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Abstract: Periodontal diseases are oral inflammatory diseases affecting the tissues supporting and
surrounding the teeth and include gingivitis and periodontitis. Oral pathogens may lead to microbial
products spreading into the systemic circulation and reaching distant organs, while periodontal
diseases have been related to low-grade systemic inflammation. Gut and oral microbiota alterations
might play a role in the pathogenesis of several autoimmune and inflammatory diseases including
arthritis, considering the role of the gut–joint axis in the regulation of molecular pathways involved
in the pathogenesis of these conditions. In this scenario, it is hypothesized that probiotics might
contribute to the oral and intestinal micro-ecological balance and could reduce low-grade inflam-
mation typical of periodontal diseases and arthritis. This literature overview aims to summarize
state-of-the-art ideas about linkages among oral–gut microbiota, periodontal diseases, and arthritis,
while investigating the role of probiotics as a potential therapeutic intervention for the management
of both oral diseases and musculoskeletal disorders.

Keywords: oral microbiome; gut microbiota; periodontal disease; gastrointestinal microbiome;
osteoarthritis; knee osteoarthritis; inflammaging; gut dysbiosis; diet; probiotics

1. Introduction

Periodontal diseases are oral inflammatory diseases affecting the tissues supporting
and surrounding the teeth and include gingivitis and periodontitis [1,2]. Furthermore,
gingivitis is associated with bleeding, swollen gums, and pain, whereas periodontitis is
related to the loss of periodontal attachment and supporting bone [3]. The latter is often
considered a “silent disease” due to the absence of symptoms that characterize the clinical
presentation. However, if untreated, the inflammatory condition of periodontitis can lead to
tooth loss, with a consequent impairment in mastication function, esthetics, self-confidence,
and quality of life [4,5]. The prevalence of periodontal diseases is estimated to range from
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20% to 50% worldwide, emerging as the 11th most prevalent condition in the world as
reported by the Global Burden of Disease Study of 2016 [6]. Therefore, this detrimental
condition is currently considered as a global health problem [7,8].

In this scenario, the first step is understanding the mechanisms underpinning the
etiopathogenesis of periodontal diseases, considering that the local inflammatory response
might be perpetuated by several oral pathogens (e.g., A. actinomycetemcomitans, P. intermedia,
P. gingivalis, T. denticola, F. nucleatum, and T. forsyth) [9–11].

Periodontal diseases have been shown to be related to low-grade systemic inflamma-
tion, potentially driven by several inflammatory mediators [9,10,12–14]. In this context,
recent studies showed that patients with periodontal diseases might be characterized by
higher circulating levels of C-reactive protein (CRP), fibrinogen, neutrophils, and indirect
systemic inflammatory markers, such as tumor necrosis factor (TNF) and Interleukin (IL) 1,
6, and 8 [15–17].

High levels of bacteria present in the dysbiotic biofilm in periodontitis might also play
a role in the pathogenesis of autoimmune diseases [18–20]. In this context, recent studies
reported a link between periodontitis and rheumatoid arthritis (RA), considering the higher
prevalence of RA in these patients and the correlation between the severity of arthritis
and periodontitis [19]. Indeed, it was reported that P. gingivalis has been implicated in the
generation of anticyclic citrullinated peptide antibodies (ACPAs), which are recognized
as diagnostic and prognostic biomarkers for RA patients [20]. Moreover, Zhou et al. [19]
suggested that the downregulation of IL-10 could represent the key mechanism by which
periodontitis may promote RA.

Several scientific studies showed that gut and oral microbiota alterations might play a
role in the pathogenesis of several autoimmune and inflammatory diseases [21–24].

However, recent research has focused on the implications of the microbiota on muscu-
loskeletal health, highlighting the role of the “gut–bone axis” and the “gut–joint axis” in
the regulation of molecular pathways involved in the pathogenesis of these detrimental
conditions [25–28]. Furthermore, gut microbial dysbiosis might promote musculoskeletal
disorders through the intestinal absorption of vitamin K, calcium, pyridoxal phosphate,
pantothenic acid (B5), cobalamin (B12), biotin (B7), folate (B9), thiamine (B1), niacin (B3),
and tetrahydrofolate. Moreover, it has been proposed that osteoclasts activity might be
indirectly stimulated by gut microbiota via serum levels of insulin-like growth factor 1
(IGF-1) [29–31] (see Figure 1 for further details).

Although the pathophysiological mechanisms underpinning the interactions among
oral–gut microbiota have still not been characterized in detail, it has been hypothesized that
dietary supplements including probiotics could contribute to the oral and intestinal micro-
ecological balance [26,32–34]. However, to date, there is still a large gap of knowledge
about the optimal management of oral and gut dysbiosis.

Therefore, the present literature overview aims to summarize the current scientific
evidence on correlations among oral–gut microbiota, periodontal diseases, and arthritis,
exploring the role that probiotics might play as a therapeutic intervention for oral diseases
and musculoskeletal disorders.
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Figure 1. Pathogenic pathways of the linkages among oral–gut dysbiosis, periodontal diseases,
and arthritis.

