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Abstract— To achieve the maximum information transfer
and face a possible eavesdropper, the samples transmitted in
continuous-variable quantum key distribution (CV-QKD) proto-
cols are to be drawn from a continuous Gaussian distribution.
As a matter of fact, in practical implementations the transmitter
has a finite (power) dynamics and the Gaussian sampling can
be only approximated. This requires the quantum protocols to
operate at small powers. In this paper, we show that a suitable
probabilistic amplitude shaping of a finite set of symbols allows
to approximate at will the optimal channel capacity also for
increasing average powers. We investigate the feasibility of this
approach in the framework of CV-QKD, propose a protocol
employing discrete quadrature amplitude modulation assisted
with probabilistic amplitude shaping, and we perform the key
generation rate analysis assuming a wiretap channel and lossless
homodyne detection.

Index Terms— Continuous-variable quantum key distribution,
probabilistic amplitude shaping.

I. INTRODUCTION

CURRENT cryptographic systems for communications
security are mostly based on either public-key

cryptography, providing only conditional security [1],
or the one-time pad [2], offering unconditional security
(guaranteed by information theory) but with much less
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practical implementation [3]. Thus, a possible solution
to the key distribution problem is offered by quantum key
distribution (QKD) protocols [4], [5], [6], in which two distant
parties (Alice and Bob) share a secret key by exchanging
quantum states through an untrusted quantum channel under
the control of an eavesdropper (Eve).

The very laws of quantum mechanics guarantee uncondi-
tional security of QKD protocols [7]; any measurement of the
quantum states performed by Eve leaves a trace on the states
themselves, allowing Alice and Bob to detect the intrusion,
evaluate the amount of information possibly gained by Eve,
and discard the key if necessary [8].

A promising approach to QKD is the one based on
continuous variables (CVs) [6], [9], [10], [11], [12], [13].
With respect to discrete-variable (DV) protocols [4], in which
single photons are typically used as information carriers,
CV protocols use coherent states [14] (namely, laser pulses)
to carry information, exactly as in classical communication
systems. Unlike DV-QKD, CV-QKD does not require single-
photon sources and detectors and can use the same devices
and modulation/detection schemes commonly employed in
classical coherent optical communications [15], [16], [17].
Therefore, we expect that the implementation of a CV-QKD
system could also benefit from the use of the most effective
modulation/detection techniques and digital processing strate-
gies that have been developed for classical systems in the last
years.

Nevertheless, an important issue concerning CV-QKD is the
modulation of coherent states. Although the first CV-QKD
protocols were originally based on discrete modulations [9],
[18], [19], in the protocol proposed by Grosshans and Grangier
in 2002 (GG02) the states are modulated with a Gaussian
distribution [6], [10], [11], [12]. This choice is related to the
fundamental objective of maximizing the key generation rate
(KGR), that is, the length of the secret key shared by Alice
and Bob per unit time [20], [21]. Indeed, the actual KGR
of a QKD system is limited by the difference between the
amount of information that can be reliably transmitted from
Alice to Bob per unit time and that obtainable by Eve. The
maximization of the first quantity (which yields the channel
capacity) is a classical problem in digital communications and
is achieved with a Gaussian input distribution.
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Although justified on a theoretical level, Gaussian modula-
tion involves several practical difficulties and is never used in
classical digital communication systems for a twofold reason
[22], [23]. The main drawback is that any realistic transmitter
may generate signals up to a certain maximum peak power
(e.g. by modulating the light emitted by a laser), whereas
sampling a Gaussian distribution implies a nonzero probability
of drawing a very large sample, and this probability increases
with the average input power. Hence, to avoid exceeding
the maximum peak power, the system has to be operated at
small average power. For example, if we want to generate a
zero-mean Gaussian symbol X with variance σ2, but we are
limited by hardware constraints to the range |X| < Xmax,
we must ensure that Xmax > 6σ to make the probability
that X exceeds the allowed range negligible (lower than
2 × 10−6 in this example). This means that the average
transmitted power, proportional to σ2, must be at least 36 times
(15.6 dB) smaller than the maximum peak power. proportional
to X2

max. Furthermore, from the implementation point of view,
the inevitable use of analog-to-digital converters with finite
resolution and dynamic range at the transmitter introduces
a discretization of the sampling distribution. Thus, a more
feasible way to perform quantum communication at higher
average power without exceeding the transmitter dynamics and
available resolution is that of employing discrete modulation
formats of appropriate order.

CV-QKD employing discrete modulation has been
approached with uniform phase-shift-keying (PSK)
modulation [24], [25], [26], [27], [28], [29], [30], [31], [32],
[33], [34], [35], [36], obtaining a lower KGR with respect
to the GG02 scheme. However, in a practical scenario the
GG02 protocol exhibits a lower reconciliation efficiency [24],
making PSK still worth of interest. Nevertheless, for a
large PSK constellation increasing further the number of
symbols brings only a negligible advantage [34]. To overcome
these limitations, also amplitude-phase-shift-keying (APSK)
formats have been investigated [37], [38], [39].

More recently, quadrature-amplitude modulation (QAM) of
a regular grid of signals has been proposed as a promising
solution [34], [40], [41]. Differently from PSK, QAM
constellations may employ a non-uniform discrete probability
distribution of the symbols that approximates better the
Gaussian one, thus obtaining a higher KGR closer to GG02.
To implement this non-uniform sampling, probabilistic
amplitude shaping (PAS) is a practical coded modulation
scheme that combines QAM, probabilistic constellation
shaping, and forward error correction (FEC) to closely
approach optimal channel capacity [42], [43], [44]. PAS
uses a distribution matcher to map uniformly distributed
information bits on QAM symbols with the desired target
distribution [47], [48], [49]. In particular, a Maxwell–
Boltzmann target distribution is considered, which maximizes
the source entropy for a given discrete constellation and mean
energy per symbol [50] (in practice, lower-energy symbols
are used more often than higher-energy symbols, reducing
the energy required to achieve a certain information rate).

