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Abstract—To achieve the maximum information transfer
and face a possible eavesdropper, the samples transmitted in
continuous-variable quantum key distribution (CV-QKD) proto-
cols are to be drawn from a continuous Gaussian distribution.
As a matter of fact, in practical implementations the transmitter
has a finite (power) dynamics and the Gaussian sampling can
be only approximated. This requires the quantum protocols to
operate at small powers. In this paper, we show that a suitable
probabilistic amplitude shaping of a finite set of symbols allows
to approximate at will the optimal channel capacity also for
increasing average powers. We investigate the feasibility of this
approach in the framework of CV-QKD, propose a protocol
employing discrete quadrature amplitude modulation assisted
with probabilistic amplitude shaping, and we perform the key
generation rate analysis assuming a wiretap channel and lossless
homodyne detection.

Index Terms—Continuous-variable quantum key distribution,
probabilistic amplitude shaping.

I. INTRODUCTION

CURRENT cryptographic systems for communications
security are mostly based on either public-key cryptog-

raphy, providing only conditional security [1], or the one-time
pad [2], offering unconditional security (guaranteed by infor-
mation theory) but with much less practical implementation
[3]. Thus, a possible solution to the key distribution problem is
offered by quantum key distribution (QKD) protocols [4]–[6],
in which two distant parties (Alice and Bob) share a secret key
by exchanging quantum states through an untrusted quantum
channel under the control of an eavesdropper (Eve).

The very laws of quantum mechanics guarantee uncondi-
tional security of QKD protocols [7]; any measurement of the
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quantum states performed by Eve leaves a trace on the states
themselves, allowing Alice and Bob to detect the intrusion,
evaluate the amount of information possibly gained by Eve,
and discard the key if necessary [8].

A promising approach to QKD is the one based on contin-
uous variables (CVs) [6], [9]–[13]. With respect to discrete-
variable (DV) protocols [4], in which single photons are typi-
cally used as information carriers, CV protocols use coherent
states [14] (namely, laser pulses) to carry information, exactly
as in classical communication systems. Unlike DV-QKD, CV-
QKD does not require single-photon sources and detectors and
can use the same devices and modulation/detection schemes
commonly employed in classical coherent optical communica-
tions [15]–[17]. Therefore, we expect that the implementation
of a CV-QKD system could also benefit from the use of
the most effective modulation/detection techniques and digital
processing strategies that have been developed for classical
systems in the last years.

Nevertheless, an important issue concerning CV-QKD is
the modulation of coherent states. Although the first CV-
QKD protocols were originally based on discrete modulations
[9], [18], [19], in the protocol proposed by Grosshans and
Grangier in 2002 (GG02) the states are modulated with a
Gaussian distribution [6], [10]–[12]. This choice is related to
the fundamental objective of maximizing the key generation
rate (KGR), that is, the length of the secret key shared by
Alice and Bob per unit time [20], [21]. Indeed, the actual
KGR of a QKD system is limited by the difference between
the amount of information that can be reliably transmitted from
Alice to Bob per unit time and that obtainable by Eve. The
maximization of the first quantity (which yields the channel
capacity) is a classical problem in digital communications and
is achieved with a Gaussian input distribution.

Although justified on a theoretical level, Gaussian modula-
tion involves several practical difficulties and is never used in
classical digital communication systems for a twofold reason
[22], [23]. The main drawback is that any realistic transmitter
may generate signals up to a certain maximum peak power
(e.g. by modulating the light emitted by a laser), whereas
sampling a Gaussian distribution implies a nonzero probability
of drawing a very large sample, and this probability increases
with the average input power. Hence, to avoid exceeding the
maximum peak power, the system has to be operated at small
average power. For example, if we want to generate a zero-
mean Gaussian symbol 𝑋 with variance 𝜎2, but we are limited
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by hardware constraints to the range |𝑋 | < 𝑋max, we must en-
sure that 𝑋max > 6𝜎 to make the probability that 𝑋 exceeds the
allowed range negligible (lower than 2×10−6 in this example).
This means that the average transmitted power, proportional
to 𝜎2, must be at least 36 times (15.6 dB) smaller than
the maximum peak power. proportional to 𝑋2

max. Furthermore,
from the implementation point of view, the inevitable use of
analog-to-digital converters with finite resolution and dynamic
range at the transmitter introduces a discretization of the
sampling distribution. Thus, a more feasible way to perform
quantum communication at higher average power without
exceeding the transmitter dynamics and available resolution is
that of employing discrete modulation formats of appropriate
order.

CV-QKD employing discrete modulation has been ap-
proached with uniform phase-shift-keying (PSK) modulation
[24]–[36], obtaining a lower KGR with respect to the GG02
scheme. However, in a practical scenario the GG02 protocol
exhibits a lower reconciliation efficiency [24], making PSK
still worth of interest. Nevertheless, for a large PSK constel-
lation increasing further the number of symbols brings only
a negligible advantage [34]. To overcome these limitations,
also amplitude-phase-shift-keying (APSK) formats have been
investigated [37]–[39].

More recently, quadrature-amplitude modulation (QAM) of
a regular grid of signals has been proposed as a promis-
ing solution [34], [40], [41]. Differently from PSK, QAM
constellations may employ a non-uniform discrete probabil-
ity distribution of the symbols that approximates better the
Gaussian one, thus obtaining a higher KGR closer to GG02.
To implement this non-uniform sampling, probabilistic ampli-
tude shaping (PAS) is a practical coded modulation scheme
that combines QAM, probabilistic constellation shaping, and
forward error correction (FEC) to closely approach optimal
channel capacity [42]–[44]. PAS uses a distribution matcher to
map uniformly distributed information bits on QAM symbols
with the desired target distribution [47]–[49]. In particular, a
Maxwell–Boltzmann target distribution is considered, which
maximizes the source entropy for a given discrete constellation
and mean energy per symbol [50] (in practice, lower-energy
symbols are used more often than higher-energy symbols,
reducing the energy required to achieve a certain information
rate).

PAS can be easily combined with the efficient FEC codes
and the corresponding decoding algorithms commonly em-
ployed in digital communications (e.g., binary LDPC codes
with iterative belief propagation), obtaining an excellent trade-
off between performance and complexity [43], [51], [52]. Ease
of implementation, nearly optimal performance, fine rate tun-
ability, and compatibility with existing devices and techniques
make PAS one of the most popular solutions for the latest
generation of coherent optical systems. These considerations
suggest that a similar solution might be convenient also for
CV-QKD.

In this work, we consider a CV-QKD protocol implemented
thrugh QAM modulation of coherent states and homodyne
detection. We consider both uniform sampling of the coherent
states and non-uniform generation assisted with PAS [42],

  

Figure 1. Schematic representation of the CV-QKD protocol discussed in the
paper for a discrete modulation format. Alice generates symbols 𝑧 = 𝑥𝐴, 𝑦𝐴 by
samping either a uniform distribution P(𝑧) (case I) or a Maxwell-Boltzmann
distribution M𝛽 (𝑧) (case II), encodes them onto |𝑥𝐴 + 𝑖𝑦𝐴⟩ and sends them
to Bob through an untrusted pure-loss channel. Bob investigates the channel
by performing a homodyne measurement of 𝑞/𝑝, chosen at random. In
this scenario, Eve only collects the fraction of the signals lost during the
propagation through the channel.