2. Oral–Gut Microbiome and Periodontal Diseases

Microbiota includes microbial communities colonizing the mucosae (such as the
intestinal tract, reproductive organs, and the respiratory tract) and the skin, for a total of
more than 100 trillion microbial cells that encode 100-fold more unique genes than the
human genome [35–37]. Microbiota colonization appears in the early years of life and
changes rapidly, until it becomes unique for each person, then remains relatively stable in
adulthood [38]. The oral cavity is one of the most complex ecosystems in the body due to its
repeated interaction with the external environment, as well as containing several different
microbial habitats, both hard tissues (i.e., the teeth) and soft tissues (i.e., the buccal mucosa,
the tongue, the soft and hard palates, and the gingiva) and their respective interfaces (i.e.,
the supragingival and subgingival margins) [39].

The oral microbiome is estimated to be the second most divergent and abundant
after the gut microbiota, considering that it is mainly composed of bacteria, viruses, fungi,
protozoa, and archaea; indeed, in the oral cavity of humans, 700 bacterial species, belonging
to 185 genera and 12 phyla, have been identified [39]. The oral microbiome includes
different phyla consisting of Firmicutes (including Streptococcus), Bacteroidetes (strongly
represented by Prevotella), Proteobacteria, Fusobacteria, and Actinobacteria [40]. These
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bacteria commonly coexist and thrive by forming a biofilm and living in a symbiotic state
of co-aggregation, thus maintaining the homeostasis of the oral ecosystem; furthermore,
it should be noted that the plaque biofilm can create an adequate balance among the
pathogens and commensals and is highly resistant to the environmental stimuli [41–43].

Furthermore, fungi are an integral part of a healthy oral microbiota, where commensal
fungi entertain a multitude of synergic or antagonistic interactions with bacteria. It is
estimated that more than 100 species of fungi colonize the oral cavity (e.g., Candida species,
Cladosporium, Aureobasidium, Saccharomyces, Aspergillus, Fusarium, and Cryptococcus), and
only in immunocompromised subjects or specific conditions (especially drug abuse) can
they become opportunistic pathogens [44,45].

Interestingly, the oral microbiome might be affected not only by the overall health con-
dition of the host but also by environmental and behavioral factors including oral hygiene,
nutrition, smoking, and mechanical stress [46]. In particular, the regular consumption of
beverages and food with elevated levels of polyphenols (e.g., tea, cranberry, and almond)
have been shown to inhibit some oral pathogenic bacteria [47,48]. Meanwhile, Esberg
et al. reported that some species, including Actinomyces, Bifidobacterium, Veillonella, and
Streptococcus (e.g., S. wiggsiae, S. mutans, and S. sobrinus) were frequently associated with
high sucrose intake [49].

The gut microbiota shows several differences compared to the oral one, including
pH and O2 tension, host secretions, substrate availability, and digest flow rates [50]. It
should be noted that the gastric tract (median pH 1.4) is mainly colonized by Actinobacte-
ria, Bacteroidetes, Firmicutes (including Streptococcus), and Proteobacteria (which include
Helicobacter pylori) in healthy subjects [51]. The large intestine hosts the most abundant
microbial community, probably because of the slow flow rates and the neutral-to-mildly-
acidic pH [52], while the main gut bacterial phyla are the Firmicutes (including Clostridium,
Enterococcus, Lactobacillus, and Ruminococcus genera), Bacteroidetes (including Prevotella gen-
era), Actinobacteria, Proteobacteria, and Fusobacteria [37]. However, several pathological
conditions might occur in response to the loss of the balance within a human-associated gut
microbiota; such gut dysbiosis might be closely related to inflammatory bowel disorders
(e.g., Crohn’s disease), esophagitis, Barrett’s esophagus, vaginitis, type 2 diabetes, arthritis,
autism, neurodegenerative diseases, and cancer [24,35,53–55]. Furthermore, gut microor-
ganisms may stimulate regulatory cells of the immune system to inhibit inflammation and
provide a natural defense against pathogenic species through competition [56,57].

Poor oral hygiene is strictly related to oral microbiota modifications, especially in sub-
gingival communities. In this context, Gram-negative species (e.g., Prevotella, Selenomonas,
and F. nucleatum) can significantly increase after 2–3 weeks of plaque accumulation, and
clinical inflammation of the gingiva is a common clinical presentation of this condition [58].
On the other hand, the depletion of Gram-positive species (e.g., R. dentocariosa, Propionibac-
terium, and S. maltophila) has negative implications for oral health [58].

Furthermore, the development of periodontitis has been associated with the accumu-
lation of different Gram-negative species compared to gingivitis. In 1998, Socransky et al.
[59] identified “the red complex” including three different bacteria species (Porphyromonas
gingivalis, Tannerella forsythia, and Treponema denticola) closely related to the arousal of
clinical signs and symptoms of periodontitis, and strictly associated with the severity of
the disease. In recent years, periodontitis has been correlated with several pathogens, such
as F. alocis, Porphyromonas, Synergistetes, Peptostreptococcaceae, and A. actinomycetemcomitans,
associated with aggressive periodontitis [60–63].