PAS can be easily combined with the efficient FEC
codes and the corresponding decoding algorithms commonly

employed in digital communications (e.g., binary LDPC codes
with iterative belief propagation), obtaining an excellent trade-
off between performance and complexity [43], [51], [52]. Ease
of implementation, nearly optimal performance, fine rate tun-
ability, and compatibility with existing devices and techniques
make PAS one of the most popular solutions for the latest
generation of coherent optical systems. These considerations
suggest that a similar solution might be convenient also for
CV-QKD.

In this work, we consider a CV-QKD protocol imple-
mented thrugh QAM modulation of coherent states and
homodyne detection. We consider both uniform sampling of
the coherent states and non-uniform generation assisted with
PAS [42], [44]. To address the performance of the protocol,
here we perform a KGR analysis for a quantum wiretap chan-
nel [45], [46]. In this scenario, Eve does not alter the nature
of the quantum channel connecting Alice and Bob, being only
limited to collect the lost fraction of the signals exchanged
and to hide behind the channel excess noise. Although this
assumption is not sufficient to prove unconditional security,
it provides a realistic model and a useful benchmark for many
practical scenarios (e.g. free space communications) [53].
Accordingly, the paper focuses on the task of key rate
optimization rather than providing a security analysis under
arbitrary eavesdropping attacks. In particular, we consider
different QAM constellations [54], [55], optimize the shaping
parameter and compare the performance with and without PAS
with respect to a PSK modulation with the same number of
symbols and the original GG02 scheme. At first, we address
the case of a pure-loss channel and, thereafter, discuss the
effects of thermal noise on the obtained results.

The structure of the paper is the following. In Sec. II we
present our proposal of a CV-QKD scheme employing dis-
crete modulation and based on standard probabilistic shaping,
namely, optimizing the discrete probability distribution over
the capacity of the channel, whilst in Sec. III we address the
effect of the channel excess noise on the obtained results.
Then, in Sec. IV we propose a new optimization procedure
for PAS and discuss its performance. Finally, in Sec. V we
close the paper by drawing some concluding remarks and their
future developments.

II. CV-QKD WITH QAM DISCRETE
MODULATION AND PAS

In this paper we investigate the protocol for CV-QKD
employing discrete modulation depicted in Fig. 1. The sender,
Alice (A), encodes the information on several laser pulses
described by coherent states |xA+iyA⟩, where xA, yA ∈ R are
randomly generated according to a discrete-valued probability
distribution. These states are sent to the receiver, Bob (B),
through an untrusted quantum channel which may be attacked
by an eavesdropper, Eve (E).

Once received the signals, Bob probes them by implement-
ing the measurement of one of the two orthogonal quadratures
q or p, [q, p] = 2iσ2

0 , where σ2
0 represents the shot-noise

variance, that is the vacuum fluctuations ⟨0|q2|0⟩ = ⟨0|p2|0⟩ =
σ2

0 . The measured quadrature is chosen at random and imple-
mented by performing homodyne detection [14]. Without loss
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Fig. 1. Schematic representation of the CV-QKD protocol discussed
in the paper for a discrete modulation format. Alice generates symbols
z = xA, yA by samping either a uniform distribution P(z) (case I) or
a Maxwell-Boltzmann distribution Mβ(z) (case II), encodes them onto
|xA + iyA⟩ and sends them to Bob through an untrusted pure-loss channel.
Bob investigates the channel by performing a homodyne measurement of q/p,
chosen at random. In this scenario, Eve only collects the fraction of the signals
lost during the propagation through the channel.

of generality, to carry on the security analysis we can assume
that Bob measures q. From now on we will consider shot-noise
units, that is σ2

0 = 1.
Then, Alice and Bob share some correlated classical infor-

mation through a classical authenticated channel, the so-called
reconciliation process: we have either direct or reverse recon-
ciliation (DR) if information is publicly shared by Alice or
Bob, respectively [12], [56], [57]. After a privacy amplification
stage [12], they are finally able to generate a random secure
key.

Standard optical fibers are well-modeled by thermal-loss
channels [15], [16]. However, the numerical analysis of such
systems is computationally demanding. Therefore, here we
deal with a simpler scenario and assume a pure-loss channel,
whilst the impact of a non-zero channel excess noise on the
present protocol will be discussed in Sec. III. The pure-loss
channel is described by means of a beam splitter with trans-
missivity η = 10−0.1κd, where d is the transmission distance
in km, and κ = 0.2 dB/km is the loss rate of common fibers
[15], [58], [59]. In this case, it is possible to perform CV-QKD
up to a large maximum transmission distance depending only
on the imperfect reconciliation process [24], [25], [26], [34].
As a consequence, the goal of this section is to compare
the QAM modulation with both the already existing PSK
schemes and the Gaussian-modulated GG02 protocol in order
to establish a hierarchy between these cases. In fact, the GG02
scheme is the one that maximize the mutual information in key
distribution (see App. A), providing a benchmark in evaluating
the performance of the presented results. On the other hand,
both PSK and QAM represent sub-optimal modulation formats
for quantum communications, thus their comparison is worth
of interest also for CV-QKD. In the following we will analyze
in detail each step of the proposed protocol, performing a
complete security analysis.

A. Modulation Stage

The QAM format adopted by Alice works as follows
[54], [55]. She draws each couple (xA, yA) from the finite
set A = Λ × Λ, where Λ = {n∆ | n = −(M − 1)/2, . . . ,
(M − 1)/2} contains M = 2k points, k ∈ N, and ∆ ∈ R.
Therefore, she has the constellation A of M × M symbols
depicted in the left panel of Fig. 2, corresponding to a square

Fig. 2. The QAM16 constellation (M = 4), represented in both the
(classical) complex space of coherent amplitudes and the (quantum) phase
space.

lattice with pace ∆. It is worth noting that in the standard
communication notation the points in Λ are commonly placed
at distance 2∆ between one another [54], with ∆ a scaling
factor that determines the mean energy per symbol. Here, for
the sake of simplicity, we adopt a different convention by
letting such a distance be equal to ∆, which is hence referred
to indifferently as scaling factor or symbol spacing. Each
couple (xA, yA) is then encoded on its corresponding coherent
state |xA + iyA⟩, so that the constellation A is mapped into
the (quantum) phase space [60] as a square lattice of M ×M
coherent states centred in (2σ0xA, 2σ0yA) and with pace
2σ0∆ (right panel of Fig. 2).