[44]. To address the performance of the protocol, here we
perform a KGR analysis for a quantum wiretap channel
[45], [46]. In this scenario, Eve does not alter the nature of
the quantum channel connecting Alice and Bob, being only
limited to collect the lost fraction of the signals exchanged
and to hide behind the channel excess noise. Although this
assumption is not sufficient to prove unconditional security,
it provides a realistic model and a useful benchmark for
many practical scenarios (e.g. free space communications)
[53]. Accordingly, the paper focuses on the task of key rate
optimization rather than providing a security analysis under
arbitrary eavesdropping attacks. In particular, we consider
different QAM constellations [54], [55], optimize the shaping
parameter and compare the performance with and without PAS
with respect to a PSK modulation with the same number of
symbols and the original GG02 scheme. At first, we address
the case of a pure-loss channel and, thereafter, discuss the
effects of thermal noise on the obtained results.

The structure of the paper is the following. In Sec. II we
present our proposal of a CV-QKD scheme employing dis-
crete modulation and based on standard probabilistic shaping,
namely, optimizing the discrete probability distribution over
the capacity of the channel, whilst in Sec. III we address the
effect of the channel excess noise on the obtained results.
Then, in Sec. IV we propose a new optimization procedure
for PAS and discuss its performance. Finally, in Sec. V we
close the paper by drawing some concluding remarks and their
future developments.

II. CV-QKD WITH QAM DISCRETE MODULATION AND
PAS

In this paper we investigate the protocol for CV-QKD
employing discrete modulation depicted in Fig. 1. The sender,
Alice (𝐴), encodes the information on several laser pulses
described by coherent states |𝑥𝐴+ 𝑖𝑦𝐴⟩, where 𝑥𝐴, 𝑦𝐴 ∈ R are
randomly generated according to a discrete-valued probability
distribution. These states are sent to the receiver, Bob (𝐵),
through an untrusted quantum channel which may be attacked
by an eavesdropper, Eve (𝐸).

Once received the signals, Bob probes them by implement-
ing the measurement of one of the two orthogonal quadratures
𝑞 or 𝑝, [𝑞, 𝑝] = 2𝑖𝜎2

0 , where 𝜎2
0 represents the shot-noise vari-

ance, that is the vacuum fluctuations ⟨0|𝑞2 |0⟩ = ⟨0|𝑝2 |0⟩ = 𝜎2
0 .
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Figure 2. The QAM16 constellation (𝑀 = 4), represented in both the
(classical) complex space of coherent amplitudes and the (quantum) phase
space.

The measured quadrature is chosen at random and imple-
mented by performing homodyne detection [14]. Without loss
of generality, to carry on the security analysis we can assume
that Bob measures 𝑞. From now on we will consider shot-noise
units, that is 𝜎2

0 = 1.
Then, Alice and Bob share some correlated classical infor-

mation through a classical authenticated channel, the so-called
reconciliation process: we have either direct or reverse recon-
ciliation (DR) if information is publicly shared by Alice or
Bob, respectively [12], [56], [57]. After a privacy amplification
stage [12], they are finally able to generate a random secure
key.

Standard optical fibers are well-modeled by thermal-loss
channels [15], [16]. However, the numerical analysis of such
systems is computationally demanding. Therefore, here we
deal with a simpler scenario and assume a pure-loss chan-
nel, whilst the impact of a non-zero channel excess noise
on the present protocol will be discussed in Sec. III. The
pure-loss channel is described by means of a beam splitter
with transmissivity 𝜂 = 10−0.1𝜅𝑑 , where 𝑑 is the transmission
distance in km, and 𝜅 = 0.2 dB/km is the loss rate of common
fibers [58]–[60]. In this case, it is possible to perform CV-
QKD up to a large maximum transmission distance depending
only on the imperfect reconciliation process [24]–[26], [34].
As a consequence, the goal of this section is to compare
the QAM modulation with both the already existing PSK
schemes and the Gaussian-modulated GG02 protocol in order
to establish a hierarchy between these cases. In fact, the GG02
scheme is the one that maximize the mutual information in key
distribution (see App. A), providing a benchmark in evaluating
the performance of the presented results. On the other hand,
both PSK and QAM represent sub-optimal modulation formats
for quantum communications, thus their comparison is worth
of interest also for CV-QKD. In the following we will analyze
in detail each step of the proposed protocol, performing a
complete security analysis.

A. Modulation stage

The QAM format adopted by Alice works as follows [54],
[55]. She draws each couple (𝑥𝐴, 𝑦𝐴) from the finite set
A = Λ×Λ, where Λ = {𝑛Δ | 𝑛 = −(𝑀 − 1)/2, . . . , (𝑀 − 1)/2}

contains 𝑀 = 2𝑘 points, 𝑘 ∈ N, and Δ ∈ R. Therefore, she has
the constellation A of 𝑀 ×𝑀 symbols depicted in the left
panel of Fig. 2, corresponding to a square lattice with pace Δ.
It is worth noting that in the standard communication notation
the points in Λ are commonly placed at distance 2Δ between
one another [54], with Δ a scaling factor that determines the
mean energy per symbol. Here, for the sake of simplicity,
we adopt a different convention by letting such a distance
be equal to Δ, which is hence referred to indifferently as
scaling factor or symbol spacing. Each couple (𝑥𝐴, 𝑦𝐴) is then
encoded on its corresponding coherent state |𝑥𝐴+ 𝑖𝑦𝐴⟩, so that
the constellation A is mapped into the (quantum) phase space
[61] as a square lattice of 𝑀 ×𝑀 coherent states centred in
(2𝜎0𝑥𝐴,2𝜎0𝑦𝐴) and with pace 2𝜎0Δ (right panel of Fig. 2).

Concerning the probability distributions to sample 𝑥𝐴 and
𝑦𝐴, here we discuss two alternative possibilities. The former,
referred to as case I, is the uniform distribution P(𝑧) = 𝑀−1,
(𝑧 = 𝑥𝐴, 𝑦𝐴), commonly exploited in classical communications
[54] and quantum-state-discrimination schemes [55]. The lat-
ter, case II, is the Maxwell–Boltzmann distribution (MB) [50],
[62]

M𝛽 (𝑧) =
𝑒−𝛽𝑧

2

𝑍
(𝑧 = 𝑥𝐴, 𝑦𝐴) (1)

𝑍 =
∑
𝑧 𝑒

−𝛽𝑧2
being the normalization constant. Though be-

ing widely deployed in practice, the uniform distribution
is largely suboptimal, as it requires up to 1.53 dB more
energy per symbol to achieve the same mutual information as
the capacity-achieving Gaussian distribution over the additive
white Gaussian noise (AWGN) channel [50]. On the other
hand, the MB distribution is the maximum-entropy distribution
for a discrete random variable with given variance (mean
energy) [62] and, for a sufficiently large QAM constellation,
it has been shown to closely approach channel capacity over
the AWGN channel, practically closing the 1.53 dB gap of
uniform QAM constellations [42].

The MB distribution depends on the free parameter 𝛽

(the “inverse temperature”) which we shall adjust properly
to maximize the performance of the protocol, as discussed
in the following subsection. From a practical point of view,
the i.i.d. MB-distributed symbols required in case II can be
generated by the PAS scheme proposed in [42], where a
distribution matcher maps a sequence of uniform i.i.d. random
bits (in our case, the raw key generated for instance by a
quantum random number generator) to a sequence of QAM
symbols with the desired distribution. In particular, different
distribution-matching algorithms have been proposed, such as
constant composition distribution matching [47], enumerative
sphere shaping [49], and hierarchical distribution matching
[48], which can approach the ideal target distribution (i.i.d.
MB symbols) with arbitrary accuracy for sufficiently long
sequences.

Though we do not claim the theoretical optimality of the
proposed MB distribution in terms of KGR, in the follow-
ing we shall show numerically that it provides a significant
advantage over the uniform distribution and closely approach
the KGR of the original GG02 protocol. In particular, we shall
discuss the behavior of the present protocol when Alice has
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the relevant constellations QAM16 and QAM64, associated
with the values 𝑀 = 4,8, respectively.