Moreover, a strict relationship has been hypothesized among members of the oral
microbiome, which shows both antagonistic and synergistic interactions. For instance, Fu-
sobacterium nucleatum was shown to increase the survivability of the periodontal pathogen,
P. gingivalis [64], while T. denticola seems to benefit from the succinate produced by P. gingi-
valis [65]. Furthermore, T. denticola and P. gingivalis concentrations increase significantly in
co-culture; indeed, alterations to glycine and glutamate catabolism by T. denticola, as well
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as changes to thiamine pyrophosphate and fatty acid synthesis by P. gingivalis, have been
observed [63,66].

Thus, the recent scientific literature suggests potential correlations among oral mi-
crobiota and systemic diseases, probably due to the dissemination of pro-inflammatory,
invasive, anaerobic, and oral pathogens into the gut [67–72].

3. Gut-Microbiota and Musculoskeletal Health: “Gut–Joint Axis”

Recent evidence has focused on the impact of gut microbiota on musculoskeletal
health, highlighting the role of the “gut–joint axis” in the regulation of the pathogenic
pathways of musculoskeletal conditions [25,26,73,74]. However, to date, the longevity has
been negatively correlated with increased alpha diversity in gut microbiota, with recent
research focusing on “leaky gut syndrome”, an aged-related condition characterized by
increased gut permeability, resulting in microbial products spreading in the bloodstream
and an increase in inflammatory states [74–76].

Although several questions are still open about the role of the leaky gut syndrome in
the development and progression of osteoarthritis (OA), serum levels of bacterial metabo-
lites might be correlated with joint degeneration in OA patients [23]. Inflammation serum
markers in patients with OA are positively associated with bacterially produced lipopolysac-
charides (LPS), supporting the hypothesis of a role of microbiota-induced systemic inflam-
mation in several pathways underpinning the development of OA [77,78]. Therefore, these
findings suggested that gut dysbiosis, especially in the elderly, might be strictly linked
to OA pathogenesis, and the gut–joint axis might be a potentially modifiable cofactor to
be targeted by a comprehensive therapeutic intervention [21–23,79]. In line with these
findings, the expert consensus of the European Society for Clinical and Economic Aspects of
Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO) has recently supported
the hypothesis that gut microbiota alterations might be considered as hidden risk factors
for the development and progression of OA [79]. In this context, it has been proposed that
gut microbiota modulation might have positive effects on OA [25]. Furthermore, a recent
study on mice underlined that probiotic administration might significantly reduce pro-
inflammatory cytokine production in knee cartilage [80]. Similarly, a probiotic diet might be
effective in modulating prostaglandin-endoperoxide synthase 2 (PTGS2) and transforming
growth factor-beta (TGF-β), with intriguing implications for targeting low-grade systemic
inflammation promoted by dysbiosis in patients with OA [80]. In accordance with these
findings, gut microbiota might be crucially affected by dietary supplements, with several
studies underlining the positive effects of nutraceuticals in promoting health status in older
adults, particularly in the case of early diagnoses [23,81].

The main linking factor between gut microbiota and OA seems to be represented
by low-grade chronic inflammation, supporting a new OA phenotype called “metabolic
OA”, where several pro-inflammatory stimuli are associated with drastic changes in the
composition of the intestinal microbiota [22]. Thus, aging might play a key role in intesti-
nal microbiota composition, inducing reduced phyla diversity, a greater proportion of
Bacteroides spp., and a distinct abundance of Clostridium groups [82].

In the last decade, a growing literature showed that the alteration of gut and oral
cavity microbiota could have a detrimental impact on the pathogenesis of autoimmune and
inflammatory joint diseases, such as OA and rheumatoid arthritis (RA) [21–23]. Increased
inflammation is a relevant pathophysiological mechanism in RA and the potential correla-
tion between serum levels of bacterial metabolites and joint degeneration is a crucial issue
for future investigation [83,84].

Furthermore, several components of intestinal microbiota might affect host immunity,
particularly in patients with autoimmune diseases such as RA [85–87]. The correlation
between intestinal immune cell activation and arthritis is based on the potential migration of
gut-derived immune cells to the joints, provoking an impairment in terms of differentiation
of T cell types (i.e., Treg cells) involved in the pathogenesis of RA [86–89].
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Specifically, it has been hypothesized that gut dysbiosis might be a mediator for in-
flammation in the temporomandibular joint (TMJ) by regulating the microglial activation
in the trigeminal nociceptive system [90,91]. Moreover, it should be noted that TMJ inflam-
mation commonly leads to temporomandibular disorders (TMDs), which are considered
a sub-classification of musculoskeletal disorders commonly treated with conservative ap-
proaches [91–93]. Furthermore, RA might affect TMJ by causing disease-related symptoms,
with a correlation between laboratory values of various inflammatory biomarkers causing
rheumatic diseases and the progression of TMD [94–99].

Scher et al. [100] compared the composition of subgingival microbiota in patients with
RA against controls and revealed that Prevotella and Leptotrichia species might characterize
patients with RA. Meanwhile, distinct subgingival microbiota was found in RA patients
without periodontal diseases, suggesting that changes in oral microbiota might be RA-
specific [101–104]. Furthermore, it has been demonstrated that serum antibodies against
P. gingivalis could increase during the preclinical phase, becoming stable after the diagnosis
of RA [105,106]. Thus, an association between periodontal bacteria exposure and RA
autoantibody development might represent an emerging research topic in the future [106].

