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Abstract

In this paper we probe five cosmological models for which the dark energy equation of state parameter, w(z), is
parameterized as a function of redshift using strong lensing data in the galaxy cluster Abell 1689. We constrain
the parameters of the w(z) functions by reconstructing the lens model under each one of these cosmologies with
strong lensing measurements from two galaxy clusters, Abell 1689 and a mock cluster, Ares, from the Hubble
Frontier Fields Comparison Challenge, to validate our methodology. To quantify how the cosmological
constraints are biased due to systematic effects in the strong lensing modeling, we carry out three runs
considering the following uncertainties for the multiple image positions: 0 25, 0 5, and 1 0. With Ares, we
find that larger errors decrease the systematic bias on the estimated cosmological parameters. With real
data, our strong-lensing constraints on w(z) are consistent with those derived from other cosmological probes.
We confirm that strong lensing cosmography with galaxy clusters is a promising method to constrain
w(z) parameterizations. A better understanding of galaxy clusters and their environment is needed, however,
to improve the SL modeling and hence to estimate stringent cosmological parameters in alternative
cosmologies.
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1. Introduction

Current cosmological observations provide strong evidence
that the expansion of the universe is accelerating (Riess
et al. 1998; Perlmutter et al. 1999; Planck Collaboration et al.
2016b). The source of this cosmic acceleration is a big puzzle
in modern cosmology and two approaches have been adopted
to explain it: either to postulate the existence of a dark energy
component or to modify the gravity laws (Joyce et al. 2016).
Among the former, the cosmological constant, which is
commonly associated with the quantum vacuum energy, has
been established as the preferred candidate to investigate the
nature of dark energy using several cosmological measure-
ments (e.g., Planck Collaboration et al. 2016a). By definition,
the equation of state (EoS, hereafter) parameter of the
cosmological constant is w=−1. Nonetheless, when a
general constant EoS is considered, the data constrain =w
- -

+1.019 0.080
0.075 (Planck Collaboration et al. 2016b, see also

Neveu et al. 2017), which is consistent with the cosmological
constant. In spite of this consistency, the theoretical expected
value of the vacuum energy differs in many orders of
magnitude from the observed one. In addition, the coincidence
problem, i.e., the similitude seen at the current time between
the dark matter energy density and that of DE, remains
unsolved (Zeldovich 1968; Weinberg 1989). Several dark
energy (DE, hereafter) models such as, for instance, dynamical
dark energy or interacting dark energy (IDE; Copeland
et al. 2006; Li et al. 2011), are also in agreement with the
data and they can satisfactorily describe the late-time accel-
eration of the universe in a similar way as the cosmological
constant does (Salvatelli et al. 2014; Ferreira et al. 2017; Zhao
et al. 2017). Therefore, to distinguish which cosmological
model is more suitable to investigating the nature of dark

energy, we need to put tight constraints on their parameters.
A standard way to estimate these parameters is to perform
a Bayesian analysis using classic cosmological probes, i.e.,
to fit the distance modulus of type Ia distant supernovae
(SNe Ia), Hubble parameter measurements, baryon acoustic
oscillation (BAO) signals, and the acoustic peaks of the cosmic
microwave background (CMB) radiation (Davis 2014;
Mortonson et al. 2014). Although these tests are widely used
to constrain cosmological models, they could yield to biased
estimations because either the data or the test fitting formulas
are derived assuming an underlying standard cosmology
ΛCDM (i.e., the cosmological constant as dark energy plus
cold dark matter). Thus, it is essential to construct methods to
estimate the parameters of alternative cosmologies without
assuming any fiducial cosmology. One novel technique is to
use strong lensing measurements in galaxy clusters.
Strong gravitational lensing (SL, hereafter) offers a unique

and independent opportunity to constrain dark energy features
without prior assumptions on the fiducial cosmology. Link &
Pierce (1998) introduced a new approach by leveraging the
cosmological sensitivity of the angular size-redshift relation
when multiples imaged systems (over a broad range of redshift)
are produced by strong lensing clusters. This technique was
later on extended to more complex simulated clusters by Golse
et al. (2002) and to real clusters such as Abell 2218 (see Soucail
et al. 2004), showing that SL cosmography is a promising
geometrical cosmological test. Jullo et al. (2010) used an
improved technique that simultaneously reconstructed the mass
distribution of Abell 1689 (A1689, hereafter), adopting a
parametric lens modeling, and constrained the parameters of a
wCDM cosmology. For the first time, the authors obtained
competitive constraints on the EoS parameter and found that,
by combining their results with other probes, they improved the
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DE EoS estimation by ∼30%. Following the same method,
Caminha et al. (2016) recently used the SL measurements in
Abell S1063 with the pre-Frontier Fields data to constrain
cosmological parameters for three different ΛCDM models.
They pointed out the importance of estimating the parameters
using multiply lensed sources with a wide range of redshifts. The
authors also showed that the lack of spectroscopic measurements
or the use of inaccurate photometric redshifts leads to a biased
estimation of the cosmological parameters. Magaña et al. (2015)
exploited this technique too, but using alternative cosmologies.
They used A1689 strong lensing measurements to constrain four
dark energy models: Chevallier–Polarski–Linder (CPL), IDE,
Ricci Holographic Dark Energy (RHDE), and Modified
Polytropic Cardassian. They found that the SL method provides
CPL constraints in good agreement with those obtained with the
SNe Ia, BAO, and CMB data. In addition, the IDE and RHDE
constraints derived from SL are similar to those estimated with
other tests. Nevertheless, the IDE constraints are consistent with
the complementary bounds only if an increase in the image-
position error (five times the one previously used by Jullo et al.
2010) is considered in the lens modeling. They confirmed that,
to avoid misleading DE bounds, it is important to consider larger
positional uncertainties for the multiple images—which could be
associated with systematic errors.