Concerning the probability distributions to sample xA and
yA, here we discuss two alternative possibilities. The former,
referred to as case I, is the uniform distribution P(z) = M−1,
(z = xA, yA), commonly exploited in classical communica-
tions [54] and quantum-state-discrimination schemes [55]. The
latter, case II, is the Maxwell–Boltzmann distribution (MB)
[50], [61]

Mβ(z) =
e−βz2

Z
(z = xA, yA) (1)

Z =
∑

z e−βz2
being the normalization constant. Though

being widely deployed in practice, the uniform distribution
is largely suboptimal, as it requires up to 1.53 dB more
energy per symbol to achieve the same mutual information as
the capacity-achieving Gaussian distribution over the additive
white Gaussian noise (AWGN) channel [50]. On the other
hand, the MB distribution is the maximum-entropy distribution
for a discrete random variable with given variance (mean
energy) [61] and, for a sufficiently large QAM constellation,
it has been shown to closely approach channel capacity over
the AWGN channel, practically closing the 1.53 dB gap of
uniform QAM constellations [42].

The MB distribution depends on the free parameter β
(the “inverse temperature”) which we shall adjust properly
to maximize the performance of the protocol, as discussed
in the following subsection. From a practical point of view,
the i.i.d. MB-distributed symbols required in case II can
be generated by the PAS scheme proposed in [42], where
a distribution matcher maps a sequence of uniform i.i.d.
random bits (in our case, the raw key generated for instance
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by a quantum random number generator) to a sequence of
QAM symbols with the desired distribution. In particular,
different distribution-matching algorithms have been proposed,
such as constant composition distribution matching [47], enu-
merative sphere shaping [49], and hierarchical distribution
matching [48], which can approach the ideal target distribution
(i.i.d. MB symbols) with arbitrary accuracy for sufficiently
long sequences.

Though we do not claim the theoretical optimality of the
proposed MB distribution in terms of KGR, in the follow-
ing we shall show numerically that it provides a significant
advantage over the uniform distribution and closely approach
the KGR of the original GG02 protocol. In particular, we shall
discuss the behavior of the present protocol when Alice has
the relevant constellations QAM16 and QAM64, associated
with the values M = 4, 8, respectively.

B. Choice of the Constellation Parameters

First of all, we present the procedure employed to assign
the appropriate values for β and ∆. We fix the spacing ∆
by introducing a constraint on the constellation energy. If the
mean energy per symbol is equal to n̄, the appropriate ∆ is
obtained by setting the variance of the sampling distribution
equal to n̄/2, namely

Var[z] ≡ 1
M

∑
z

z2 =
n̄

2
(case I) (2a)

Var[z] ≡
∑

z

Mβ(z)z2 =
n̄

2
(case II) (2b)

such that the overall state by Alice is described by the density
matrix

ρ
(I)
A =

1
M2

∑
xA,yA

|xA + iyA⟩ ⟨xA + iyA| (3a)

ρ
(II)
A =

∑
xA,yA

Mβ(xA)Mβ(yA) |xA + iyA⟩ ⟨xA + iyA| (3b)

having mean energy n̄. For case I, Eq. (2a) leads to the
solution:

∆(I) =

√
6n̄

M2 − 1
. (4)

The corresponding mutual information between Alice and Bob
reads

I
(I)
AB = H

(I)
B − 1

M

∑
xA

HB|xA
(5)

where HB|xA
and H

(I)
B are the Shannon entropies associated

with Bob’s conditional probability distribution

pB|A(xB | xA) =
exp

[
− (xB − 2σ0

√
ηxA)2/2σ2

0

]√
2πσ2

0

(6)

namely,

HB|xA
=

1
2

log2

(
2πeσ2

0

)
(7)

and Bob’s average probability distribution

p
(I)
B (xB) =

1
M

∑
xA

pB|A(xB | xA). (8)

The Shannon entropy of p
(I)
B (xB) has to be computed via

numeric integration. In particular, in our calculations we
exploited the Simpson’s rule [62].

On the contrary, Eq. (2b) can be handled numerically
for case II and the corresponding numeric solution ∆(II)(β)
exhibits an implicit dependence on the free parameter β.
Therefore, in this scenario we decided to optimize β to achieve
the maximum mutual information between Alice and Bob

I
(II)
AB (β) = H

(II)
B −

∑
xA

Mβ(xA)HB|xA
(9)

where H
(II)
B is the Shannon entropy associated with the

distribution

p
(II)
B (xB) =

∑
xA

Mβ(xA)pB|A(xB | xA) , (10)

to be computed numerically with the Simpson’s rule [62].
Thereafter, the maximization of I

(II)
AB (β) has been performed

with a golden-section search algorithm [62]. This proce-
dure leads to the optimized inverse temperature β(II) and,
consequently, its associated spacing ∆(II), together with the
optimized mutual information

I
(II)
AB = I

(II)
AB

(
β(II)

)
. (11)

The numerical results are shown in Fig. 3 (top panel)
for the case of a QAM16 constellation as a function of the
mean energy per symbol n̄ and at fixed transmission distance
d = 10 km. The behavior is expected to be qualitatively
equivalent for all distances. The optimal inverse temperature
β(II) is a decreasing function of n̄. As we can see, for small
values of n̄, only the lowest-energy level of the MB in (1)
have non-zero probability, β(II) → ∞, so that the optimal
constellation tends to a simple QAM4, i.e. with M = 2; on
the other hand, for large n̄, all the levels of the MB distribution
have the same probability, β(II) → 0, so that the optimal
constellation tends to a uniform QAM16. Accordingly, the
non-uniform sampling of the symbols makes the spacing ∆(II)

an increasing function of the energy such that ∆(II) ≥ ∆(I).
The corresponding mutual information, plotted in the bot-

tom panel of Fig. 3, shows that the MB sampling increases the
information shared between Alice and Bob, as I

(II)
AB ≥ I

(I)
AB .