A growing literature now seems to support the role of oral–gut microbiota in inflam-
matory conditions (i.e., OA, RA, and TMJ arthritis); however, several questions are still
open in this field and future studies are needed to better characterize this concept.

4. Impact of Probiotics on Oral Microbiota and Periodontal Diseases

Probiotics are defined as living microorganisms that can have beneficial effects on the
host when taken in sufficient doses [107]. They are available in several food products, such
as yogurts, milk-based foods, powders, capsules, and oral solutions [108].

Moreover, the scientific literature is focused on the use of probiotic strains (e.g., Lac-
tobacillus, Bifidobacterium, Escherichia, Enterococcus, and B. subtilis) and yeasts (e.g., Saccha-
romyces) in the maintenance of gastrointestinal microbiota balance. Figure 2 summarizes
the effects of probiotics in oral and gut dysbiosis management, including restoration of the
epithelial membrane resulting in a reduction of systemic inflammation.
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Probiotic supplements with a concentration of 107–108 cells per gram could play a
role in the treatment of inflammatory chronic diseases [107–109]. Indeed, recent evidence
showed that probiotics might reinforce the epithelial barrier, thus allowing fibroblastic
activity and epithelial cell migration [109,110].

Interestingly, probiotics that have a role in oral health are concentrated in the genera
Streptococcus, Lactobacillus, Bifidobacterium, Weissella, B. subtilis, and S. cerevisiae, with their
therapeutic use in dentistry growing significantly in recent years [111].

Several microorganisms isolated from the oral cavity are commercially produced as
oral health-promoting probiotics, including L. reuteri, L. brevis, and S. salivarius, and their
effectiveness is shown in the management of dental caries, oral candida infection, halitosis,
and periodontal diseases [107,112–115].

Recently, Liu et al. [116] performed a systematic review and meta-analysis of random-
ized controlled trials (RCTs) on the effects of probiotics on gingival inflammation and oral
microbiota composition in patients suffering from plaque-induced gingivitis. The authors
included 11 RCTs with a total of 554 patients, reporting that the oral probiotics had no
significant improvement in the Gingival Index (GI), Plaque Index (PI), and bleeding on
probing (BOP) in patients affected by plaque-induced gingivitis. Moreover, no significant
differences were found in the amount of P. gingivalis, A. actinomycetemcomitans, P. intermedia,
and F. nucleatum between the probiotic group and the placebo group. Their findings were
in line with another systematic review and meta-analysis by Hardan et al. [117] on the use
of probiotics as an adjuvant therapy within clinical periodontal parameters. The authors
showed that the use of probiotics did not improve the PI (p = 0.16). However, the systematic
review also assessed the efficacy of probiotics as an adjuvant therapy in the treatment
of periodontitis, and showed significant improvement in terms of PPD, CAL, and BOP
(p < 0.001).

In line with these results, the effects of probiotics on the management of periodontal
diseases were reported by several other studies [118–120]. Tekce et al. [119] evaluated
the effectiveness of L. reuteri as an adjuvant treatment for chronic periodontitis patients,
evaluating the clinical effects on periodontal tissues. The authors reported that plaque
index, gingival index, bleeding on probing, and probing depth were significantly lower
(p < 0.05) in the study group compared with controls at all time points [119].

In 2018, Invernici et al. [121] evaluated the effect of Bifidobacterium animalis subsp.
lactis HN019 as an adjuvant to scaling and root planing (SRP) in patients with generalized
chronic periodontitis (with 30% or more of the sites with probing pocket depth ≥ 4 mm
and clinical attachment level ≥ 4 mm, and a minimum of five teeth with at least one site
with CAL and PPD ≥ 5 mm). By collecting gingival crevicular fluid they determined the
levels of IL-1β, IL-10, and IL-8. Furthermore, they evaluated the microbiota changes after
probiotic therapy. The authors showed that subjects who underwent probiotic therapy
reported higher levels of IL-10 than those at baseline at 30 days (p < 0.05) and showed
greater amounts of Actinomyces naeslundii and Streptococcus mitis, and lower amounts of
P. gingivalis, T. denticola, F. nucleatum, C. showae, and E. nodatum in deep periodontal pockets
(p < 0.05) [121].

In 2020, the same research group evaluated the effects of Bifidobacterium animalis
subsp. lactis HN019 in generalized chronic periodontitis patients [122]. They analyzed the
immunocompetence of the gingival tissues by evaluating the expression of beta-defensin
(BD)-3, toll-like receptor 4 (TLR4), and cluster of differentiation (CD)-57 and CD-4. Plaque
accumulation, gingival bleeding, and the antimicrobial properties of HN019 were analyzed.
Their results showed that subjects who underwent probiotic therapy presented with a
lower PI at 30 days and had lower marginal gingival bleeding at 90 days (p < 0.05); in
addition, increased BD-3, TLR4, and CD-4 expression in periodontal tissues were reported.
Lastly, the findings showed a lower mean adhesion of P. gingivalis together with B. lactis
HN019 to buccal epithelial cells (p < 0.05).

