gibbs state at noncoinciding
arguments can be obtained as functional derivatives of the generating functional, in the
N →∞ limit; see, e.g., [43] for a discussion about this point. We have:

logZβ,L = lim
N→∞WN (0, 0)

〈Taε1
x1,ρ1 ; · · · ; aεn

xn ,ρn ; jμ1,y1 ; · · · ; jμm ,ym 〉β,L

= lim
N→∞

∂n+mWN ,β,L(A, φ)

∂φ
ε1
x1,ρ1 · · · ∂φ

εn
xn ,ρn∂A

�1
μ1,y1 · · · ∂A�m

μm ,ym

∣∣∣A=0
φ=0

. (6.14)

The identities (6.14) allow to use the properties of Grassmann Gaussian fields in order
to investigate the Euclidean correlation functions of our model. Eqs. (6.14) hold in the
analyticity domain of theGrassmann theory,which coincideswith the analyticity domain
of the Fock space model.
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6.2. Reduction to an effective one-dimensional model. The Grassmann field theory can
be studied using multiscale analysis and renormalization group. To do so, a preliminary
step is to introduce a notion of ‘integration of bulk degrees of freedom’, that allows to
recast the problem into the study of an emergent 1 + 1 dimensional QFT, describing the
edge currents. The separation between ‘bulk’ and ‘edge’ degrees of freedom has been
discussed in detail in [2]. Here we shall outline the main ideas, referring to [2], Section
5.2, for further details.

Themain advantage of theGrassmann integral formulationwith respect to the original
Fock space formulation is the addition principle of Grassmann variables. Suppose that
�±

x is a Grassmann field with propagator g = g(1) + g(2). Let �
(1)±
x , �

(2)±
x be two

independent Grassmann fields, with propagators g(1), g(2). Let E be the Grassmann
Gaussian average with respect to the field �, and let Ei be the Grassmann Gaussian
average with respect to the field �(i), i = 1, 2. Then:

E f (�) = E2E1 f (�
(1) + �(2)) ≡ E2 f

(2)(�(2)) , (6.15)

where f (2)(�(2)) = E1 f (�(1) +�(2)). This simple identity is the starting point for the
multiscale analysis of the Grassmann field theory.

In order to separate the ‘bulk’ degrees of freedom from the ‘edge’ modes, we rewrite
the propagator ĝ(≤N )(k, q) as:

ĝ(≤N )(k, q) = g(edge)(k, q) + g(bulk)(k, q) , (6.16)

where:

g(edge)(k, q) := ĝ(≤N )(k, q)χN (k0)χ
(4|eq(k1) − μ|

δ

)

g(bulk)(k, q) := ĝ(≤N )(k, q) − g(edge)(k, q) . (6.17)

For δ small enough, the last characteristic function in the first line of (6.17) selects the
energies at a distance δ/2 from the Fermi level. By theAssumptions 2.1, the only allowed
energies in this domain are those of the edge modes. For later convenience, we slightly
modify the defintion of edge propagator, as follows:

g(edge)(k, q) =
∑

ω

g(edge)(k, q)χN (k0)χω(k1) , (6.18)

where

χω(k1) = χ
(
4
∣∣∣
εω(k1) − μω

δ

∣∣∣
)

. (6.19)

The sum in (6.18) runs over all edge modes intersecting the Fermi level. Recall that the
function εω(k1) is the dispersion relation of the edge mode labelled by ω, see discussion
after (2.18). Notice the presence ofμω instead ofμ in the characteristic function: the two
parameters will differ of O(λ). The parameters μω will play the role of counterterms,
and will be fixed later on to control the flow of terms that are relevant in the RG sense.

The above momentum-space decomposition induces the following decomposition of
the real-space propagator:

g(≤N )(x, y) = g(edge)(x, y) + g(bulk)(x, y) , (6.20)
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where, being g(bulk) supported for energies away from the Fermi momentum:

|g(bulk)
ρ,ρ′ (x, y)| ≤ Cn

1 + ‖x − y‖nβ,L
, (6.21)

where the distance ‖x − y‖β,L is defined as:

‖x − y‖β,L := inf
n,m∈Z ‖x − y− nβe0 − nLe1‖ , (6.22)

with e0 = (1, 0), ei = (0, ei ).
Correspondingly to (6.20), the field �± is decomposed as �(edge)± + �(bulk)±. The

addition principle is then used to write:

eWN ,β,L (A,φ) = E≤N

(
e−V (�)+�(�;A)+B(�;φ)

)

= eW
(bulk)
N ,β,L (A,φ)

Eedge

(
eV

(edge)(�(edge);A,φ)
)

, (6.23)

for a suitable new functional W(bulk)
N ,β,L and a suitable new effective interaction V (edge).

The integration step is performed using fermionic cluster expansion, via the Brydges-
Battle-Federbush formula, whose convergence for small |λ| is ensured by the good decay
properties (6.21). See [40] for a review of the method. The form of W(bulk)

N ,β,L , V
(edge) is

a priori explicit: both objects are given by a finite sum of monomials in the Grassmann
fields and external fields, whose space-time dependent coefficients (also called kernels)
have good locality properties, inherited by (6.21). For instance:

V (edge)(ψ; A, φ) =
∑

�=(�ψ ,�A,�φ)

∫

β,L
DXDYDZ��ψ

(X)φ�φ
(Y)A�A (Z)W

(edge)
� (X,Y,Z) ,

(6.24)
where:X,Y,Z collect all the variables at the arguments ofψ, φ, A, respectively;��ψ (X),
φ�φ (Y), A�A (Z) are monomials; �ψ , �A, �φ label all possible monomials in the corre-
sponding variables; the integral sign denotes integration over all times and summation
over all space variables; the kernels are analytic functions of λ, and satisfy the following
bounds, collecting all variables in Q:

∫

β,L
DQ

∏

i< j

‖qi − q j‖ni jβ,L |W (edge)
� (Q)| ≤ βL2C({ni j }) . (6.25)

Next, let us show how to rewrite the average in the right-hand side of (6.23) in terms of
a 1 + 1 dimensional Grassmann field theory. The key observation is to notice that the
edge propagator g(edge) only depends on the edge modes wave functions and dispersion
relations, in proximity of the Fermi level. Explicitly:

g(edge)(x; y) = 1

βL

∑

k∈D∗
β,L

∑

ω

e−ik·(x−y)ξω(k1; x2)ξω(k1; y2) χN (k0)χω(k1)

−ik0 + εω(k1) − μ
.

(6.26)
Let us define:

ξ̌ ω
ρ (x) := 1

L

∑

k1∈S1L
e−ik1x1ξω

ρ (k1; x2)χ
(
2
|εω(k1) − μω|

δ

)
. (6.27)
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As a consequence of the smoothness of the cutoff function and of the assumptions
(2.23) on the edge modes, this function satisfies the following decay estimates, for some
δ-dependent constants:

|ξ̌ ω
ρ (x)| ≤ Cn

e−cx2

1 + |x1|nL
or |ξ̌ ω

ρ (x)| ≤ Cn
e−c|L−x2|

1 + |x1|nL
, (6.28)

depending on whether the edge mode is localized on the upper or lower edge.
Let x = (x0, x1). We can view the propagator g(edge)(x; y) as the propagator of an

effective 1d field, ψ±
x,ω with x = (x0, x1), convoluted with ξ̌ ω(x):

g(edge)(x; y) = E1d

(
(ψ− ∗ ξ̌ )(x)(ψ+ ∗ ξ̌ )(y)

)

(ψ− ∗ ξ̌ )ρ(x) :=
∑

ω

∑

z1

ψ−
(x0,z1)

ξ̌ω
ρ ((x1 − z1, x2))

(ψ+ ∗ ξ̌ )ρ(x) :=
∑

ω

∑

z1

ψ+
(x0,z1)ξ̌

ω
ρ ((x1 − z1, x2)) . (6.29)

The new Grassmann Gaussian integration E1d is specified by the propagator:

E1d(ψ
−
x,ωψ+

y,ω′) = δωω′g(1d)
ω (x − y)

g(1d)
ω (x − y) = 1

βL

∑

k∈D∗
β,L

e−ik·(x−y) χN (k0)χω(k1)

−ik0 + εω(k1) − μ
. (6.30)

This observation allows to rewrite the generating functional of correlations as:

eWN ,β,L (A,φ) = eW
(bulk)
N ,β,L (A,φ)

E1d

(
eV

(edge)(ψ∗ξ,A,φ)
)

≡ eW
(bulk)
N ,β,L (A,φ)

E1d

(
eV

(1d)(ψ;A,φ)
)

, (6.31)

where V (1d) is the effective interaction for a 1+1 dimensional Grassmann field. The new
effective potential V (1d) is obtained replacing �(edge) with ψ ∗ ξ̌ in (6.24); in doing so,
we notice that the sum over all x2 variables only acts on the edge states eigenfunctions.
Thus, it can be performed explicity, and it gives rise to new kernels, which are ‘anchored’
to either the lower or the upper edge, thanks to the bounds (6.28). The new kernels thus
obtained satisfy the estimate:
∫

β,L
DQDQ̃2

∏

i< j

‖q
i
− q

j
‖ni jβ,L

∏

l<k

|q̃l,2 − q̃k,2|mlk |W (1d)
� (Q, Q̃2)| ≤ βLC({ni j }, {mlk}),

(6.32)

where Q̃2 only collects the y2, z2 variables, associated to the external fields.

Remark 6.1. (a) Notice the presence of a βL factor instead of βL2; this is a consequence
of the localization around x2 = 0 or x2 = L − 1 introduced by the bounds (6.28).

(b) Thanks to the estimates (6.28) for the edge mode eigenfunctions and to the decay of
the bulk propagator (6.21), kernels associated to fields localized on opposite sides
of the cylinder are negligible for L large. More precisely, the bound (6.32) has to
be multiplied by a factor CnL−n . Since the limit L → ∞ is taken before the limit
β →∞, these kernels do not play an important role in the RG iteration.
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Being the propagator g(1d) translation invariant, the formula (6.31) is a convenient start-
ing point for the renormalization group analysis of the model.

6.3. Sketch of the RG analysis. The discussion below relies on the detailed RG analysis
of [2], see Section 9 there, to which we refer for futher details. Due to the edge modes,
the propagator g(1d) is massless, recall Eq. (6.30). In particular, linearization of the
dispersion relation around the Fermi energy shows that the new Grassmann field theory
obeys the same power counting as a 1 + 1 dimensional relativistic model.

In order to integrate the field ψ we proceed in a multiscale fashion. Let kω
F (λ) =

kω
F + O(λ) be the solution of:

εω(kω
F (λ)) = μω . (6.33)

Strictly speaking, this equation may not have a solution for finite L . Since we are even-
tually interested in taking the L → ∞ limit, with a slight abuse of notation we shall
denote by kω

F (λ) ∈ S
1
L the best approximation of the L → ∞ solution of (6.33). We

write, for kω
F (λ) = (0, kω

F (λ)):

ψ±
x,ω = ψ(uv)±

x,ω +
∑

ω

∑

h∈Z−
hβ≤h≤0

e±ikω
F (λ)·xψ(h)±

x,ω ; (6.34)

the field ψ(uv)± is supported for momenta k0 away from zero, say |k0| ≥ 1; the single-
scale fields ψ

(h)±
x,ω depend on momenta k′ = k − kω

F (λ), such that:

2h−1 ≤
√
k20 + v2ωk

′2
1 ≤ 2h+1 . (6.35)

The parameter hβ ∼ logβ fixes the infrared cutoff of the theory; it is due to the fact
that the smallest fermionic Matsubara frequency is π

β
. The propagator of the single scale

fields has the form, for |rh,ω(k′1)| ≤ C‖k′‖θ with 0 < θ < 1:

ĝ(h)
ω (k′) = 1

Zh,ω

fh,ω(k′)
−ik0 + vh,ωk′1

(1 + rh,ω(k′1)) ; (6.36)

the function fh,ω(k′) is a smooth cutoff function, that enforces the contraint (6.35); the
parameters vh,ω are called the effective Fermi velocities, while the parameters Zh,w

are called the wave function renormalizations. Controlling the flow as h → −∞ of
Zh,ω, vh,ω is one of the main goals of the RG analysis. We shall inductively assume, and
ultimately prove, that:

∣∣∣
Zh,ω

Zh−1,ω

∣∣∣ ≤ ec|λ| , |vh,ω − vω| ≤ C |λ| , (6.37)

uniformly in h. On scale h = 0 one has, as a consequence of (6.30):

Z0,ω = 1 , v0,ω = ∂k1εω(kω
F (λ)) = vω + O(λ) . (6.38)

The bounds (6.37) are not difficult to check for the first few scales, using perturbation
theory; the difficulty is to prove that they hold uniformly in the scale label.

The field ψ(uv) is integrated in a straightforward way, in an essentially model-
independent fashion; see e.g. Section 5.3 of [43]. Due to the natural ultraviolet cutoff
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introduced by the lattice, this is much easier than the integration of the infrared degrees
of freedom. The only minor technical difficulty is due to the slow decay in k0 of the
momentum space propagator (6.30). A careful analysis of perturbation theory shows
that the only apparently divergent contribution is the one related to the tadpole graph;
this graph can be evaluated explicity, and one finds a finite result.

The fields ψ(h) are then integrated in an iterative way, starting from h = 0 down to
h = hβ . The iterative integration produces a new effective interaction, and the goal is to
prove that the sequence of effective interactions converges to a limit, in a suitable sense.
Following the analysis of Section 9.2 of [2], one finds out that:

E1d

(
eV

(1d)(ψ;A,φ)
)
= eW

(h)
β,L (A,φ)

E≤h
(
eV

(h)(
√
Zhψ;A,φ)

)
(6.39)

for a suitable new generating functional W(h)
β,L and a suitable new effective interaction

V (h). The Grassmann integration involves the fields on scales ≤ h, and has covariance
given by:

E≤h(ψ−
x,ωψ+

y,ω′) = δωω′g(≤h)
ω (x − y)

g(≤h)
ω (x − y) = 1

βL

∑

k′∈D∗
β,L

e−ik′·(x−y) 1

Zh,ω

χh,ω(k′)
−ik0 + vh,ωk′1

(1 + rh,ω(k′1)), (6.40)

where:

χh,ω(k′) = χ
(
4
2−h

δ

√
k20 + v2ωk

′2
1

)
. (6.41)

The effective interaction has the form:

V (h)(
√
Zhψ; A, φ) =

∑

�=(�ψ ,�A,�φ)

∫

β,L
DXDYDZ

[ ∏

f ∈�ψ

√
Zh,ω( f )

]
��ψ (X)φ�φ (Y)A�A (Z)W (h)

� (X ,Y,Z).

(6.42)

The new kernels are determined by the integration of the previous scales, and the RG
map is equivalent to a recursion relation for these kernels. Let us neglect for simplicity
the external fields. As observed above, the one-dimensional field ψ±

x obeys to the same
power counting of relativistic 1+1 dimensional fermions. It is well-known that for these
relativistic models the only dangerous contributions to the effective actions are those
introduced by the quadratic and quartic Grassmann monomials. See [40] for a review of
RG for one-dimensional fermions.

We write:

V (h)(
√
Zhψ) =

∑

ω

∫

β,L
dxd y

√
Zh,ω1

√
Zh,ω2ψ

+
x,ωψ−

y,ωW
(h)
2;ω(x, y)

+
∑

ω

∫

β,L
dX

[ 4∏

i=1

√
Zh,ωi

]
ψ+
x1,ω1

ψ−
x2,ω2

ψ+
x3,ω3

ψ−
x4,ω4

W (h)
4;ω(X)

+ higher order monomials. (6.43)
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For the sake of this discussion, we can safely suppose that the sum over the edge mode
labels in (6.43) only involves edge modes localized on the same side of the cylinder.
As commented in Remark 6.1, kernels associated to product of fields associated to edge
modes localized on opposide sides of the cylinder are smaller than any power in L . Since
the limit L → ∞ is taken before the limit β → ∞, and since the number of scales is
finite for β finite, the contribution of these kernels is negligible.

Let us focus on the quadratic terms. By Assumption 2.1, the Fermi momenta of two
different edge states are well separated; recall the first bound in (2.25). Since, for δ small
enough, momentum conservation implies Fermi momentum conservation, we get:

W (h)
2;ω(x, y) = δω1,ω2W

(h)
2;ω1,ω1

(x, y) ≡ δω1,ω2W
(h)
2;ω1

(x, y) . (6.44)

We then rewrite the quadratic terms as:

∑

ω

∫

β,L
dxd y Zh,ωψ+

x,ωψ−
y,ωW

(h)
ω (x, y) =

∑

ω

∫

β,L
dxd y Zh,ωψ+

x,ωψ−
x,ωW

(h)
ω (x, y)

+
∑

ω,μ

∫

β,L
dxd y Zh,ωψ+

x,ω(∂μψ−
x,ω)(xμ − yμ)W (h)

ω (x, y)

+ higher order derivatives. (6.45)

Using the translation-invariance of the kernels:

∑

ω

∫

β,L
dxd y Zh,ωψ+

x,ωψ−
y,ωW

(h)
ω (x, y) =

∑

ω

∫

β,L
dx Zh,ω2

hνh,ωψ+
x,ωψ−

x,ω

+
∑

ω

∫

β,L
dx Zh,ω(ψ+

x,ωzh,0,ω∂0ψ
−
x,ω + iψ+

x,ωzh,1,ω∂1ψ
−
x,ω)

+ higher order derivatives. (6.46)

The first term in (6.46) is relevant in the renormalization group sense: dimensional
bounds would produce an unbounded flow for νh,ω. The second term is marginal in the
RG sense. This term is used to redefine the Gaussian integration; it produces new wave
function renormalizations and effective Fermi velocities, on scale h − 1. Dimensional
estimates cannot rule out a divergent flow in h, with aλ-dependent power law (anomalous
exponent). Finally, the higher order derivaties are irrelevant in the RG sense: they shrink
under iteration of the RG map.