Indeed, SL has various known sources of systematic errors.
D’Aloisio & Natarajan (2011), using simulations of cluster
lenses, showed that the observational errors (for space-based
images) are an order of magnitude smaller that the modeling
errors. Furthermore, line-of-sight (LOS) structures can intro-
duce a systematic error in the strong lensing modeling (e.g.,
Host 2012; Bayliss et al. 2014; Jaroszynski & Kostrzewa-
Rutkowska 2014; McCully et al. 2014; Giocoli et al. 2016) of
up to ∼1 4 on the positions of multiple images (Zitrin et al.
2015). Even distant massive structures in the lens plane have a
significant impact on the positions of multiple images (Tu
et al. 2008; Limousin et al. 2010). Harvey et al. (2016), by
analyzing the Frontier Field cluster MACSJ0416 (z=0.397),
estimated an error of ∼0 5 on the position of the multiple
images when assuming that light traces mass in the SL
modeling. However, few studies have investigated their impact
on the retrieval of cosmological parameters (Acebron et al.
2017; McCully et al. 2017).

In this paper, we are interested in quantifying the
uncertainties in the estimation of cosmological parameters
induced by different positional errors of the multiple images.
To this end, we analyze the strong lensing effect in the galaxy
cluster A1689, as well as in a mock galaxy cluster at z=0.5
generated in a flat ΛCDM cosmology. Because in the CLP case
it is possible to obtain tight constraints on its parameters (see
Magaña et al. 2015) using the SL methodology proposed by
Jullo et al. (2010), in this work we consider popular CPL-like
models in which the EoS of dark energy is parameterized as a
function of redshift.

The paper is organized as follows. In the next section,
Section 2, we introduce the cosmological framework and the
parametric dark energy models. In Section 3 we describe the
SL data and methodology used to constrain the cosmological
parameters of the DE models. In Section 4 we present
and discuss the results. Finally, we provide our conclusions
in Section 5.

2. Cosmological Framework and Parametric
Dark Energy Models

For a homogeneous, isotropic, and flat Friedmann–Lemait̂re–
Robertson–Walker cosmology, the expansion rate of the
universe is governed by the Friedmann equation:

åp
rº( ) ( ) ( )H z

G
z

8

3
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where º ˙H a a is the Hubble parameter, a is the scale factor of
the universe, and ρi denotes the energy density for each
component in the universe.5 We consider cold dark matter (m)
and radiation (r) components whose dynamics are described by a
perfect fluid with EoS wm=0 and wr=1/3, respectively. In
addition, we also consider a dynamical dark energy (de) whose
EoS is parameterized by a w(z) function. In terms of the present
values6 of the density parameters, p rW º ( )G H z8 3i i

2, for each
component, the Equation (1) reads as:
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de de

where =( ) ( )E z H z H0 is the dimensionless Hubble para-
meter, W = ´ +- - ( )h N2.469 10 1 0.2271r
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eff , with =h

- -H 100 km s Mpc0
1 1, Neff=3.04 is the standard number of

relativistic species (Komatsu et al. 2011), and Ωde can be
expressed as W = - W - W1 m rde . The function fde(z) is
defined as
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Note that, by introducing a w(z) functional form in the integral
of the Equation (3), we can obtain an analytical expression for
fde(z), and hence for E(z).
In addition, to test whether the constraints for each

parametric DE model result in a late cosmic acceleration, we
examine the deceleration parameter q(z) defined as:
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Using Equation (2), we obtain:

=
+

-( ) ( )
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( ) ( )q z
z

E z

dE z

dz

1
1, 5

which expresses the deceleration parameter in terms of the
dimensionless Hubble parameter.

2.1. Parametric Dark Energy Models

One alternative to the cosmological constant is to consider a
dark energy component that admits a time-dependent EoS. An
effective and simple way to study dynamical dark energy
models is to assume a phenomenological parameterization of
the EoS (Lazkoz et al. 2005; Pantazis et al. 2016). Commonly,
this EoS is biparametric and it depends on the scale factor of
redshift. The most popular ansatz, denoted CPL parameterization,
(introduced and revisited by Chevallier & Polarski 2001; Linder
2003, respectively), is = + +( ) ( )w z w w z z10 1 , where w0

is the present value of the EoS and = =( ) ∣w dw z dz z1 0.
In this paper we study five CPL-like EoS parameterizations

5 Dot stands for the derivative with respect to the cosmic time.
6 Quantities evaluated at z=0.
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(see Magaña et al. 2014; Wang et al. 2016, for details), and we
briefly introduce the functional form of these parameterizations
as follows:

1. Jassal–Bagla–Padmanabhan (JBP). Jassal et al. (2005a,
2005b) proposed that the dark energy EoS is parameter-
ized by the function

= +
+

( )
( )

( )w z w w
z

z1
, 60 1 2

which allows rapid variations at low z. The DE has the
same EoS at the present epoch and at high redshift, i.e.,

¥ =( )w w0. By substituting the Equation (6) in
Equation (3) we obtain

= +
+

+
⎡
⎣⎢

⎤
⎦⎥( ) ( )

( )
( )( )f z z

w z

z
1 exp

3
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. 7w

de
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2
0

2. Barbosa–Alcaniz (BA). Barboza & Alcaniz (2008)
considered a parametric EoS for the dark energy
component given by

= +
+

+
( ) ( ) ( )w z w w

z z

z

1

1
. 80 1 2

This ansatz behaves linearly at low redshifts as w0+w1,
and  +w w w z0 1 when  ¥z . In addition, w(z) is
well-behaved in all epochs of the universe; for instance,
the DE dynamics in the future, at z=−1, can be
investigated without dealing with a divergence. Solving
the integral in Equation (3) and using Equation (8),
results i:

= + ++( ) ( ) ( ) ( )( )f z z z1 1 . 9w w
de

3 1 20
3
2 1

3. Feng–Shen–Li–Li (FSLL, Feng et al. 2012) suggested
two dark energy EoS parameterizations given by
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+

( ) ( )w z w w
z

z1
, FSLLI 100 1 2
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2
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Both functions have the advantage of being divergence-
free throughout the entire cosmic evolution, even at
z=−1. At low redshifts, w(z) behaves as w0+w1z and
w0+w1z

2 for FSLL I and FSLL II, respectively. In
addition, when  ¥z , the EoS has the same value, w0,
as the present epoch for FSLL I and w0+w1 for FSLL II.
Using Equations (10) and (11) to solve Equation (3)
leads to

= + 
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where f+ and f− correspond to FSLL I and FSLL II,
respectively.