B. Choice of the constellation parameters

First of all, we present the procedure employed to assign
the appropriate values for 𝛽 and Δ. We fix the spacing Δ

by introducing a constraint on the constellation energy. If the
mean energy per symbol is equal to �̄�, the appropriate Δ is
obtained by setting the variance of the sampling distribution
equal to �̄�/2, namely

Var[𝑧] ≡ 1
𝑀

∑︁
𝑧

𝑧2 =
�̄�

2
(case I) (2a)

Var[𝑧] ≡
∑︁
𝑧

M𝛽 (𝑧)𝑧2 =
�̄�

2
(case II) (2b)

such that the overall state by Alice is described by the density
matrix

𝜌
(I)
𝐴

=
1
𝑀2

∑︁
𝑥𝐴,𝑦𝐴

|𝑥𝐴+ 𝑖𝑦𝐴⟩ ⟨𝑥𝐴+ 𝑖𝑦𝐴 | (3a)

𝜌
(II)
𝐴

=
∑︁
𝑥𝐴,𝑦𝐴

M𝛽 (𝑥𝐴)M𝛽 (𝑦𝐴) |𝑥𝐴+ 𝑖𝑦𝐴⟩ ⟨𝑥𝐴+ 𝑖𝑦𝐴 | (3b)

having mean energy �̄�. For case I, Eq. (2a) leads to the
solution:

Δ(I) =

√︂
6�̄�

𝑀2 −1
. (4)

The corresponding mutual information between Alice and Bob
reads

𝐼
(I)
𝐴𝐵

= 𝐻
(I)
𝐵

− 1
𝑀

∑︁
𝑥𝐴

𝐻𝐵 |𝑥𝐴 (5)

where 𝐻𝐵 |𝑥𝐴 and 𝐻
(I)
𝐵

are the Shannon entropies associated
with Bob’s conditional probability distribution

𝑝𝐵 |𝐴(𝑥𝐵 | 𝑥𝐴) =
exp

[
− (𝑥𝐵 −2𝜎0

√
𝜂𝑥𝐴)2/2𝜎2

0
]√︃

2𝜋𝜎2
0

(6)

namely,

𝐻𝐵 |𝑥𝐴 =
1
2

log2
(
2𝜋𝑒𝜎2

0
)

(7)

and Bob’s average probability distribution

𝑝
(I)
𝐵
(𝑥𝐵) =

1
𝑀

∑︁
𝑥𝐴

𝑝𝐵 |𝐴(𝑥𝐵 | 𝑥𝐴) . (8)

The Shannon entropy of 𝑝
(I)
𝐵
(𝑥𝐵) has to be computed via

numeric integration. In particular, in our calculations we
exploited the Simpson’s rule [63].

On the contrary, Eq. (2b) can be handled numerically
for case II and the corresponding numeric solution Δ(II) (𝛽)
exhibits an implicit dependence on the free parameter 𝛽.
Therefore, in this scenario we decided to optimize 𝛽 to achieve
the maximum mutual information between Alice and Bob

𝐼
(II)
𝐴𝐵

(𝛽) = 𝐻 (II)
𝐵

−
∑︁
𝑥𝐴

M𝛽 (𝑥𝐴)𝐻𝐵 |𝑥𝐴 (9)

305 10 15 20 25
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Figure 3. (Top) Optimal inverse temperature 𝛽 (II) and spacing Δ(p) , p = I, II,
as a function of the mean energy per symbol �̄� for a QAM16 constellation
(𝑀 = 4). (Bottom) Optimized mutual information 𝐼 (p)

𝐴𝐵
as a function of the

modulation energy �̄�. For a better clarity we reported on the x-axis also the
energy of Bob’s signals 𝜂�̄�. The black line is the capacity of the channel,
achieved with Gaussian modulation (see App. A). In both the plots we fixed
𝑑 = 10 km (2 dB attenuation).

where 𝐻 (II)
𝐵

is the Shannon entropy associated with the distri-
bution

𝑝
(II)
𝐵

(𝑥𝐵) =
∑︁
𝑥𝐴

M𝛽 (𝑥𝐴)𝑝𝐵 |𝐴(𝑥𝐵 | 𝑥𝐴) , (10)

to be computed numerically with the Simpson’s rule [63].
Thereafter, the maximization of 𝐼 (II)

𝐴𝐵
(𝛽) has been performed

with a golden-section search algorithm [63]. This proce-
dure leads to the optimized inverse temperature 𝛽 (II) and,
consequently, its associated spacing Δ(II) , together with the
optimized mutual information

𝐼
(II)
𝐴𝐵

= 𝐼
(II)
𝐴𝐵

(
𝛽 (II)

)
. (11)

The numerical results are shown in Fig. 3 (top panel) for
the case of a QAM16 constellation as a function of the mean
energy per symbol �̄� and at fixed transmission distance 𝑑 = 10
km. The behavior is expected to be qualitatively equivalent
for all distances. The optimal inverse temperature 𝛽 (II) is a
decreasing function of �̄�. As we can see, for small values of
�̄�, only the lowest-energy level of the MB in (1) have non-
zero probability, 𝛽 (II) →∞, so that the optimal constellation
tends to a simple QAM4, i.e. with 𝑀 = 2; on the other hand,
for large �̄�, all the levels of the MB distribution have the same
probability, 𝛽 (II) → 0, so that the optimal constellation tends
to a uniform QAM16. Accordingly, the non-uniform sampling
of the symbols makes the spacing Δ(II) an increasing function
of the energy such that Δ(II) ≥ Δ(I) .
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The corresponding mutual information, plotted in the bot-
tom panel of Fig. 3, shows that the MB sampling increases
the information shared between Alice and Bob, as 𝐼 (II)

𝐴𝐵
≥ 𝐼 (I)

𝐴𝐵
.

Moreover, in accordance with the previous considerations, for
�̄�≪ 1 all the QAM modulation formats are able to reach the
capacity of the channel, achieved with Gaussian modulation
(see App. A); the higher 𝑀 , the larger the region where the
QAM format performs optimally. Instead, in the large energy
regime the sampling distribution becomes more and more
uniform and all the curves saturate to the maximum possible
entropy of the constellation, namely log2 (𝑀).

C. KGR analysis

Given the parameters 𝛽 and Δ, we perform the KGR analysis
for the quantum wiretap channel [45], [46], [53]. In particular,
we focus on the relevant case of reverse reconciliation. We
remark that the present analysis is not sufficient to guarantee
unconditional security, as Eve in principle may attack the
channel and insert some suitable non-Gaussian features with-
out being intercepted by Alice and Bob. A complete security
analysis for this protocol may be carried on by exploiting the
optimality of Gaussian attacks [34], [64]–[67] and will be the
object of future publications. Nevertheless, wiretap channels
are gaining interest as they represent a realistic eavesdropping
model, being feasible with the current technologies [46], [53].

Moreover, we note that the uniform distribution may be
retrieved from Eq. (1) by fixing 𝛽 = 0. Thus, for the sake of
simplicity in the following we will perform the entire analysis
by considering the sole MB distribution, assuming that cases
I and II correspond to 𝛽 = 0 and 𝛽 = 𝛽 (II) , respectively.