A similar localization procedure is used to rewrite the quartic terms. By Assump-
tion 2.1, recall (2.24), (2.25), together with momentum conservation, implies that:

W (h)
4;ω(X) = 0 unless ω1 = ω2, ω3 = ω4 or ω1 = ω3, ω2 = ω4. (6.47)

This cancellation drastically reduces the number of quartic terms. We then have:

∑

ω

∫

β,L
dX

[ 4∏

i=1

√
Zh,ωi

]
ψ+
x1,ω1

ψ−
x2,ω2

ψ+
x3,ω3

ψ−
x4,ω4

W (h)
4;ω(X)

≡
∑

ω,ω′

∫

β,L
dX Zh,ωZh,ω′ψ+

x1,ω
ψ−
x2,ω

ψ+
x3,ω

′ψ−
x4,ω

′W
(h)

4;ω,ω′(X)
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≡
∑

ω<ω′

∫

β,L
dx Zh,ωZh,ω′ψ+

x,ωψ−
x,ωψ+

x,ω′ψ−
x,ω′λh,ω,ω′ + higher order derivatives.

(6.48)

The parameters λh,ω,ω′ define the new effective coupling constants of the theory. Notice
that there is no term with ω = ω′, due to the fact that the square of a Grassmann variable
is zero. The effective coupling constants correspond to marginal directions in the RG
sense: dimensional estimates would imply a flow which diverges linearly in h. Finally,
higher order derivatives are instead irrelevant in the RG sense.

The cancellation (6.47) is crucial for our present analysis. It allows to rewrite the
effective interaction as a density-density interaction for chiral fermions, at all scales. In
the physics literature, this type of interaction can be analyzed via bosonization methods,
which can be used to derive exact solutions for relativistic models. Our analysis will
not rely on these ideas; instead, we will use the emergent chiral symmetry of the QFT
to derive exact identities for the correlation functions of the scaling limit of the model,
which ultimately allow to control the RG flow.

To conclude, the control of the RG map is equivalent to the control of the following
finite-dimensional dynamical system:

Zh−1,ω

Zh,ω

= 1 + zh,0,ω ≡ 1 + βz
h,ω

vh−1,ω = Zh,ω

Zh−1,ω
(vh,ω + zh,1,ω) ≡ vh + βv

h,ω

2hνh,ω = Zh,ω

Zh−1,ω
Ŵ (h)

2;ω(0) ≡ 2h+1νh+1,ω + 2h+1βν
h+1,ω

λh,ω,ω′ =
[

4∏

i=1

√
Zh,ω

Zh−1,ω

]

Ŵ (h)

4;ω,ω,ω′,ω′(0, 0, 0) ≡ λh+1,ω,ω′ + βλ
h+1,ω,ω′ . (6.49)

The initial data of the dynamical system are:

Z0,ω = 1, v0,ω = vω+O(λ), ν0,ω = μω+O(λ), λ0,ω,ω′ = Aω,ω′λ+O(λ2) ,

(6.50)
with

Aω,ω′ =
∑

x2,y2

∑

ρ,ρ′
wρρ′(0; x2, y2)ξρ(kω

F , x2)ξρ(kω
F , x2)ξρ′(k

ω′
F , y2)ξρ′(kω′

F , y2) ;
(6.51)

the higher-order terms also take into account the bulk and of the ultraviolet degrees of
freedom. The function:

βh,ω = βh,ω

({Zh,ω, vk,ω, νk,ω, λk,ω}0k=h+1

)

= (βz
h,ω, βv

h,ω, βν
h,ω, βλ

h,ω) (6.52)

is called the beta function of the theory. As it is clear from (6.49), a precise control of
this function is needed in order to safely iterate the equations in (6.49) for h → −∞
(zero temperature limit). In [2], control of this dynamical system was achieved in the
case of a single-edge mode, spin degenerate (which implies in particular that the quartic
interaction is nontrivial). In [58], instead, the same control has been obtained for a
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configuration of edge states corresponding to a pair of counterpropagating modes, with
opposite spins (a setting relevant for time-reveral invariant systems).

In both [2,58], the control of the dynamical system was achieved comparing the beta
function in (6.54) with the beta function of a model that can be exactly solved using
renormalization group. We write:

βh,ω = βref
h,ω + O(λ2≥h2θh) , (6.53)

whereβ
(ref)
h,ω is the beta function of a suitable referencemodel, which describes the scaling

limit for the original lattice model. In [2], the reference model coincided with the chiral
Luttinger model, while in [58] it coincided with the helical Luttinger model. In both
cases, the beta function of the reference model can be proved to be exponentially small
in the scale label: this is what we call the (asymptotic) vanishing of the beta function.

In the present setting, due to the arbitrary number of edgemodes,wehave to generalize
the notion of reference model. We shall consider the multi-channel Luttinger model,
describing arbitrary number of chiral relativistic fermions in 1+1 dimensions, interacting
via a density-density quartic interaction. For this class of models, we will prove the
vanishing of the beta function property by extending previous results, [11,17,19].

The following result allows to control the iteration of the RG map for the lattice
model, and in particular to prove that |λk,ω,ω′ | ≤ C |λ| together with the bounds (6.37).
Proposition 6.2 (Bounds for the beta function). There exists choices of μω = μ + O(λ)

such that, for |λ| small enough, the following is true. Let 0 < θ < 1, 2θhβ ≥ Ce−cL . Let
|λk | = maxw,w′ |λk,w,w′ |. Then, the following estimates hold:

|βv
k,ω| ≤ Cθ |λk |2θk , |βλ

k,ω| ≤ Cθ |λk |22θk , |νk,ω| ≤ Cθ |λk |2θk . (6.54)

Remark 6.3. The first two estimates allow to control the flow of the effective velocity and
of the effective couplings. The proof follows [2], and it will be reviewed in Sect. 10. It is
based on the comparison of the beta function of the lattice model with the beta function
of the reference model, which turns out to be asymptotically vanishing as h →−∞.
This key property will be proven in Sect. 9, adapting the existing argument developed
for the usual Luttinger model [11,17,19]. Notice that this comparison only allows to
control the flow of the marginal couplings: the control of the flow of the relevant term
νk,ω is achieved by suitably choosing μω = μ + O(λ), as in Proposition 9.4 of [2], see
Section 4.1 of [16] for more details.

7. Definition of the Reference Model

Remark 7.1. From this section until Sect. 10, with a slight abuse of notation we will use
the symbols Zω, vω, λω,ω′ to denote the bare parameters of the reference model. Until
Sect. 10, these quantities will be unrelated from the analogous parameters of the lattice
model. Later, we will replace them by Z ref

ω , vrefω , λref
ω,ω′ , to distinguish them from the

analogous quantities appearing in the analysis of the lattice model.

This section is devoted to the construction of a one-dimensional quantum field theory
model, that underlies the infrared scaling limit of the edge correlation functions of our
class of 2d condensed matter systems. The definition is motivated by the analysis of
Sect. 6.3: it is given by themulti-channel Luttingermodel in the presence of amomentum
cut-off, to be removed at the end. Formally,wewant to construct aQFTwith the following
partition function:
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Z =
∫

D� e−S(�)

S(�) =
∑

ω

∫

R2
dx Zωψ+

x,ω(∂0 + ivω∂1)ψ
−
x,ω

+
∑

ω,ω′
λω,ω′ ZωZω′

∫

R2×R2
dxdy ψ+

x,ωψ−
y,ωψ+

y,ω′ψ−
x,ω′v(x − y) , (7.1)

for v(·) smooth and short-ranged, such that v̂(0) = 1. The parameters Zω, vω, λω,ω′
have to be fine tuned, in order to guarantee that the above QFT correctly describes the
scaling limit of the edge correlation functions of the lattice model. A nice feature of the
above theory is that it is invariant under chiral U (1) gauge transformations:

ψ±
x,ω → e±iαωψ±

x,ω . (7.2)

This symmetry is absent in the original lattice model. As we will see, this symmetry will
play an important role in establishing the vanishing of the beta function.

The problem with the above definition of QFT is that the expression in (7.1) is
meaningless; in order to correctly formulate the model in a statistical mechanics setting,
the functional integral has to be defined as a limit of well-defined objects involving
finitely many degrees of freedom. Technically, this means that one has to introduce
infrared and ultraviolet cutoffs. The presence of these unavoidable regularizations will
have important consequences: they will affect the conservation of the chiral current,
which at the classical level is guaranteed by (7.2). More precisely, the Ward identities
of the theory will be anomalous.

Sets and cutoffs. Given even integers L > 0, N > 0, and defining a := L/N, we
introduce the space-time lattice of side L and mesh a as:

�L ,a :=
{
x = (n1a, n2a) | 0 ≤ ni ≤ N− 1

}
. (7.3)

We will consider Grassmann fields defined on this finite lattice, and we will extended
them antiperiodically to the whole set aZ

2. To this end, it is convenient to define the
following set of momenta, needed in order to define the Fourier series for antiperiodic
functions:

D
a
L ,a :=

{
k = 2π

L

(
m1 +

1

2
,m2 +

1

2

) ∣∣ 0 ≤ mi ≤ N− 1
}

. (7.4)

Notice that the sets �L ,a and D
a
L ,a have the same number of elements.

Letχ(·) be a cutoff function as in Sect. 6.1. For technical reasons, it will be convenient
to introduce a ε-deformation χε, as follows:

χε(t) = Cε

∫ ∞

0
ds e−|t−s|2/εχ(s) , (7.5)

with Cε such that Cε

∫∞
0 ds e−|t−s|2/ε = 1. One has limε→0 χε(t) = χ(t); also, for

ε > 0, the function χε(t) is never vanishing. Next, given vω ∈ R, ω = 1, . . . , ne,
vω �= 0, we define the Euclidean norm:

|k|ω :=
√
k20 + v2ωk

2
1 . (7.6)
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The parameters vω will play the role of bare velocities for the reference model. We will
consider functions on the finite set of momenta D

a
L ,a, that will be extended periodically

over the whole 2π
L (Z + 1

2 )
2. Thus, it is convenient to introduce the following notion of

distance on 2π
L (Z + 1

2 )
2:

‖k‖ω := inf
a1,a2∈Z

|k − a1G1 − a2G2|ω , (7.7)

with G1, G2 the basis vectors of the reciprocal lattice (aZ
2)∗:

G1 =
2π

a
(1, 0) , G2 =

2π

a
(0, 1) . (7.8)

Finally, given two integers h < 0, N > 0, we define the cutoff function:

χ
ω,ε
[h,N ](k) := (1− χε(2−h‖k‖ω))χε(2−N‖k‖ω) . (7.9)

As ε → 0, χω,ε
[h,N ](k) → χω[h,N ](k), a function supported on k such that 2h−1 ≤ ‖k‖ω ≤

2N+1. The function in (7.9) introduces an infrared and an ultraviolet cutoff.

Fields and propagators. We define a 1 + 1 dimensional Grassmann field starting
from its (finitely many) Fourier components. In the following, we are interested in
defining a suitable lattice version of the Grassmann field with relativistic propagator
Z−1

ω χ
ω,ε
[h,N ](k)/(−ik0 + vωk1).

To each k ∈ D
a
L ,a, we associate Grassmann variables ψ±

k,ω, ω = 1, . . . , ne. We

extend periodically the field ψ̂k,ω to the whole 2π
L (Z + 1/2)2 by:

ψ̂±
k+a1G1+a2G2,ω

:= ψ̂±
k,ω . (7.10)

For x ∈ aZ
2, we define the configuration-space field, as:

ψ±
x,ω := 1

L2

∑

k∈Da
L ,a

e±ik·x ψ̂±
k,ω ; (7.11)

the configuration-space field satisfies the following antiperiodicity condition:

ψ±
x+a1Le1+a2Le2,ω

:= (−1)a1+a2ψ±
x,ω . (7.12)

Finally, using that:
∑

x∈�L ,a

eik·x =
∑

J∈(aZ2)∗
δk+J ,0N

2 , (7.13)

with δk,0 the Kronecker delta function, the relation in (7.11) can be inverted as:

ψ̂±
k,ω = a2

∑

x∈�L ,a

e∓ik·xψ±
x,ω , ∀k ∈ D

a
L ,a . (7.14)
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Associated to the Grassmann field, we define the regularized, momentum space propa-
gator as:

ĝ[h,N ]
ω,ε,a(k) := 1

Zω

χ
ω,ε
[h,N ](k)
Dω,a(k)

, ∀k ∈ D
a
L ,a

Dω,a(k) := −i
1

a
sin(ak0) + vω

1

a
sin(ak1) , (7.15)

for suitable real parameters Zω, vω, ω = 1, . . . , ne, to be chosen later on. Notice that:

ĝ[h,N ]
ω,ε,a(k) = ĝ[h,N ]

ω,ε,a(k + a1G1 + a2G2) . (7.16)

Thanks to this periodicity property, we extend ĝ[h,N ]
ω,ε,a(k) to the whole 2π

L (Z + 1/2)2.

The denominator of ĝ[h,N ]
ω,ε,a(k) vanishes at points k such that:

k = (0, 0) , (π/a, 0) , (0, π/a) , (π/a, π/a) (7.17)

and all translations of these points by a1G1 + a2G2. It is important to notice that the
points in (7.17) do not belong3 to D

a
L ,a: thus, for a > 0, the propagator is a bounded

function. We see that, as a → 0, the lattice propagator in (7.15) correctly approximates
the relativistic propagator we are interested in. However, there are three other singular
points in this limit,which are not present in the relativistic approximation; notice however
that for a small enough the last three points in (7.17) are outside the support of χω[h,N ](k).
More precisely, for a, ε small enough, the contribution from these points to the lattice
propagator is arbitrarily small. That is, in the limit ε → 0, a → 0, the singular behavior
of the momentum space propagator is only due to the point (0, 0):

lim
ε→0

lim
a→0

ĝ[h,N ]
ω,ε,a(k) = 1

Zω

χω[h,N ](k)
−ik0 + vωk1

=: ĝ[h,N ]
ω (k) . (7.18)

Next, we then define the configuration-space propagator as:

g[h,N ]
ω,ε,a(x) := 1

L2

∑

k∈Da
L ,a

eik·x ĝ[h,N ]
ω,ε,a(k) , ∀x ∈ aZ

2 . (7.19)

Generating functional of correlations. Having defined fields and propagators, we in-
troduce the Grassmann Gaussian integration as follows:

μ[h,N ](dψ) := N−1
[ ne∏

ω=1

∏

k∈Da
L ,a

dψ̂+
k,ωdψ̂−

k,ω

]
e−C(ψ)

C(ψ) := 1

L2

∑

ω

∑

k∈Da
L ,a

ψ̂+
k,ω ĝ

[h,N ]
ω,ε,a(k)−1ψ̂−

k,ω , (7.20)

3 The number 0 cannot be realized as m + 1/2 with m integer. Also, the number π/a cannot be realized as
π(2m+1)

L ; this is equivalent to N = 2m + 1, which is impossible since N is even by assumption.
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where the parameter N is a normalization factor, chosen so that:
∫

μ[h,N ](dψ) = 1 . (7.21)

Thanks to χ
ω,ε
[h,N ](k) > 0, the covariance C(ψ) is well defined. From the rules of Grass-

mann integration, it is easy to see that:
∫

μ[h,N ](dψ) ψ̂−
k,ωψ̂+

q,ω′ = L2δk,qδω,ω′ ĝ[h,N ]
ω,ε,a(k) . (7.22)

This implies that, by linearity of the Gaussian expectation:
∫

μ[h,N ](dψ)ψ−
x,ωψ+

y,ω′ = δω,ω′g[h,N ]
ω,ε,a(x − y) . (7.23)

Next, we introduce the many-body interaction as:

V (ψ) := a4

2

∑

x,y∈�L ,a

∑

ω,ω′
λω,ω′ ZωZω′nx,ωny,ω′v(x − y) (7.24)

where: λω,ω′ ∈ R, λω,ω′ = λω′,ω, λω,ω = 0; v(·) satisfies the periodicity condition:

v(x + a1Le1 + a2Le2) = v(x) ; (7.25)

and nx,ω is the Grassmann counterpart of the density operator, nx,ω = ψ+
x,ωψ−

x,ω. We
will suppose that

|λω,ω′ | ≤ C |λ| , (7.26)

for λ small enough. Without loss of generality, we will also assume that v̂(0) = 1. Let
D
p
L be the set of momenta compatible with the periodicity condition (7.25):

D
p
L :=

{
p =

(2π
L

n0,
2π

L
n1
) ∣∣∣ ni ∈ Z

}
. (7.27)

We have:

v(x) = 1

L2

∑

p∈Dp
L

e−i p·x v̂(p) , v̂(p) = a2
∑

x∈�L

ei p·xv(x) . (7.28)

We will suppose that the function v̂(·) is the restriction to D
p
L of an even, smooth and

compactly supported function on R
2. Thus, denoting by ‖ · ‖ the periodic distance on

aZ
2:

‖x‖ := inf
a1,a2∈Z

|x − a1Le1 − a2Le2| , (7.29)

we easily get:
‖x‖n|v(x)| ≤ Cn , ∀n ∈ N . (7.30)

In Fourier space, the many-body interaction reads:

V (ψ) = 1

2L2

∑

p∈Dp
L

∑

ω,ω′
λω,ω′ ZωZω′ v̂(p)n̂ p,ωn̂−p,ω′ , (7.31)
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with momentum-space Grassmann density:

n̂ p,ω = a2
∑

x∈�L ,a

ei p·xnx,ω = 1

L2

∑

k∈Da
L ,a

ψ̂+
k−p,ωψ̂−

k,ω . (7.32)

With these notations, we define the partition function of the theory as:

ZL ,a,ε,h,N =
∫

μ[h,N ](dψ) e−V (ψ) . (7.33)

As long as all cutoffs are kept finite, the right-hand side of (7.33) is a finite sum of
Grassmann monomials, with bounded coefficients. Next, let us introduce the generating
functional of correlations. To this end, we define the source terms as:

�(ψ; A) :=
ne∑

ω=1

∑

μ=0,1

L−1∑

x2=0

a2
∑

x∈�L ,a

Zμ,ω(x2)Ax,μ,ω(x2)nx,ω

B(ψ;φ) :=
ne∑

ω=1

L−1∑

x2=0

a2
∑

x∈�L ,a

[
ψ+
x,ωQω(x2)φ

−
x,ω(x2) + φ+

x,ω(x2)Qω(x2)ψ
−
x,ω

]
,

(7.34)

where Ax,μ,ω(x2), φ±
x,ω are respectively a real-valued and a Grassmann external field,

of the form:

Ax,μ,ω(x2) = 1

L2

∑

p∈Dp
L

e−i p·x Â p,μ,ω(x2) , φ±
x,ω(x2) = 1

L2

∑

k∈Da
L ,a

e±ik·x φ̂±
k,ω(x2).