Moreover, in accordance with the previous considerations, for
n̄ ≪ 1 all the QAM modulation formats are able to reach the
capacity of the channel, achieved with Gaussian modulation
(see App. A); the higher M , the larger the region where the
QAM format performs optimally. Instead, in the large energy
regime the sampling distribution becomes more and more
uniform and all the curves saturate to the maximum possible
entropy of the constellation, namely log2(M).

C. KGR Analysis

Given the parameters β and ∆, we perform the KGR
analysis for the quantum wiretap channel [45], [46], [53].
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Fig. 3. (Top) Optimal inverse temperature β(II) and spacing ∆(p), p = I, II,
as a function of the mean energy per symbol n̄ for a QAM16 constellation
(M = 4). (Bottom) Optimized mutual information I

(p)
AB as a function of the

modulation energy n̄. For a better clarity we reported on the x-axis also the
energy of Bob’s signals ηn̄. The black line is the capacity of the channel,
achieved with Gaussian modulation (see App. A). In both the plots we fixed
d = 10 km (2 dB attenuation).

In particular, we focus on the relevant case of reverse recon-
ciliation. We remark that the present analysis is not sufficient
to guarantee unconditional security, as Eve in principle may
attack the channel and insert some suitable non-Gaussian
features without being intercepted by Alice and Bob. A com-
plete security analysis for this protocol may be carried on
by exploiting the optimality of Gaussian attacks [34], [63],
[64], [65], [66] and will be the object of future publications.
Nevertheless, wiretap channels are gaining interest as they
represent a realistic eavesdropping model, being feasible with
the current technologies [46], [53].

Moreover, we note that the uniform distribution may be
retrieved from Eq. (1) by fixing β = 0. Thus, for the sake of
simplicity in the following we will perform the entire analysis
by considering the sole MB distribution, assuming that cases
I and II correspond to β = 0 and β = β(II), respectively.

As depicted in Fig. 1, the pure-loss quantum wiretap channel
is modeled as a beam splitter of transmissivity η in which Eve
has only access to its second port, intercepting the reflected
fraction 1 − η of Alice’s signal. In turn, if Alice sends the
state |xA + iyA⟩, Eve receives the state |

√
1− η(xA + iyA)⟩,

whereas the transmitted pulse |√η(xA + iyA)⟩ reaches Bob.
The KGR can be computed as

K(p) = ζI
(p)
AB − χ

(p)
BE (p = I, II) (12)

where ζ ≤ 1 is the reconciliation efficiency [26], [30] and χ
(p)
BE

is the Holevo information shared between Bob and Eve [67].
We recast the problem in the prepare-and-measure picture [6],

Fig. 4. Plot of K(p), p = I, II, as a function of the mean energy n̄ for
d = 100 km (20 dB attenuation). The reconciliation efficiency is ζ = 0.95.

[10], [11], [66], where the Holevo information reads

χ
(p)
BE = S

[
ρ
(p)
E

]
−

∫
dxB p

(p)
B (xB) S

[
ρ
(p)
E|xB

]
(13)

where ρ
(p)
E is the overall Eve’s state, p

(p)
B (xB) is Bob’s

probability distribution in Eq.s (8) and (10), ρ
(p)
E|xB

is Eve’s
conditional state after Bob’s measurement, and S[ρ] =
−Tr(ρ log2 ρ) denotes the von Neumann entropy associated
with the density matrix ρ [55].

To calculate these quantum states we start from the joint
state of Bob and Eve, ρ

(p)
BE = UBS(η)ρ(p)

A ⊗ |0⟩ ⟨0|UBS(η)†,
with ρ

(p)
A given in Eq. (3a) and UBS being the unitary operator

associated with the beam splitter with transmissivity η [14]
depicted in Fig. 1. After straightforward calculation we get

ρ
(p)
BE =

∑
xA,yA

Mβ(xA)Mβ(yA)

× |√η(xA + iyA)⟩ ⟨√η(xA + iyA)|
⊗ |

√
1− η(xA + iyA)⟩ ⟨

√
1− η(xA + iyA)| . (14)

Then, Eve’s state reads [60]

ρ
(p)
E =

∑
xA,yA

Mβ(xA)Mβ(yA)

× |
√

1− η(xA + iyA)⟩ ⟨
√

1− η(xA + iyA)| (15)

and, if Bob gets the outcome xB Eve’s conditional state
writes [60]

ρ
(p)
E|xB

=
1

p
(p)
B (xB)

∑
xA,yA

Mβ(xA)Mβ(yA)pB|A(xB | xA)

× |
√

1− η(xA + iyA)⟩ ⟨
√

1− η(xA + iyA)| .
(16)

Calculations of the Von Neumann entropy require a numer-
ical diagonalization of ρ

(p)
E and ρ

(p)
E|xB

.
The resulting K(p) is plotted in Fig. 4 as a function of the

mean energy n̄ at a fixed transmission distance d = 100 km.
As expected for CV-QKD with imperfect reconciliation, all
the curves reach a maximum K

(p)
max for a finite value of n̄ and

ultimately become negative [24], [25], [26], [34]. Remarkably,
the MB sampling increases the maximum value of KGR with
respect to the uniform one, but the curves decrease faster
towards negative values. This behaviour may be interpreted
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Fig. 5. (Top) Log plot of K
(I)
max as a function of the transmission distance d,

expressed in km, for d ≥ 100 km. The plot for smaller d is depicted in the
inset. (Bottom) Log plot of K

(I)
max and K

(II)
max for QAM64 (M = 8) as a

function of the transmission distance d. The exploitation of PAS increases
the KGR, coming closer to the GG02 protocol. The reconciliation efficiency
is ζ = 0.95. The symbols (circles and triangles) refer to the numerical
calculations at fixed d and the lines to the corresponding interpolations.

as follows. For large n̄, the larger spacing between symbols
∆(II) ≥ ∆(I) makes them more “distinguishable”, allowing
Eve to retrieve more information with respect to case I. On the
other hand, if n̄ is small, the shot noise becomes relevant
increasing the overlap among the encoded symbols and the
larger spacing is beneficial to achieve a better approximation
of the Gaussian modulation.