4. Sendra–Lazkoz (SeLa, Sendra & Lazkoz 2012) improved
the CPL parameterization, whose w0−w1 parameters are
highly correlated and w1 is poorly constrained by the
observational data, introducing new polynomial para-
meterizations. They are constructed to reduce the
parameter correlation, so they can be better constrained
by the observations at low redshifts. One of these

parameterizations is given by
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where the constants are defined as = -(c w161 0
+ )w9 7 40.5 , and = - + -( )c w w3 9 3 42 0 0.5 , and

w0.5 is the value of the EoS at z=0.5. This w(z) function
is well-behaved at higher redshifts as - - +( w1 8 0

)w9 20.5 . By the substitution of Equation (13) into
Equation (3), we obtain

= +
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By replacing the fde(z) functions in Equation (1), we obtain
an analytical E(z) function for each parametric w(z), which will
be used in the following sections to estimate the EoS
parameters. Our main purpose is to examine the quality of
the w(z) constraints extracted from the SL modeling when
different image-position errors are considered.

3. Methodology

3.1. Strong Lensing as a Cosmological Probe

The gravitational lensing effect is produced when the light
beam of a background source is deflected by a gravitational
lens, i.e., a mass distribution between the source and the
observer. We refer to the strong lensing regime when several
rings, arcs, or multiples images are observed as a result of the
distortion and deflection of the light from a source by a lens.
These strong lensing observables offer a powerful and useful
tool to not only infer the total matter distribution in
astrophysical systems (Jauzac et al. 2014; Monna et al.
2017), but also to provide insights on the total content of the
universe, dark matter, and dark energy properties (Golse et al.
2002; Soucail et al. 2004; Jullo et al. 2010; Caminha et al.
2016; Magaña et al. 2015). Here, we use strong lensing
measurements in galaxy clusters to constrain the EoS of
parametric dark energy models.
Since the strong lensing features depend on the dynamics of

the universe via the angular diameter distance between the
source, lens and observer, it can be used as a geometric
cosmological probe. For any underlying cosmology, the
angular diameter distance ratios for two images from different
sources define the “family ratio” (see Jullo et al. 2010, for a
detailed discussion):

QX =( ) ( )
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( )z z z
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where Θ is the vector of cosmological parameters to be fitted,
z1 is the lens redshift, zs1 and zs2 are the two source redshifts,
and ( )D z z,i f is the angular diameter distance calculated as
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where ( )r z z,i f , the comoving distance of a source at redshift zf
measured by an observer at redshift zi, is given by

ò=
¢
¢

( )
( )

( )r z z
c

H

dz

E z
, . 17i f

z

z

0 i

f

Note that the underlying cosmology in the lens modeling is
selected by introducing the E(z) function in the Equation (17).
For the parametric DE models, these functions are analytical
and Q = W{ }w w, ,m 0 1 (w0.5 for the SeLa parameterization) is
the free parameter vector.

3.2. Lensing Modeling

To constrain the parameters of the DE models presented in
Section 2.1, we use the SL measurements in two galaxy
clusters: a real one, Abell 1689, and a simulated one, Ares,
from the Frontier Fields Comparison Challenge (Meneghetti
et al. 2017).

We performed the SL modeling using the public software
LENSTOOL7 (Kneib et al. 1996; Jullo et al. 2007), in which
the DE cosmological models described in Section 2.1 were
implemented. LENSTOOL is a ray-tracing code with a
Bayesian Markov Chain Monte Carlo sampler that optimizes
the model parameters using the positions of the multiply
imaged systems. The matter distribution in clusters is modeled
in a parametric way and the optimization is performed in the
image plane for Abell 1689, as it is more precise (this is
different from the analysis by Jullo et al. 2010; Magaña et al.
2015, where the optimization was performed in the source
plane). For Ares, the optimization was realized in the source
plane, as it is a more complex cluster (more images and cluster
members) and this procedure is more computationally efficient.
We checked that the results in the image plane were similar for
a subset of calculations.

For both Abell 1689 and Ares, each potential (either large or
galaxy-scale) is parameterized with the Pseudo Isothermal
Elliptical Mass Distribution profile (hereafter PIEMD, Kassiola
& Kovner 1993; Elíasdóttir et al. 2007). The density
distribution of this profile is given by

r
r

=
+ +( )( )( ) ( )r

1 1
, 18

r

r

r

r

0
2

core
2

2

cut
2

with a central density ρ0, a core radius rcore and a truncation
radius rcut. This profile is characterized by two changes in the
density slope: it behaves as an isothermal profile within the
transition region but the density falls as ρ ∝ r−4 at large radii.
In LENSTOOL, it has the following free parameters: the
coordinates x, y; the ellipticity, e; angle position, θ; core and cut
radii, rcore and rcut and a velocity dispersion, σ. Both clusters
were modeled the same way regardless of the considered DE
cosmological model.

Abell 1689. A massive cluster at redshift z=0.18, Abell
1689 is one of the most studied strong lenses (see e.g.,
Limousin et al. 2007, 2013; Diego et al. 2015; Umetsu et al.
2015, and references therein). The first SL modeling was
performed by Miralda-Escude & Babul (1995), which already
required a bimodal mass distribution for the cluster. It is one of
the most X-ray luminous clusters and has a large Einstein radii,
∼45″. A1689 is still the target of recent observations, using

MUSE data with which Bina et al. (2016) confirmed or
spectroscopically identified new multiple images as well as
cluster members.
We refer the reader to Jullo et al. (2010) for a detailed

discussion of the modeling of A1689, where a SL parametric
model was used to constrain the DE EoS. As we follow-up
their approach, we give here a quick overview. Abell 1689 was
modeled using the SL features in the deep HST observations
and extensive ground-based spectroscopic follow-up. The mass
distribution was represented as bimodal, with one central and
dominant large-scale potential harboring a brightest central
cluster galaxy (BCG) in its center. The second large-scale
potential was situated in the northeast. Jullo et al. (2010) used
58 cluster galaxies (with mK<18.11) in the modeling and
followed the standard scaling relations. In this work we
consider the same catalog as in Jullo et al. (2010), including 28
images from 12 families,8 all with measured spectroscopic
redshifts, spanning a range of 1.15<zS<4.86.
Ares. A mock galaxy cluster at z=0.5, generated in a flat