(7.35)
Equivalently, the source terms can be written in momentum space as:

�(ψ; A) =
ne∑

ω=1

∑

μ=0,1

L−1∑

x2=0

1

L2

∑

p∈Dp
L

Zμ,ω(x2) Â−p,μ,ω(x2)n̂ p,ω

B(ψ;φ) =
ne∑

ω=1

L−1∑

x2=0

1

L2

∑

k∈Da
L ,a

[
ψ̂+
k,ωQω(x2)φ̂

−
k,ω(x2) + φ̂+

k,ω(x2)Qω(x2)ψ̂
−
k,ω

]
. (7.36)

Finally, we set:

ZL ,a,ε,h,N (A, φ) :=
∫

μ[h,N ](dψ) e−V (ψ)+�(ψ;A)+B(ψ;φ)

WL ,a,ε,h,N (A, φ) := log
ZL ,a,ε,h,N (A, φ)

ZL ,a,ε,h,N (0, 0)
. (7.37)

The derivatives with respect to A and to φ± ofWL ,a,ε,h,N define the connected correla-
tion functions of the model. We shall be interested in the L → ∞, ε → 0, a → 0 limit
of such correlations.
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8. Renormalization Group Analysis of the Reference Model

As for the original latticemodel, the generating functional of correlations of the reference
model is evaluated via a multiscale procedure, which we shall outline here. The content
of this section is a straightforward adaptation of the analysis that has already been done
for the Luttinger model; see e.g. [12,21]. We repeat it for completeness, referring to
the literature for technical details. We will consider separately the ultraviolet and the
infrared regime.

8.1. Ultraviolet regime. We write:

χ
ω,ε
[h,N ](k) = χ

ω,ε
[h,0](k) +

N∑

j=1

f ω,ε
j (k) , (8.1)

with f ω,ε
j (k) = χ

ω,ε
[h, j](k)−χ

ω,ε
[h, j−1](k), and we decompose the propagator and the fields

as:

ĝ[h,N ]
ω,ε,a(k) = ĝ[h,0]

ω,ε,a(k) +
N∑

j=1

ĝ( j)
ω,ε,a(k) , ψ̂±

k,ω = ψ̂
(≤0)±
k,ω +

N∑

j=1

ψ̂
( j)±
k,ω , (8.2)

with ĝ[h,0]
ω,ε,a(k), ĝ

( j)
ω,ε,a(k) given by ĝ[h,N ]

ω,ε,a(k) after replacing χ
ω,ε
[h,N ](k) by χ

ω,ε
[h,0](k),

f ω,ε
j (k), respectively. In configuration space, the single-scale propagators satisfy the

following bounds, for universal constants Cn > 0, and for all j ≥ 1:

(2 j‖x‖)n|g( j)
ω,ε,a(x)| ≤ Cn2

j , ∀n ∈ N , ∀x ∈ aZ
2 . (8.3)

From this bound, we easily get:

‖g( j)
ω,ε,a‖�∞(�L ,a) ≤ C2 j , ‖g( j)

ω,ε,a‖�1(�L ,a) ≤ C2− j . (8.4)

By the addition principle of Grassmann variables,

ZL ,a,ε,h,N (A, φ) =
∫

μ[h,0](dψ(≤0))
∫

μ1(dψ(1)) · · ·
∫

μN (dψ(N ))

eV (ψ(≤0)+ψ(1)+...+ψ(N );A,φ) , (8.5)

where:
V (ψ; A, φ) = −V (ψ) + �(ψ; A) + B(ψ;φ) . (8.6)

We integrate the single-scale fields in an iterative fashion, from the scale N until the
scale 0. Every step of integration is performed via fermionic cluster expansion, see e.g.
[40] for a review. The convergence of the expansion is guaranteed by the bounds (8.4).
We get, for any j ≥ 0:

ZL ,a,ε,h,N (A, φ) = eW( j)(A,φ)

∫
μ[h, j](dψ)eV

( j)(ψ;A,φ) , (8.7)
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where the prefactor is chosen so that V ( j)(0; A, φ) = 0. The effective potential on scale
j has the form, for suitable kernels W ( j)

� :

V ( j)(ψ; A, φ) =
∑

�

a2|�|
∑

X ,Y ,Z

ψ�(X)A�(Y )φ�(Z)W ( j)
� (X ,Y , Z) , (8.8)

where: X ,Y , Z denote collective position variables, e.g. X = (x1, . . . , xn), with n
the order of the ψ-monomial; � = (�ψ, �A, �φ) collects the indices labelling the
monomials in the variables ψ , A, φ, respectively. Also,

ψ�(X) ≡ ψ�ψ (X) , A�(Y ) ≡ A�A (Y ) , φ�(Z) ≡ φ�φ (Z) (8.9)

with:

ψ�ψ (X) =
∏

f ∈�ψ

ψ
ε( f )
ω( f ),x( f ) , A�A (Y ) =

∏

f ∈�A

Aμ( f ),y( f )(x2( f )) ,

φ�φ (Z) =
∏

f ∈�φ

φ
ε( f )
ω( f ),z( f )(z2( f )) . (8.10)

The generating functional on scale j , W( j)(A, φ), has a form similar to (8.8), but with
ψ ≡ 0. Let us define the weighted norms:

‖W ( j)
� ‖1,k := 1

|�L ,a|a
2|�| ∑

X ,Y ,Z

∣∣W ( j)
� (X ,Y , Z)

∣∣wk(X ,Y , Z) , (8.11)

where, setting (X ,Y , Z) ≡ Q = (q
1
, . . . , q |�|):

wk(X ,Y , Z) =
∗∑

{mi j }

∏

i< j

‖q
i
− q

j
‖mi j ; (8.12)

the sum is over all natural numbers mi j , labelled by 1 ≤ i, j ≤ |�|, and the asterisk
denotes the constraint

∑
i j mi j = k. The kernels can be estimated inductively. On scale

N − 1, the bounds (8.4) allow to show that:

‖W (N−1)
� ‖1,k ≤ C�,k2

−k(N−1)2(N−1)D(�)
[ ∏

f ∈�A

|Zμ( f ),ω( f )(y2( f ))|
][ ∏

f ∈�φ

|Qε( f )
ω( f )(z2( f ))|

]
,

(8.13)
where D(�) is the scaling dimension:

D(�) := 2− |�ψ |
2

− |�A| − 3|�φ |
2

. (8.14)

It turns out that the above estimate cannot be reproduced on all scales j ≥ 0. The next
proposition provides a more precise bound, which can be iterated on all scales j ≥ 0.
It has been proven in [21], Theorem 3.1, for the case of fermions with two chiralities,
see also [57], Lemma 2, for QED in 1 + 1 dimensions. The proof can be immediately
adapted to our setting, and it will be omitted.
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Proposition 8.1 (Improved ultraviolet bounds). For |λω,ω′ | ≤ |λ| with |λ| small enough
uniformly in all cutoff parameters, the following is true. Let � be such that D(�) ≥ 0
and �ψ �= ∅. For all j ∈ [0, N ], there exists C > 0 such that:

‖W ( j)
� −W (N )

� ‖1,k ≤ C |λ|2−k j2 j (D(�)−θ(�))

[ ∏

f ∈�A

|Zμ( f ),ω( f )(y2( f ))|
][ ∏

f ∈�φ

|Qε( f )
ω( f )(z2( f ))|

]

(8.15)

where: θ(�) = 2 if � = �ψ and |�ψ | = 2; θ(�) = 1 if |�A| = 1, |�ψ | = 2; θ(�) = 1
if � = �ψ , |�ψ | = 4. For all the other kernels, the estimate (8.13) with N − 1 replaced
by j holds true.

Proposition 8.1 shows that the scaling dimension of all monomials is actually strictly
negative in the ultraviolet regime: all kernels are irrelevant in the renormalization group
sense.

Remark 8.2. As discussed in [21,57], the key ingredient for the dimensional improve-
ment of (8.15) is the vanishing of the bubble diagram in the continuum limit. We have:

lim
L→∞ lim

ε→0
lim
a→0

a2
∑

x∈�L ,a

g[ j,N ]ω,ε,a(x)
2 =

∫

R2

dk

(2π)2
g[ j,N ]ω (k)2 . (8.16)

Performing the change of variables vωk1 → k1, and setting χ[ j,N ](k) ≡ χω[ j,N ](k)|vω=1,
we get:

(8.16) = 1

Zω|vω|
∫

R2

dk

(2π)2

(χ[ j,N ](k))2

(−ik0 + k1)2
. (8.17)

Consider the rotations k �→ Rαk , with Rα the counterclockwise rotation with angle
α. The Jacobian of the transformation is 1, and χ[h,N ] is invariant; instead, the function
1/(−ik0 + k1) transforms as 1/(−ik0 + k1) → e−iα/(−ik0 + k1). Choosing α �= π , this
symmetry immediately implies:

∫
dk

(2π)2

(χ[ j,N ](k))2

(−ik0 + k1)2
= 0 . (8.18)

8.2. Infrared regime: the partition function. The starting point is the identity obtained
after the integration of the ultraviolet degrees of freedom:

ZL ,a,ε,h,N (A, φ) = eW(0)(A,φ)

∫
μ[h,0](dψ) eV

(0)(ψ;A,φ) . (8.19)

We will start by considering the partition function, corresponding to A = φ = 0. Later,
we will discuss how to adapt the analysis to the case A, φ �= 0.Wewill use the following
notations:

W( j) ≡ W( j)(0, 0) , V ( j)(ψ) ≡ V ( j)(ψ, 0, 0) . (8.20)

We shall suppose inductively that the partition function can be rewritten as, for all scales
r ≥ j > h:

ZL ,a,ε,h,N (0, 0) = eW(r)
∫

μ[h,r ](dψ) eV
(r)(

√
Zrψ) . (8.21)



Multi-channel Luttinger Liquids at the Edge of Quantum Hall Systems 1139

The Grassmann Gaussian integration μ[h,r ](dψ) has covariance:

ĝ[h,r ]
ω,ε,a(k) =

1

Zr,ω(k)

χ
ω,ε
[h,r ](k)

D
(r)
ω,ε,a(k)

D(r)
ω,ε,a(k) = −i

1

a
sin(ak0) + vr,ω(k)

1

a
sin(ak1) , (8.22)

where the renormalizations Zr,ω(k), vr,ω(k) are even functions of k; they satisfy a recur-
sion relation, that will be obtained below. The effective interaction is given by a (finite)
linear combination of Grassmann monomials:

V (r)(
√
Zrψ) =

∑

�

a2|�|
∑

X

[ ∏

f ∈�

√
Zr,ω( f )

]
ψ�(X)W (r)

� (X) , (8.23)

for suitable kernels to be determined inductively. They are analytic functions of λω,ω′ ,
and they are translation-invariant in the space-time arguments. We shall suppose that:

‖W (r)
� ‖1,k ≤ C�,k |λ|2−kr2r D(�) . (8.24)

All these assumptions are true on scale 0. In order to prepare the integration of the scale
j , we define a localization and renormalization procedure, as follows. We write:

V ( j)(
√
Z jψ) = LV ( j)(

√
Z jψ) +RV ( j)(

√
Z jψ) , (8.25)

for suitable operators L and R, that we shall now introduce. We rewrite the effective
action on scale zero in Fourier space as:

V ( j)(
√
Z jψ) =

∑

n≥1

1

L4n

∑

K ,ω

[ 2n∏

i=1

√
Z j,ωi

][ 2n∏

i=1

ψ̂+
k2i−1,ω2i−1

ψ̂−
k2i ,ω2i

]
Ŵ ( j)

2n;ω(K )δ(K ) ,

(8.26)
where: K = (k1, . . . , k2n), δ(K ) = L2δL ,a(

∑2n
i=1(−1)i ki ) with δL ,a the Kronecker

delta function periodic on D
a
L ,a, and

Ŵ ( j)
2n;ω(K ) := 1

L2 Ŵ
( j)
2n;ω(k1, k2, . . . , k2n−1,−k1 − . . . − k2n−1)

≡ Ŵ ( j)
2n;ω(k1, k2, . . . , k2n−1) . (8.27)

The expression (8.26) follows from the translation-invariance of the configuration-space
kernels. We shall also set:

Ŵ ( j)
2n;ω;∞(K ) := lim

L→∞ lim
ε→0

lim
a→0

Ŵ ( j)
2n;ω(K ) . (8.28)

We shall suppose that Ŵ ( j)
2;ω;∞(0) = 0. This assumption is true on scale j = 0; it follows

from ĝ(�)
ω (k) = −ĝ(�)

ω (−k) for all � > 0, from v̂(p) = v̂(−p), and from the fact that

Ŵ (0)
2;ω;∞(0) is given by a sum of Feynman graphs containing an odd number of fermionic

propagators.
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The localization operator L is a linear operator acting on the kernels of the effective
interaction V ( j) as:

LŴ ( j)
2;ω(k) = Ŵ ( j)

2;ω;∞(0) +
1∑

i=0

1

a
sin(kia)∂i Ŵ

( j)
2;ω;∞(0)

LŴ ( j)
4;ω(k1, k2, k3) = Ŵ ( j)

4;ω;∞(0, 0, 0)

LŴ ( j)
2n;ω(K ) = 0 otherwise. (8.29)

The role of the localization operator is to isolate the potentially dangerous contributions
to the effective action, that tend to expand under the renormalization group iteration.
The terms Ŵ ( j)

2;ω;∞(0) are relevant, while the terms ∂i Ŵ
( j)
2;ω;∞(0), Ŵ ( j)

4;ω;∞(0, 0, 0) are

marginal. Instead, the operatorR is defined as 1−L; the kernels appearing inRV ( j) are
by definition irrelevant. If we could replace V ( j) by RV ( j), the inductive assumptions
could be safely iterated on all scales.

By our inductive assumptions, the relevant terms are exactly zero. Consider the
marginal terms in the first of (8.29). By global chiral gauge symmetry, ω1 = ω2 at
the argument of Ŵ ( j)

2;ω, and we shall set Ŵ ( j)
2;ω≡ Ŵ ( j)

2;(ω,ω)
. Let:

z j,0,ω := i
∂

∂k0
Ŵ ( j)

2,ω;∞(0) , z j,1,ω := ∂

∂k1
Ŵ ( j)

2,ω;∞(0) . (8.30)

Thanks to the estimates (8.24):

|z j,0,ω| ≤ C |λ| , |z j,1,ω| ≤ C |λ| . (8.31)

The corresponding contribution to the effective interaction is:

L2V
( j)(

√
Z jψ) =

∑

ω

Z j,ω
1

L2

∑

k∈Da
L ,a

ψ̂+
k,ω

(
− i z j,0,ω

1

a
sin(ak0) + z j,1,ω

1

a
sin(ak1)

)
ψ̂−
k,ω .

This term has the same structure of the covariance of the integration μ[h, j](dψ). It is
convenient to reabsorb it in the Grassmann Gaussian integration, as follows:

μ[h, j](dψ) exp
{∑

ω

Z j,ω
1

L2

∑

k∈Da
L ,a

ψ̂+
k,ω

(
− i z j,0,ω

1

a
sin(ak0) + z j,1,ω

1

a
sin(ak1)

)
ψ̂−
k,ω

}

≡ 1

n j
ν[h, j](dψ) , (8.32)

for a suitable normalization factor n j . The new Grassmann Gaussian integration can be
written as:

ν[h, j](dψ) = 1

Ñ dψ e−C̃[h, j](ψ) , (8.33)

with:

C̃[h, j](ψ) =
∑

ω

1

L2

∑

k∈Da
L ,a

ψ̂+
k,ω

[
ĝ[h, j]
ω,ε,a(k)

−1 − ik0Z j,ωz j,0,ω + k1Z j,ωz j,1,ω
]
ψ̂−
k,ω

≡
∑

ω

1

L2

∑

k∈Da
L ,a

ψ̂+
k,ω g̃

[h, j]
ω,ε,a(k)

−1ψ̂−
k,ω , (8.34)
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where the new ‘dressed’ propagator is given by:

g̃[h, j]
ω,ε,a(k) = 1

Z j−1,ω(k)

χ
ω,ε
[h, j](k)

D
( j)
ω,ε,a(k)

D
( j)
ω,ε,a(k) = −i

1

a
sin(ak0) + v j−1,ω(k)

1

a
sin(ak1) , (8.35)

with new parameters:

Z j−1,ω(k) = Z j,ω(1 + z j,0,ωχ
ω,ε
[h, j](k))

Z j−1,ω(k)v j−1,ω(k) = Z j,ω(v j,ω + z j,1,ωχ
ω,ε
[h, j](k)) . (8.36)

For later use, we also define:

Z j−1,ω = Z j,ω(1 + z j,0,ω) , Z j−1,ωv j−1,ω = Z j,ω(v j,ω + z j,1,ω) . (8.37)

Remark 8.3. Notice that for ‖k‖ω > 2h , the functions (8.36) behave qualitatively as
(8.37). Instead, for ‖k‖ω ≤ 2h , the behavior of (8.36) for j = h is different from the
one of (8.37); to see this, consider the ε → 0 limit. We can rewrite (8.36) as:

Z j−1,ω(k) = Z j,ω(k) + Z j,ωz j,0,ω f ω
h (k)

Z j−1,ω(k)v j−1,ω(k) = Z j,ω(k)v j,ω(k) + Z j,ωz j,1,ω f ω
h (k) . (8.38)

Iterating the expressions, we end up with:

Z j−1,ω(k) = Zω + (Z j−1,ω − Zω) f ω
h (k)

Z j−1,ω(k)vh−1,ω(k) = Zωvω + (Z j−1,ωv j−1,ω − Zωvω) f ω
h (k) . (8.39)

Nevertheless, as we will comment later on, this will not affect the estimates for the
single-scale propagators on scale h.