Moreover, in Fig. 4 we also compare the performance of the
QAM formats with two relevant benchmarks: the correspond-
ing PSK constellations having the same number of symbols
[24], [25], [26], [55] and the GG02 protocol discussed in
App. A. The PSK constellation with N symbols is constructed
by generating uniformly the coherent states {|α exp[i(2k +1)
π/N)]⟩}k=0,...,N−1, and α =

√
n̄ > 0 [55]. However,

by performing the above analysis with PSK, the numerical
results show that increasing the size of the constellation brings
a negligible increase in the KGR for large N [34], and, for
PSK16 and PSK64, they are almost indistinguishable. On the
contrary, in the presence of QAM, increasing the number of
symbols allows to improve further the KGR, thus approaching
incrementally the GG02 protocol. Thus, in principle it is
always possible to find a finite M × M QAM alphabet,
with sufficiently large M and optimized MB distribution,
to approach with arbitrary accuracy the GG02.

The previous analysis may be performed to retrieve the max-
imum achievable KGR K

(p)
max, p = I, II, as a function of the

transmission distance d, together with the associated maximum
modulation energy n̄

(p)
max. Plots of K

(I)
max are depicted in Fig. 5

Fig. 6. (Top) Plot of the ratio R as a function of the transmission distance d,
expressed in km. The black dotted lines are the average of the values obtained
for d ≥ 80 km. For large distances PAS introduces an increase in the KGR
equal to ≈ 3% and ≈ 12% for QAM16 and QAM64, respectively. (Bottom)
Log plot of the maximum modulation energy n̄

(p)
max, p = I, II, as a function

of the transmission distance d. The reconciliation efficiency is ζ = 0.95.

(top panel). As we can see, the QAM formats outperform the
corresponding PSK ones and are closer to the GG02 protocol.
Furthermore, exploiting PAS allows to increase further the
performance, as shown in the bottom panel of Fig. 5 for the
case QAM64.

To quantify the improvement introduced by PAS, we com-
pute the ratio

R =
K

(II)
max

K
(I)
max

(17)

plotted in the top panel of Fig. 6. The trend is similar for
both QAM16 and QAM64. For small d, R exhibits a bump
after which it decreases until to reach an asymptotic value for
d ≥ 80 km. We note that in this asymptotic regime the results
obtained show numerical fluctuations. These are induced by a
limitation of the optimization procedure described in Sec. II-B.
Indeed, for small transmissivity η ≪ 1, the overall state
received by Bob has a so weak average energy ηn̄ ≪ 1, that
the mutual information for cases I and II is nearly identical
to the channel capacity (see Fig. 3, bottom panel). In turn,
I
(II)
AB (β) is almost independent of β and the maximization

algorithm used in Sec. II-B introduces numerical fluctuations
on the optimized inverse temperature β(II). Although these
fluctuations do not affect the mutual information itself, they
do have a relevant effect when computing the KGR, as appears
in the plots of Fig. 6. To avoid this intrinsic limitation,
we estimate the asymptotic ratio by calculating the average
of the data obtained for d ≥ 80 km, bringing us to an increase
of ≈ 3% and ≈ 12% for QAM16 and QAM64, respectively.
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Finally, for the sake of completeness, the bottom panel
of Fig. 6 reports the maximum modulation energy n̄

(p)
max,

p = I, II, which is a decreasing function of the distance
and saturates as d increases. As one may expect, increasing
the size of the constellation increases also n̄

(p)
max, until to

reach the value of the GG02 scheme [34]. Moreover, we have
n̄

(II)
max ≤ n̄

(I)
max, that is the MB reaches its maximum KGR for

lower energies, in accordance with Fig. 4.
As a final remark, we note that the KGR analysis performed

here does not focus on the actual error correction code and
algorithm employed for information reconciliation, but simply
uses the reconciliation efficiency parameter ζ [26], [30] to
account for deviations from the KGR achievable with ideal
reconciliation. The study of ad hoc information reconciliation
protocols, the impact of possible error propagation when
inverting the mapping performed by the distribution matcher,
and the comparison between the complexity and efficiency of
the information reconciliation protocols available for Gaussian
modulations and for the proposed discrete modulation are left
for future study.

III. ROLE OF THE CHANNEL EXCESS NOISE

In this section we approach the more realistic scenario
that addresses the impact of a thermal channel excess noise
on the results of Sec. II. Here the quantum channel is still
modelled as a beam splitter with transmissivity η, but now
a thermal state is injected in the other port. Such a state is
characterized by n̄ϵ = ηϵ/[2(1 − η)] mean photons, ϵ ≥ 0
being the introduced excess noise. In turn, the states probed by
Bob are no longer coherent (pure) states but rather displaced
thermal (mixed) states [14] and the conditional homodyne
probability (6) should be modified accordingly as

pB|A(xB | xA; ϵ) =
exp

[
− (xB − 2σ0

√
ηxA)2/2σ2

ϵ

]√
2πσ2

ϵ

(18)

with an increased variance σ2
ϵ = σ2

0(1 + ηϵ). Generally
speaking, the presence of a channel excess noise is detrimental
for CV-QKD, as secure communication only holds up to a
maximum transmission distance dmax, after which the KGR
becomes negative [11], [12], [13], [15], [16]. The value of
dmax depends on both the amount of noise and the employed
constellation [24], [34].