ΛCDM cosmological model with a matter density parameter
W = 0.272m . We model Ares considering all multiple images
(242 from 85 sources), all with assumed known spectroscopic
redshifts spanning a wide range (0.91<zS<6.0). Cluster
members are taken from the given simulated catalog up to a
magnitude of <m 22.0F W160 mag (representing >90% of the
total cluster luminosity). Ares is part of an archive of mock
clusters that reproduce the characteristics of the Frontier Fields
observations (the FF-SIMS Challenge, Meneghetti et al. 2017).
It was part of a challenge among the strong lensing community
to perform, first a blind reconstruction of the mass distribution
of the cluster, and then to improve the models after the
unblinding of the true mass distribution. The conclusions of
this challenge were primarily used to calibrate different
modeling techniques. Ares is a semi-analytical cluster created
with MOKA9 by Giocoli et al. (2012). This simulated cluster, a
bimodal and realistic cluster, is built with three components:
two smooth dark matter triaxial halos, two BCGs and a large
number of sub-halos. Dark matter sub-halos are populated
using a Halo Occupation Distribution technique and stellar and
B-band luminosities are given for all galaxies according to the
mass of their sub-halo, as in Wang et al. (2006).
We have modeled Ares as two large-scale potentials and two

potentials for the BCGs, whose coordinates are fixed, as well as
the ones for the large-scale potentials (see Figure 1 in Acebron
et al. 2017). Both components have been parameterized with
the PIEMD density profile and corresponds to the model
PIEMD—PIEMD in Acebron et al. (2017). The modeling also
includes cluster galaxies with <m 22F W160 mag (being a more
complex cluster, computing time is reduced by introducing
a magnitude cut representing >90% of the total cluster
luminosity) with masses scaling with luminosity (see Limousin
et al. 2005, for further details). Three massive cluster galaxies
close to multiple images (see Figure 1 in Acebron et al. 2017)
were more carefully modeled (i.e., their parameters deviate from
the scaling relations). All multiple images provided were taken
into account in the modeling, resulting in an average positional
accuracy of 0 66 and giving tight constraints on the ΩM−w
space parameter considering a flat ΛCDM cosmology.
To quantify how the cosmological constraints are biased due

to systematic effects in the SL modeling, we use different

7 https://projets.lam.fr/projects/lenstool

8 A family is the group of images associated with one lensed source.
9 https://cgiocoli.wordpress.com/research-interests/moka/
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image-positional errors, δpos, and compare the resulting DE
parameter estimations. For each parametric DE model and for
both Abell 1689 and Ares, we carry out three runs considering
the following errors for the multiple images positions: 0 25,
0 5, and 1 0. These values are chosen arbitrarily but they
intend to cover the range of values of systematic uncertainties
reported by different authors (Zitrin et al. 2015; Harvey et al.
2016). For instance, the observations indicate uncertainties on
the image positions ∼0 06 (Grillo et al. 2015, see also Chirivì
et al. 2018), which is almost one order of magnitude less than
our smaller error. Nevertheless, the same authors increase this
error in the modeling up to six times, i.e., 0 4, to take into
account systematics due to the LOS structures and small dark
matter clumps. Although an error of 0 5 is in agreement with
predictions of the effects of matter density fluctuations along
the LOS (Host 2012; Caminha et al. 2016), other authors claim
that 1 4 is the proper error to account for these systematics in
lens modeling (e.g., Zitrin et al. 2012). Finally, Chirivì et al.
(2018) proposed using different errors in the range 0 2–0 4 for
different images. In order to consider all these possible effects,
we propose 0 25 as the minimum error in the position of
images and increase it two times in each run.

The best-fitting model parameters are found by minimizing
the distance between the observed and model-predicted
positions of the multiple images. To assess the goodness of
the lens model fit we examine the reduced chi-squared, cred

2

(see Jullo et al. 2007 for details on how it is calculated in the
source and image plane). We also use the root mean square
between the observed and predicted positions of the multiple
images from the modeling, computed as

å q q= -
=

∣ ∣ ( )
N

rms
1

, 19
i

n

i i
1

obs pred 2

where qi
obs and qi

pred are the observed and model-predicted
positions of the multiples images and N is the total number of
images. Although both estimators are widely used to compare the
goodness of the fit of the cluster parameters among different lens
models (e.g., Jullo et al. 2010; Caminha et al. 2016; Limousin
et al. 2016), they are less sensitive to the cosmological parameters.
A reliable tool to measure the goodness of fit for the cosmological

constraints is the Figure-of-Merit (FOM, Wang 2008) given by

=
¼( )

( )
f f f

FoM
1

det Cov 1, 2, 3,
, 20

where ¼( )f f fCov 1, 2, 3, is the covariance matrix of the
cosmological parameters fi. This indicator (Equation (20)) is a
generalization of those proposed by Albrecht et al. (2006) and
the larger values imply stronger constraints on the cosmolo-
gical parameters, since the indicator corresponds to a smaller
error ellipse.

