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In this paper, we investigate Pseudo-Z symmetric space-time manifolds. First, we deal
with elementary properties showing that the associated form Ak is closed: in the case
the Ricci tensor results to be Weyl compatible. This notion was recently introduced
by one of the present authors. The consequences of the Weyl compatibility on the
magnetic part of the Weyl tensor are pointed out. This determines the Petrov types of
such space times. Finally, we investigate some interesting properties of (PZS)4 space-
time; in particular, we take into consideration perfect fluid and scalar field space-time,
and interesting properties are pointed out, including the Petrov classification. In the
case of scalar field space-time, it is shown that the scalar field satisfies a generalized
eikonal equation. Further, it is shown that the integral curves of the gradient field
are geodesics. A classical method to find a general integral is presented. C© 2014 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4871442]

I. INTRODUCTION

Recently, the present authors27 (see also Ref. 25) defined a generalized (0,2) symmetric Z tensor
given by

Zkl = Rkl + ϕgkl, (1.1)

where ϕ is an arbitrary scalar function. In Refs. 27 and 25, various properties of the Z tensor were
pointed out; it was used to introduce the new differential structures of Pseudo-Z symmetric and
weakly Z symmetric Riemannian manifolds. The first one is defined by the condition27

∇k Z jl = 2Ak Z jl + A j Zkl + Al Z jk . (1.2)

If ϕ = 0, we recover a Pseudo-Ricci symmetric manifold introduced by Chaki.5 This notion
of Pseudo-Ricci symmetric is different from that of Deszcz.10 The fundamental properties of such
manifolds were investigated in Ref. 27. The second is defined by the condition25

∇k Z jl = Ak Z jl + B j Zkl + Dl Z jk . (1.3)

A complete study of (1.3) was pursued in Ref. 25. Finally, in Ref. 28 manifolds on which a Z
form is recurrent were studied. This embraces both Pseudo-Z symmetric and weakly Z symmetric
Riemannian manifolds.

From the results in Refs. 27 and 25, the Z tensor may be used to write the Einstein field equations
of general relativity (Refs. 8,20, and 36). In fact, the equation Zkl = kTkl being k = 8πG

c4 the Einstein
gravitational constant (see Ref. 8) and the condition ∇ lZkl = 0 coming from the stress energy
tensor give ∇k( R

2 + ϕ) = 0 that is ϕ = − R
2 + �. The term � is thus the cosmological constant

and Einstein’s equations take the form Rkl − R
2 gkl + �gkl = kTkl . Here, we have defined the Ricci

tensor to be Rkl = −Rm
mkl

37 and the scalar curvature R = gijRij.
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In the present paper, we investigate the fundamental properties of (PZS)4 space-times. In
Sec. II, we deal with elementary properties showing that the associated form Ak is closed. In
Sec. III, we will show that in the case of closed associated covector, the Ricci tensor results to be
Weyl compatible. This notion was recently introduced by one of the present authors in Refs. 24 and
26. The consequences (recently obtained in Ref. 26) of the Weyl compatibility on the electric and
magnetic part of the Weyl tensor are pointed out. In Sec. IV, we investigate some interesting properties
of (PZS)4 space-time manifolds: Weyl compatibility ensures that the space-time is of Petrov D or
I;34 moreover, we take into consideration perfect fluid space times with cosmological constant (see
Refs. 27,34, and 36) and provide a state equation. Finally, in Sec. V a (PZS)4 scalar field space-time
is considered, and interesting properties are pointed out. In this case, it is shown that the scalar field
satisfies a generalized eikonal equation.18, 19 Further, it is shown that the integral curves of the field
gradient are geodesics. A classical method to find a general solution is presented.

Throughout the paper, all manifolds under consideration are assumed to be smooth connected
Hausdorff manifolds endowed with a Lorentz metric20 (i.e., a metric of signature + 2).

II. ELEMENTARY PROPERTIES OF (PZS)4 SPACE-TIMES

In Ref. 27, elementary properties of a (PZS)4 space-times are shown. In this section, we collect
them for successive use. Transvecting Eq. (1.2) with gjl gives immediately

∇k Z = 2Ak Z + 2Al Zkl, (2.1)

where Z = gilZjl and Al = gjlAj.
In the same manner, transvecting Eq. (1.2) with gkl one obtains

∇l Zkl = Ak Z + 3Al Zkl, (2.2)

where ∇ lZkl = glj∇ jZkl. Because of the condition ∇ lZkl = 0 coming from the stress energy tensor
and using Eqs. (2.1) and (2.2), we get

Al Zkl = − Ak

3
Z ,

(2.3)

∇k Z = 4

3
Ak Z .

We can thus state the following.

Theorem 2.1. (Ref. 27) For a (PZS)4 space-time manifold Ak is a closed one form and it is an
eigenvector of the Z tensor with eigenvalue − Z

3 .