In this context, as depicted by Table 1, the oral microbiota could represent a potential
target for probiotic supplementation to reduce the risk of periodontal diseases.
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Table 1. Impact of probiotics on the oral microbiota in human studies.

Authors Journal and Year Study Design Study Sample Intervention Control Outcomes Main Findings

Yoo et al. [115]
Probiotics Antimicrob

Proteins
2019

Systematic review and
meta-analysis

Halitosis
3 RCT
N = 86

Oral probiotics /
Organoleptic scores;

Volatile sulfur compounds
concentration

Organoleptic scores were significantly lower in
interventions (SMD = −1.93, 95% CI −2.85 to −1.02,

p < 0.0001).
Volatile sulfur compound concentration did not show

significant differences (SMD = −0.02, 95% CI −2.12 to 2.07,
p = 0.98).

Probiotics showed a moderate effect on halitosis regarding
organoleptic scores. The available evidence is insufficient

for further recommendations.

Liu et al. [116] Oral Dis
2022

Systematic review and
meta-analysis

Plaque-induced
gingivitis
11 RCT
N = 554

Oral probiotics /

GI, PI, and BOP;
Inflammation biomarkers;

Oral microecological
environment

Interventions had no significant improvement in GI, PI, and
BOP in any comparison (p = NS). No significant difference
in intergroup analysis was found in volumes of gingival

crevicular fluid, concentration of IL-1β, and counts of
Aggregatibacter actinomycetemcomitans, Porphyromonas

gingivalis, Prevotella intermedia, and Fusobacterium nucleatum
(p = NS).

Hardan et al. [117] Pharmaceutics
2022

Systematic review and
meta-analysis

Periodontal disease
21 RCT

N = 1089
Oral probiotics / PI, BoP, PPD, and CAL

The interventions did not improve the PI (p = 0.16). The
interventions improved significantly PPD, CAL, and BoP

compared to controls (p < 0.001, p < 0.001, and
p= 0.005, respectively).

Probiotics might be implemented to lead to an
improvement in PPD, CAL, and BoP.

Seminario-Amez
et al. [118]

Med Oral Patol Oral
Cir Bucal

2017
Systematic review

Treatment and/or
prevention of an

infectious oral disease
12 RCT

2 meta-analyses
1 systematic review

Oral probiotics /
BoP, GI, and PD;

Oral microecological
environment

Decrease in colony-forming unit counts of cariogenic
pathogens (S. mutans).

The studies included in the review reported a clinical
improvement of BoP, PD, and GI, but no significant

difference in colony-forming unit counts of
periodontal pathogens.

Tekce et al. [119] J Clin Periodontol
2015 RCT

Patients with chronic
periodontitis patients

N = 40

Lozenges
containing L. reuteri

+ SRP
Placebo + SRP PI, BoP, GI, and PD

BoP, PI, GI, and PD were significantly (p < 0.05) lower in IG
compared with CG at all time points. L. reuteri-containing
lozenges might slow recolonization and improve clinical

outcomes of chronic periodontitis.

Invernici et al. [121] J Clin Periodontol
2018 RCT

Patients with chronic
periodontitis

N = 41

Bifidobacterium
animalis subsp. lactis

(B. lactis)
HN019-containing

probiotic lozenges +
SRP

Placebo + SRP

PI, BoP, PPD, CAL, GR;
Gingival crevicular fluid
levels of inflammation

biomarkers;
Oral microecological

environment

In moderate and deep pockets, the IG had larger CAL gain
and lower PPD than the CG at 90 days (p < 0.05). Overall,

PI, BoP, and GR were not significant at 90 days (p = NS). IG
reported higher intragroup levels of IL-10 at 30 days

(p < 0.05). IG exhibited a larger count of A. naeslundii and S.
mitis and greater reduction in P. gingivalis, T. denticola, F.

nucleatum vincentii, C. showae, and E. nodatum compared to
CG (p < 0.05) for deep periodontal pockets.

The use of B. lactis HN019 as an adjunct to SRP promotes
additional clinical, immunological, and

microbiological benefits.
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Table 1. Cont.

Authors Journal and Year Study Design Study Sample Intervention Control Outcomes Main Findings

Invernici et al. [122] PLoS One
2020 RCT

Patients with chronic
periodontitis

N = 30

B. lactis HN019
probiotics + SRP Placebo + SRP

PI, BOMP, expression of
beta-defensin (BD)-3,

toll-like receptor 4 (TLR4),
cluster of differentiation
(CD)-57 and CD-4, IgA

saliva levels. Antimicrobial
properties.

IG presented lower PI at 30 days and lower BOMP at
90 days when compared with CG (p < 0.05). No significant

changes were observed in IgA levels (p > 0.05). Healthy
sites of IG had significantly higher BD-3 and TLR4

immunoreactivity at 30 days when compared to baseline (p
< 0.05). The IG exhibited significantly higher BD-3 and TLR4
expressions on diseased sites at 30 days when compared to

CG (p < 0.05). CD-57 analysis showed no significant
differences (p = NS). IG showed a significantly greater

immunoreactivity for CD-4 at 30 days when compared with
baseline (p < 0.05). B. lactis HN019 reduced the adhesion of
P. gingivalis to buccal epithelial cells. B. lactis HN019 might

be effectively used in non-surgical periodontal therapy.