As depicted in Fig. 1, the pure-loss quantum wiretap channel
is modeled as a beam splitter of transmissivity 𝜂 in which Eve
has only access to its second port, intercepting the reflected
fraction 1−𝜂 of Alice’s signal. In turn, if Alice sends the state
|𝑥𝐴+ 𝑖𝑦𝐴⟩, Eve receives the state |

√︁
1−𝜂(𝑥𝐴+ 𝑖𝑦𝐴)⟩, whereas

the transmitted pulse |√𝜂(𝑥𝐴 + 𝑖𝑦𝐴)⟩ reaches Bob. The KGR
can be computed as

𝐾 (p) = 𝜁 𝐼 (p)
𝐴𝐵

− 𝜒 (p)
𝐵𝐸

(p = I, II) (12)

where 𝜁 ≤ 1 is the reconciliation efficiency [26], [30] and 𝜒 (p)
𝐵𝐸

is the Holevo information shared between Bob and Eve [68].
We recast the problem in the prepare-and-measure picture [6],
[10], [11], [67], where the Holevo information reads

𝜒
(p)
𝐵𝐸

= 𝑆
[
𝜌
(p)
𝐸

]
−

∫
𝑑𝑥𝐵 𝑝

(p)
𝐵

(𝑥𝐵) 𝑆
[
𝜌
(p)
𝐸 |𝑥𝐵

]
(13)

where 𝜌 (p)
𝐸

is the overall Eve’s state, 𝑝 (p)
𝐵

(𝑥𝐵) is Bob’s prob-
ability distribution in Eq.s (8) and (10), 𝜌 (p)

𝐸 |𝑥𝐵 is Eve’s condi-
tional state after Bob’s measurement, and 𝑆[𝜌] =−Tr(𝜌 log2 𝜌)
denotes the von Neumann entropy associated with the density
matrix 𝜌 [55].

To calculate these quantum states we start from the joint
state of Bob and Eve, 𝜌 (p)

𝐵𝐸
= 𝑈BS (𝜂)𝜌 (p)𝐴 ⊗ |0⟩ ⟨0|𝑈BS (𝜂)†,

with 𝜌 (p)
𝐴

given in Eq. (3) and 𝑈BS being the unitary operator
associated with the beam splitter with transmissivity 𝜂 [14]

0.004

0.003

0.002

0.001

6 8 102 4

Figure 4. Plot of 𝐾 (p) , p = I, II, as a function of the mean energy �̄� for
𝑑 = 100 km (20 dB attenuation). The reconciliation efficiency is 𝜁 = 0.95.

depicted in Fig. 1. After straightforward calculation we get

𝜌
(p)
𝐵𝐸

=
∑︁
𝑥𝐴,𝑦𝐴

M𝛽 (𝑥𝐴)M𝛽 (𝑦𝐴) |
√
𝜂(𝑥𝐴+ 𝑖𝑦𝐴)⟩ ⟨

√
𝜂(𝑥𝐴+ 𝑖𝑦𝐴) |

⊗ |
√︁

1−𝜂(𝑥𝐴+ 𝑖𝑦𝐴)⟩ ⟨
√︁

1−𝜂(𝑥𝐴+ 𝑖𝑦𝐴) | . (14)

Then, Eve’s state reads [61]

𝜌
(p)
𝐸

=
∑︁
𝑥𝐴,𝑦𝐴

M𝛽 (𝑥𝐴)M𝛽 (𝑦𝐴)

× |
√︁

1−𝜂(𝑥𝐴+ 𝑖𝑦𝐴)⟩ ⟨
√︁

1−𝜂(𝑥𝐴+ 𝑖𝑦𝐴) | (15)

and, if Bob gets the outcome 𝑥𝐵 Eve’s conditional state writes
[61]

𝜌
(p)
𝐸 |𝑥𝐵 =

1
𝑝
(p)
𝐵

(𝑥𝐵)

∑︁
𝑥𝐴,𝑦𝐴

M𝛽 (𝑥𝐴)M𝛽 (𝑦𝐴)𝑝𝐵 |𝐴(𝑥𝐵 | 𝑥𝐴)

× |
√︁

1−𝜂(𝑥𝐴+ 𝑖𝑦𝐴)⟩ ⟨
√︁

1−𝜂(𝑥𝐴+ 𝑖𝑦𝐴) | . (16)

Calculations of the Von Neumann entropy require a numer-
ical diagonalization of 𝜌 (p)

𝐸
and 𝜌

(p)
𝐸 |𝑥𝐵 .

The resulting 𝐾 (p) is plotted in Fig. 4 as a function of
the mean energy �̄� at a fixed transmission distance 𝑑 = 100
km. As expected for CV-QKD with imperfect reconciliation,
all the curves reach a maximum 𝐾

(p)
max for a finite value of �̄�

and ultimately become negative [24]–[26], [34]. Remarkably,
the MB sampling increases the maximum value of KGR with
respect to the uniform one, but the curves decrease faster
towards negative values. This behaviour may be interpreted
as follows. For large �̄�, the larger spacing between symbols
Δ(II) ≥ Δ(I) makes them more “distinguishable”, allowing Eve
to retrieve more information with respect to case I. On the
other hand, if �̄� is small, the shot noise becomes relevant
increasing the overlap among the encoded symbols and the
larger spacing is beneficial to achieve a better approximation
of the Gaussian modulation.

Moreover, in Fig. 4 we also compare the performance
of the QAM formats with two relevant benchmarks: the
corresponding PSK constellations having the same number of
symbols [24]–[26], [55] and the GG02 protocol discussed in
App. A. The PSK constellation with 𝑁 symbols is constructed
by generating uniformly the coherent states {|𝛼 exp[𝑖(2𝑘 +
1)𝜋/𝑁)]⟩}𝑘=0,...,𝑁−1, and 𝛼 =

√
�̄� > 0 [55]. However, by per-

forming the above analysis with PSK, the numerical results
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Figure 5. (Top) Log plot of 𝐾 (I)
max as a function of the transmission distance

𝑑, expressed in km, for 𝑑 ≥ 100 km. The plot for smaller 𝑑 is depicted in the
inset. (Bottom) Log plot of 𝐾 (I)

max and 𝐾 (II)
max for QAM64 (𝑀 = 8) as a function

of the transmission distance 𝑑. The exploitation of PAS increases the KGR,
coming closer to the GG02 protocol. The reconciliation efficiency is 𝜁 = 0.95.
The symbols (circles and triangles) refer to the numerical calculations at fixed
𝑑 and the lines to the corresponding interpolations.

show that increasing the size of the constellation brings a
negligible increase in the KGR for large 𝑁 [34], and, for
PSK16 and PSK64, they are almost indistinguishable. On the
contrary, in the presence of QAM, increasing the number of
symbols allows to improve further the KGR, thus approach-
ing incrementally the GG02 protocol. Thus, in principle it
is always possible to find a finite 𝑀 × 𝑀 QAM alphabet,
with sufficiently large 𝑀 and optimized MB distribution, to
approach with arbitrary accuracy the GG02.

The previous analysis may be performed to retrieve the
maximum achievable KGR 𝐾

(p)
max, p = I, II, as a function of

the transmission distance 𝑑, together with the associated
maximum modulation energy �̄�(p)max. Plots of 𝐾 (I)

max are depicted
in Fig. 5 (top panel). As we can see, the QAM formats
outperform the corresponding PSK ones and are closer to
the GG02 protocol. Furthermore, exploiting PAS allows to
increase further the performance, as shown in the bottom panel
of Fig. 5 for the case QAM64.