III. WEYL COMPATIBLE (PZS)4 SPACE-TIMES

In this section, we consider four-dimensional Pseudo-Z symmetric manifold with closed asso-
ciated covector. We will show that this condition implies that the Ricci tensor is Weyl compatible.
This notion was recently introduced in Refs. 24 and 26. As a consequence, strong restrictions on the
structure of the Weyl tensor are imposed, with geometric and topological implications (see Refs. 24
and 26).

From Eq. (1.2), we infer

∇k Z jl − ∇ j Zkl = Ak Z jl − A j Zkl . (3.1)

Now from (6.3) in Ref. 27, we introduce the following:

(∇l∇k − ∇k∇l)Zi j = 2(∇l Ak − ∇k Al)Zi j

+ (∇l Ai − Ai Al) − (∇k Ai − Ai Ak)Z jl

+ (∇l A j − A j Al )Zik − (∇k A j − A j Ak)Zil,

(3.2)
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which by the Ricci identity turns into

−grs(Zr j Rsikl + Zir Rs jkl) = 2(∇l Ak − ∇k Al)Zi j

+ (∇l Ai − Ai Al) − (∇k Ai − Ai Ak)Z jl

+ (∇l A j − A j Al)Zik − (∇k A j − A j Ak)Zil .

Applying this to the condition ∇ lAk = ∇kAl and summing cyclically the resulting equation in
the indices j, k, l, we get

Rri Rr
jkl + Rr j Rr

kil + Rrk Rr
i jl = 0, (3.3)

where Rl
i jk denotes the component of the curvature tensor R defined by

Ri jkm = g(R(∂i , ∂ j )∂k, ∂m) = glm Rl
i jk .

Here, we recall that the component of (0, 4) type curvature tensor Rijkl satisfies the following
properties:

R jklm + Rkl jm + Rl jkm = 0, R jklm = −Rk jlm = −R jkml , R jklm = Rlmk j .

Any semi-Riemannian manifold satisfying (3.3) is called a Riemann compatible manifold.24, 26

Thus, we have

Theorem 3.1. Every space-time (PZS)4 is a Riemann compatible manifold.

Remark. We mention that there are results on manifolds satisfying (3.3) published earlier than
Refs. 23 and 24 and not cited in those papers, see, e.g., Lemma 3.3 in Ref. 1 and Ref. 13, and
Proposition 3.1 (iv) in Ref. 12.

Geometric and topological consequences of this condition were extensively studied in Ref. 26.
If we insert in the previous relation the local form of the Weyl tensor31 is defined by

Cm
jkl = Rm

jkl + 1

n − 2
(δm

j Rkl − δm
k R jl + Rm

j gkl − Rm
k g jl)

− R

(n − 1)(n − 2)
(δm

j gkl − δm
k g jl),

where the component Cl
i jk of type (1, 3) of the Weyl tensor C is defined by

Ci jkm = g(C(ei , e j )ek, em) = glmCl
i jk .

Of course, the component of (0, 4) type Weyl tensor Cijkl satisfies the following properties:

C jklm + Ckl jm + Cl jkm = 0, C jklm = −Ck jlm = −C jkml , C jklm = Clmk j .

Any semi-Riemannian manifold satisfying

Rri C
r
jkl + Rr j C

r
kil + RrkCr

i jl = 0 (3.4)

is called Weyl-compatible. In recent works, Weyl compatibility has been extensively investigated in
the Riemannian case.26 It is known that both conditions (3.3) and (3.4) are equivalent. If we use
Einstein’s equations in (3.4), we get

Tr j C
r
ikl + TrkCr

il j + TrlC
r
i jk = 0. (3.5)

From the above discussion, we may state the following:

Theorem 3.2. Let M be a (PZS)4 space-time manifold: then the relation (3.5) is fulfilled for any
stress-energy tensor.
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In General Relativity, it is customary to define the electric and magnetic part of the Weyl tensor
(see Refs. 2 and 34). Precisely given a normalized velocity vector ui (i.e ui ui = −1) the following
(0,2) tensors are defined:

Ekl = u j umC jklm,

Hkl = 1

4
u j um(εαβ jkCαβ

lm + εαβ jlC
αβ

km),
(3.6)

where the component Cαβ

lm of type (2, 2) of the Weyl tensor can be defined by

C jklm = gαmCα
jkl = gαm gβlC

αβ

jk

and εijkl denotes the completely skew-symmetric Levi-Civita symbol.22, 29 The tensor Ekl is named
electric part of the Weyl tensor, while the tensor Hkl is named magnetic part of the Weyl tensor;
elementary properties are found to be2

gkl Ekl = gkl Hkl = 0,

uk Ekl = uk Hkl = 0.