4. Results

In this section we present, for each cosmological model, the
constraints from the strong lensing measurements of Ares and
Abell 1689, as well as those from other complementary probes
(H(z), SNe Ia, BAO, and CMB, see Appendix A). The mock
Ares cluster has the advantage of being able to directly
compare and validate the cosmological constraints from the SL
technique with the fiducial cosmology i.e., the ΛCDM with
Ωm=0.272.
For each cosmological model, the cluster model parameters

and the cosmological parameters are simultaneously optimized
with the LENSTOOL software with 80,000 MCMC steps. For
the complementary probes, we carry out the EMCEE python
module (Foreman-Mackey et al. 2013) employing 500 walkers,
2500 burn-in phase steps, and 7500 MCMC steps to guaranty
the convergence. In all our estimations, we have adopted a
dimensionless Hubble constant h=0.70.
Tables 1–5 show the mean parameters obtained after

optimization for both Abell 1689, Ares and each cosmological
model (JBP, BA, FSLL I, FSLL II, and SeLa). For each
positional uncertainty considered, we present the cred

2 and the
rms in the image plane, as well as the mean values obtained for
the cosmological parameters fitted, Ωm, w0, and w1, with the
68% uncertainties. The same tables also give the mean values
for the DE parameters obtained from the complementary
probes. The best-fit and 2D confidence contours for the
cosmological parameters were computed using the python
module Getdist.10

Table 1
JBP Mean Fit Parameters Obtained for Both Galaxy Clusters’ SL Data

Cluster name Error in the pos. (″) cred
2 rms (″) FOM Ωm w0 w1

Abell 1689 0.25 11.37 0.54 15.09 -
+0.47 0.06

0.04 - -
+1.29 0.01

1.04 - -
+6.46 0.33

4.88

Ares 2.73 0.59 127.92 -
+0.37 0.11

0.12 - -
+0.82 0.11

0.11 - -
+0.14 0.04

0.36

Abell 1689 0.5 3.14 0.64 8.13 -
+0.46 0.08

0.08 - -
+1.11 0.04

1.20 - -
+6.14 0.07

5.49

Ares 0.78 0.65 11.83 -
+0.46 0.11

0.06 - -
+0.90 0.49

0.60 - -
+1.77 3.01

0.07

Abell 1689 1.0 0.95 0.88 4.15 -
+0.43 0.12

0.18 - -
+1.07 0.60

0.69 - -
+5.09 3.40

3.07

Ares 0.77 0.94 20.46 -
+0.33 0.06

0.06 - -
+1.06 0.43

0.83 - -
+5.81 3.16

3.41

Complementary probes
H(z) L 0.54 L 354.12 -

+0.26 0.02
0.01 - -

+0.88 0.19
0.27 - -

+0.70 2.59
1.83

SN Ia L 0.98 L 75.51 -
+0.32 0.10

0.05 - -
+0.70 0.18

0.19 - -
+4.44 3.49

3.40

BAO L 2.17 L 646.43 -
+0.25 0.02

0.02 - -
+1.34 0.15

0.26
-
+0.43 1.99

1.13

CMB L 58.8 L 8207.46 -
+0.32 0.002

0.002 - -
+0.69 0.68

0.50 - -
+4.54 3.66

4.26

Note. The columns give the reduced cred
2 , rms in the image plane (in arcseconds) and the mean values for Ωm, w0, w1 with 68% confidence level errors. The mean

values estimated with H(z), SN Ia, BAO, and CMB data are also provided.

10 It can be download athttps://github.com/cmbant/getdist.
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4.1. Effect of Image-position Error
on the Cosmological Parameters

The positional error for the multiple images plays a key role
in both the lens modeling and the cosmological parameter
estimation (Magaña et al. 2015; Caminha et al. 2016; Limousin
et al. 2016). As mentioned in Section 1, a large error could
take into account other sources of uncertainties in the SL
measurements, such as systematic errors due to foreground and
background structures (D’Aloisio & Natarajan 2011; Host
2012; Bayliss et al. 2014; Zitrin et al. 2015), or the cluster’s
environment (Acebron et al. 2017; McCully et al. 2017). As a
first test, we constrain the JBP cosmological parameters from
Ares SL data with an image-positional error d = 1pos . For this

run (see Table 1), we obtain c = 0.77red
2 and rms=0 94,

both criteria indicating a good fit for the cluster parameters.
When modeling Ares using smaller positional uncertainties
(δpos=0 25, 0 5), the cred

2 values point out a poor model fit.
The left panel of Figure 1 illustrates the comparison of the
W - wm 0 confidence contours obtained with different posi-
tional uncertainties for the JBP model using Ares SL data. This
figure clearly shows that increasing the positional uncertainty
translates to an enlargement of the confidence contours and a
systematic shift in the Wm0 estimation toward the fiducial value.
However, the χ2 statistical estimator also depends on the
uncertainty considered for the position of the multiple images.
Thus, the change in the shape of the confidence contours at