To quantify the improvement introduced by PAS, we com-
pute the ratio

R =
𝐾

(II)
max

𝐾
(I)
max

(17)

plotted in the top panel of Fig. 6. The trend is similar for both
QAM16 and QAM64. For small 𝑑, R exhibits a bump after
which it decreases until to reach an asymptotic value for 𝑑 ≥ 80
km. We note that in this asymptotic regime the results obtained
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20

Figure 6. (Top) Plot of the ratio R as a function of the transmission distance
𝑑, expressed in km. The black dotted lines are the average of the values
obtained for 𝑑 ≥ 80 km. For large distances PAS introduces an increase in
the KGR equal to ≈ 3% and ≈ 12% for QAM16 and QAM64, respectively.
(Bottom) Log plot of the maximum modulation energy �̄�

(p)
max, p = I, II, as

a function of the transmission distance 𝑑. The reconciliation efficiency is
𝜁 = 0.95.

show numerical fluctuations. These are induced by a limitation
of the optimization procedure described in Sec. II-B. Indeed,
for small transmissivity 𝜂 ≪ 1, the overall state received by
Bob has a so weak average energy 𝜂�̄� ≪ 1, that the mutual
information for cases I and II is nearly identical to the channel
capacity (see Fig. 3, bottom panel). In turn, 𝐼 (II)

𝐴𝐵
(𝛽) is almost

independent of 𝛽 and the maximization algorithm used in
Sec. II-B introduces numerical fluctuations on the optimized
inverse temperature 𝛽 (II) . Although these fluctuations do not
affect the mutual information itself, they do have a relevant
effect when computing the KGR, as appears in the plots of
Fig. 6. To avoid this intrinsic limitation, we estimate the
asymptotic ratio by calculating the average of the data obtained
for 𝑑 ≥ 80 km, bringing us to an increase of ≈ 3% and ≈ 12%
for QAM16 and QAM64, respectively.

Finally, for the sake of completeness, the bottom panel of
Fig. 6 reports the maximum modulation energy �̄�(p)max, p = I, II,
which is a decreasing function of the distance and saturates
as 𝑑 increases. As one may expect, increasing the size of the
constellation increases also �̄�

(p)
max, until to reach the value of

the GG02 scheme [34]. Moreover, we have �̄�(II)max ≤ �̄�(I)max, that
is the MB reaches its maximum KGR for lower energies, in
accordance with Fig. 4.

As a final remark, we note that the KGR analysis performed
here does not focus on the actual error correction code and
algorithm employed for information reconciliation, but simply
uses the reconciliation efficiency parameter 𝜁 [26], [30] to
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Figure 7. Scheme of the CV-QKD protocol in the presence of the
channel excess noise. Differently from the pure-loss scenario, Eve performs
an entangling-cloner attack, that is she injects one arm of a TMSV state into
the channel beam splitter, retrieving the final output state.

account for deviations from the KGR achievable with ideal
reconciliation. The study of ad hoc information reconciliation
protocols, the impact of possible error propagation when
inverting the mapping performed by the distribution matcher,
and the comparison between the complexity and efficiency of
the information reconciliation protocols available for Gaussian
modulations and for the proposed discrete modulation are left
for future study.

III. ROLE OF THE CHANNEL EXCESS NOISE

In this section we approach the more realistic scenario
that addresses the impact of a thermal channel excess noise
on the results of Sec. II. Here the quantum channel is still
modelled as a beam splitter with transmissivity 𝜂, but now
a thermal state is injected in the other port. Such a state
is characterized by �̄�𝜖 = 𝜂𝜖/[2(1− 𝜂)] mean photons, 𝜖 ≥ 0
being the introduced excess noise. In turn, the states probed by
Bob are no longer coherent (pure) states but rather displaced
thermal (mixed) states [14] and the conditional homodyne
probability (6) should be modified accordingly as

𝑝𝐵 |𝐴(𝑥𝐵 | 𝑥𝐴;𝜖) =
exp

[
− (𝑥𝐵 −2𝜎0

√
𝜂𝑥𝐴)2/2𝜎2

𝜖

]√︁
2𝜋𝜎2

𝜖

(18)

with an increased variance 𝜎2
𝜖 = 𝜎

2
0 (1+𝜂𝜖). Generally speak-

ing, the presence of a channel excess noise is detrimental
for CV-QKD, as secure communication only holds up to a
maximum transmission distance 𝑑max, after which the KGR
becomes negative [11]–[13], [15], [16]. The value of 𝑑max
depends on both the amount of noise and the employed
constellation [24], [34].

For the protocol under investigation, the corresponding
wiretap channel with non-zero excess noise is depicted in
Fig. 7, where Eve is assumed to control the added thermal
noise by performing an entangling cloner attack [46], [67].
In more detail, she prepares a two-mode squeezed vacuum
state (TMSV) with variance 𝑉𝜖 = 1 + 2�̄�𝜖 on two modes
E = (𝐸1, 𝐸2), namely

|TMSV⟩⟩ =
√︁

1−𝜆2
∞∑︁
𝑛=0

𝜆𝑛 |𝑛⟩𝐸1 |𝑛⟩𝐸2 (19)

with 𝜆 =
√︁
(𝑉𝜖 −1)/(𝑉𝜖 +1) and |𝑛⟩ being the Fock state

containing 𝑛 photons [14]. Thereafter, she injects branch 𝐸1
into the channel beam splitter, impinging with the pulse sent

by Alice, and, ultimately, collects the output reflected state.
Thanks to this strategy, she gets undetected by Alice and
Bob, being fully hidden behind the observed excess noise.
Indeed, after performing partial trace over modes E, the
present scheme is equivalent to a thermal-loss channel with
excess noise 𝜖 [67].

As in the previous section, we present the analysis of the
KGR addressing only the MB distribution, retrieving cases I
and II by fixing 𝛽 = 0 and optimizing 𝛽 with the methods of
Sec. II-B, respectively. The mutual information between Alice
and Bob reads

𝐼
(p)
𝐴𝐵

(𝜖) = 𝐻 (p)
𝐵

− 1
2

log2
(
2𝜋𝑒𝜎2

𝜖

)
(p = I, II) (20)

where 𝐻 (p)
𝐵

is the Shannon entropy of Bob’s overall probability
distribution

𝑝
(p)
𝐵

(𝑥𝐵;𝜖) =
∑︁
𝑥𝐴

M𝛽 (𝑥𝐴)𝑝𝐵 |𝐴(𝑥𝐵 | 𝑥𝐴;𝜖) . (21)

On the contrary, the computation of the Holevo information
𝜒
(p)
𝐵𝐸

(𝜖) is not straightforward and requires the Gaussian
formalism [69], [70], summarized in App. B. In particular, if
Alice samples the coherent state |𝑥𝐴+ 𝑖𝑦𝐴⟩, both Eve’s overall
and conditional states 𝜌E (𝑥𝐴, 𝑦𝐴) and 𝜌E |𝑥𝐵 (𝑥𝐴, 𝑦𝐴), respec-
tively, are Gaussian states, whose expressions are derived in
App. C. In turn, we have

𝜌
(p)
E =

∑︁
𝑥𝐴,𝑦𝐴

M𝛽 (𝑥𝐴)M𝛽 (𝑦𝐴) 𝜌E (𝑥𝐴, 𝑦𝐴) (22a)

𝜌
(p)
E |𝑥𝐵 =

1
𝑝
(p)
𝐵

(𝑥𝐵;𝜖)

∑︁
𝑥𝐴,𝑦𝐴

M𝛽 (𝑥𝐴)M𝛽 (𝑦𝐴)

× 𝑝𝐵 |𝐴(𝑥𝐵 | 𝑥𝐴;𝜖) 𝜌E |𝑥𝐵 (𝑥𝐴, 𝑦𝐴) . (22b)

The Holevo information then reads

𝜒
(p)
𝐵𝐸

(𝜖) = 𝑆
[
𝜌
(p)
E

]
−

∫
𝑑𝑥𝐵 𝑝

(p)
𝐵

(𝑥𝐵;𝜖) 𝑆
[
𝜌
(p)
E |𝑥𝐵

]
(23)

that can be computed numerically by suitably expanding
states (22) as shown in App. B [70]. The resulting KGR,
namely:

𝐾 (p) (𝜖) = 𝜁 𝐼 (p)
𝐴𝐵

(𝜖) − 𝜒 (p)
𝐵𝐸

(𝜖) (p = I, II) , (24)

optimized over the modulation energy leads to the maximum
achievable rates 𝐾

(p)
max (𝜖), p = I, II, that are reported in the

top and bottom panels of Fig. 8, respectively, for a QAM16
constellation with different values of 𝜖 .