Moreover, the Weyl tensor is uniquely decomposed in its electric and magnetic parts. In Ref. 2, it was
specified that Eq. (3.6) is also valid in the case uiui = + 1. A fundamental property of the magnetic
part of the Weyl tensor satisfying condition (3.5) was stated in Ref. 26: we reproduce it here for
completeness. We focus on stress-energy tensors of the form Tkl = αukul + βgkl with normalized
covector uj: in this case such covector permits the decomposition of the Weyl tensor. Equation (3.5)
takes the form

ui umC jk
lm + u j umCki

lm + ukumCi j
lm = 0.

The previous equation is thus multiplied by εijkp to get

εi jkpui umC jk
lm + εi jkpu j umCki

lm + εi jkpukumCi j
lm = 0.

Recalling the skew-symmetric properties of the Levi-Civita symbol, we simply have

εi jkpui umC jk
lm = εki jpukumCi j

lm = εi jkpukumCi j
lm,

εi jkpu j umCki
lm = ε jkipu j umCki

lm = εi jkpukumCi j
lm .

Thus, we infer that 3εi jkpukumCi j
lm = 0 and so the magnetic part of the Weyl tensor vanishes.

Theorem 3.3. (Ref. 26) Let M be any space-time manifold having a Weyl compatible stress
energy tensor of the form Tkl = αukul + βgkl: then the magnetic part of the Weyl tensor vanishes.

Space-times in which Hki = 0 are named purely electric space-times, while the condition Ekl =
0 defines purely magnetic space-times.34 In general relativity, a deep comprehension of gravitational
fields structure is obtained from the algebraic classification of the Weyl tensor in terms of its
eigenvalues and eigenvectors (see Refs. 30 and 34). This is known as the Petrov classification.30

It turns out that the eigenvalues of the Weyl tensor satisfy a fourth order equation. The eigenvalue
multiplicity classifies five different types of space-times. Thus, for Petrov type I space time the quartic
roots are all distinct, for type II one double root is present, for type D there are two double roots,
for type III one triple root is found, and finally for type N there is a fourfold root. The completely
degenerate case of conformally flat space-time forms the sixth type (named O). It is well known that
purely electric space-times are of Petrov type I, D, or O (conformally flat).34 We have thus:

Theorem 3.4. Let M be a non-conformally flat Pseudo-Z symmetric space-time with stress
energy tensor of the form Tkl = αukul + βgkl: then Hkl = 0 and the Petrov types are I or D.

Let us now consider a (PZS)4 space-time with an associated covector A of the concircular form

∇ j Ai = γ g jl + δA j Ai , (3.7)

 16 April 2024 11:36:44



042502-5 C. A. Mantica and Y. J. Suh J. Math. Phys. 55, 042502 (2014)

where γ and δ are constant. As, for example, satisfying (3.7), we introduce that in the class of
four-dimensional warped product manifolds with one-dimensional base it will be possible to find
suitable examples of non-conformally (PZS)4 space-times with an associated covector A satisfying
(3.7). Evidently, the fibre of investigated warped products is a three-dimensional manifold. Note that
the metric of such fibre can be presented in a diagonal form (see Ref. 21).

The integrability conditions of the previous equation (3.7) read

Am Rm
jkl = γ δ(A j gkl − Ak g jl). (3.8)

After a straightforward calculation we infer easily

Ai Am Rm
jkl + A j Am Rm

kil + Ak Am Rm
i jl = 0.

Thus, the tensor bkl = AkAl turns out to be Riemann compatible.23 Consequently, it is also Weyl
compatible as it satisfies

Ai AmCm
jkl + A j AmCm

kil + Ak AmCm
i jl = 0. (3.9)

If AiAi = − 1, this again allows the decomposition of the Weyl tensor into an electric and magnetic
part. Thus, again it is inferred that εi jkp Ak AmCi j

lm = 0 and the magnetic part Hkl vanishes. From the
above discussion, the following theorem may be stated as follows:

Theorem 3.5. Let M be a non-conformally flat Pseudo-Z symmetric space-time with associated
time-like covector A, AiAi = − 1, of the form ∇ jAl = γ gjl + δAjAl being γ , δ constants, then Hkl

= 0 and the Petrov types are I or D.

In the sequel, we present an example of (PZS)4 space-time as follows:

Example 3.6. Let us define a semi-Riemannian metric on the four-dimensional vector space as
follows:

ds2 = gkldxkdxl = f (dx1)2 + 4dx1dx2 + (dx3)2 − (kx1)2(dx4)2,

where f = α0 + α1x3 + α2(x3)2, α0, α1, α2 are non-constant scalar functions of x1 only and k is a
non-null arbitrary constant. So the metric tensor may be written in the form

(gi j ) =

⎛
⎜⎜⎝

f 2 0 0
2 0 0 0
0 0 1 0
0 0 0 −(kx1)2

⎞
⎟⎟⎠.