Table 2
Mean Fit Parameters for the BA Parameterization

Cluster name Error in the pos. (″) cred
2 rms (″) FOM Ωm w0 w1

Abell 1689 0 25 11.40 0.54 13.57 -
+0.47 0.06

0.05 - -
+1.32 0.01

0.98 - -
+6.28 0.07

5.31

Ares 2.69 0.59 5.25 -
+0.27 0.01

0.46 - -
+0.89 0.48

0.16
-
+0.09 1.10

0.91

Abell 1689 0 5 3.15 0.64 6.22 -
+0.44 0.10

0.08 - -
+1.15 0.02

1.20 - -
+5.22 0.57

6.17

Ares 0.80 0.65 8.25 -
+0.20 0.01

0.36 - -
+1.10 0.24

0.31
-
+0.36 1.81

0.16

Abell 1689 1 0 0.94 0.89 3.26 -
+0.41 0.15

0.17 - -
+1.08 0.02

1.26 - -
+4.49 7.69

0.62

Ares 0.33 0.93 6.91 -
+0.26 0.0

0.31 - -
+1.37 0.24

0.31 - -
+1.88 6.28

0.18

Complementary probes
H(z) L 0.57 L 405.21 -

+0.25 0.08
0.02 - -

+0.90 0.12
0.13

-
+0.01 0.85

0.43

SN Ia L 0.98 L 70.47 -
+0.37 0.09

0.04 - -
+0.78 0.17

0.22 - -
+3.24 3.14

2.37

BAO L 2.25 L 1541.69 -
+0.26 0.02

0.02 - -
+1.23 0.16

0.18 - -
+0.23 0.69

0.52

CMB L 58.8 L 3492.21 -
+0.32 0.002

0.002 - -
+0.63 0.67

0.45 - -
+2.24 1.82

2.18

Table 3
Mean Fit Parameters for the FSLL I Parameterization

Cluster name Error in the pos. (″) cred
2 rms (″) FOM Wm w0 w1

Abell 1689 0 25 11.53 0.54 12.67 -
+0.46 0.06

0.05 - -
+1.39 0.04

0.93 - -
+6.60 0.07

5.04

Ares 2.70 0.59 168.03 -
+0.17 0.03

0.22 - -
+0.99 0.16

0.24
-
+0.48 0.72

0.29

Abell 1689 0 5 3.07 0.64 4.10 -
+0.42 0.12

0.09 - -
+1.17 0.21

1.08 - -
+4.75 8.73

0.14

Ares 0.80 0.65 11.29 -
+0.23 0.02

0.36 - -
+1.36 0.15

0.60
-
+0.79 3.00

0.08

Abell 1689 1 0 0.93 0.89 3.34 -
+0.40 0.15

0.17 - -
+1.15 0.16

1.07 - -
+4.99 1.12

6.08

Ares 0.33 0.92 8.03 -
+0.27 0.01

0.32 - -
+1.45 0.15

0.97 - -
+1.89 7.13

0.13

Complementary probes
H(z) L 0.48 L 268.56 -

+0.25 0.06
0.02 - -

+0.95 0.15
0.19

-
+0.14 1.46

1.03

SN Ia L 0.98 L 71.57 -
+0.36 0.10

0.05 - -
+0.74 0.18

0.22 - -
+3.77 3.37

2.77

BAO L 2.13 L 1014.38 -
+0.24 0.02

0.02 - -
+1.40 0.19

0.25
-
+0.51 1.24

0.92

CMB L 58.8 L 5455.18 -
+0.32 0.002

0.002 - -
+0.69 0.68

0.50 - -
+2.86 2.54

3.05

Table 4
Mean Fit Parameters for the FSLL II Parameterization

Cluster name Error in the pos. (″) cred
2 rms (″) FOM Wm w0 w1

Abell 1689 0 25 11.90 0.54 19.78 -
+0.41 0.06

0.05 - -
+1.61 0.03

0.54 - -
+5.59 0.09

6.82

Ares 2.71 0.59 50.04 -
+0.19 0.01

0.33 - -
+0.81 0.10

0.06
-
+0.18 0.80

0.13

Abell 1689 0 5 3.17 0.64 7.96 -
+0.38 0.10

0.09 - -
+1.45 0.26

0.57 - -
+4.81 0.29

7.24

Ares 0.79 0.65 8.74 -
+0.38 0.21

0.15 - -
+1.00 0.44

0.25 - -
+0.64 4.69

0.38

Abell 1689 1 0 0.94 0.89 3.31 -
+0.35 0.14

0.20 - -
+1.29 0.31

0.70 - -
+4.78 0.10

7.57

Ares 0.32 0.92 9.50 -
+0.28 0.14

0.06 - -
+1.35 0.54

0.29 - -
+2.11 7.14

0.50

Complementary probes
H(z) L 0.56 L 164.36 -

+0.26 0.06
0.02 - -

+0.92 0.10
0.11 - -

+0.30 2.12
0.92

SN Ia L 0.98 L 71.30 -
+0.32 0.11

0.04 - -
+0.98 0.15

0.15 - -
+4.34 3.86

3.90

BAO L 2.21 L 530.10 -
+0.27 0.02

0.02 - -
+1.19 0.10

0.12 - -
+1.34 1.91

1.23

CMB L 58.8 L 2702.46 -
+0.32 0.002

0.002 - -
+0.87 0.34

0.22 - -
+4.96 3.51

4.01
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0 25 could be explained by the underestimation of the image-
position uncertainties. For instance, Acebron et al. (2017)
measured an average positional accuracy of 0 66 for Ares
using a strong lens model under the standard cosmology.
Therefore, in the case of our w(z) parameterizations, we would
expect reasonable Ares models when the image-position errors
are roughly similar to the average positional accuracy obtained
(i.e., ∼0 5–1″). We confirm that more statistically significant
constraints for the lens (cluster) model are obtained for larger
errors, i.e., the reduced cred

2 value trends to one. This same
trend is recovered for the JBP, FSLL I, FSLL II, and SeLa
parameterizations (see Tables 2–5).

The main indicator of the quality of the cosmological
constraints is provided by the FOM values. Although there is
not a clear trend in FOM versus δpos, the strong constraints for
the BA, FSLL I, FSLL II, and SeLa parameters are obtained
when δpos=0 25. However, this uncertainty can lead to a
poor cluster model. Moreover, this error provide SL confidence
contours that are only consistent within the 3σ confidence

levels like those obtained from the other cosmological tests.
The optimum fit is obtained as a compromise between those
χred and rms values that provide a good lens model and the
FOM value that gives cosmological constraints that are also in
agreement with other probes. Thus, in the following, we
discuss the parameter estimation for the case in which those
criteria are fulfilled (i.e., δpos=1″, see Appendix B).

4.2. w(z) Parameter Estimations from SL in Abell 1689

In general, for all models, we found that the SL technique using
Abell 1689 data provides better Ωm constraints than the ones on
the EoS parameters and confirm our previous result: a larger error
(δpos=1″) provides more significant constraints for the cluster
parameters, i.e., χred∼1, and reasonable rms values. As in the
Ares case, the right panel of the Figure 1 shows that increasing
δpos is translated into an enlargement of the confidence contours
and a systematic shift in the Ωm0 estimation toward the fiducial
value. In addition, although this uncertainty produces the lowest