As one may expect, the presence of the excess noise results
in a lower 𝐾 (p)

max (𝜖) with respect to the pure-loss channel one,
exhibiting a reduced maximum transmission distance 𝑑

(p)
max.

Remarkably, employing PAS is beneficial to increase both the
KGR and the value of the maximum distance, as 𝑑 (II)max ≥ 𝑑 (I)max:
for 𝜖 = 0.03 we have 𝑑 (I)max ≈ 125 km and 𝑑 (II)max ≈ 130 km, while,
for 𝜖 = 0.05, 𝑑 (I)max ≈ 70 km and 𝑑 (II)max ≈ 75 km.

IV. A MORE SOPHISTICATED OPTIMIZATION PROCEDURE

In the previous sections we have addressed case II by
choosing the optimal values 𝛽 (II) and Δ(II) that maximize the
mutual information between Alice and Bob.
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Figure 8. (Top) Log plot of 𝐾 (I)
max (𝜖 ) as a function of the transmission

distance 𝑑, expressed in km, for different values of the excess noise 𝜖 .
(Bottom) Log plot of 𝐾 (II)

max (𝜖 ) as a function of 𝑑, for different 𝜖 . The black
dashed lines are the corresponding KGRs of case I. PAS turns out to be
beneficial to increase both the KGR and the maximum transmission distance
𝑑
(p)
max, being more robust against the channel thermal noise. The reconciliation

efficiency is 𝜁 = 0.95.

However, given the previous discussion, a feasible alter-
native emerges, in which the values of the free parameters
are selected to maximize directly the KGR, instead of the
sole mutual information 𝐼

(II)
𝐴𝐵

(𝛽). Here we investigate this
procedure and, for the sake of simplicity, we only consider
the case of a pure-loss channel.

As in the strategy of Sec. II-B, the spacing Δ(II) (𝛽) is
obtained as a function of the inverse temperature 𝛽 thanks to
the energy constraint of Eq. (2b). However, differently from
that strategy, the proper figure of merit becomes the KGR in
Eq. (12), namely,

𝐾 (II) (𝛽) = 𝜁 𝐼 (II)
𝐴𝐵

(𝛽) − 𝜒 (II)
𝐵𝐸

(25)

with the quantities 𝐼 (II)
𝐴𝐵

(𝛽) and 𝜒
(II)
𝐵𝐸

= 𝜒
(II)
𝐵𝐸

(𝛽) introduced in
Eq.s (9) and (13), respectively, and where the dependence on
𝛽 has been highlighted. The optimal inverse temperature is
obtained as

𝛽 (II) = argmax
𝛽

𝐾 (II) (𝛽) (26)

together with the optimal spacing Δ̃(II) and the optimal KGR

𝐾 (II) = 𝐾 (II)
(
𝛽 (II)

)
. (27)

Such a task is straightforward but not trivial to implement
for the scenario discussed in this paper. Indeed, if we wanted
to implement a golden-section-search method as in Sec. II-B,
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Figure 9. (Top) Plot of 𝐾 (II) and 𝐾 (p) , p = I, II, as a function of the
mean energy �̄� for 𝑑 = 100 km (20 dB attenuation) and a QAM16 (𝑀 = 4)
constellation. (Bottom) Log plot of 𝐾 (II)

max and 𝐾 (II)
max for QAM16 as a function

of the transmission distance 𝑑, expressed in km. For 𝑑 ≳ 80 km there is
an improvement of ≈ 10% (see the inset). The reconciliation efficiency is
𝜁 = 0.95.

in any step of the numerical algorithm we should compute
not only 𝐼 (II)

𝐴𝐵
(𝛽) but also the density matrices 𝜌𝐸 and 𝜌𝐸 |𝑥𝐵 ,

with a much higher computational cost. Here, for simplicity,
we only consider a QAM16 constellation and compare the
KGRs 𝐾 (p) , p = I, II, and 𝐾 (II) for distances up to 100 km.
We report in the top panel of Fig. 9 the KGRs at 𝑑 = 100 km
as a function of the modulation energy. As one may expect,
we have 𝐾 (II) ≥ 𝐾 (p) . For small �̄�, 𝐾 (II) (solid blue line) is
close to case II (solid orange line), then it achieves a maxi-
mum and decreases approaching the KGR of case I (dashed
orange line). Remarkably, the present optimization increases
further the maximum KGR achievable at a fixed distance.
Thus, following the procedure outlined in Sec. II-C, for each
distance 𝑑 we choose the optimal modulation energy and
retrieve the maximum achievable value 𝐾 (II)

max. The comparison
between 𝐾

(II)
max and 𝐾

(II)
max in depicted Fig. 9 (bottom panel).

For 𝑑 ≳ 80 km there is an improvement of ≈ 10%. At the
same time, these results prove themselves as a validation for
the mutual information optimization method, which is close
to the optimization of the overall key rate, although being a
sub-optimal procedure.

V. CONCLUSION

In this paper we have proposed a CV-QKD protocol employ-
ing the discrete QAM modulation formats typically exploited
in classical telecommunications. In our proposal, the sender
has only a finite set of coherent pulses available, constituting
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a square constellation of 𝑀 ×𝑀 states, generated by sampling
either a uniform (case I) or a Maxwell-Boltzmann (case II)
distribution. The receiver performs a homodyne measurement
of 𝑞/𝑝, chosen at random, on his received signal. For case II,
by exploiting PAS, we have evaluated the optimized sender
probability distribution to maximize the shared mutual infor-
mation.

We have performed the KGR analysis for a pure-loss quan-
tum wiretap channel in reverse reconciliation and compared
the obtained KGR with both the associated PSK protocols and
the GG02 scheme. We proved QAM modulation as a powerful
resource to better approximate the Gaussian modulation and
quantified the advantage brought by non-uniform sampling.
Thereafter, we have addressed the role of a non-zero channel
excess noise, whose main detriment is to reduce the KGR,
introducing a maximum transmission distance. We compared
cases I and II, showing PAS to be more robust with respect to
uniform sampling, allowing to reach larger distances. Finally,
we have proposed a better optimization strategy, based on the
direct maximization of the KGR instead of the sole mutual
information. We showed this method to outperform both cases
I and II, although case II may still be considered as a feasible
sub-optimal scheme.

We also remark that in our analysis we focused on the
asymptotic limit where an infinite dataset is shared between
Alice and Bob. In a practical scenario considering finite-size
effects, modulation formats that are closer to the continuous
modulation may exhibit a lower performance, since there are
more terms in the key rate calculation and the convergence
can be slower.

Our results prove that a suitable PAS of a discrete constella-
tion allows to overcome the finite transmitter dynamics and to
approximate the performance of the standard CV-QKD based
on CM also for increasing average powers. Moreover, they
pave the way for the design of feasible schemes compatible
with the currently exploited telecom techniques.