Thus,

μ[h, j](dψ)eV
( j)(

√
Zψ) = 1

n j
ν[h, j](dψ)eL4V ( j)(

√
Z jψ)+RV ( j)(

√
Z jψ) , (8.40)

where L4V ( j) only collects the quartic contributions to LV ( j). Before integrating the
field on scale j , we rescale the effective interaction as follows:

L4V
( j)(

√
Z jψ) +RV ( j)(

√
Z jψ) ≡ L4Ṽ

( j)(
√
Z j−1ψ) +RṼ ( j)(

√
Z j−1ψ) . (8.41)

The relation between the new and the old kernels is:

W̃ ( j)
�ψ

(X) :=
[ ∏

f ∈�ψ

√
Z j,ω( f )

Z j−1,ω( f )

]
W ( j)

�ψ
(X) . (8.42)

In particular, the local quartic term is:

L4Ṽ
( j)(

√
Z j−1ψ) =

∑

ω

[ 4∏

i=1

√
Z j−1,ωi

]
a2
∑

x

ψ+
x,ω1

ψ−
x,ω2

ψ+
x,ω3

ψ+
x,ω4

λ j,ω , (8.43)
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with the effective coupling on scale j given by:

λ j,ω =
[ 4∏

i=1

√
Z j,ωi

Z j−1,ωi

]
Ŵ ( j)

4;ω(0, 0, 0) . (8.44)

By global chiral gauge symmetry, λ j,ω is zero unless ω1 = ω2 and ω3 = ω4 or ω1 = ω4
and ω2 = ω3. We shall denote by λ j,w,w′ the independent couplings. For j = 0, one
finds:

|λ0,ω,ω′ − λω,ω′ | ≤ C |λ|2 . (8.45)

In general, the iterative integration gives rise to a recursion relation for the local quartic
coupling:

λ j,ω,ω′ = λ j+1,ω,ω′ + βλ
j+1,ω,ω′ , (8.46)

where βλ
j+1,ω,ω′ is the beta function of the marginal quartic coupling. Controlling the

flow generated by (8.46) is a major task in our analysis. In terms of the effective coupling
constant, we rewrite (8.43) as:

L4Ṽ
( j)(

√
Z j−1ψ) =

∑

ω,ω′
Z j−1,ωZ j−1,ω′a2

∑

x

ψ+
x,ωψ−

x,ωψ+
x,ω′ψ+

x,ω′λ j,ω,ω′ . (8.47)

We are now ready to integrate the scale j . We split:

g̃[h, j]
ω,ε,a(k) = ĝ[h, j−1]

ω,ε,a (k) + ĝ( j)
ω,ε,a(k) , (8.48)

with:

ĝ( j)
ω,ε,a(k) = 1

Z j−1,ω(k)

f ω,ε
j (k)

D
( j)
ω,ε,a(k)

(8.49)

and where f ω,ε
j (k) = χ

ω,ε
[h, j](k) − χ

ω,ε
[h, j−1](k). In the L → ∞, ε → 0, a → 0 limit, the

propagator on scale j is a compactly supported function, for 2 j−1 ≤ ‖k‖ω ≤ 2 j+1, and
it satisfies the following estimate, for all scales j ≥ h:

‖∂�
k ĝ

( j)
ω,∞(k)‖∞ ≤ C�

2− j (1+�)

Z j−1,ω
, ∀� ≥ 0 . (8.50)

This bound easily implies the following decay estimate for the configuration space
propagator:

2 j�‖x‖�|g( j)
ω,∞(x)| ≤ C�

2 j

Z j−1,ω
, ∀� ≥ 0 . (8.51)

Remark 8.4. (a) Despite Remark 8.3, it is not difficult to check that the above bounds
also hold on scale j = h, without losing the factor Zh−1,ω. This is due to the fact
that whenever Zh−1,ω(k) is close to Zω, the support function f ω

h (k) is close to zero.
See discussion around Eq. (63) of [18] for a proof.

(b) For L large enough, and for ε, a small enough, the propagator g( j)
ω,a,ε(x) satisfies the

same bounds (8.50), (8.51), provided ‖x‖ is replaced by the distance on the torus of
side L .
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(c) Furthermore, we observe that the propagator on scale j satisfies the parity property:

ĝ( j)
ω,ε,a(k) = −ĝ( j)

ω,ε,a(−k) . (8.52)

This property will allow to reproduce the cancellation of the relevant terms on the
next scale.

By the addition principle of Grassmann variables, we write:

ZL ,a,ε,h,N (0, 0) = eW ( j) 1

n j

∫
ν[h, j](dψ) eL4 Ṽ ( j)(

√
Z j−1ψ)+RṼ ( j)(

√
Z j−1ψ)

= eW ( j) 1

n j

∫
μ[h, j−1](dψ)

∫
ν0(dξ) eL4 Ṽ ( j)(

√
Z j−1(ψ+ξ))+RṼ ( j)(

√
Z j−1(ψ+ξ))

≡ eW ( j−1)
∫

μ[h, j−1](dψ) eV
( j−1)(

√
Z j−1ψ) , (8.53)

where the prefactor is chosen so that V ( j−1)(0) = 0. The new effective interaction has
the form:

V ( j−1)(
√
Z j−1ψ) =

∑

�

a2|�|
[ ∏

f ∈�

√
Z j−1,ω( f )

]∑

X

ψ�(X)W ( j−1)
� (X) , (8.54)

for suitable new kernels W ( j−1)
� . The iterative scale integration can be conveniently

organized in terms of Gallavotti–Nicolò trees: we refer the reader to [40] for a review.
The outcome of this representation is a convergent expansion for the kernels of the
effective potentials, in powers of the running coupling constants λr,ω,ω′ , with r ≥ j .
The new kernels also depend on the values of the wave function renormalization Zr,ω(k)
and of the effective Fermi velocity vr,ω(k). It turns out that the expansion converges
uniformly in all cutoff parameters provided:

∣∣∣
Zr,ω

Zr−1,ω

∣∣∣ ≤ ec|λ| , |vr,ω − vω| ≤ C |λ| , |λr,ω,ω′ | ≤ C |λ| . (8.55)

If these bounds hold, the inductive assumptions can be propagated to the next scale. In
particular, the free energy of the model is analytic at small coupling.

The proof of the bounds (8.55) is our main technical task. These properties are highly
nontrivial, and rely on subtle cancellations. In fact, convergence of perturbation theory
only implies that:

|z j,μ,ω| ≤ Cλ2≥ j+1 , |βλ
j,ω,ω′ | ≤ Cλ2≥ j+1 . (8.56)

These bounds cannot be used to prove the smallness of λ≥ j uniformly in j : to show
this, we need to exhibit a cancellation in the expansion. Based on the bounds (8.56), it is
however possible to prove that the bounds (8.55) hold true for a finite number of scales,

say for all j such that | j ||λ| 12−ε ≤ 1. More precisely, for these scales one can prove that
both the effective interaction and the Fermi velocity are close to the bare ones:

|λ j,ω,ω′ − |λ|ω,ω′ | ≤ |λ| 32 , |v j,ω − vω| ≤ |λ| 12 . (8.57)

Notice that the validity of these bounds implies that:

Z j−1,ω = Zω

∏

k≥ j

(1 + z0,k,ω) ∼ Zω2
ηω j , ηω = O(λ2) . (8.58)
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In Sect. 9, we will establish the bounds (8.57) for all j ≤ 0. Furthermore, we will prove
the vanishing of the beta function, for the effective coupling constants and for the Fermi
velocity. Let us rewrite the flow of the Fermi velocity and of the effective coupling as:

v j−1,ω = v j,ω + βv
j,ω , λ j−1,ω,ω′ = λ j,ω,ω′ + βλ

j,ω,ω′ , (8.59)

where βv
j,ω, β

λ
j,ω,ω′ are analytic functions of the couplings λk = {λk,ω,ω′ } for k ≥ j ,

βv
j,ω ≡ βv

j,ω(λ j , . . . , λ0) , βλ
j,ω,ω′ ≡ βλ

j,ω,ω′(λ j , . . . , λ0) (8.60)

Theorem 8.5 (Vanishing of the beta function). There exists 0 < θ < 1 such that the
following is true. Let s = {sω,ω′ }, with sω,ω′ ∈ C and with |s| = maxω,ω′ |sω,ω′ | small
enough. Then, the following bound holds, for all j ≤ 0:

|βv
j,ω(s, . . . , s)| ≤ C |s|2θ j , |βλ

j,ω,ω′(s, . . . , s)| ≤ C |s|22θ j . (8.61)

Remark 8.6. Theorem 8.5 has been proved in [17,19], for the case of relativistic fermions
with two chiralities. See also [32] for the simpler case of relativistic fermions with a
single chirality. In Sect. 9 we will review the proof, and we will discuss how to adapt it
to the case of arbitrarily many chiralities.

8.3. Infrared regime: the correlation functions. To conclude the discussion about the
multiscale analysis of the generating functional of correlations, here we shall discuss
how to adapt the analysis of the previous section to the multiscale evalutation of the
generating functional of the correlation functions, A �= 0, φ �= 0. We shall omit the
x2, y2 dependence of the external fields: taking them into account simply amounts to
introducing another label in the following discussion.

The generating functional of the correlations on scale j ≤ 0 has the form:

ZL ,a,ε,h,N (A, φ) = eW( j)(A,φ)

∫
μ[h, j](dψ)eV

( j)(
√

Z jψ;A,φ) (8.62)

where the effective interaction has the form:

V ( j)(
√
Z jψ; A, φ) =

∑

�

a2|�|
∑

X ,Y ,Z

[ ∏

f ∈�ψ

√
Z j,ω( f )

]
ψ�(X)A�(Y )φ�(Z)W ( j)

� (X , Y , Z) ,

(8.63)
where the kernelsW ( j)

� (X ,Y , Z) are defined inductively. The Grassmann integral (8.62)
is evaluated in a multiscale fashion, as for the partition function. In order to control the
flow of the new effective interactions, we need to extend the definition of localization
operator, so to include terms that depend on the external fields, and behave dimensionally
as relevant and marginal terms. To this end, we rewrite the effective interaction on scale
j in Fourier space as:

V ( j)(
√
Z jψ; A, φ)

=
∑

n,m,s

1

L4n+2m+2q

∑

ω,μ
ρ,ε

∑

K ,P
Q

ψ̂ω(K ) Âμ(P)�̂
ε
ρ(Q).

[ 2n∏

i=1

√
Z j,ωi

]
Ŵ ( j)

2n,m,s;ω,μ,ρ,ε
(K , P, Q)δ(K , P, Q). (8.64)
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where:

ψ̂ω(K ) =
n∏

i=1

ψ̂+
k2i−1,ω2i−1

ψ̂−
k2i ,ω2i

, Âμ(P) =
m∏

i=1

Âμi ,p , �̂
ε
ρ(Q) =

s∏

i=1

φεi
q,ρi

;
(8.65)

the symbol δ(K , P, Q) denotes the Kronecker delta function; and:

Ŵ ( j)
2n,m,s;ω,μ,ρ,ε

(K , P, Q) = 1

L2
Ŵ ( j)
2n,m,s;ω,μ,ρ,ε

(k1, . . . , k2n−1, k∗, p1, . . . , pm , q
1
, . . . , q

s
)

≡ Ŵ ( j)
2n,m,s;ω,μ,ρ,ε

(k1, . . . , k2n−1, p1, . . . , pm , q
1
, . . . , q

s
) ,

(8.66)

where k∗ is chosen so to enforcemomentum conservation.We complement the definition
of the localization operator in (8.29), with:

LŴ ( j)
2,1,0(k, p) = Ŵ ( j)

2,1,0;∞(0, 0) , LŴ ( j)
1,0,1(k) = Ŵ ( j)

1,0,1;∞(k) , (8.67)

and we update accordingly the definition of R. The first term in (8.67) is marginal,
while the second is relevant. We proceed as for the multiscale evaluation of the partition
function, with the difference that in Eq. (8.53) the argument of the first exponential is
replaced by:

L1,0,1Ṽ
( j)(

√
Z j−1ψ; A, φ) + L2,1,0Ṽ

( j)(
√
Z j−1ψ; A, φ)

+L4,0,0Ṽ
( j)(

√
Z j−1ψ; A, φ) +RṼ ( j)(

√
Z j−1ψ; A, φ)

where:

L1,0,1Ṽ
( j)(

√
Z j−1ψ; A, φ) :=

∑

ω

1

L2

∑

k

[ψ̂+
k,ωQ

( j)
ω (k)φ̂−

k,ω + φ̂+
k,ωQ

( j)
ω (k)ψ̂−

k,ω

]

L2,1,0Ṽ
( j)(

√
Z j−1ψ; A, φ) :=

∑

ω,μ

1

L4

∑

k,p

Âμ,pψ̂
+
k+p,ωψ̂−

k,ωZ j−1,ωZ j,μ,ω

L4,0,0Ṽ
( j)(

√
Z j−1ψ; A, φ) := L4Ṽ

( j)(
√
Z j−1ψ) . (8.68)

The new running coupling constants evolve as follows [40], for j ≤ 0:

Q( j)
ω (k) = Q( j+1)

ω (k) + Z j,ωŴ
( j)
2,0,0;ω,ω

(k)
N∑

r= j+1

ĝ(r)
ω;∞(k)Q(r)

ω (k)

Z j−1,ωZμ, j,ω = Z j,ωZμ, j+1,ω + Z j,ωŴ
( j)
2,1,0;ω,ω,μ;∞(0, 0) . (8.69)

Notice that, for k in the support of ĝ( j)
ω;∞(k), the first equation becomes:

Q( j)
ω (k) = Qω(k)[1 + Z j,ωŴ

( j)
2,0,0;ω,ω

(k)ĝ( j+1)
ω;∞ (k)] . (8.70)

Instead, the second equation has to be solved for Zμ,0,ω = Zμ,ω(1 + O(λ)), where the
O(λ) corrections are determined by the integration of the ultraviolet degrees if freedom.
The single-scale integration is performed via fermionic cluster expansion, as for the
partition function, which can be conveniently organized in terms of Gallavotti–Nicolò
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trees. We refer to [40] for details. The next result will provide important information on
various correlation functions of the referencemodel.We shall use the following notation:

〈·〉h,N = lim
L→∞ lim

ε→0
lim
a→0

1

L2 〈·〉L ,a,ε,h,N (8.71)

Proposition 8.7 (Bounds for the correlation functions). Suppose that the bounds (8.55)
hold. Then, the following is true, uniformly in N.

Bound for the two-point function. Let k be such that ‖k‖ω = 2h. Then,

〈ψ−
k,ωψ+

k,ω〉h,N = 1

Zh−1,ωDh−1,ω(p)
(1 + o(1)) , (8.72)

where o(1) denotes error terms bounded by C2θh or by C |λ|, for a universal constant
C > 0.

Bound for the vertex function. Let k, k + p be such that ‖k‖ω′ = ‖k + p‖ω′ = 2h. Then:

〈n̂ p,ω ; ψ̂−
k,ω′ ; ψ̂+

k+p,ω′ 〉h,N = Z0,h−1,ω′ Zh−1,ω〈ψ̂−
k,ωψ̂+

k,ω〉h,N 〈ψ̂−
k+p,ωψ̂+

k+p,ω〉h,N (δω,ω′ + o(1)) .

(8.73)
Bounds for the four-point function. Let k1, k2, k3, k4 be such that ‖k1‖ω = ‖k2‖ω =
‖k3‖ω′ = ‖k4‖ω′ = 2h. Then:

〈ψ̂+
k1,ω

; ψ̂−
k2,ω

; ψ̂+
k3,ω

′ ; ψ̂−
k4,ω

′ 〉h,N

= −〈ψ−
k1,ω

ψ+
k1,ω

〉h,N 〈ψ−
k2,ω

ψ+
k2,ω

〉h,N 〈ψ−
k3,ω

′ψ+
k3,ω

′ 〉h,N 〈ψ−
k4,ω

′ψ+
k4,ω

′ 〉h,N

·(Zh−1,ωZh−1,ω′(λh,ω,ω′ + O(λ2≥h))
)

(8.74)

Moreover, suppose that ‖k1‖ω = 2h1 , ‖k2‖ω = 2h2 . Then:

|〈ψ̂+
k1,ω

; ψ̂−
k2,ω

; ψ̂+
k3,ω

′ ; ψ̂−
k4,ω

′ 〉h,N | ≤ Cλ≥h
2−h1−h2−2h

√
Zh1,ω1 Zh2,ω2 Zh,ω

. (8.75)

Bound for the (1,4)-point function. Let ‖p‖ω′ ≤ C2h, and let ‖ki‖ = 2h. Then:

|〈n̂ p,ω̃ ; ψ̂−
k4+p,ω

′ ; ψ̂+
k3,ω

′ ; ψ̂−
k2,ω

; ψ̂+
k1,ω

〉h,N | ≤ Cλ≥h
2−5h

Zh−1,ωZh−1,ω′
Zh−1,0,ω̃ .

(8.76)

Remark 8.8. (a) The proof of this proposition follows from the tree expansion for the
correlations. In the setting of the usual Luttinger model, the proofs of the bounds
(8.72), (8.73), (8.74) can be found in [19], Theorem 1, or in [18], Section 3.5. A proof
of the bound (8.75), (8.76) can be found in Appendix A1 of [17]. The adaptation to
the present setting is straightforward, and will be omitted.

(b) The Z -dependence of the bounds is easily understood recalling that the contraction
with the fields φ produce propagators on the scale of the external momenta, which
carry a factor 1/Z .Also, thefields that are contractedwith themonomials proportional
to φ carry a factor

√
Z .
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9. Vanishing of the Beta Function of the Reference Model

In this section we will prove the bounds (8.57) and Theorem 8.5, adapting the strategy of
[17,19]. We will proceed by induction: we will assume the validity of the bounds (8.57)
on scales≥ h+1, and wewill show that they hold true for the running coupling constants
on scale h (recall that h is the scale of the infrared cutoff). Recall that, as discussed at
the end of Sect. 8.2, the estimates (8.57) are true on scales h such that |h||λ| 12−ε ≤ 1.