For the protocol under investigation, the corresponding
wiretap channel with non-zero excess noise is depicted in
Fig. 7, where Eve is assumed to control the added thermal
noise by performing an entangling cloner attack [46], [66].
In more detail, she prepares a two-mode squeezed vacuum
state (TMSV) with variance Vϵ = 1 + 2n̄ϵ on two modes
E = (E1, E2), namely

|TMSV⟩⟩ =
√

1− λ 2

∞∑
n=0

λ
n |n⟩E1 |n⟩E2 (19)

with λ =
√

(Vϵ − 1)/(Vϵ + 1) and |n⟩ being the Fock
state containing n photons [14]. Thereafter, she injects
branch E1 into the channel beam splitter, impinging with
the pulse sent by Alice, and, ultimately, collects the output
reflected state. Thanks to this strategy, she gets undetected by

Fig. 7. Scheme of the CV-QKD protocol in the presence of the channel
excess noise. Differently from the pure-loss scenario, Eve performs an
entangling-cloner attack, that is she injects one arm of a TMSV state into
the channel beam splitter, retrieving the final output state.

Alice and Bob, being fully hidden behind the observed excess
noise. Indeed, after performing partial trace over modes E, the
present scheme is equivalent to a thermal-loss channel with
excess noise ϵ [66].

As in the previous section, we present the analysis of the
KGR addressing only the MB distribution, retrieving cases I
and II by fixing β = 0 and optimizing β with the methods of
Sec. II-B, respectively. The mutual information between Alice
and Bob reads

I
(p)
AB(ϵ) = H

(p)
B − 1

2
log2

(
2πeσ2

ϵ

)
(p = I, II) (20)

where H
(p)
B is the Shannon entropy of Bob’s overall probabil-

ity distribution

p
(p)
B (xB ; ϵ) =

∑
xA

Mβ(xA)pB|A(xB | xA; ϵ) . (21)

On the contrary, the computation of the Holevo information
χ

(p)
BE(ϵ) is not straightforward and requires the Gaussian

formalism [68], [69], summarized in App. B. In particular,
if Alice samples the coherent state |xA + iyA⟩, both Eve’s
overall and conditional states ρE(xA, yA) and ρE|xB

(xA, yA),
respectively, are Gaussian states, whose expressions are
derived in App. C. In turn, we have

ρ
(p)
E =

∑
xA,yA

Mβ(xA)Mβ(yA) ρE(xA, yA) (22a)

ρ
(p)
E|xB

=
1

p
(p)
B (xB ; ϵ)

∑
xA,yA

Mβ(xA)Mβ(yA)

× pB|A(xB | xA; ϵ) ρE|xB
(xA, yA). (22b)

The Holevo information then reads

χ
(p)
BE(ϵ) = S

[
ρ
(p)
E

]
−

∫
dxB p

(p)
B (xB ; ϵ) S

[
ρ
(p)
E|xB

]
(23)

that can be computed numerically by suitably expanding
states (22a) as shown in App. B [69]. The resulting KGR,
namely:

K(p)(ϵ) = ζI
(p)
AB(ϵ)− χ

(p)
BE(ϵ) (p = I, II) , (24)

optimized over the modulation energy leads to the maximum
achievable rates K

(p)
max(ϵ), p = I, II, that are reported in the

top and bottom panels of Fig. 8, respectively, for a QAM16
constellation with different values of ϵ.

As one may expect, the presence of the excess noise results
in a lower K

(p)
max(ϵ) with respect to the pure-loss channel one,
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Fig. 8. (Top) Log plot of K
(I)
max(ϵ) as a function of the transmission

distance d, expressed in km, for different values of the excess noise ϵ.
(Bottom) Log plot of K

(II)
max(ϵ) as a function of d, for different ϵ. The black

dashed lines are the corresponding KGRs of case I. PAS turns out to be
beneficial to increase both the KGR and the maximum transmission distance
d
(p)
max, being more robust against the channel thermal noise. The reconciliation

efficiency is ζ = 0.95.

exhibiting a reduced maximum transmission distance d
(p)
max.

Remarkably, employing PAS is beneficial to increase both the
KGR and the value of the maximum distance, as d

(II)
max ≥ d

(I)
max:

for ϵ = 0.03 we have d
(I)
max ≈ 125 km and d

(II)
max ≈ 130 km,

while, for ϵ = 0.05, d
(I)
max ≈ 70 km and d

(II)
max ≈ 75 km.

IV. A MORE SOPHISTICATED OPTIMIZATION PROCEDURE

In the previous sections we have addressed case II by
choosing the optimal values β(II) and ∆(II) that maximize
the mutual information between Alice and Bob.

However, given the previous discussion, a feasible alter-
native emerges, in which the values of the free parameters
are selected to maximize directly the KGR, instead of the
sole mutual information I

(II)
AB (β). Here we investigate this

procedure and, for the sake of simplicity, we only consider
the case of a pure-loss channel.

As in the strategy of Sec. II-B, the spacing ∆(II)(β) is
obtained as a function of the inverse temperature β thanks to
the energy constraint of Eq. (2b). However, differently from
that strategy, the proper figure of merit becomes the KGR in
Eq. (12), namely,

K(II)(β) = ζI
(II)
AB (β)− χ

(II)
BE (25)

with the quantities I
(II)
AB (β) and χ

(II)
BE = χ

(II)
BE(β) introduced

in Eq.s (9) and (13), respectively, and where the dependence
on β has been highlighted. The optimal inverse temperature is

Fig. 9. (Top) Plot of K̃(II) and K(p), p = I, II, as a function of the mean
energy n̄ for d = 100 km (20 dB attenuation) and a QAM16 (M = 4)
constellation. (Bottom) Log plot of K

(II)
max and K̃

(II)
max for QAM16 as a

function of the transmission distance d, expressed in km. For d ≳ 80 km there
is an improvement of ≈ 10% (see the inset). The reconciliation efficiency is
ζ = 0.95.

obtained as

β̃ (II) = arg max
β

K(II)(β) (26)

together with the optimal spacing ∆̃(II) and the optimal KGR

K̃(II) = K(II)
(
β̃ (II)