Further improvements may be obtained by improving also
the detection stage and investigating the role of non-Gaussian
measurements for CV-QKD, such as state-discrimination op-
timized receivers [55], [71]–[76]. Nevertheless, in this case
the analysis shall be restricted to a wiretap channel since a
security analysis for a fully non-Gaussian protocol is still an
open problem.

APPENDIX A
CV-QKD WITH GAUSSIAN MODULATION: THE GG02

PROTOCOL

The most relevant protocol of CV-QKD is the so called
GG02, proposed by Grosshans and Grangier in 2002 and em-
ploying Gaussian modulation [6], [10]–[12]. In GG02, Alice
encodes information on a continuous ensemble of coherent
states |𝑥𝐴 + 𝑖𝑦𝐴⟩, where 𝑥𝐴, 𝑦𝐴 ∈ R are sampled from the
normal distribution NΣ2 , namely,

NΣ2 (𝑧) =
exp

[
− 𝑧2/(2Σ2)

]
√

2𝜋Σ2
(𝑧 = 𝑥𝐴, 𝑦𝐴) . (28)

Therefore, the overall state generated by Alice reads

𝜌
(GG)
𝐴

=

∫
R2
𝑑𝑥𝐴𝑑𝑦𝐴NΣ2 (𝑥𝐴)NΣ2 (𝑦𝐴) |𝑥𝐴+ 𝑖𝑦𝐴⟩ ⟨𝑥𝐴+ 𝑖𝑦𝐴 |

= 𝜈th (2Σ2) (29)

that is a pseudo-thermal state

𝜈th (�̄�) = 1
�̄�+1

∞∑︁
𝑛=0

(
�̄�

�̄�+1

)𝑛
|𝑛⟩⟨𝑛| (30)

�̄� = 2Σ2 being the mean energy per symbol and |𝑛⟩ represent-
ing the Fock state with 𝑛 photons [14].

For the scheme investigated in this paper, that is a pure-loss
channel followed by homodyne detection by Bob, the mutual
information reads [6], [11], [62]

𝐼
(GG)
𝐴𝐵

=
1
2

log2 (1+2𝜂�̄�) (31)

which coincides with the capacity of an AWGN channel as
derived in the Shannon-Hartley theorem [20], [21], [77], [78].

By performing the security analysis in a reverse reconcilia-
tion scenario, if Eve exploits an entangling cloner attack, the
Holevo information reads [6], [10], [12]

𝜒
(GG)
𝐵𝐸

= log2

(
𝑉𝐸 +1
�̄�𝐸 +1

)
+ 𝑉𝐸 −1

2
log2

(
𝑉𝐸 +1
𝑉𝐸 −1

)
− �̄�𝐸 −1

2
log2

(
�̄�𝐸 +1
�̄�𝐸 −1

)
(32)

where

𝑉𝐸 = 1+2(1−𝜂)�̄� (33a)

�̄�𝐸 =

√︄
𝜂+ (1−𝜂) (1+2�̄�)
1−𝜂+𝜂(1+2�̄�) (1+2�̄�) . (33b)

The resulting KGR writes

𝐾 (GG) = 𝜁 𝐼 (GG)
𝐴𝐵

− 𝜒 (GG)
𝐵𝐸

. (34)

Finally, as discussed in the main text, for each transmission
distance it is possible to optimize Eq. (34) over the modulation
energy, obtaining the maximum achievable KGR 𝐾

(GG)
max and

the maximum energy �̄�(GG)
max .

APPENDIX B
A BRIEF OUTLINE OF THE GAUSSIAN FORMALISM

The Gaussian state formalism is a useful tool to perform
the KGR analysis in the presence of a thermal-loss channel.
Here we present a brief outline of its main features [69],
[70]. We consider a 𝑛-mode optical field, described by the
bosonic field operators 𝑎𝑘 , 𝑘 = 1, . . . , 𝑛, satisfying the canonical
commutation relations [𝑎𝑘 , 𝑎𝑙] = 0, [𝑎𝑘 , 𝑎†𝑙 ] = 𝛿𝑘𝑙 , and their
corresponding quadrature operators

𝑞𝑘 = 𝜎0 (𝑎𝑘 + 𝑎†𝑘) and 𝑝𝑘 = 𝑖𝜎0 (𝑎†𝑘 − 𝑎𝑘) (35)

such that [𝑞𝑘 , 𝑝𝑙] = 2𝑖𝜎2
0 𝛿𝑘𝑙 , 𝜎

2
0 being the shot-noise variance.

In the following we will exploit a vector notation by introduc-
ing the operator r̂ = (𝑞1, 𝑝1, 𝑞2, 𝑝2, . . . , 𝑞𝑛, 𝑝𝑛)T.
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A. Gaussian states

A quantum state 𝜌 is a Gaussian state if its associated
Wigner function is Gaussian, namely

𝑊 [𝜌] (r) = 1
(2𝜋)𝑛

√︁
det(𝝈)

exp
[
−1

2
(r−x)T𝝈−1 (r−x)

]
(36)

where rT = (𝑥1, 𝑦1, . . . , 𝑥𝑛, 𝑦𝑛) ∈ R2𝑛 and

x = Tr[𝜌 r̂] (37a)

𝝈 =
1
2

Tr
[
𝜌 {(r̂−x), (r̂−x)T}

]
(37b)

are the first moment vector (FM) and the covariance matrix
(CM), {𝐴, 𝐵} = 𝐴𝐵+𝐵𝐴 being the anti-commutator of 𝐴 and
𝐵 [69]. In turn, a Gaussian state is characterized by its FM
and CM. Eq. (36) may also be re-expressed as

𝑊 [𝜌] (𝜶) = 1
𝜋𝑛

√︁
det(�̃�)

exp
[
−1

2
(𝜶− 𝜷)† �̃�−1 (𝜶− 𝜷)

]
(38)

with 𝜶T = (𝛼1, 𝛼
∗
1, . . . , 𝛼𝑛, 𝛼

∗
𝑛) ∈ C2𝑛, and

𝜷 =𝑈x and �̃� =𝑈𝝈𝑈† (39)

where 𝑈 = ⊕𝑛
𝑘=1𝑈1 and

𝑈1 =
1

2𝜎0

(
1 𝑖

1 −𝑖

)
. (40)

The expansion of a Gaussian state 𝜌 onto the Fock basis
has been recently derived in [70]. To this aim, we introduce
the matrices

𝝈𝑄 = �̃� + I2𝑛/2 (41a)
𝑨 = 𝑿 (I2𝑛 −𝝈−1

𝑄 ) (41b)

𝜸T = 𝜷†𝝈−1
𝑄 (41c)

where I2𝑛 is the 2𝑛×2𝑛 identity matrix and 𝑿 = ⊕𝑛
𝑠=1𝝈𝑥 , 𝝈𝑥

being the Pauli 𝑥-matrix. Then, the matrix element 𝜌𝒎𝒌 =

⟨𝒎 |𝜌 |𝒌⟩, |𝒌⟩ = |𝑘1 𝑘2 . . . 𝑘𝑛⟩ and |𝒎⟩ = |𝑚1𝑚2 . . .𝑚𝑛⟩, reads

𝜌𝒎𝒌 = 𝑇𝒎𝒌

𝑛∏
𝑠=1

𝜕𝑘𝑠𝛼𝑠𝜕
𝑚𝑠

𝛼∗
𝑠

exp
(

1
2
𝜶T𝑨𝜶+𝜸T𝜶

) ���
𝜶=0

(42)

where

𝑇𝒎𝒌 =
1√︁

det(𝝈𝑄)
∏𝑛
𝑠=1 𝑘𝑠!𝑚𝑠!

exp
(
−1

2
𝜷†𝝈−1

𝑄 𝜷

)
. (43)

B. Gaussian dynamics

Gaussian dynamics is provided by unitary evolution gen-
erated by bilinear Hamiltonians and is associated with a
symplectic matrix 𝑆. Given an input Gaussian state 𝜌in with
(xin,𝝈in), the evolved state 𝜌out is still Gaussian with FM and
CM given by [69]

xout = 𝑆xin and 𝝈out = 𝑆𝝈in 𝑆
T (44)

respectively.
Finally, we discuss the case of conditional dynamics [69].