All the statements below have to be understood for finite L , h, N and nonzero a, ε.
To simplify the expressions, we shall temporarily use the notation:

〈·〉 ≡ 〈·〉h,N ,L ,a,ε . (9.1)

Also, we shall set:

Z(φ) ≡ Zh,N ,L ,a,ε(0, φ) , W(φ) ≡ Wh,N ,L ,a,ε(0, φ) , (9.2)

and we shall denote by 〈·〉(φ) the Gibbs state of the reference model in the presence of
a nonzero external field φ. In what follows, it will be enough to study the generating
functional of the correlations for the following choice of parameters:

Q±
ω = 1 , Zμ,ω = δμ,0 . (9.3)

9.1. Schwinger–Dyson equation. The analysis relies on the combination of Schwinger–
Dyson equations and Ward identities. Recall the definition of four-point function:

〈ψ̂+
k1,ω1

; ψ̂−
k2,ω2

; ψ̂+
k3,ω3

; ψ̂−
k4,ω4

〉 := L8 ∂4

∂φ̂−
k1,ω1

∂φ̂+
k2,ω2

∂φ̂−
k3,ω3

∂φ̂+
k4,ω4

W(φ)

∣∣∣
φ=0

.

(9.4)
By conservation ofmomentum, the four point function is zero unless k1−k2+k3−k4 = 0
(modulo translations by G1 and G2). Also, by global chiral gauge symmetry, the four-
point function is zero unless:

ω1 = ω2 , ω3 = ω4 or ω1 = ω4 , ω2 = ω3 . (9.5)

The study of the four-point function will be central in order to prove the vanishing of the
beta function of themarginal couplings λh,ω,ω′ . The starting point is the next proposition.

Proposition 9.1 (Schwinger–Dyson equation for the four-point function.). Let:

ω1 = ω2 ≡ ω , ω3 = ω4 ≡ ω′ , ω �= ω′ , k1 − k2 = k4 − k3 . (9.6)

Then, the following identity holds true:

〈ψ̂+
k1,ω

; ψ̂−
k2,ω

; ψ̂+
k3,ω

′ ; ψ̂−
k4,ω

′ 〉

= − ĝω′(k4)
L2

∑

ω̃: ω̃ �=ω′
λω̃,ω′ Zω̃Zω′

∑

p∈Ds
L

v̂(p)〈n̂ p,ω̃ ; ψ̂+
k1,ω

; ψ̂−
k2,ω

; ψ̂+
k3,ω

′ ; ψ̂−
k4−p,ω′ 〉

− ĝω′(k4)
L2

∑

ω̃: ω̃ �=ω′
λω̃,ω′ Zω̃Zω′ v̂(k2 − k1)〈ψ̂−

k3,ω
′ ; ψ̂+

k3,ω
′ 〉〈n̂k1−k2,ω̃

; ψ̂−
k2,ω

; ψ̂+
k1,ω

〉 .

(9.7)
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Proof. We start by computing:

∂

∂φ̂+
k4,ω4

logZ(φ) = 1

L2

1

Z(φ)

∫
μ(dψ) e−V (ψ)+B(ψ;φ)ψ̂−

k4,ω4
. (9.8)

Next, we use that:

1

L2 e
−C(ψ)ψ̂−

k4,ω4
= −ĝω4(k4)

( ∂

∂ψ+
k4,ω4

e−C(ψ)
)

. (9.9)

Hence:

∂

∂φ̂+
k4,ω4

logZ(φ) = − ĝω4(k4)

Z(φ)

∫
Dψ

( ∂

∂ψ+
k4,ω4

e−C(ψ)
)
e−V (ψ)+B(ψ;φ)

= ĝω4(k4)

Z(φ)

∫
Dψ e−C(ψ) ∂

∂ψ+
k4,ω4

e−V (ψ)+B(ψ;φ)

= ĝω4(k4)

Z(φ)

∫
μ(dψ) e−V (ψ)+B(ψ;φ)

(
− ∂

∂ψ̂+
k4,ω4

V (ψ) +
1

L2 φ̂−
k4,ω4

)
.

(9.10)

The second step in Eq. (9.10) follows from Grassmann integration by parts, and the last
step follows from the fact that V (ψ), B(ψ;φ) are given by sums of even monomials
in the Grassmann variables (hence their exponentials commute with any Grassmann
monomial). Using that:

∂

∂ψ̂+
k4,ω4

n̂ p,ω̃ = ∂

∂ψ̂+
k4,ω4

( 1

L2

∑

k∈Da
L ,a

ψ̂+
k−p,ω̃ψ̂−

k,ω̃

)

= δω̃,ω4

L2 ψ̂−
k4+p,ω̃

, (9.11)

we explicitly find, recalling that v̂(p) = v̂(−p), λω,ω′ = λω′,ω:

∂

∂ψ̂+
k4,ω4

V (ψ) =
∑

ω̃: ω̃ �=ω4

λω̃,ω4 Zω̃Zω4

1

L4

∑

p∈Ds
L

v̂(p)n̂ p,ω̃ψ̂−
k4−p,ω4

. (9.12)

From now on, we will enforce the constraints:

ω1 = ω2 , ω3 = ω4 , ω1 �= ω3 . (9.13)

We then get4:

〈ψ̂+
k1,ω1

; ψ̂−
k2,ω2

; ψ̂+
k3,ω3

; ψ̂−
k4,ω4

〉
= −ĝω4(k4)

∑

ω̃: ω̃ �=ω4

λω̃,ω4 Zω̃Zω4 ·

· 1
L2

∑

p∈Ds
L

v̂(p)
L6∂3

∂φ̂−
k1,ω1

∂φ̂+
k2,ω2

∂φ̂−
k3,ω3

〈n̂ p,ω̃ψ̂−
k4−p,ω4

〉(φ)

∣∣∣
φ=0

. (9.14)

4 The linear term in φ̂−k4,ω4
gives a vanishing contribution to the four point function.
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Next, let us evaluate the remaining derivatives in terms of connected correlation func-
tions. We have:

L6∂3

∂φ̂−
k1,ω1

∂φ̂+
k2,ω2

∂φ̂−
k3,ω3

〈n̂ p,ω̃ψ̂−
k4−p,ω4

〉(φ)

∣∣∣
φ=0

= 〈ψ̂+
k1,ω1

; ψ̂−
k2,ω2

; ψ̂+
k3,ω3

; n̂ p,ω̃ψ̂−
k4−p,ω4

〉 ,

which we rewrite as, recalling the definition of cumulant, thanks to the choices (9.13):

L6∂3

∂φ̂−
k1,ω1

∂φ̂+
k2,ω2

∂φ̂−
k3,ω3

〈n̂ p,ω̃ψ̂−
k4−p,ω4

〉(φ)

∣∣∣
φ=0

= 〈n̂ p,ω̃ ; ψ̂+
k1,ω1

; ψ̂−
k2,ω2

; ψ̂+
k3,ω3

; ψ̂−
k4−p,ω4

〉
+〈ψ̂−

k4−p,ω4
; ψ̂+

k3,ω3
〉〈n̂ p,ω̃ ; ψ̂−

k2,ω2
; ψ̂+

k1,ω1
〉 . (9.15)

Plugging (9.15) in (9.14) we get:

〈ψ̂+
k1,ω1

; ψ̂−
k2,ω2

; ψ̂+
k3,ω3

; ψ̂−
k4,ω4

〉

= −ĝω4 (k4)
∑

ω̃: ω̃ �=ω4

λω̃,ω4 Zω̃Zω4

1

L2

∑

p∈Ds
L

v̂(p)〈n̂ p,ω̃ ; ψ̂+
k1,ω1

; ψ̂−
k2,ω2

; ψ̂+
k3,ω3

; ψ̂−
k4−p,ω4

〉

− ĝω4 (k4)
∑

ω̃: ω̃ �=ω4

λω̃,ω4 Zω̃Zω4

1

L2

∑

p∈Ds
L

v̂(p)〈ψ̂−
k4−p,ω4

; ψ̂+
k3,ω3

〉〈n̂ p,ω̃ ; ψ̂−
k2,ω2

; ψ̂+
k1,ω1

〉 .

(9.16)

This expression can be further simplified, noting that the last correlation function is zero
unless p− k1 + k2 = 0. Furthermore, by our choice of external momenta k3 and k4, we
also have p = k4 − k3. In conclusion:

〈ψ̂+
k1,ω1

; ψ̂−
k2,ω2

; ψ̂+
k3,ω3

; ψ̂−
k4,ω4

〉

= −ĝω4 (k4)
∑

ω̃: ω̃ �=ω4

λω̃,ω4 Zω̃Zω4

1

L2

∑

p∈Ds
L

v̂(p)〈n̂ p,ω̃ ; ψ̂+
k1,ω1

; ψ̂−
k2,ω2

; ψ̂+
k3,ω3

; ψ̂−
k4−p,ω4

〉

− ĝω4 (k4)
∑

ω̃: ω̃ �=ω4

λω̃,ω4 Zω̃Zω4

1

L2 v̂(k2 − k1)〈ψ̂−
k3,ω4

; ψ̂+
k3,ω3

〉〈n̂k1−k2,ω̃ ; ψ̂−
k2,ω2

; ψ̂+
k1,ω1

〉 .

(9.17)

This concludes the proof of Proposition 9.1. ��

9.2. Anomalous Ward identities. The importance of the identity (9.7) relies on the fact
that, for external momenta on scale 2h , the left-hand side gives access to λh,ω,ω′ (recall
Proposition 8.7), while the right-hand side is manifestly O(λ). Therefore, if we can show
that, at leading order, the right-hand side of (9.7) has the same momentum dependence
of the four-point function, we will be able to bound λh,ω,ω′ by C |λ| uniformly in h.

In order to gain insight on the momentum-dependence of the right-hand side, we
shall derive Ward identities for the reference model. These identities follow from the
behavior of the QFT under chiral local gauge transformations:

ψ±
x,ω → e±iαω(x)ψ±

x,ω , (9.18)
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with αω(x) a function on aZ
2, with the periodicity of �L ,a:

αω(x + n1e1L + n2e2L) = αω(x) , (9.19)

which we can represent in terms of its Fourier series as:

αω(x) = 1

L2

∑

p∈Dp
L

e−i p·x α̂ω(p) . (9.20)

The starting point is the following proposition.

Proposition 9.2. (Local phase transformations.) Let Q(ψ+, ψ−) be a monomial in the
Grassmann variables ψ+

x,ω, ψ
−
x,ω. Let Qα(ψ+, ψ−) be the monomial obtained perform-

ing the following replacement in Q(ψ+, ψ−):

ψ±
x,ω → e±iαω(x)ψ±

x,ω . (9.21)

Then, the following identity holds true:

∫
Dψ Q(ψ+, ψ−) =

∫
Dψ Qα(ψ+, ψ−) . (9.22)

Remark 9.3. Since all functions on a finite Grassmann algebra are polynomials, Eq.
(9.22) proves that the Jacobian of (9.21) is one.

Proof. The proof is well-known, and we spell it out for completeness. To begin, no-
tice that both the left-hand side and the right-hand side of (9.22) are zero if the same
Grassmann field ψ±

x,ω appears more than once in the monomial. Also, representing the
fields ψ±

x,ω in Fourier space as in (7.11), and using that |�L ,a| = |Da
L ,a|, it is clear that

left-hand side and right-hand side of (9.22) are zero unless the number of ψ+
x,ω fields

and of ψ−
x,ω fields are both equal to ne × |�L ,a|.

Hence the fields ψ+
x,ω, ψ

−
x,ω come in pairs, and the identity (9.22) follows from the

invariance of ψ+
x,ωψ−

x,ω under (9.21). ��
By linearity of the Grassmann integration, the property (9.22) implies the following

identity, valid for any function f on the finite Grassmann algebra:

∫
Dψ f (ψ) =

∫
Dψ fα(ψ) , (9.23)

with fα(ψ) the function obtained from f (ψ), after the chiral gauge transformation
(9.18). The next proposition is a direct consequence of this identity.

Proposition 9.4 (Generating Ward identity.). The following identity holds true:

0 =
∫

μ(dψ)e−V (ψ)+B(ψ;φ)+�(ψ;A)
[
ZωDω,a(p)n̂ p,ω − �p,ω(ψ) + Bp,ω(ψ;φ)

]
,

(9.24)
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where:

�p,ω(ψ) := 1

L2

∑

k∈Da
L ,a

ψ̂+
k−p,ω�ω(k, p)ψ̂−

k,ω

�ω(k, p) := −χ
ω,ε
[h,N ](k − p)−1ZωDω,a(k − p) + χ

ω,ε
[h,N ](k)

−1ZωDω,a(k) + ZωDω,a(p) ,

(9.25)

and:

Bp,ω(ψ;φ) := 1

L2

∑

k∈Da
L ,a

[
ψ̂+
k−p,ωφ̂−

k,ω − φ̂+
k,ωψ̂−

k+p,ω

]
. (9.26)

Proof. We apply the symmetry (9.23) to the generating functional of correlations. We
get:
∫

μ(dψ) e−V (ψ)+B(ψ;φ)+�(ψ;A) ≡ 1

N
∫

Dψ e−C(ψ)−V (ψ)+B(ψ;φ)+�(ψ;A)

= 1

N
∫

Dψ e−Cα(ψ)−Vα(ψ)+Bα(ψ;φ)+�α(ψ;A)

=
∫

μ(dψ)e−(Cα(ψ)−C(ψ))−V (ψ)+Bα(ψ;φ)+�(ψ;A) ,

(9.27)

where the second identity follows from (9.23), and the last from the invariance of
V (ψ), �(ψ; A) under chiral gauge transformations. Let α̂ω(p) be the Fourier coeffi-

cients of αω(x), p ∈ D
p
L . Differentiating with respect to α̂ω(p) we get:

0 = ∂

∂α̂ω(p)

∫
μ(dψ)e−(Cα(ψ)−C(ψ))−V (ψ)+Bα(ψ;φ)+�(ψ;A) . (9.28)

In particular:

0 =
∫

μ(dψ)e−V (ψ)+B(ψ;φ)+�(ψ;A)
[
− ∂

∂α̂ω(p)
Cα(ψ) +

∂

∂α̂ω(p)
Bα(ψ;φ)

]

α=0
.

(9.29)
Let us now compute the derivatives. To begin, it is convenient to linearize the gauge
transformation in momentum space:

̂
(
eiαω(x)ψ+

x,ω

)
(k) = ψ̂+

k,ω +
i

L2

∑

p∈Dp
L

α̂ω(p)ψ̂+
k+p,ω + O(α̂2) . (9.30)

Differentiating with respect to α̂ω(p):

∂

∂α̂ω(p)

̂
(
eiαω(x)ψ+

x,ω

)
(k)

∣∣∣
α=0

= i

L2 ψ̂+
k+p,ω . (9.31)

Similarly,
∂

∂α̂ω(p)

̂
(
e−iαω(x)ψ−

x,ω

)
(k)

∣∣∣
α=0

= − i

L2 ψ̂−
k−p,ω . (9.32)
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Let us now compute the derivatives in (9.29). Recalling (7.36), and using (9.31), (9.32),
we get:

∂

∂α̂ω(p)
Bα(ψ;φ)

∣∣∣
α=0

= i

L4

∑

k∈Da
L ,a

[
ψ̂+
k+p,ωφ̂−

k,ω − φ̂+
k,ωψ̂−

k−p,ω

]

≡ i

L2 B−p,ω(ψ;φ) , (9.33)

with Bp,ω(ψ;φ) given by (9.26). Finally, consider now the first term in (9.29). Recalling
the expression (7.20) for the covariance C(ψ), and using (9.31), (9.32), we get:

− ∂

∂α̂ω(p)
Cα(ψ)

∣∣∣
α=0

= i

L4

∑

k∈Da
L ,a

[
ψ̂+
k+p,ω

(
ĝω(k + p)−1 − ĝω(k)−1

)
ψ̂−
k,ω

]

≡ − i

L2 ZωDω,a(−p)n̂−p,ω − i

L2�−p,ω(ψ) (9.34)

with�p,ω(ψ) given by (9.25). Changing p →−p, and usingDω,a(p) = −Dω,a(−p),
the claim follows. ��

Differentiating the identity (9.24) with respect to the external fields A and to φ we
obtain nontrivial relations between correlation functions. Suppose that:

Z(0, 0) �= 0 ; (9.35)

this is certainly true for |λ| small enough, due to the finiteness of the Grassmann algebra.
The bounds (8.55) also imply the validity of (9.35) for a range of λω,ω′ which is uniform
in the dimension of the algebra. This follows from the analyticity of the free energy,
which rules out zeroes of the partition function.

Differentiating with respect to the external fields the following identity:

0 = 1

Z(A, φ)

∫
μ(dψ)e−V (ψ)+B(ψ;φ)+�(ψ;A)

[
ZωDω,a(p)n̂ p,ω − �p,ω(ψ) + Bp,ω(ψ;φ)

]

(9.36)
we obtain relations between connected correlation functions. The prefactor 1/Z(A, φ)

is a polynomial in φ±, with bounded coefficients thanks to (9.35), for ‖A‖∞ small
enough. The identities obtained in this way hold as long as (9.35) holds true. In the next
proposition we collect the identities we will need in our analysis.

Proposition 9.5 (Ward identities for the correlation functions). Assume thebounds (8.57)
on scales ≥ h + 1. Then, the following identities hold true.