Abbreviations: BoP: bleeding on probing; BOMP: bleeding on marginal probing; CAL: clinical attachment level; CG: control group; CI: confidence interval; GI: gingival indices; GR:
gingival recession; IG: intervention group; N: number; NS: not significant; PD: probing depth; PPD: probing pocket depth; PI: plaque index; SMD: standardized mean difference; SRP:
scaling and root planing; RCT: randomized controlled trial.
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5. Role of Probiotics in Patients Affected by Arthritis

Probiotics could exert an immunomodulatory action by regulating intestinal inflam-
mation and immune function and by preventing an increase in intestinal permeability and
bacterial translocation. Therefore, probiotics might reduce the production of autoantibodies
in the inflamed intestine and reduce the migration of pro-inflammatory immune cells
from the gut tissue to the joints [123,124]. In this scenario, probiotics could be a beneficial
intervention in the complex treatment of inflammatory joint diseases [125,126]. It should
be noted that several studies [127–137] showed that the administration of specific probi-
otics (E. faecium, L. casei, L. plantarum, B. longum, Bifidobacteria, P. histicola, L. acidophilus,
L. helveticus, B. adolescentis, and L. fermentum) may reduce RA symptoms by increasing anti-
inflammatory cytokines (i.e., IL-10 and TGF-β) and inhibiting pro-inflammatory cytokines
(i.e., IL-1β, IL-2, IL-6, IL-12, IL-17, and NF-κB), thus promoting the differentiation of CD4+
T cells into regulatory T cells (Tregs).

However, the role of probiotics in humans affected by inflammatory joint diseases
is still debated in the scientific literature. In 2017, Mohammed et al. [124] performed a
systematic review and meta-analysis of randomized or quasi-randomized clinical trials
on the effect of probiotics on the treatment of RA. The authors included six randomized
and controlled trials and three quasi-RCTs, with a total of 361 patients. Their results
showed that oral probiotics lowered the pro-inflammatory cytokine IL-6 (SMD—0.708, 95%
CI—1.370 to 0.047, p = 0.036), which is an indicator for joint destruction in RA, but no
significant differences were found in disease activity score (DAS) and swollen joint count
(SJC) between the probiotic and placebo groups.

Another recent systematic review with a meta-analysis performed by Zeng et al.
[123] showed that the use of probiotics did not improve clinical variables such as DAS
(p = 0.17) and swollen joint counts (p = 0.71) in patients. However, they assessed the
efficacy of probiotics on inflammatory markers in RA and showed significantly lower
levels of CRP (SMD −1.57 (−2.98, −0.15; p = 0.03)), highlighting the potential role of
curcumin in CRP reduction [123]. Furthermore, Mandel et al. [127] demonstrated that
the administration of B. coagulans to RA patients was effective in reducing the patient
pain assessment score and the pain scale (p = 0.052 and 0.046, respectively). Moreover, a
randomized, double-blind, placebo-controlled clinical trial showed the effects of L. casei
on RA activity and inflammatory cytokines in women [128]. The authors demonstrated
an improvement in the DAS (p < 0.01) associated with a reduction of serum levels, TNF-α,
IL-6, and IL-12 (p < 0.05), and an increase of IL-10 (p < 0.05) in the group supplemented
with probiotics [128]. Furthermore, Alipour et al. [129] treated patients with L. casei and
found improvements in CRP levels, tender/swollen joint counts, and DAS28 compared to
a placebo (p < 0.05). Zamani et al. [130] also demonstrated that patients who received a
daily capsule containing three viable and freeze-dried strains (L. acidophilus, L. casei, and B.
bifidum) showed an improvement in DAS28 (−0.3 ± 0.4 vs. −0.1 ± 0.4, p = 0.01) and serum
high-sensitivity C-reactive protein (hs-CRP) concentrations (−6.66 ± 2.56 vs. +3.07 ± 5.53
mg/L, p < 0.001) compared with a placebo. Moreover, Cannarella et al. [131] demonstrated
an exertive role of supplementing with a mixture of probiotics (L. acidophilus, L. casei, L. lactis,
B. lactis, and B. bifidus) on TNF-α (p = 0.004) and IL-6 (p < 0.05), but no effect on DAS28 (p
> 0.05). On other hand, a pilot study conducted by Hataka et al. [132] demonstrated that
Lactobacillus rhamnosus administration did not show a statistically significant difference
in the activity of RA in terms of both clinical variables and inflammatory markers. In
accordance with this result, Pineda et al. [133] showed a non-significant decreasing trend in
serum levels of IL-1α, IL-6, IL-10, IL-12, TNF-α, and Monocyte chemoattractant protein-1
(MCP-1) following L. rhamnosus combined with L. reuteri treatment in RA patients.