Table 5
Mean Fit Parameters for the SeLa Parameterization

Cluster name Error in the pos. (″) cred
2 rms (″) FOM Wm w0 w0.5

Abell 1689 0 25 11.66 0.54 43.94 -
+0.42 0.10

0.07 - -
+1.23 0.24

0.94
-
+0.61 1.57

0.38

Ares 6.01 4.80 33.84 -
+0.80 0.09

0.06 - -
+1.04 0.08

1.25
-
+0.38 1.56

0.65

Abell 1689 0 5 3.06 0.64 25.21 -
+0.41 0.09

0.11 - -
+1.18 0.13

1.06 - -
+0.54 1.96

0.02

Ares 1.57 1.11 25.09 -
+0.66 0.09

0.12 - -
+1.26 0.01

1.07 - -
+0.59 1.83

0.14

Abell 1689 1 0 0.93 0.90 12.67 -
+0.46 0.05

0.04 - -
+1.39 0.44

0.73 - -
+6.60 2.44

3.87

Ares 0.48 1.06 23.61 -
+0.41 0.10

0.16 - -
+1.16 0.04

1.17
-
+0.49 1.40

0.79

Complementary probes
H(z) L 0.55 L 703.29 -

+0.25 0.07
0.02 - -

+0.90 0.12
0.14 - -

+1.01 0.36
0.31

SN Ia L 0.98 L 111.75 -
+0.37 0.09

0.05 - -
+0.73 0.18

0.28 - -
+2.64 1.57

1.23

BAO L 9.95 L 377.94 -
+0.23 0.08

0.04 - -
+1.04 0.23

0.28 - -
+1.11 0.37

0.55

CMB L 58.8 L 1004.52 -
+0.32 0.002

0.002 - -
+0.56 0.54

0.40 - -
+1.98 0.50

0.51

Figure 1. Comparison of the constraints on the Ωm–w0 parameters for Ares (left panel) and Abell 1689 (right panel) when considering several positional uncertainties
(δpos) in the SL modeling for the JBP parameters. The star indicates the reference fiducial values. The mean values when δpos is 0 25, 0 5, and 1 0 are represented by
the diamond, pentagon, and triangle respectively.
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FOM values (i.e., less significant cosmological parameters) for all
w(z) parameterizations, the confidence contours are in complete
agreement with those of the other probes. Figures 2–4 show
the 1σ, 2σ, and 3σ confidence contours and the marginalized
one-dimensional posterior probability distributions on the Ωm, w0,
and w1 parameters for the cosmological model JBP using Abell
1689 SL data for each positional uncertainty considered. We note
again that when the error in the image position is increased, the
Ωm–w0 and Ωm–w1 (or w0–w1) confidence contours shift toward
the left (upper) region, where the confidence contours from BAO,
CMB, SNe Ia, and H(z) probes are overlapped. This same trend is
recovered for the BA, FSLL I, FSLL II, and SeLa parameteriza-
tions (their confidence contours are provided in Figures 6–9 of the
Appendix B).

On the other hand, the w0 and w1 mean values for the five
w(z) parameterizations could suggest a dynamical EoS,
which can be associated with thawing or freezing quintes-
sence DE (Pantazis et al. 2016). Nevertheless, all our EoS
constraints are consistent with the cosmological constant,
i.e., = -w 10 , and w1=0, within the 3σ confidence level. In
addition, there is no significant difference among the cred

2 and
rms values for different w(z) parameterizations. Therefore,
any parametric DE model could be the source of the late
cosmic acceleration. We confirm this result in the left panel
of Figure 5, which shows the reconstruction of the
cosmological evolution for each parameterization using the
mean values obtained from the SL modeling in Abell 1689
when δpos=1″ is considered.

Figure 2. Confidence contours (1σ, 2σ, 3σ) and the marginalized one-dimensional posterior probability distributions on the Ωm, w0, and w1 parameters for the
cosmological model JBP for Abell 1689 with δpos=0 25. The star indicates the cosmological parameters as constrained by Planck Collaboration et al. (2016b) for a
ΛCDM cosmology.
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4.3. Deceleration Parameter

The cosmological behavior of the deceleration parameter
(Equation (5)) is an important test to know whether a DE model
is able to handle the late cosmic acceleration. The right panels
of Figure 5 show the reconstructed q(z) evolution for each
parameterization obtained from Abell 1689 SL data when the
multiple image-positional error is 1″. We also have propagated
its error within the 1σ confidence level using a Monte Carlo
approach. Note that the five cosmological models predict an
accelerating expansion at late times. The transition redshifts,
i.e., when the universe passes from an decelerated phase to an
accelerated one, are = -

+z 0.44t 0.17
0.21, -

+0.44 0.12
0.17, -

+0.45 0.13
0.18,

-
+0.50 0.24

0.22, -
+0.34 0.04

0.07 for the JBP, BA, FSLL I, FSLL II, and
SeLa parameterizations, respectively. Furthermore, the q(z)
shape for each parameterization is consistent with that of the
cosmological constant within the 1σ confidence level.

5. Conclusions

Several recent studies have shown that dark energy could
deviate from a cosmological constant (Ferreira et al. 2017;
Zhao et al. 2017). A simple way to investigate such alternative
dark energy models is to parameterize the dark energy EoS as a
function of redshift. In order to elucidate the nature of dark
energy, numerous parameterizations have been proposed (see,
for instance, Pantazis et al. 2016, and references therein). The
typical tests to constrain cosmological parameters use SNe Ia,
H(z), BAO, and CMB distance posterior measurements.
Nevertheless, some of them could provide biased constraints
because either the data or the test fitting formulae are derived
assuming an underlying standard cosmology (see Appendix A).
Furthermore, new complementary techniques could break the
degeneracy between parameters and obtain stringent constraints
that could help us distinguish the nature of dark energy.

Figure 3. Confidence contours (1σ, 2σ, 3σ) and the marginalized one-dimensional posterior probability distributions on the Ωm, w0, and w1 parameters for the
cosmological model JBP for Abell 1689 with δpos=0 5. The star indicates the cosmological parameters as constrained by Planck Collaboration et al. (2016b) for a
ΛCDM cosmology.
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In this paper, which is the first in a series, we investigate a
promising technique to study alternative cosmological models
and to constrain their parameters using the strong lensing
features in galaxy clusters. This method has the advantage
of providing constraints which are not biased due to an
underlying cosmology.