Density-density identity:

ZωDω,a(p)〈n̂ p,ω ; n̂−p,ω2〉 = 〈�p,ω ; n̂−p,ω2〉 . (9.37)

Vertex identity:

ZωDω,a(p)〈n̂ p,ω ; ψ̂−
k,ω2

; ψ̂+
k+p,ω2

〉 = δω,ω2(〈ψ̂−
k,ωψ̂+

k,ω〉 − 〈ψ̂−
k+p,ωψ̂+

k+p,ω〉)
+ 〈�p,ω ; ψ̂−

k,ω2
; ψ̂+

k+p,ω2
〉 . (9.38)
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(1,4)-point identity:

ZωDω,a(p)〈n̂ p,ω ; ψ̂+
k,ω2

; ψ̂−
q,ω2

; ψ̂+
k′,ω3

; ψ̂−
q∗,ω3

〉
= δω,ω3(〈ψ̂+

k,ω2
; ψ̂−

q,ω2
; ψ̂+

k′,ω3
; ψ̂−

q∗+p,ω3
〉 − 〈ψ̂+

k,ω2
; ψ̂−

q,ω2
; ψ̂+

k′−p,ω3
; ψ̂−

q∗,ω3
〉)

+ δω,ω2(〈ψ̂+
k,ω2

; ψ̂−
q+p,ω2

; ψ̂+
k′,ω3

; ψ̂−
q∗,ω3

〉 − 〈ψ̂+
k−p,ω2

; ψ̂−
q,ω2

; ψ̂+
k′,ω3

; ψ̂−
q∗,ω3

〉)
+ 〈�p,ω ; ψ̂+

k,ω2
; ψ̂−

q,ω2
; ψ̂+

k′,ω3
; ψ̂−

q∗,ω3
〉 , (9.39)

with the understanding that q∗ = −p + k − q + k′.

Proof. The density-density identity is obtained differentiating Eq. (9.36) with respect to
Â p,ω2 , and setting A = φ = 0. The vertex identity is obtained differentiating Eq. (9.36)

with respect to φ̂−
k+p,ω2

and then with respect to φ̂+
k,ω2

, and setting A = φ = 0. The

(1, 4)-point identity is obtained differentiating Eq. (9.36) with respect to (in this order,
from left to right): φ̂+

q∗,ω3
, φ̂−

k′,ω3
, φ̂+

q,ω2
, φ̂−

k,ω2
, and then setting A = φ = 0. ��

It is instructive to compute the right-hand side of (9.37) in the absence of interactions,
λ = 0. In the limit L →∞, ε → 0, a → 0 we get:

1

L2 〈�p,ω ; n̂−p,ω2〉0 = −δω,ω2

∫
dk

(2π)2
ĝω(k − p)ĝω(k)�ω(k, p)

≡ δω,ω2

1

Zω

Bh,N
ω (p) . (9.40)

We shall refer to Bh,N
ω (p) as the anomalous bubble diagram. In order to evaluate this

quantity, we proceed as follows. We write:

χω[h,N ](k − p)χω[h,N ](k)
[
− (χω[h,N ](k − p)−1 − 1)Dω(k − p) + (χω[h,N ](k)−1 − 1)Dω(k)

]

= −(1− χω[h,N ](k − p))χω[h,N ](k)Dω(k − p) + (1− χω[h,N ](k))χω[h,N ](k − p)Dω(k) .

(9.41)

We shall be interested in the value of this integral for p fixed, and as h →−∞, N →∞.
Hence,

Bh,N
ω (p) =

∫
dk

(2π)2

1

Dω(k)
χω[h,N ](k)(χω[h,N ](k + p) − χω[h,N ](k − p)) . (9.42)

We see that the argument of the integral is nonzero only if ‖k± p‖ ∼ 2h , or if ‖k± p‖ ∼
2N . In the first case, being p fixed, we either have ‖k+ p‖ ∼ 2h or ‖k− p‖ ∼ 2h . In both

cases, the volume of the region of integration is estimated as ‖p‖2h , and the integrand

is bounded by ‖p‖−1. Hence, the corresponding contribution vanishes as h →−∞.
In the latter case, we approximate:

χω[h,N ](k + p) − χω[h,N ](k − p) = 2p · ∇kχ
ω
N (k) + O(2−2N ) , (9.43)

where we used that the effect of the infrared cutoff is invisible on the chosen momentum
range, and the fact that every derivative of the cutoff function is bounded by 2−N . The
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error term in (9.43) gives a vanishing contribution to the integral as N →∞. Concerning
the main term, we rewrite it as, again neglecting the effect of the infrared cutoff:
∫

dk

(2π)2

1

Dω(k)
χω
N (k)2p ·∇kχ

ω
N (k) =

∫
dk

(2π)2

1

Dω(k)
χω(k)2p ·∇kχ

ω(k) , (9.44)

where we set χω(k) ≡ χω
1 (k) and we used that the integral is scale invariant. Next, we

write:

p · ∇kχ
ω(k) = (p0∂0 + p1∂1)χ

ω(k)

=
( p0k0
‖k‖ω

+
p1|vω|2k1
‖k‖ω

)
χ ′(‖k‖ω) . (9.45)

Hence,
∫

dk

(2π)2

1

Dω(k)
χω
N (k)2p · ∇kχ

ω
N (k)

=
∫

dk

(2π)2

2

Dω(k)
χ(‖k‖ω)

( p0k0
‖k‖ω

+
p1|vω|2k1
‖k‖ω

)
χ ′(‖k‖ω)

= 1

|vω|
∫

dk

(2π)2

2

−ik0 + k1
χ(‖k‖)

( p0k0
‖k‖ +

p1vωk1
‖k‖

)
χ ′(‖k‖)

where in the last step we performed the change of variables vωk1 → k1, and we used
that |vω|2/vω = vω. Finally, using that:
∫

dk

(2π)2

1

−ik0 + k1
χ(‖k‖)−ik0

‖k‖ χ ′(‖k‖) =
∫

dk

(2π)2

1

−ik0 + k1
χ(‖k‖) k1

‖k‖χ ′(‖k‖)
(9.46)

we rewrite:
∫

dk

(2π)2
1

Dω(k)
χω
N (k)2p · ∇kχ

ω
N (k) = (i p0 + vω p1)

|vω|
∫

dk

(2π)2
2

−ik0 + k1
χ(‖k‖) k1

‖k‖χ ′(‖k‖)

= (i p0 + vω p1)

|vω|
∫

dk

(2π)2
1

‖k‖χ(‖k‖)χ ′(‖k‖)

= (i p0 + vω p1)

4π |vω| . (9.47)

Therefore, setting p̃ = (p0,−p1), we obtain:

Bω(p) := lim
h→−∞ lim

N→∞Bh,N
ω (p) = − Dω( p̃)

4π |vω| , p̃ = (p0,−p1) . (9.48)

Together with (9.37), (9.40), this result shows that, for λ = 0:

lim
h→−∞ lim

N→∞ lim
L→∞ lim

ε→0
lim
a→0

1

L2 〈n̂ p,ω ; n̂−p,ω2〉0 = −δω,ω2

1

Z2
ω

1

4π |vω|
Dω( p̃)

Dω(p)
.

(9.49)
Later, we will extend this computation to the case of interacting fermions, λ �= 0.

The next proposition will provide useful information about the structure of the cor-
rection terms in the Ward identities (9.5), for the infrared and ultraviolet regularized
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theory. We will only state results for the corrections to the vertex Ward identity and to
the (1, 4)-point function Ward identity, Eqs. (9.38), (9.39). Thanks to these results, we
will be able to close the Schwinger–Dyson equation (9.7), and to control the flow of the
marginal couplings. Recall the notation:

〈·〉h,N = lim
L→∞ lim

ε→0
lim
a→0

L−2〈·〉h,N ,L ,a,ε . (9.50)

The existence of the limit is guaranteed by our construction.

Proposition 9.6 (Analysis of the correction terms). Suppose that the running coupling
constants on scales ≥ h + 1 satisfy the estimates (8.55). Then, for λ small enough, the
following holds true:
Vertex function correction identity:

〈�p,ω ; ψ̂−
k,ω2

; ψ̂+
k+p,ω2

〉h,N

= −BN
ω (p)

∑

ω̃

λω,ω̃Zω̃v(p)〈n̂ω̃,p ; ψ̂−
k,ω2

; ψ̂+
k+p,ω2

〉h,N + Hh,N
1,2;ω,ω2

(p, k)

(9.51)

(1,4)-point correlation correction identity:

〈�p,ω ; ψ̂+
k1,ω2

; ψ̂−
k2,ω2

; ψ̂+
k3,ω3

; ψ̂−
k4−p,ω3

〉h,N

= −BN
ω (p)

∑

ω̃

λω,ω̃Zω̃v(p)〈n̂ω̃,p ; ψ̂+
k1,ω2

; ψ̂−
k2,ω2

; ψ̂+
k3,ω3

; ψ̂−
k4−p,ω3

〉h,N

+ Hh,N
1,4;ω,ω2,ω3

(K , p) , (9.52)

where BN
ω (p) = limh→−∞Bh,N

ω (p) with Bh,N
ω (p) given by (9.40), and the momenta

are chosen so to satisfy momentum conservation. The error terms satisfy the following
bounds, for N large enough, and for external momenta of order 2h:

∣∣∣
1

Dω(p)
Hh,N
1,2;ω,ω2

(p, k)
∣∣∣ ≤ C

λ≥h
Zω2,h−1

2−2h

∣∣∣
1

L2

∑

p∈Dp
L

F≥h(p)
1

Dω(p)
Hh,N
1,4;ω,ω2,ω3

(K , p)
∣∣∣ ≤ C

λ≥h
Zω2,h−1Zω3,h−1

2−3h , (9.53)

where F≥h(p) is an arbitrary smooth function, supported for ‖p‖ ≥ 2h, such that
‖‖p‖n F≥h(p)‖1 ≤ Cn for any n ≥ 0.

Remark 9.7. The proof of (9.51) is analogous to the proof of Lemma 3 of [57], while the
proof of (9.52) is analogous to the proof of Lemma 1 of [19]. To be precise, the reference
[57] considers the case of removed infrared cutoff, h = −∞; the effect of the infrared
cutoff can be studied as in [19]. The reference [19] considers the case of interacting
fermions with local interactions, which introduces extra difficulties with respect to our
case. The strategy of [19] has been revisited and extended in [12], see Lemma 4.2
there. Finally, we point out that these references consider relativistic fermions with two
chiralities, and opposite velocities.However, inspection of the proofs shows that the same
arguments apply unchanged to the case of multiple chiralities, with arbitrary velocities.
In particular, the Z -dependence of the bounds above is only due to the external fermionic
lines.
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9.3. The flow of the Fermi velocity and of the vertex renormalization. As a first con-
sequence of the Ward identities of Proposition 9.5, combined with the analysis of the
correction terms of Proposition 9.6, we will control the flow of the Fermi velocity vh−1,ω
and of the vertex renormalization Z0,h−1,ω.

Remark 9.8. (Notations.) In the following, we shall use the following notations:

(�Z )ω1,ω2 :=
1

Zω1

λω1,ω2 Zω2 , Z := diag(Zω) , |v| := diag(|vω|) ,

BN (p) := diag(BN
ω (p)) , D(p) := diag(Dω(p)) . (9.54)

Moreover, we shall use the notation o(1) to denote error terms bounded by C2θh or by
Cλ≥h+1, for a universal constant C > 0.

Let S1,2(p, k), �1,2(p, k) be the matrices with entries:

(S1,2(p, k))ω1,ω2 = 〈n̂ p,ω1 ; ψ̂−
k,ω2

; ψ̂+
k+p,ω2

〉h,N

(�1,2(p, k))ω1,ω2 = 〈�p,ω1 ; ψ̂−
k,ω2

; ψ̂+
k+p,ω2

〉h,N . (9.55)

Then, we can rewrite the correction identity (9.51) in a more compact form as, using the
notations (9.54):

�1,2(p, k) = −BN (p)Z�Z S1,2(p, k) + H1,2(p, k) . (9.56)

Let δS2(p, k) be the matrix with entries:

(δS2(p, k))ω1,ω2 =
δω1,ω2

Zω1Dω1(p)
(〈ψ̂−

k,ω1
ψ̂+
k,ω1

〉h,N − 〈ψ̂−
k+p,ω1

ψ̂+
k+p,ω1

〉h,N ) ; (9.57)

we rewrite the vertex Ward identity (9.38) as:

S1,2(p, k) = δS2(p, k) +
1

ZD(p)
�1,2(p, k)

= δS2(p, k) −
BN (p)

D(p)
�Z S1,2(p, k) +

1

ZD(p)
H1,2(p, k) , (9.58)

where in the last step we used the correction identity (9.56). Therefore, solving for the
vertex function:

S1,2(p, k) = 1

1 +
BN (p)
D(p) �Z

[
δS2(p, k) +

1

ZD(p)
H1,2(p, k)

]
. (9.59)

Let ‖k‖ω = 2h , ‖k + p‖ω = 2h , ‖p‖ω = O(2h). In order to compute the asymptotic
behavior of the vertex function, we use that, from Eq. (8.72):

(δS2(p, k))ω,ω′ = δω,ω′
Zh−1,ω′Dh−1,ω′(p)

Zω′Dω′(p)
〈ψ̂−

k,ω′ ψ̂+
k,ω′ 〉h,N 〈ψ̂−

k+p,ω′ ψ̂+
k+p,ω′ 〉h,N (1 + o(1)) ,

(9.60)
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where we used the o(1) notation defined in Remark 9.8. Also, we recall that, by the
second of (9.53):

∣∣∣
1

ZωDω(p)
H1,2;ω,ω′(p, k)

∣∣∣ ≤ Cλ≥h
2−2h

ZωZh−1,ω′
. (9.61)

The first informationwe can extract from (9.59) is the boundedness of the Fermi velocity.
To see this, recall Eq. (8.73),
(
S1,2(p, k)

)
ω′,ω′ = Z0,h−1,ω′ Zh−1,ω′ 〈ψ̂−

k,ω′ψ̂+
k,ω′ 〉h,N 〈ψ̂−

k+p,ω′ψ̂+
k+p,ω′ 〉h,N (1 + o(1)) .

(9.62)
Plugging (9.60), (9.62) in (9.59), and dividing by the product of the two-point functions
with chirality ω′:

Z0,h−1,ω′ Zh−1,ω′(1 + o(1)) = Zh−1,ω′Dh−1,ω′(p)

Zω′Dω′(p)
(1 + o(1)) , (9.63)

To get this identity, we crucially used that, from (9.61):

1

〈ψ̂−
k,ω′ ψ̂+

k,ω′ 〉h,N

( 1

1 +
BN (p)
D(p)

1

ZD(p)
H1,2(p, k)

)

ω′,ω′
1

〈ψ̂−
k+p,ω′ ψ̂+

k+p,ω′ 〉h,N
≤ Cλ≥h Zh−1,ω′ ,

(9.64)
and the fact that, for |λ| small enough uniformly in h, as a consequence of the inductive
assumptions (8.55) on scales ≥ h + 1:

1

2
≤
∣∣∣
Dh−1,ω′(p)

Zω′Dω′(p)

∣∣∣ ≤ 2 . (9.65)

In conclusion, we get, setting p0 = 0 or p1 = 0 in (9.63):

|ZωZ0,h−1,ω − 1| ≤ C |λ| , |vh−1,ω − vω| ≤ C |λ| , (9.66)

for a universal constant C > 0. This allows to control the flow of the Fermi velocity and
of the vertex renormalization.

9.4. The flow of the effective interaction. In this section we will show how to control the
flow of the effective couplings λh,ω,ω′ . We will use the analysis of the correction terms
of Proposition 9.6 to close the Schwinger–Dyson equation (9.17). Recall the choices
(9.13)

ω1 = ω2 ≡ ω , ω3 = ω4 ≡ ω′ , ω �= ω′ ; (9.67)

The SD equation for the four-point function reads, in the L →∞, ε → 0, a → 0 limit,
(9.7):

〈ψ̂+
k1,ω

; ψ̂−
k2,ω

; ψ̂+
k3,ω

′ ; ψ̂−
k4,ω

′ 〉h,N (9.68)

= −ĝω′(k4)
∑

ω̃

λω̃,ω′ Zω̃Zω′
∫ d p

(2π)2
v̂(p)〈n̂ p,ω̃ ; ψ̂+

k1,ω
; ψ̂−

k2,ω
; ψ̂+

k3,ω
′ ; ψ̂−

k4−p,ω′ 〉h,N

−ĝω′(k4)
∑

ω̃

λω̃,ω′ Zω̃Zω′ v̂(k2 − k1)〈ψ̂−
k3,ω

′ ; ψ̂+
k3,ω

′ 〉h,N 〈n̂k1−k2,ω̃
; ψ̂−

k2,ω
; ψ̂+

k1,ω
〉h,N

≡ Iω,ω′ + IIω,ω′ . (9.69)
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Let us denote by S4 the matrix with entries:
(
S4(k1, k2, k3)

)
ω,ω′ = 〈ψ̂+

k1,ω
; ψ̂−

k2,ω
; ψ̂+

k3,ω
′ ; ψ̂−

k4,ω
′ 〉h,N . (9.70)

It is convenient to “amputate” the external legs, by considering thematrix�4(k1, k2, k3),
with entries:

(
�4(k1, k2, k3)

)
ω,ω′ := S2;ω(k1)

−1S2;ω(k2)
−1(S4(k1, k2, k3)

)
ω,ω′ S2;ω′(k3)

−1S2;ω′(k4)
−1 .

(9.71)
where S2;ω(k) = 〈ψ−

k,ωψ+
k,ω〉h,N . We shall discuss the two terms in (9.68) separately.

9.4.1. Analysis of the main term We denote by IIA the term obtained from II after
amputating the external legs, as in (9.71). We have:

IIAω,ω′ = − ĝω′(k4)

S2;ω′(k4)

∑

ω̃

λω̃,ω′ Zω̃Zω′ v̂(k2 − k1)S1,2;ω̃,ω(k1 − k2, k2)S2;ω(k2)
−1S2;ω(k1)

−1.

(9.72)
In matrix notation, using that λω̃,ω′ = λω′,ω̃, recall the definition (9.54) of �Z :

∑

ω̃

λω̃,ω′ Zω̃S1,2;ω̃,ω(k1 − k2, k2) ≡
∑

ω̃

λω′,ω̃Zω̃S1,2;ω̃,ω(k1 − k2, k2)

= (Z�Z S1,2(k1 − k2, k2))ω′,ω, (9.73)

and using (9.59):

Z�Z S1,2(k1 − k2, k2)

= Z�Z
1

1 + BN (k1−k2)
D(k1−k2)

�Z

[
δS2(k1 − k2, k2) +

1

ZD(k1 − k2)
H1,2(k1 − k2, k2)

]
.