Concerning the use of probiotics in patients affected by spondyloarthritis, two studies
affirmed no significant decrease in any disease activity markers such as the Bath Ankylosing
Spondylitis Functional Index (BASFI) and Bath Ankylosing Spondylitis Disease Activity In-
dex (BASDAI), ASAS-endorsed core domains, global health status, and CRP after probiotic
intervention compared with a placebo (p > 0.05) [134,135]. As mentioned above, OA can
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be considered a persistent low-grade inflammation of the joints. Thus, over the past few
years, there has been a growing interest in the role of the probiotics in OA therapy [136,137].
An important link between gut microbiota and patient’ clinical features highlighted the
possibility of positively interfering with disease progression and presentation with mi-
crobiota modulation [26]. To date, mouse model studies on the use of probiotics, such as
C. butyricum, L. casei, L. acidophilus, L. fermentum, L. paracasei, S. thermophilus, B. longum,
B. bifidum, B. breve, L. rhamnosus, L. plantarum, L. helveticus, and L. salivarius, have demon-
strated a positive role in the preservation of knee cartilage, synovial membrane, and fibrous
tissue. Moreover, this supplementation significantly lowered serum levels of inflammatory
and bone metabolism markers (such as metalloproteinases, cyclooxygenase-2, leukotriene
B4, and cartilage oligomeric matrix protein) and inflammatory cytokines (such as IL-1β,
IL-2, IL-6, IL-12, IL-17, TNF-α, and IFN-γ), while increasing levels of anti-inflammatory
cytokines (IL-4 and IL-10) and anti-IFN-γ and glycosaminoglycans [138–143]. Meanwhile,
a large RCT considered the effects of L. casei Shirota in human patients with knee OA who
were asked to ingest either skimmed milk containing the probiotic or the placebo daily for
6 months. The study demonstrated an improvement in The Western Ontario and McMaster
Universities Arthritis Index (WOMAC) in the intervention group (p < 0.05) [137].

Taken together, gut microbiome dysbiosis might be considered important in the
pathogenic mechanism of inflammatory joint diseases both in terms of onset and progres-
sion; moreover, probiotics might play a role in the complex management of such chronic
inflammatory diseases.

Accordingly, in Table 2 we describe the evidence for the role of probiotics in patients
affected by musculoskeletal disorders.
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Table 2. Probiotics for musculoskeletal disorders in human studies.

Authors Journal and Year Study Design Study Sample Intervention Control Outcomes Main Findings

Zeng et al. [123] Front Immunol
2022

Systematic review and
meta-analysis

RA
10 RCT
N = 632

Oral probiotics / DAS-28, SJC, TJC, CRP

There was a statistical difference between the experimental
group and the control group in CRP decrease (SMD −1.57
(−2.98, −0.15; p = 0.03)). No significant improvement in

DAS28, SJC, and TJC was found (p = NS).

Mohammed
et al. [126]

Clin Rheumatol
2017

Systematic review and
meta-analysis

RA
6 RCT

3 Q-RCT
N = 361

Oral probiotics /

DAS, SJC, TJC; cytokines
(TNF-α); interleukin

(IL-1β, IL-6,
IL-10, IL-12, and);

Inflammation biomarkers
(CRP)

Probiotics lowered the pro-inflammatory cytokine IL-6
(SMD − 0.708, 95% CI − 1.370 to 0.047, (p = 0.036)).

Probiotics showed no improvement in clinical variables
compared to placebo. The available evidence is insufficient

for further recommendations.

Mandel et al. [127] BMC Complement
Altern Med 2010 RCT RA

N = 45 B. coagulans Placebo Pain examination, ACR
criteria, HAQ, CRP,

Statistically significant improvement in the patient pain
assessment score (p = 0.052) and statistically significant

improvement in pain scale (p = 0.046) in intervention group.

Vaghef-Mehrabany
et al. [128]

Nutrition
2014 RCT RA

N = 46 L. casei Placebo
(maltodextrin)

DAS-28; cytokines
(TNF-α); interleukins (IL-6,

IL-12, IL-10)

Disease activity score was significantly decreased by the
intervention (p < 0.01). TNF -α, IL-6, and IL-12 significantly

decreased in the probiotic group (p < 0.05); serum level
interleukin-10 was increased with supplementation

(p < 0.05).

Alipour et al. [129] Int J Rheum Dis
2014 RCT RA

N = 46 L. casei Placebo
SJC, TJC, DAS28; cytokines
(TNF-α), IL-1β, IL-6, IL-10,

IL-12

L. casei decreased serum level of CRP, tender and swollen
joint counts, global health (GH) score and DAS28 (p < 0.05).

A significant difference was observed between the two
groups for IL-10, IL-12, and TNF-α changes through the

study course (p < 0.05) in favor of the probiotic group. No
adverse effects were reported for the intervention.

Zamani et al. [130] Int J Rheum Dis
2016 RCT RA

N = 60
L. acidophilus, L.
casei, B. bifidum Placebo DAS28, SJC, TJC; CRP

Probiotic supplementation improved DAS28 (−0.3 ± 0.4 vs.
−0.1 ± 0.4, p = 0.01) and serum high-sensitivity C-reactive
protein (hs-CRP) concentrations (−6.66 ± 2.56 vs. +3.07 ±

5.53 mg/L, p < 0.001).