)
. (27)

Such a task is straightforward but not trivial to implement
for the scenario discussed in this paper. Indeed, if we wanted
to implement a golden-section-search method as in Sec. II-B,
in any step of the numerical algorithm we should compute
not only I

(II)
AB (β) but also the density matrices ρE and ρE|xB

,
with a much higher computational cost. Here, for simplicity,
we only consider a QAM16 constellation and compare the
KGRs K(p), p = I, II, and K̃(II) for distances up to 100 km.
We report in the top panel of Fig. 9 the KGRs at d = 100 km
as a function of the modulation energy. As one may expect,
we have K̃(II) ≥ K(p). For small n̄, K̃(II) (solid blue line)
is close to case II (solid orange line), then it achieves a
maximum and decreases approaching the KGR of case I
(dashed orange line). Remarkably, the present optimization
increases further the maximum KGR achievable at a fixed
distance. Thus, following the procedure outlined in Sec. II-C,
for each distance d we choose the optimal modulation energy
and retrieve the maximum achievable value K̃

(II)
max. The com-

parison between K
(II)
max and K̃

(II)
max in depicted Fig. 9 (bottom

panel). For d ≳ 80 km there is an improvement of ≈ 10%.
At the same time, these results prove themselves as a validation
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for the mutual information optimization method, which is close
to the optimization of the overall key rate, although being a
sub-optimal procedure.

V. CONCLUSION

In this paper we have proposed a CV-QKD protocol employ-
ing the discrete QAM modulation formats typically exploited
in classical telecommunications. In our proposal, the sender
has only a finite set of coherent pulses available, constituting
a square constellation of M×M states, generated by sampling
either a uniform (case I) or a Maxwell-Boltzmann (case II)
distribution. The receiver performs a homodyne measure-
ment of q/p, chosen at random, on his received signal. For
case II, by exploiting PAS, we have evaluated the optimized
sender probability distribution to maximize the shared mutual
information.

We have performed the KGR analysis for a pure-loss quan-
tum wiretap channel in reverse reconciliation and compared
the obtained KGR with both the associated PSK protocols and
the GG02 scheme. We proved QAM modulation as a powerful
resource to better approximate the Gaussian modulation and
quantified the advantage brought by non-uniform sampling.
Thereafter, we have addressed the role of a non-zero channel
excess noise, whose main detriment is to reduce the KGR,
introducing a maximum transmission distance. We compared
cases I and II, showing PAS to be more robust with respect to
uniform sampling, allowing to reach larger distances. Finally,
we have proposed a better optimization strategy, based on
the direct maximization of the KGR instead of the sole
mutual information. We showed this method to outperform
both cases I and II, although case II may still be considered
as a feasible sub-optimal scheme.

We also remark that in our analysis we focused on the
asymptotic limit where an infinite dataset is shared between
Alice and Bob. In a practical scenario considering finite-size
effects, modulation formats that are closer to the continuous
modulation may exhibit a lower performance, since there are
more terms in the key rate calculation and the convergence
can be slower.

Our results prove that a suitable PAS of a discrete constella-
tion allows to overcome the finite transmitter dynamics and to
approximate the performance of the standard CV-QKD based
on CM also for increasing average powers. Moreover, they
pave the way for the design of feasible schemes compatible
with the currently exploited telecom techniques.

Further improvements may be obtained by improving also
the detection stage and investigating the role of non-Gaussian
measurements for CV-QKD, such as state-discrimination
optimized receivers [55], [70], [71], [72], [73], [74], [75].
Nevertheless, in this case the analysis shall be restricted
to a wiretap channel since a security analysis for a fully
non-Gaussian protocol is still an open problem.

APPENDIX A
CV-QKD WITH GAUSSIAN MODULATION:

THE GG02 PROTOCOL

The most relevant protocol of CV-QKD is the so called
GG02, proposed by Grosshans and Grangier in 2002 and

employing Gaussian modulation [6], [10], [11], [12]. In GG02,
Alice encodes information on a continuous ensemble of coher-
ent states |xA + iyA⟩, where xA, yA ∈ R are sampled from
the normal distribution NΣ2 , namely,

NΣ2(z) =
exp

[
− z2/(2Σ2)

]
√

2πΣ2
(z = xA, yA). (28)

Therefore, the overall state generated by Alice reads

ρ
(GG)
A =

∫
R2

dxAdyANΣ2(xA)NΣ2(yA)

× |xA + iyA⟩ ⟨xA + iyA|

= νth(2Σ2) (29)

that is a pseudo-thermal state

νth(n̄) =
1

n̄ + 1

∞∑
n=0

(
n̄

n̄ + 1

)n

|n⟩⟨n| (30)

n̄ = 2Σ2 being the mean energy per symbol and |n⟩ repre-
senting the Fock state with n photons [14].

For the scheme investigated in this paper, that is a pure-loss
channel followed by homodyne detection by Bob, the mutual
information reads [6], [11], [61]

I
(GG)
AB =

1
2

log2(1 + 2ηn̄) (31)

which coincides with the capacity of an AWGN channel as
derived in the Shannon-Hartley theorem [20], [21], [76], [77].

By performing the security analysis in a reverse reconcilia-
tion scenario, if Eve exploits an entangling cloner attack, the
Holevo information reads [6], [10], [12]

χ
(GG)
BE = log2

(
VE + 1
V̄E + 1

)
+

VE − 1
2

log2

(
VE + 1
VE − 1

)
− V̄E − 1

2
log2

(
V̄E + 1
V̄E − 1

)
(32)

where

VE = 1 + 2(1− η)n̄ (33a)

V̄E =

√
η + (1− η)(1 + 2n̄)
1− η + η(1 + 2n̄)

(1 + 2n̄). (33b)

The resulting KGR writes

K(GG) = ζI
(GG)
AB − χ

(GG)
BE . (34)

Finally, as discussed in the main text, for each transmission
distance it is possible to optimize Eq. (34) over the modulation
energy, obtaining the maximum achievable KGR K

(GG)
max and

the maximum energy n̄
(GG)
max .