(9.74)

The term δS2(k1 − k2, k2) is a diagonal matrix, that can be rewritten as, see (9.60):

δS2(k1 − k2, k2) =
Zh−1Dh−1(k1 − k2)

ZD(k1 − k2)
S2(k1)S2(k2)(1 + o(1)) . (9.75)

In terms of the matrix entries:

(δS2(k1 − k2, k2))ω,ω′ = δω,ω′
Zh−1,ωDh−1,ω(k1 − k2)

ZωDω(k1 − k2)
S2,ω(k1)S2,ω(k2)(1 + o(1)) .

(9.76)
Plugging this into (9.74), we get:

(
Z�Z S1,2(k1 − k2, k2)

)
ω′,ω

=
(
Z�Z

1

1 + BN (k1−k2)
D(k1−k2)

�Z

)

ω′,ω
Zh−1,ωDh−1,ω(k1 − k2)

ZωDω(k1 − k2)
S2,ω(k1)S2,ω(k2)(1 + o(1))

+
(
Z�Z

1

1 + BN (k1−k2)
D(k1−k2)

�Z

1

ZD(k1 − k2)
H1,2(k1 − k2, k2)

)

ω′,ω
. (9.77)
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Using that:
(
Z�Z

1

1 + BN (k1−k2)
D(k1−k2)

�Z

)

ω′,ω
= λω′,ωZω + O(λ2) , (9.78)

we can write the contribution to IIA obtained by only considering contributions propor-
tional to δS2(k1 − k2, k2) as:

IIA;1
ω,ω′ = −Zω′ Zω(λω,ω′ + O(λ2))v̂(k2 − k1)

· Zh−1,ωDh−1,ω(k1 − k2)

ZωDω(k2 − k1)
(1 + o(1))

ĝω′(k4)

S2,ω′(k4)

= −Zω′ Zω(λω,ω′ + O(λ2))v̂(k2 − k1)

· Zh−1,ωDh−1,ω(k2 − k2)

ZωDω(k2 − k1)

Zh−1,ω′Dh−1,ω′(k4)

Zω′Dω′(k4)
(1 + o(1)) . (9.79)

Choosing ki = (k0,i , 0), and recalling that v̂(0) = 1, we get:

IIA;1
ω,ω′ = −Zh−1,ωZh−1,ω′(λω,ω′ + O(λ2))(1 + o(1)) . (9.80)

On the other hand, by Proposition 8.7, Eq. (8.74):

�4(k1, k2, k3) = −Zh−1,ωZh−1,ω′(λh,ω,ω′ + O(λ2≥h)) . (9.81)

Hence, if we could neglect all the other contributions to the Schwinger–Dyson equation,
we would immediately get |λh,ω,ω′ − λω,ω′ | ≤ C |λ|2, for a universal constant C > 0,
as wished. In the remaining part of the section, we shall discuss the control of the error
terms.

9.4.2. Analysis of the error terms To begin, consider the contribution due to the last
term in (9.74). From the second of (9.53):

∣∣∣
(
Z�Z

1

1 + BN (k1−k2)
D(k1−k2)

�Z

1

ZD(k1 − k2)
H1,2(k1 − k2, k2)

)

ω′,ω

∣∣∣ ≤ Cλ2≥h
2−2h

Zh−1,ω
.

(9.82)

Let us denote by IIA;2
ω,ω′ the contribution to IIA

ω,ω′ associated to the term H1,2. Using
the estimate (9.82), we easily get, setting to zero the spatial component of the esternal
momenta:

|IIA;2
ω,ω′ | ≤ Cλ2≥h Zh−1,ωZh−1,ω′ . (9.83)

Comparing with (9.80), we see that this term gives a contribution that is subleading by
an extra factor λ≥h .

We are left with considering the term I in (9.68). Our main task is to estimate the
integral

∫ d p

(2π)2
v̂(p)〈n̂ p,ω̃ ; ψ̂+

k1,ω
; ψ̂−

k2,ω
; ψ̂+

k3,ω
′ ; ψ̂−

k4−p,ω′ 〉h,N . (9.84)
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We rewrite it as, with χ≤h(p) supported for momenta ‖p‖ ≤ C2h , for C > 0 large
enough:

∫ d p

(2π)2
v̂(p)χ≤h(p)〈n̂ p,ω̃ ; ψ̂+

k1,ω
; ψ̂−

k2,ω
; ψ̂+

k3,ω
′ ; ψ̂−

k4−p,ω′ 〉h,N

+
∫ d p

(2π)2
v̂(p)χ≥h(p)〈n̂ p,ω̃ ; ψ̂+

k1,ω
; ψ̂−

k2,ω
; ψ̂+

k3,ω
′ ; ψ̂−

k4−p,ω′ 〉h,N . (9.85)

The first term can be estimated simply using the bound (8.76) of Proposition 8.7. We
have, using that |Zh−1,0,ω| ≤ C , recall (9.66):

∣∣∣
∫ d p

(2π)2
v̂(p)χ≤h(p)〈n̂ p,ω̃ ; ψ̂+

k1,ω
; ψ̂−

k2,ω
; ψ̂+

k3,ω
′ ; ψ̂−

k4−p,ω′ 〉h,N

∣∣∣ ≤ Cλ≥h2−3h

Zh−1,ω′ Zh−1,ω
.

(9.86)
If plugged in the Schwinger–Dyson equation (9.68), this term gives a subleading contri-
bution to the four-point function, by an extra factor λ≥h . We are left with estimating the
second term in (9.85). To do this, we shall gain insight on the structure of the (1, 4)-point
function using the Ward identity (9.39), together with the correction identity (9.52). As
L →∞, ε → 0, a → 0, we get:

〈n̂ p,ω̃ ; ψ̂+
k1,ω

; ψ̂−
k2,ω

; ψ̂+
k3,ω

′ ; ψ̂−
k4−p,ω′ 〉h,N

= δω̃,ω′

Zω̃Dω̃(p)

(〈ψ̂+
k1,ω

; ψ̂−
k2,ω

; ψ̂+
k3,ω

′ ; ψ̂−
k4,ω

′ 〉h,N

−〈ψ̂+
k1,ω

; ψ̂−
k2,ω

; ψ̂+
k3−p,ω′ ; ψ̂−

k4−p,ω′ 〉h,N
)

+
δω̃,ω

Zω̃Dω̃(p)

(〈ψ̂+
k1,ω

; ψ̂−
k2+p,ω

; ψ̂+
k3,ω

′ ; ψ̂−
k4−p,ω′ 〉h,N

−〈ψ̂+
k1−p,ω ; ψ̂−

k2,ω
; ψ̂+

k3,ω
′ ; ψ̂−

k4−p,ω′ 〉h,N
)

+
1

Zω̃Dω̃(p)
〈�p,ω̃ ; ψ̂+

k1,ω
; ψ̂−

k2,ω
; ψ̂+

k3,ω
′ ; ψ̂−

k4−p,ω′ 〉h,N . (9.87)

Let S1,4(p, K ), with K = (k1, k2, k3) be the tensor with entries:

(S1,4(p, K ))ω̃,ω,ω′ = 〈n̂ p,ω̃ ; ψ̂+
k1,ω

; ψ̂−
k2,ω

; ψ̂+
k3,ω

′ ; ψ̂−
k4−p,ω′ 〉h,N , (9.88)

and let �1,4(p, K ) be the tensor with entries:

(�1,4(p, K ))ω̃,ω,ω′ = 〈�p,ω̃ ; ψ̂+
k1,ω

; ψ̂−
k2,ω

; ψ̂+
k3,ω

′ ; ψ̂−
k4−p,ω′ 〉h,N . (9.89)

We rewrite the correction identity (9.52) as:

�1,4(p, K ) = −BN (p)Z�Z v̂(p)S1,4(p, K ) + H1,4(p, K ) . (9.90)



Multi-channel Luttinger Liquids at the Edge of Quantum Hall Systems 1161

We are now in the position to solve (9.87) for the (1, 4)-point function. We get:

S4,1;ω̃,ω,ω′(K , p)

= Tω̃,ω′(p)

Zω′Dω′(p)

(〈ψ̂+
k1,ω

; ψ̂−
k2,ω

; ψ̂+
k3,ω

′ ; ψ̂−
k4,ω

′ 〉h,N

−〈ψ̂+
k1,ω

; ψ̂−
k2,ω

; ψ̂+
k3−p,ω′ ; ψ̂−

k4−p,ω′ 〉h,N
)

+
Tω̃,ω(p)

ZωDω(p)

(〈ψ̂+
k1,ω

; ψ̂−
k2+p,ω

; ψ̂+
k3,ω

′ ; ψ̂−
k4−p,ω′ 〉h,N

−〈ψ̂+
k1−p,ω ; ψ̂−

k2,ω
; ψ̂+

k3,ω
′ ; ψ̂−

k4−p,ω′ 〉h,N
)

+
(
T (p)

1

ZD(p)
H1,4(K , p)

)

ω̃,ω,ω′ , (9.91)

where:

Tω̃,ω′(p) =
( 1

1 +BN (p)D(p)−1�Z v̂(p)

)

ω̃,ω′ . (9.92)

We now plug the identity (9.91) in the second integral in (9.85), and we estimate the
various terms. The contribution due to the first term in (9.91) is exactly zero by parity,
due to the fact that T (p) = T (−p), D(p) = −D(−p) and v̂(p) = v̂(−p). Consider the
contribution to the Schwinger–Dyson equation due to the second; the third and fourth
terms can be estimated in the same way. We have to estimate:

∫ d p

(2π)2
v̂(p)χ≥h(p)

Tω̃,ω′(p)

Zω′Dω′(p)
〈ψ̂+

k1,ω
; ψ̂−

k2,ω
; ψ̂+

k3−p,ω′ ; ψ̂−
k4−p,ω′ 〉h,N . (9.93)

By the support properties of χ≥h , ‖k3− p‖ ≥ C2h , ‖k4− p‖ ≥ C2h . By Proposition 8.7,
Eq. (8.75), the four-point function at the argument of the integral is estimated as:

|〈ψ̂+
k1,ω

; ψ̂−
k2,ω

; ψ̂+
k3−p,ω′ ; ψ̂−

k4−p,ω′ 〉h,N | ≤ Cλ≥h
2−2h p2−2h

Zh p,ωZh,ω

, (9.94)

with 2h p = ‖p‖. Therefore, the corresponding contribution to the p integration is
bounded as:

∣∣∣
∫

‖p‖≥C2h

d p

(2π)2
v̂(p)

Tω̃,ω′(p)

Zω′Dω′(p)
〈ψ̂+

k1,ω
; ψ̂−

k2,ω
; ψ̂+

k3−p,ω′ ; ψ̂−
k4−p,ω′ 〉h,N

∣∣∣

≤
∫

‖p‖≥C2h
d p |v̂(p)| λ≥h

‖p‖3
2−2h

Zh p,ωZh,ω′

≤ Cλ≥h
2−3h

Zh,ωZh,ω′
. (9.95)
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Hence, the contribution of this term to the first line of the right-hand side of (9.68) is
bounded as:

∣∣∣ĝω′(k4)
∑

ω̃

λω̃,ω′ Zω̃Zω′
∫ d p

(2π)2
v̂(p)χ≥h(p)

· Tω̃,ω′(p)

Zω′Dω′(p)
〈ψ̂+

k1,ω
; ψ̂−

k2,ω
; ψ̂+

k3−p,ω′ ; ψ̂−
k4−p,ω′ 〉h,N

∣∣∣

≤ Cλ2≥h
2−4h

Zh,ωZh,ω′
, (9.96)

which is subleading with respect to the left-hand side of (9.68) by an extra factor λ≥h+1.
The same holds for the contributions associated to the third and fourth terms in (9.91).
We are left with discussing the contribution to the Schwinger–Dyson equation due to
the last term in the right-hand side of (9.91). We have to control the integral:

∫ d p

(2π)2
v̂(p)χ≥h(p)

Tω̃,ω̄(p)

Zω̄Dω̄(p)
H1,4;ω̄,ω,ω′(K , p) . (9.97)

The bound for this quantity is provided by the last estimate of (9.53). We have:

∣∣∣
∫ d p

(2π)2
v̂(p)χ≥h(p)

Tω̃,ω̄(p)

Zω̄Dω̄(p)
H1,4;ω̄,ω,ω′(K , p)

∣∣∣ ≤ C
λ≥h

Zω,h Zω′,h
2−3h . (9.98)

Plugging this estimate in the Schwinger–Dyson equation (9.68), we see that the cor-
responding contribution is subleading by a factor λ≥h with respect to the four-point
function.

9.4.3. Conclusion: control of the RG flow of the reference model In a more compact
notation, the Schwinger–Dyson equation is:

�4(k1, k2, k3) = IA + IIB , (9.99)

where IA and IIA are the terms I and II in Eq. (9.68) after amputating the external legs,
as in (9.72). By Proposition 8.7, Eq. (8.74), we know that:

�4(k1, k2, k3) = −Zh−1,ωZh−1,ω′
(
λh,ω,ω′ + O(λ2≥h)

)
. (9.100)

By (9.80), (9.83), we know that:

IIAω,ω′ = IIA;1
ω,ω′ + IIA;2

ω,ω′ , (9.101)

with:

IIA;1
ω,ω′ = −Zh−1,ωZh−1,ω′λω,ω′(1 + o(1))

|IIA;2
ω,ω′ | ≤ Cλ2≥h Zh−1,ωZh−1,ω′ . (9.102)

Finally, by (9.86), (9.96), (9.98) we have that:

|IAω,ω′ | ≤ Cλ2≥h Zh−1,ωZh−1,ω′ . (9.103)
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All in all, the above estimates imply that:

|λh,ω,ω′ − λω,ω′ | ≤ Cλ≥h(2θh + λ≥h) , (9.104)

provided λ≥h is small enough. As discussed at the end of Sect. 8.2, the inequality

|λ≥h | ≤ K |λ| holds for |λ| small enough and for all h such that |h|λ 1
2−ε ≤ 1. The

identity (9.104) implies the validity of the bound |λ≥h | ≤ Kλ, with the same constant
K > 0, for the remaining scales. This allows to prove the validity of the bounds (8.55)
for the running coupling constants on all scales.

We conclude by discussing the vanishing of the beta function. The bound (9.104)
immediately implies that:

|λh,ω,ω′ − λω,ω′ | ≤ |λ| 32 , (9.105)

That is, the function h �→ λh,ω,ω′ does not leave the complex ball of radius |λ| 32 centered
at λω,ω′ . Recall that λh,ω,ω′ = λh+1,ω,ω′ + βλ

h+1,ω,ω′ , where the beta function βλ
h+1,ω,ω′

is an analytic function of all effective couplings:

βλ
h+1,ω,ω′ ≡ βλ

h+1,ω,ω′(λh+1, λh+2, . . . , λ0) , (9.106)

with λk = {λk,ω,ω′ }. As proven in Section 15 of [13], see also Theorem 3.1 of [17], the
inequality (9.105) implies that:

|βλ
h+1,ω,ω′(s, . . . , s)| ≤ C |s|22θh , (9.107)

for s = {sω,ω′ } and |s| small enough, and for some 0 < θ < 1. Also, the analysis of
Sect. 9.3 implies the vanishing of the beta function for the Fermi velocity as well. We
proved that, uniformly in h:

|vh,ω − vω| ≤ C |λ| . (9.108)

Writing vh,ω = vh+1,ω + βv
h+1,ω, the same argument used to prove (9.107) can be used

to show that:
|βv

h+1,ω(s, . . . , s)| ≤ C |s|2θh . (9.109)

This concludes the proof of Theorem 8.5. ��

9.5. Correlation functions after cutoff removal. To conclude the discussion about the
reference model, we show how to compute the density-density and vertex function of
the reference model, after removing the infrared and ultraviolet cutoff. The analysis of
this subsection will be important to compute the edge correlation functions of the lattice
model.

Remark 9.9. (Notations.) In what follows, we shall set:

〈·〉 = lim
h→−∞ lim

N→∞〈·〉h,N . (9.110)

Also, we define B(p) = limN→∞BN (p). From (9.48):

Bω(p) = − Dω( p̃)

4π |vω| , p̃ = (p0,−p1) . (9.111)
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The next proposition is the counterpart of Proposition 9.6, after the removal of the
cutoffs.

Proposition 9.10 (Correlations after cutoffs removal.). For |λ| small enough, the fol-
lowing holds true.

Density-density correlation correction identity. We have:

〈�p,ω ; n̂−p,ω2〉 = δω,ω2

1

Zω

Bω(p) −Bω(p)
∑

ω̃

λω,ω̃Zω̃v(p)〈n̂ω̃,p ; n̂−p,ω2〉 .

(9.112)
Vertex function correction identity. We have:

〈�p,ω ; ψ̂−
k,ω2

; ψ̂+
k+p,ω2

〉 = −Bω(p)
∑

ω̃

λω,ω̃Zω̃v(p)〈n̂ω̃,p ; ψ̂−
k,ω2

; ψ̂+
k+p,ω2

〉
(9.113)

That is, the H -error terms in Proposition 9.6 vanish in the limit h → −∞ and
N → ∞, for fixed external momenta. We refer the reader to e.g. Lemma 3 of [57], or
Theorem3.2 of [12] for a proof of these results in the case of fermionswith two chiralities.
The arguments immediately apply to a general number of chiralities. Proposition 9.10,
combined with the anomalous Ward identities of Proposition 9.5, allow to compute the
density-density and vertex correlation functions, in terms of the two-point function.

Proposition 9.11 (Density-density correlation and vertex function). The following iden-
tities hold true:

〈n̂ p,ω ; n̂−p,ω′ 〉 = Tω,ω′(p)
1

Z2
ω′

Bω′(p)

Dω′(p)
,

〈n̂ p,ω ; ψ̂−
k,ω′ ; ψ̂+

k+p,ω′ 〉 = Tω,ω′(p)
1

Zω′Dω′(p)

(〈ψ̂−
k,ω′ψ̂+

k,ω′ 〉 − 〈ψ̂−
k+p,ω′ψ̂+

k+p,ω′ 〉) ,

(9.114)

where T (p) is given by the N →∞ limit of (9.92).