Cannarella et al. [131] Nutrition
2021 RCT RA

N = 42

L. acidophilus, L.
casei, L. lactis, B.

lactis, B. bifidum +
maltodextrin

Placebo +
maltodextrin

DAS28; TNF-α, interleukin
(IL-6, IL-10), CRP

Probiotics improved white blood cell counts, TNF-a (p =
0.004) and IL-6 plasma levels (p < 0.05). No effects were

found in DAS28 (p > 0.05).

Hataka et al. [132] Scand J Rheumatol
2003 RCT RA

N = 21 L. rhamnosus Placebo

SJC, TJC, HAQ, cytokines
(TNF-α, MPO), Interleukin

(IL-1α, IL-1β, IL-6, IL-8,
IL-12, IL-10), CRP, ESR

No significant improvements were found in all the
outcomes (p > 0.05).

Pineda et al. [133] Int Med J Exp Clin Res
2011 RCT RA

N = 29
L. rhamnosus,

L. reuteri Placebo

SJC, TJC; cytokines
(TNF-α, GM-CSF, G-CSF,

IL-17, sCD40 ligand,
MIP-1α, MIP-1β, MCP-1),
interleukin (IL-1α, IL-1β,
IL-6, IL-8, IL-12p70, IL-15,

IL-10,); CRP, ESR

There were no statistically significant differences between
groups in clinical variables (p > 0.05). There was a trend for
reduced secretion of pro-inflammatory cytokines, especially
GM-CSF, IL-1α, IL-6, IL-15, and TNF-α, following probiotic

treatment compared to placebo.

Jenks et al. [134] J.Rheumatol
2010 RTC Spondyloarthritis

N = 63
S. salivarius, B. lactis,

L. acidophilus
Placebo BASDAI, BASFI,

ASAS-endorsed core
domains; CRP

No significant improvements were found in any outcome
(p > 0.05).
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Table 2. Cont.

Authors Journal and Year Study Design Study Sample Intervention Control Outcomes Main Findings

Brophy et al. [135]
BMC

Musculoskelet Disord
2008

RCT Spondyloarthritis
N = 147

L. salivarius, L.
paracasei, B.

Infantis, B. bifidum,
Placebo

Global wellbeing (0–10
scale), Disease activity

(0–10 scale) and Function
(0–10 scale)

No significant improvements were found in any outcome
(p > 0.05).

Lei et al. [137] Benef Microbes
2017 RCT Knee OA

N = 215 L. casei Shirota Placebo WOMAC, VAS, CRP
Patients in the probiotic group had significantly improved
WOMAC and VAS scores, and decreased serum hs-CRP

levels (p < 0.05).

Abbreviations: RA: Rheumatoid Arthritis; DAS: disease activity score; SJC: swollen joint count; TJC: tender joint count; CRP: C-reactive protein; ACR: American College of Rheumatology;
HAQ-DI: Health Assessment Questionnaire Disability Index; BASDAI: Bath Ankylosing Spondylitis Disease Activity Index; BASFI: Bath Ankylosing Spondylitis Functional Index; ASAS:
Assessment in Ankylosing Spondylitis; WOMAC: Western Ontario and McMaster Universities Arthritis Index; VAS: Visual Analogue Scale; OA: Osteoarthritis.
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6. Conclusions

This literature overview aimed to summarize the evidence on potential correlation
among oral–gut microbiota, periodontal diseases, and arthritis, with an interest on the
impact of probiotics on low-grade inflammation.

The scientific literature showed that poor oral hygiene can be correlated to oral micro-
biota modifications (e.g., F. alocis, Porphyromonas, Synergistetes, Peptostreptococcaceae, and
A. actinomycetemcomitans) with a linkage between the accumulation of different Gram-
negative species and the onset of periodontal diseases. Moreover, considering the role
of the gut–joint axis in regulating molecular pathways involved in the pathogenesis of
several musculoskeletal conditions (e.g., OA, RA, and TMJ arthritis), the microbiome may
influence the pathogenesis of musculoskeletal diseases.

Although the pathophysiological mechanisms underpinning these interactions have
not been fully characterized, a growing literature has been supporting the hypothesis of
therapeutic action with dietary supplements and probiotics (e.g., E. faecium, L. casei, L.
plantarum, B. longum, Bifidobacteria, P. histicola, L. acidophilus, L. helveticus, B. adolescentis, and
L. fermentum) for the treatment of chronic inflammatory diseases.

In conclusion, in this paper, we described state-of-the-art findings from the scientific
literature on the role of probiotics in the prevention and management of dysbiosis-related
disorders. We consider that the gut–oral microbiota could be a new target for patients
affected by periodontal diseases and arthritis in future.

However, it should be noted that there is still a gap in the scientific knowledge, not only
on the role of oral microbiota in the pathogenesis of inflammation, but also on interactions
among microbiota and other systemic conditions. Thus, further observational studies
are needed to define, firstly, the specific target and, secondly, the impact of probiotics on
patients affected by inflammatory diseases.
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