We consider a bipartite system 𝐴𝐸 , composed of 𝑛𝐴 an 𝑛𝐸

optical modes, respectively, prepared in a Gaussian state 𝜌𝐴𝐸
with x = (x𝐴,x𝐸) and CM (written in block form)

𝝈 =

(
𝝈𝐴 𝝈𝑍

𝝈T
𝑍

𝝈𝐸

)
. (45)

Thereafter, a Gaussian measurement is performed on subsys-
tem 𝐴, associated with the CM 𝝈𝑚, retrieving the outcome
x𝑚 ∈ R2𝑛𝐴 . The resulting conditional state 𝜌𝐸 |r𝑚 on modes 𝐸
is still a Gaussian state with FM and CM equal to

x𝐸 |x𝑚 = x𝐸 +𝝈T
𝑍 (𝝈𝐴+𝝈𝑚)

−1 (x𝑚−x𝐴) (46a)

𝝈𝐸 |r𝑚 = 𝝈𝐸 −𝝈T
𝑍 (𝝈𝐴+𝝈𝑚)

−1 𝝈𝑍 (46b)

respectively.

APPENDIX C
CALCULATION OF EVE’S STATES FOR A THERMAL-LOSS

WIRETAP CHANNEL

Here we derive explicitly the quantum states 𝜌E (𝑥𝐴, 𝑦𝐴) and
𝜌E |𝑥𝐵 (𝑥𝐴, 𝑦𝐴) introduced in Sec. III. The entire computation
is based on the Gaussian formalism outlined in the previous
appendix.

In the presence of a thermal-loss wiretap channel, Eve
generates a TMSV state with variance 𝑉𝜖 = 1 + 2�̄�𝜖 , �̄�𝜖 =

𝜂𝜖/[2(1−𝜂)], with zero FM, x(0)
E = 0, and the CM

𝝈 (0)
E = 𝜎2

0

(
𝑉𝜖 I2 𝑍𝜖 𝝈𝑧

𝑍𝜖 𝝈𝑧 𝑉𝜖 I2

)
(47)

with 𝑍𝜖 =
√︁
𝑉2
𝜖 −1 and 𝝈𝑧 being the Pauli 𝑧-matrix. Moreover,

if Alice samples the coherent state |𝑥𝐴 + 𝑖𝑦𝐴⟩, she gets a
single-mode Gaussian state with FM x(0)

𝐴
= 2𝜎0 (𝑥𝐴, 𝑦𝐴) and

CM 𝝈 (0)
𝐴

= 𝜎2
0 I2. Thereafter, Alice’s pulse interferes at the

channel beam splitter with Eve’s mode 𝐸1, resulting in a
tripartite Gaussian state 𝜌𝐴E (𝑥𝐴, 𝑦𝐴) characterized by FM and
CM equal to

x𝐴E = 𝑆

(
x(0)
𝐴

⊕ x(0)
E

)
(48a)

𝝈𝐴E = 𝑆

(
𝝈 (0)
𝐴

⊕𝝈 (0)
E

)
𝑆T (48b)

with 𝑆 = 𝑆BS ⊕ I2 and

𝑆BS =

( √
𝜂 I2

√︁
1−𝜂 I2

−
√︁

1−𝜂 I2
√
𝜂 I2

)
(49)

being the symplectic matrix associated with the beam splitter
operation [69].

In turn, Eve’s overall state 𝜌E (𝑥𝐴, 𝑦𝐴) is characterized by
(xE,𝝈E), whilst her conditional state after Bob’s homodyne
measurement 𝜌E |𝑥𝐵 (𝑥𝐴, 𝑦𝐴) is associated with FM xE |𝑥𝐵 and
𝝈E |𝑥𝐵 equal to Eq. (46), with x𝑚 = (𝑥𝐵,0) and

𝝈𝑚 = lim
𝑧→0

(
𝑧 0
0 1/𝑧

)
(50)

being the CM associated with homodyne detection [69].
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[66] R. Garcı́a-Patrón and N. J. Cerf, “Unconditional Optimality of Gaussian

Attacks against Continuous-Variable Quantum Key Distribution,” Phys.

Rev. Lett., vol. 97, Art. no. 190503, Nov. 2006.
[67] F. Laudenbach et al., “Continuous-variable quantum key distribution

with Gaussian modulation—the theory of practical implementations,”
Adv. Quantum Technol., vol. 1, no. 1, p. 1800011, Jun. 2018.

[68] A. S. Holevo, “The capacity of the quantum channel with general signal
states,” IEEE Trans. Inf. Theory, vol. 44, no. 1, pp. 269–273, 1998.

[69] A. Ferraro, S. Olivares and M. G. A. Paris, Gaussian States in quantum

information, Bibliopolis Napoli, 2005.
[70] N. Quesada et al., “Simulating realistic non-Gaussian state preparation,”

Phys. Rev. A, vol. 100, Art. no. 022341, Aug. 2019.
[71] Y. C. Eldar, “On Quantum Detection and the Square-Root Measure-

ment,” IEEE Trans. Inf. Theory, vol. 47, no. 3, pp. 858-872, Mar. 2001.
[72] S. Izumi et al., “Displacement receiver for phase-shift-keyed coherent

states,” Phys. Rev. A, vol. 86, Art. no. 042328, Oct. 2012.
[73] F. E. Becerra et al., “Experimental demonstration of a receiver beating

the standard quantum limit for multiple nonorthogonal state discrimina-
tion,” Nature Photon., vol. 7, pp. 147–152, Jan. 2013.

[74] T. Chen, K. Li, Y. Zuo, and B. Zhu, “Hybrid quantum receiver for
quadrature amplitude modulation coherent-state discrimination beating
the classical limit,” Appl. Opt., vol. 57, pp. 817-822, Feb. 2018.

[75] M. N. Notarnicola, M. G. A. Paris, and S. Olivares, “Hybrid near-
optimum binary receiver with realistic photon-number-resolving detec-
tors,” J. Opt. Soc. Am. B, vol. 40, pp. 705-714, Mar. 2023.

[76] M. N. Notarnicola, M. Jarzyna, S. Olivares, and K. Banaszek, “Opti-
mizing state-discrimination receivers for continuous-variable quantum
key distribution over a wiretap channel,” arXiv:2306.11493 [quant-ph],
2023.

[77] H. Taub and D. L. Schilling, Principles of communication systems.
McGraw-Hill Higher Education, 1986.

[78] G. D’Ariano, C. Macchiavello, and M. G. A. Paris, “Information gain
in quantum communication channels,” in Quantum Communications and

Measurement. Springer, 1995, pp. 339–350.

http://arxiv.org/abs/2207.11702
http://arxiv.org/abs/2306.11493

	Introduction
	CV-QKD with QAM discrete modulation and PAS 
	Modulation stage
	Choice of the constellation parameters 
	KGR analysis

	Role of the channel excess noise
	A more sophisticated optimization procedure 
	Conclusion 
	Appendix A: CV-QKD with Gaussian modulation: the GG02 protocol 
	Appendix B: A brief outline of the Gaussian formalism
	Gaussian states
	Gaussian dynamics

	Appendix C: Calculation of Eve's states for a thermal-loss wiretap channel
	References