Proof. Plugging the identities (9.112), (9.113) into the Ward identities (9.37), (9.38)
we get closed equations for the density-density correlation, and for the vertex function
in terms of the two-point function. The equations can be easily solved, and the claim
follows. ��

10. Connection with the Lattice Model

Remark 10.1. From this section until the end of the manuscript, we shall decorate by the
supscript ‘ref’ all the quantities related to the reference model.

In this section we will discuss the connection between the construction of the refer-
ence model, and the control of the RG flow for the original lattice model. In particular,
we will sketch the proof of Proposition 6.2, about the flow of the running coupling con-
stants of the original lattice model. We conclude the section by stating the connection
between the correlation functions of the lattice model, and those of the reference model.
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As discussed after Eq. (6.54), the last bound follows from a suitable choice of the
countertermsμω. Concerning the first two estimates in (6.54),we procceed as in the proof
of Propositon 9.3 of [2].Weuse the representation of the beta function of the latticemodel
in terms of Gallavotti–Nicolò trees, Section 9.3.1 of [2]. Every tree contributing to the
beta function of the lattice model can be written the corresponding tree for the reference
model, up to an error term that satisfies the same bounds of the tree times an extra
dimensional gain 2θk . This relies on the short-memory property and of the continuity
property of GN trees, Remarks 9.1 and 9.2 of [2]. The final estimates follow from the
corresponding estimates for the beta function of the reference model, Theorem 8.5.

Recall the notations of Sect. 3.3 for the lattice Schwinger functions. Concerning the
Schwinger functions of the reference model, we shall set:

Sref2;ω(k) := 〈ψ̂−
k,ωψ̂+

k,ω〉
Sref1,2;ω,ω′(p, k) := 〈n̂ p,ω ; ψ̂−

k,ω′ ; ψ̂+
k+p,ω′ 〉

Sref0,2;ω,ω′(p) := 〈n̂ p,ω ; n̂−p,ω′ 〉 . (10.1)

The next proposition allows to compare the correlations of lattice and reference model.

Proposition 10.2 (Comparison of correlations). For λ small enough, and for β, L large
enough, the following is true. There exists a choice of the bareparameters Z ref

ω , vrefω , λref
ω,ω′

of the reference model, satisfying

|Z ref
ω − 1| ≤ C |λ| , |vrefω − vω| ≤ C |λ| , |λrefω,ω′ − Aω,ω′λ| ≤ C |λ|2 (10.2)

with Aω,ω′ = ∑
x2,y2

∑
ρ,ρ′ ŵρρ′(0; x2, y2)|ξω

ρ (kω
F ; x2)|2|ξω′

ρ′ (k
ω′
F ; y2)|2, such that the

following holds.

Lattice 2-point function. There exists Qref
ω (x2) satisfying, for all n ∈ N,

|Qref
ω,ρ(x2)| ≤ Cn

1 + xn2
, ‖Qref

ω ‖2 = 1 + O(λ) (10.3)

such that, for ‖k′‖ small enough:
Sβ,L
2;ρ,ρ′(k

′ + kω
F ; x2, y2) = Sref2;ω(k′)Qref

ω,ρ(x2)Qref
ω,ρ′(y2) + Rβ,L

2;ω,ρ,ρ′(k
′; x2, y2) . (10.4)

The error term satisfies the bound, for 0 < θ < 1:
∣∣∣Rβ,L

2;ω,ρ,ρ′(k
′; x2, y2)

∣∣∣ ≤ Cn‖k′‖θ−1
ω

1 + |x2 − y2|n . (10.5)

Lattice vertex function. There exists Z ref
μ (z2) satisfying, for all n ∈ N,

|Z ref
μ (z2)| ≤ Cn

1 + zn2
, (10.6)

such that, for ‖k′‖ small enough, and ‖k′ + p‖ = ‖k′‖:
Sβ,L
1,2;μ,ω,ρ,ρ′(p, k

′; x2, y2, z2)

=
∗∑

ω′
Z ref

μ,ω′(z2)S
ref
1,2;ω′,ω(p, k′)Qref

ω,ρ(x2)Qref
ω,ρ′(y2) + Rβ,L

μ,ω,ρ,ρ′(p, k
′; x2, y2, z2) .

(10.7)
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We recall that the asterisk denotes summation over the edge modes localized around the
x2 = 0 edge. The error term satisfies the bound, for 0 < θ < 1:

∣∣∣Rβ,L
μ,ω,ρ,ρ′(p, k

′; x2, y2, z2)
∣∣∣ ≤ Cn‖k′‖θ−2

1 + d(x2, y2, z2)n
(10.8)

with d(x2, y2, z2) the tree distance for (x2, y2, z2).

Lattice current-current correlation. For ‖p‖ small enough:

Sβ,L
0,2;μ,ν

(p; x2, y2) =
∗∑

ω,ω′
Z ref

μ,ω(x2)Z
ref
ν,ω′(y2)S

ref
0,2;ω,ω′(p) + Rβ,L

0,2;μ,ν
(p; x2, y2) ,

(10.9)
where:

|Rβ,L
0,2;μ,ν

(p; x2, y2)| ≤ Cn

1 + |x2 − y2|n ,

∑

y2

|Rβ,L
0,2;μ,ν

(p; x2, y2) − Rβ,L
0,2;μ,ν

(0; x2, y2)| ≤ C‖p‖θ . (10.10)

All bounds are uniform in β, L, and hold in the β, L →∞ limit.

Proposition 10.2 has been proved in [2], see Proposition 6.1 there, in the case of
lattice models with one chiral edge state (up to spin degeneracy). The prerequisite of
the proof is the construction of the reference model, which has been discussed in the
previous sections. With this construction at hand, the proof of [2] applies to the present
setting.

11. Proof of Theorem 4.1

In this section we will prove the universality of edge charge transport in interacting
topological insulators, Theorem 4.1. We start by deriving a convenient expression for
the lattice current-current correlation function.
Computing the lattice current-current correlation. As a consequence of Proposi-
tion 10.2 and of the lattice Ward identities, we can express the zero-momentum limit of
the edge current-current correlation functions in terms of the parameters

Z ref
μ,ω =

∞∑

x=0

Z ref
μ,ω(x2) . (11.1)

Recall that, after Wick rotation, Eq. (5.4):

Ga(p) :=
a∑

x2=0

a′∑

y2=0

S0,2;0,1(p; x2, y2) . (11.2)

It is convenient to write:
a∑

x2=0

S0,2;0,1(p; x2, y2) =
a∑

x2=0

Sβ,L
0,2;0,1(p; x2, y2) + e1(β, L) , (11.3)
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where e1(β, L) → 0 as β, L →∞. Then, using the fast decay of correlations in the y2
direction, Proposition 10.2, we write:

a∑

x2=0

Sβ,L
0,2;0,1(p; x2, y2) =

L−1∑

x2=0

Sβ,L
0,2;0,1(p; x2, y2) + e2(y2, a) , (11.4)

where, uniformly in p, recalling that y2 ≤ a′ � a:

|e2(y2, a)| ≤ Cn

1 + |y2 − a|n . (11.5)

Hence,

Ga(p) = Ga′(p) + O(|a − a′|−n)

Ga′(p) :=
a′∑

y2=0

lim
β→∞ lim

L→∞

L−1∑

x2=0

Sβ,L
0,2;0,1(p; x2, y2) . (11.6)

Next, using the representation (10.9), we rewrite:

Ga′(p) =
∗∑

ω,ω′
Z ref
0,ωZ

ref
1,ω′ Sref0,2;ω,ω′(p)

−
∗∑

ω,ω′

∞∑

y2≥a′+1
Z ref
1,ω′(y2)Z

ref
0,ωS

ref
0,2;ω,ω′(p)

+
a′∑

y2=0

∞∑

x2=0

R0,2;0,1(p; x2, y2) . (11.7)

Thanks to (10.6), the second term in (11.7) is smaller than any power in a′:

Ea′
1 (p) := −

∗∑

ω,ω′

∞∑

y2≥a′+1
Z ref
1,ω′(y2)Z

ref
0,ωS

ref
0,2;ω,ω′(p)

|Ea′
1 (p)| ≤ Cn

1 + a′n
. (11.8)

Now, thanks to the lattice Ward identity 3.34, we know that:

Ga′((p0, 0)) = 0 . (11.9)

This identity, together with the representation (11.7), gives:

0 =
∗∑

ω,ω′
Z ref
0,ωZ

ref
1,ω′ Sref0,2;ω,ω′((p0, 0))+ Ea′

1 ((p0, 0))+
a′∑

y2=0

∞∑

x2=0

R0,2;0,1((p0, 0); x2, y2).
(11.10)
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Thus, by the continuity of the last term in (11.10), see the last bound in (10.10):

a′∑

y2=0

∞∑

x2=0

R0,2;0,1(p; x2, y2) =
a′∑

y2=0

∞∑

x2=0

R0,2;0,1((p0, 0); x2, y2) + Ea′
2 (p)

= −
∗∑

ω,ω′
Z ref
0,ωZ

ref
1,ω′ Sref0,2;ω,ω′((p0, 0))

−Ea′
1 ((p0, 0)) + Ea′

2 (p)

(11.11)

where |Ea′
2 (p)| ≤ a′‖p‖θ and where in the last identity we used (11.10). Defining

Ea′
3 (p) := −Ea′

1 ((p0, 0)) + Ea′
2 (p), and plugging (11.11) into (11.7), we get:

Ga′(p) =
∗∑

ω,ω′
Z ref
0,ωZ

ref
1,ω′

(
Sref0,2;ω,ω′(p) − Sref0,2;ω,ω′((p0, 0))

)
+ Ea′

3 (p) . (11.12)

Recall the definition of edge charge conductance:

G = lim
a′→∞

lim
a→∞ lim

p1→0
lim
p0→0

Ga(p) . (11.13)

From (11.6), (11.12) we obtain the following remarkable expression:

G = ( �Z ref
0 ,A �Z ref

1 ) , (11.14)

where ( �f , �g) = ∑∗
ω fωgω, and the matrix A detects the discontinuity at zero of the

density-density correlation of the reference model:

Aω,ω′ = lim
p1→0

lim
p0→0

Sref0,2;ω,ω′(p) − lim
p0→0

lim
p1→0

Sref0,2;ω,ω′(p) . (11.15)

At this point, notice that if we would have interchanged the η → 0+, p → 0 limits in the
definition of edge conductance, wewould have obtained a trivial result. Thematrix A can
be computed explicitly, starting from the expression in (9.114) for the density-density
correlation of the reference model. We have:

lim
p0→0

lim
p1→0

Sref0,2(p) = lim
p0→0

lim
p1→0

(
T (p)

1

(Z ref)2

B(p)

D(p)

)

= −1

1− (4π |vref |)−1�Z

1

4π |vref |
1

(Z ref)2
, (11.16)

where we used that lim p0→0 lim p1→0 D(p)−1B(p) = −(4π |vref |)−1, with |vref | the
diagonal matrix with entries |vrefω | (recall the expression (9.48) for the bubble diagram
Bω(p)). Similarly, using that limp1→0 lim p0→0 D(p)−1B(p) = (4π |vref |)−1:

lim
p1→0

lim
p0→0

Sref0,2(p) =
1

1 + (4π |vref |)−1�Z

1

4π |vref |
1

(Z ref)2
. (11.17)
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In conclusion, we get:

A = 1

1 + (4π |vref |)−1�Z

1

4π |vref |
1

(Z ref)2
+

1

1− (4π |vref |)−1�Z

1

4π |vref |
1

(Z ref)2

= 1

1 + (4π |vref |)−1�Z

1

1− (4π |vref |)−1�Z

1

2π |vref |
1

(Z ref)2
. (11.18)

This allows to rewrite the edge conductance as:

G =
( �Z ref

0 ,
1

1 + (4π |vref |)−1�Z

1

1− (4π |vref |)−1�Z

1

2π |vref |
1

(Z ref)2
�Z ref
1

)
.

(11.19)
Computing the vertex renormalizations.Togain insight on the vertex renormalizations
Zμ,ω, we start from the lattice vertex Ward identity, Eq. (3.37):

∑

μ=0,1

pμημ(p)
∞∑

x2=0

S1,2;μ,ρ,ρ′(k, p; x2, y2, z2) = S2;ρ,ρ′(k; y2, z2)− S2;ρ,ρ′(k + p; y2, z2),

(11.20)
with η0(p) = −i and η1(p) = p1 + O(p21). By (10.7), for k = kω

F + k′:
∞∑

x2=0

S1,2;μ,ρ,ρ′(k, p; x2, y2, z2)

=
∑

ω′
Z ref

μ,ω′ Sref1,2;μ,ω′,ω(k′, p)Qref
ω,ρ(y2)Qref

ω,ρ′(z2) + R1,2;μ,ω,ρ,ρ′(k
′, p; y2, z2),

(11.21)

with:

R1,2;μ,ω,ρ,ρ′(k
′, p; y2, z2) =

∞∑

x2=0

R1,2;μ,ω,ρ,ρ′(k
′, p; x2, y2, z2) . (11.22)

Also, recall (10.4):

S2;ρ,ρ′(k
′ + kω

F ; y2, z2) = Sref2;ω(k′)Qref
ω,ρ(y2)Qref

ω,ρ′(z2)+ R2;ω,ρ,ρ′(k
′; y2, z2) . (11.23)

We then multiply left-hand side and right-hand side of (11.20) times
Qref

ω,ρ(y2)Qref
ω,ρ′(z2), and sum over all ρ, ρ′ and y2, z2. We get:

∑

μ=0,1

pμημ(p)
[ ∗∑

ω′
Zμ,ω′ Sref1,2;ω′,ω(p, k′) + R1,2;μ,ω(p, k′)

]
= Sref2;ω(k′) − Sref2;ω(k′ + p)

+ R2;ω(k′)− R2;ω(k′ + p), (11.24)

where we introduced the notations:

R1,2;μ,ω(p, k′) := 1

‖Qref
ω ‖22

∑

ρ,ρ′

∑

y2,z2

R1,2;μ,ω,ρ,ρ′(p, k
′; y2, z2)Qref

ω,ρ(y2)Q
ref
ω,ρ′(z2)

R2;ω(k′) := 1

‖Qref
ω ‖22

∑

ρ,ρ′

∑

y2,z2

R2;ω,ρ,ρ′(k
′; y2, z2)Qref

ω,ρ(y2)Q
ref
ω,ρ′(z2) ,

(11.25)
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recall that ‖Qref
ω ‖2 = 1 + O(λ), see (10.5). Next, recall the explicit expression for the

vertex function of the reference model, Eq. (9.114):

Sref1,2;ω′,ω(p, k′) = Tω′,ω(p)
1

Z ref
ω Dω(p)

(Sref2;ω(k′) − Sref2;ω(k′ + p)
)

. (11.26)

Recall the estimates (10.5), (10.8) for the error terms. Choosing ‖k′‖ = κ , ‖k′ + p‖ = κ ,
‖p‖ = O(κ), we see that in (11.24) the R-terms give contributions that are suppressed

by a factor κθ with respect to the other quantities. Hence, we get:

∗∑

ω′
DZ

ω′(p)Tω′,ω(p)
1

Z ref
ω Dω(p)

(Sref2;ω(k′)− Sref2;ω(k′ + p)
) = Sref2;ω(k′)− Sref2;ω(k′ + p)+O(κθ−1)

(11.27)
with

DZ
ω′(p) := −i p0Z

ref
0,ω′ + p1Z

ref
1,ω′ . (11.28)

Dividing both sides of (11.27) by (Sref2;ω(k′)− Sref2;ω(k′ + p)
)
(Z ref

ω Dω(p))−1 = O(κ−2),
we find:

∗∑

ω′
DZ

ω′(p)Tω′,ω(p) = Z ref
ω Dω(p) + O(κθ+1) . (11.29)

Recall the expression (9.92) for T (p). We have:

lim
p0→0

lim
p1→0

T (p) = 1

1− (4π |vref |)−1�Z
, lim

p1→0
lim
p0→0

T (p) = 1

1 + (4π |vref |)−1�Z
.

(11.30)
In conclusion, Eq. (11.29) implies:

∗∑

ω′
Z ref
0,ω′

( 1

1− (4π |vref |)−1�Z

)

ω′,ω
= Z ref

ω ,

∗∑

ω′
Z ref
1,ω′

( 1

1 + (4π |vref |)−1�Z

)

ω′,ω
= Z ref

ω vrefω , (11.31)

which we can also rewrite as:

�Z ref
0 = (

1−�T
Z (4π |vref |)−1) �Z ref , �Z ref

1 = (
1+�T

Z (4π |vref |)−1)vref �Z ref . (11.32)

Conclusion: universality of edge charge conductance.Finally, let us plug the identities
(11.32) into (11.19). We get, omitting temporarily all ‘ref’ labels:

G =
( �Z , (1− (4π |v|)−1�Z )

1

1 + (4π |v|)−1�Z

1

1− (4π |v|)−1�Z

1

2π |v|
1

Z2 (1 + �T
Z (4π |v|)−1)v �Z

)

≡
( �Z ,

1

1 + (4π |v|)−1�Z

1

2π |v|
1

Z2 (1 + �T
Z (4π |v|)−1)v �Z

)
. (11.33)
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Now, using that, recalling the definition (9.54) of �Z :

1

2π |v|
1

Z2

(
1 + �T

Z
1

4π |v|
)
= 1

2π |v|
1

Z2

(
1 + Z�

1

Z

1

4π |v|
)

=
(
1 +

1

4π |v|
1

Z
�Z

) 1

2π |v|
1

Z2

≡
(
1 +

1

4π |v|�Z

) 1

2π |v|
1

Z2 , (11.34)

we immediately get, reintroducing the ‘ref’ labels:

G =
( �Z ref ,

1

2π |vref |
1

(Z ref)2
vref �Z ref

)

=
∗∑

ω

sgn(vrefω )

2π

=
∗∑

ω

sgn(vω)

2π
(11.35)

where we used that |vrefω − vω| ≤ C |λ|. This concludes the proof of Theorem 4.1. ��
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