APPENDIX B
A BRIEF OUTLINE OF THE GAUSSIAN FORMALISM

The Gaussian state formalism is a useful tool to perform
the KGR analysis in the presence of a thermal-loss channel.
Here we present a brief outline of its main features [68], [69].
We consider a n-mode optical field, described by the bosonic
field operators ak, k = 1, . . . , n, satisfying the canonical
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commutation relations [ak, al] = 0, [ak, a†l ] = δkl, and their
corresponding quadrature operators

qk = σ0(ak + a†k) and pk = iσ0(a
†
k − ak) (35)

such that [qk, pl] = 2iσ2
0δkl, σ2

0 being the shot-noise variance.
In the following we will exploit a vector notation by introduc-
ing the operator r̂ = (q1, p1, q2, p2, . . . , qn, pn)T.

A. Gaussian States

A quantum state ρ is a Gaussian state if its associated
Wigner function is Gaussian, namely

W [ρ](r) =
1

(2π)n
√

det(σ)
exp

[
−1

2
(r− x)T σ−1 (r− x)

]
(36)

where rT = (x1, y1, . . . , xn, yn) ∈ R2n and

x = Tr[ρ r̂] (37a)

σ =
1
2
Tr

[
ρ {(r̂− x), (r̂− x)T}

]
(37b)

are the first moment vector (FM) and the covariance matrix
(CM), {A, B} = AB + BA being the anti-commutator of A
and B [68]. In turn, a Gaussian state is characterized by its
FM and CM. Eq. (36) may also be re-expressed as

W [ρ](α) =
1

πn
√

det(σ̃)
exp

[
−1

2
(α− β)† σ̃−1 (α− β)

]
(38)

with αT = (α1, α
∗
1, . . . , αn, α∗n) ∈ C2n, and

β = Ux and σ̃ = UσU† (39)

where U = ⊕n
k=1U1 and

U1 =
1

2σ0

(
1 i
1 −i

)
. (40)

The expansion of a Gaussian state ρ onto the Fock basis
has been recently derived in [69]. To this aim, we introduce
the matrices

σQ = σ̃ + I2n/2 (41a)

A = X(I2n − σ−1
Q ) (41b)

γT = β†σ−1
Q (41c)

where I2n is the 2n× 2n identity matrix and X = ⊕n
s=1σx,

σx being the Pauli x-matrix. Then, the matrix element ρmk =
⟨m|ρ|k⟩, |k⟩ = |k1 k2 . . . kn⟩ and |m⟩ = |m1 m2 . . . mn⟩,
reads

ρmk = Tmk

n∏
s=1

∂ks
αs

∂ms
α∗

s
exp

(
1
2
αTAα + γTα

) ∣∣∣
α=0

(42)

where

Tmk =
1√

det(σQ)
∏n

s=1 ks!ms!
exp

(
−1

2
β†σ−1

Q β

)
.

(43)

B. Gaussian Dynamics

Gaussian dynamics is provided by unitary evolution gen-
erated by bilinear Hamiltonians and is associated with a
symplectic matrix S. Given an input Gaussian state ρin with
(xin, σin), the evolved state ρout is still Gaussian with FM
and CM given by [68]

xout = S xin and σout = S σin ST (44)

respectively.
Finally, we discuss the case of conditional dynamics [68].

We consider a bipartite system AE, composed of nA an nE

optical modes, respectively, prepared in a Gaussian state ρAE

with x = (xA,xE) and CM (written in block form)

σ =
(

σA σZ

σT
Z σE

)
. (45)

Thereafter, a Gaussian measurement is performed on subsys-
tem A, associated with the CM σm, retrieving the outcome
xm ∈ R2nA . The resulting conditional state ρE|rm

on modes E
is still a Gaussian state with FM and CM equal to

xE|xm
= xE + σT

Z (σA + σm)−1 (xm − xA) (46a)

σE|rm
= σE − σT

Z (σA + σm)−1
σZ (46b)

respectively.

APPENDIX C
CALCULATION OF EVE’S STATES FOR A

THERMAL-LOSS WIRETAP CHANNEL

Here we derive explicitly the quantum states ρE(xA, yA)
and ρE|xB

(xA, yA) introduced in Sec. III. The entire com-
putation is based on the Gaussian formalism outlined in the
previous appendix.

In the presence of a thermal-loss wiretap channel, Eve
generates a TMSV state with variance Vϵ = 1 + 2n̄ϵ, n̄ϵ =
ηϵ/[2(1− η)], with zero FM, x(0)

E = 0, and the CM

σ
(0)
E = σ2

0

(
Vϵ I2 Zϵ σz

Zϵ σz Vϵ I2

)
(47)

with Zϵ =
√

V 2
ϵ − 1 and σz being the Pauli z-matrix. More-

over, if Alice samples the coherent state |xA + iyA⟩, she gets
a single-mode Gaussian state with FM x(0)

A = 2σ0 (xA, yA)
and CM σ

(0)
A = σ2

0 I2. Thereafter, Alice’s pulse interferes at
the channel beam splitter with Eve’s mode E1, resulting in
a tripartite Gaussian state ρAE(xA, yA) characterized by FM
and CM equal to

xAE = S
(
x(0)

A ⊕ x(0)
E

)
(48a)

σAE = S
(
σ

(0)
A ⊕ σ

(0)
E

)
ST (48b)

with S = SBS ⊕ I2 and

SBS =
( √

η I2
√

1− η I2
−
√

1− η I2
√

η I2

)
(49)

being the symplectic matrix associated with the beam splitter
operation [68].

In turn, Eve’s overall state ρE(xA, yA) is characterized by
(xE, σE), whilst her conditional state after Bob’s homodyne
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measurement ρE|xB
(xA, yA) is associated with FM xE|xB

and
σE|xB

equal to Eq. (46), with xm = (xB , 0) and

σm = lim
z→0

(
z 0
0 1/z

)
(50)

being the CM associated with homodyne detection [68].
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