We have considered five popular biparametric CPL-like
ansatzes—JBP, BA, FSLL I, FSLL II, and SeLa—and
constrained their parameters using the SL data in a real galaxy
cluster, Abell 1689, and a simulated one, Ares. We
implemented these w(z) parameterizations in the LENSTOOL
code, which uses an MCMC algorithm to simultaneously
constrain the lens model and the w(z) parameters. In addition,
we have considered three different image-positional errors to
quantify how the cosmological constraints are affected by these

uncertainties in the lens modeling. In general, we found that the
SL technique provides competitive constraints on the w(z)
parameters in comparison with the common cosmological tests.
Moreover, when increasing the image-positional error (from
0 5 to 1 0), we find that systematic biases with respect to the
known input cosmological values in the simulated cluster
decrease. After taking this calibration into account in the real
data, our SL constraints are consistent with those obtained from
other probes.
In summary, we have exploited the strong lensing modeling

in galaxy clusters as a cosmological probe. Although we have
measured competitive constraints on the w(z) parameters,
further analysis on the galaxy clusters and their environment is
needed to improve the strong lensing modeling and hence to
more tightly estimate cosmological parameters. In forthcoming

Figure 4. Confidence contours (1σ, 2σ, 3σ) and the marginalized one-dimensional posterior probability distributions on the Ωm, w0, and w1 parameters for the
cosmological model JBP for Abell 1689 with δpos=1 0. The star indicates the cosmological parameters as constrained by Planck Collaboration et al. (2016b) for a
ΛCDM cosmology.
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Figure 5. Reconstructed equation of state (left panel) and deceleration parameter (right panel) vs. redshift for each w(z) parameterization using the mean values
obtained from SL data in Abell 1689 with an image-position error of 1 0. The shadow regions show the 1σ region calculated with an MCMC error propagation
approach using the SL posterior constraints.
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papers, we will test this method to constrain the parameters of
other cosmological scenarios such as, for instance, those
considering interactions in the dark sector.
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Appendix A
Additional Cosmological Data

We compare the constraints obtained from the strong lensing
modeling with those from BAO, CMB, SNe Ia, and H(z)
cosmological probes. In the following we describe briefly
these cosmological data, for further details on how their
FOM is constructed (see Magaña et al. 2015, 2017 and
references therein).

A.1. BAO

Large-scale galaxy surveys offer the possibility of measuring
the signatures of BAOs, which have typical length scales
imprinted on both photons and baryons by the propagation of
sound waves in the primordial plasma of the universe. This
signal, i.e., the sound horizon at the drag epoch, ( )r zs d , is a
standard ruler that can be used to test alternative cosmologies.
To complement our SL constraints, we use the following
9 BAO points (see Magaña et al. 2017, and references therein)
to constrain the w(z) functions as follows:

1. 6dFGS. z=0.106, º ( )
( )

dz r z

D z
s d

V
=0.336±0.015, where

=( )D zV H

1

0
+⎡⎣ ⎤⎦( ) ( )

( )
z D z1 cz

E z
2 2

1 3
.

2. WiggleZ. z=[0.44, 0.6, 0.73], dz=[0.0870±0.0042,
0.0672±0.0031, 0.0593±0.0020].

3. SDSS DR7 z=0.15,0.2239±0.0084.
4. SDSS-III BOSS DR11 (a). z=[0.32, 0.57], dz=

[0.1181±0.0022, 0.0726±0.0007].
5. SDSS-III BOSS DR11 (b). z=[2.34, 2.36], ( )

( )
D z

r z
H

s d
=

[9.18±0.28, 9.00±0.3], where = ( )( )D c H E zH z 0 .

It is worth noting that ( )r zs d depends on the underlying
cosmology, which is commonly the ΛCDMmodel. Moreover, the
zd formulae employed in the BAO fitting (Eisenstein & Hu 1998)

were calculated for the standard cosmology. Thus, the BAO
constraints could be biased due to the standard cosmology.

A.2. Distance Posteriors from CMB
Planck 2015 Measurements

The information of the CMB acoustic peaks can be
compressed in to three quantities, their distance posteriors:
the acoustic scale, lA, the shift parameter, R, and the decoupling
redshift, z*. Several authors have proved that these quantities
are almost independent of the input DE models (Wang
et al. 2012). Thus, to constrain the w(z) parameters we use
the following distance posteriors for a flat wCDM, estimated
by Neveu et al. (2017) from Planck 2015 measurements:

= l 301.787 0.089A
obs , Robs = 1.7492 ± 0.0049, z*

obs =
1089.99 ± 0.29.
It is worth noting that the fitting formulae for these quantities

(Hu & Sugiyama 1996; Bond et al. 1997) are calculated for the
standard model; however, we assume that they are valid in
dynamical DE models.

A.3. SNe Ia

Since Type Ia Supernovae are standard candles, i.e., their light
curves have the same shape after a standardization process, they
have been used to measure cosmological parameters. Indeed, the
apparent cosmic accelerating expansion was observed through a
Hubble diagram of distant SN Ia. As a complementary test, we
consider the compilation by Ganeshalingam et al. (2013) that
contains 586 data points of the modulus distance, μ, in the
redshift range 0.01<z<1.4, which includes 91 points from
the Lick Observatory Supernova Search SN Ia observations.

A.4. H(z) Measurements

The Hubble parameter at different redshifts provides a direct
measurement of the expansion rate of the universe. Several
authors have estimated the observational Hubble data using
different techniques: from clustering or BAO peaks (see for
instance, Gaztanaga et al. 2009) and from cosmic chronometers
(Jimenez & Loeb 2002). Here, we use the same sample used by
Magaña et al. (2017), which contains 34 data points in the
redshift range 0.07<z<2.36. Although some of the H(z)
points were estimated from BAO data, we assume that there is
no correlation between them. It is worth noting that the H(z)
points obtained from BAO could yield to biased constraints due
to the underlying (ΛCDM) cosmology on ( )r z .s d

Appendix B
Confidence Contours for the BA, FSLL I,
FSLL II, and SeLa Parameterizations

Figures 6−9 show the confidence contours of the constraints
obtained from SL in Abell 1689 with an image-position error of
1.0″ for the BA, FSLL I, FSLL II, and SeLa parameterizations,
respectively. The confidence contours obtained from BAO,
CMB, SNe Ia, and H(z) are also shown. Notice that for these
parameterizations, the SL confidence contours are in complete
agreement with those of the other probes.
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Figure 6. Same as Figure 4, but for the BA parameterization.
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Figure 7. Same as Figure 4, but for the FSLL I parameterization.
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Figure 8. Same as Figure 4, but for the FSLL II parameterization.
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