Then the inverse matrix of g = (gji) can be given as follows:

(gi j ) =

⎛
⎜⎜⎜⎝

0 1
2 0 0

1
2 − f

4 0 0

0 0 1 0
0 0 0 − 1

(kx1)2

⎞
⎟⎟⎟⎠.

We also note that the metric g considered in this example if defined on an non-empty open (and
connected) subset U of R4 such that at every point of U we have x1 > 0 or at every point of U we
have x1 < 0. Then the Christoffel symbols may be calculated with the formula

�k
i j = 1

2
gkl(

∂gil

∂x j
+ ∂g jl

∂xi
− ∂gi j

∂xl
).

Then it can be given as follows:

�2
11 = 1

4
∇1 f, �2

13 = 1

4
∇3 f, �3

11 = −1

2
∇3 f, �4

14 = 1

x1
, �2

44 = k2

2
x1.

Now let us verify that

R1331 = 1

2
∇3∇3 f, R11 = 1

2
∇3∇3 f = α2 �= 0, ∇1 R11 = ∇1α2 �= 0.
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But Rkl = −Rm
mkl = −R1

1kl − R2
2kl − R3

3kl − R4
4kl so we evaluate

Rl
i jk = ∂�l

jk

∂xi
− ∂�l

ik

∂x j
+ �l

im�m
jk − �l

jm�m
ik .

Then by using the expressions of the Christoffel symbol �k
i j and the function f given above, explicitly

we calculate the component of the curvature tensor R as follows:

R2
211 = 0, R3

311 = ∂�3
11

∂x3
= −1

2
∇3∇3 f,

and

R4
411 = −∂�4

41

∂x1
− �4

14�
4
14 = 1

(x1)2
− 1

(x1)2
= 0.

We have shown that R11 = 1
2∇3∇3 f = α2 �= 0 and thus that ∇1R11 = ∇1α2 �= 0. It is easily found

that the scalar curvature of this metric is zero. In fact, R = g11R11 = 0. Thus, since we have
ϕ = − R

2 + � we may set ϕ = 0 choosing the cosmological constant � = 0. From the definitions
(1.1) of the Z tensor, (1.2) of Pseudo-Z symmetric manifold, and considering the previous relations
concerning the Ricci tensor and its covariant derivatives we have to satisfy

∇1 R11 = 4A1 R11

for some one-form A1. We get ∇1α2 = 4A1α2, from which it follows that

A1 = 1

4
∇1log|α2|.

The covector A is thus a closed one form. Moreover, from the definition of conformal curvature
tensor we have C1331 = R1331 + g33

2 R11 = 3
2α2 �= 0 and the Pseudo-Z-symmetric manifold is not

conformally flat. The electric component of the Weyl tensor is thus E33 = C1331ulul �= 0 and
the magnetic component vanishes. Thus, we have an example on non-conformally flat Pseudo-Z
symmetric space-time. Since the Ricci tensor is of rank one, it is a quasi-Einstein manifold. We
recall that a pseudo-Riemannian manifold (M, g), n ≥ 3, is said to be a quasi-Einstein manifold if at
every point of M we have rank(S − αg) ≤ 1, for some α ∈ R.

Moreover, since R11 = kT11 = k(μ + p)u1u1 + kpg11, we know that k(μ + p) = b and kp = 0.
This satisfies the assumption of Theorem III.4. So the magnetic part of the Weyl tensor identically
vanishes. Also this becomes a perfect fluid space-time in Sec. IV.

Remark. As it was stated above, R1331 is non-zero and other local components of the curvature
tensor R vanish. Now we can easily check that the tensor R satisfies

ωh Ri jkl + ωi R jhkl + ω j Rhikl = 0, (3.10)

where ωh are the local components of the 1-form ω defined by ω = (β1, 0, β3, 0) and β1 and
β3 are some non-zero smooth functions. We note that (3.10) leads to some curvature condition of
pseudo-symmetry type (see Ref. 14, Theorem 1). Moreover, we can also check that the metric g is
a semi-symmetric metric, that is, the condition R · R = 0 is satisfied (see Ref. 35).

Consider the metric of example 1 of Ref. 14 (also see Ref. 33) defined on M = Rn, n ≥ 4 by the
formula

grsdxr dxs = A(dx1)2 + kαβdxαdxβ + 2dx1dxn, (3.11)

where (kαβ) is a symmetric and non-singular matrix consisting of constants, A is a function inde-
pendent of xn, and α, β, γ , δ ∈ {2, 3, . . . , n − 1}. The only components of the Riemann and Weyl
tensors not identically zero are those related to

R1αβ1 = 1

2
∇α∇β A
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and

C1αβ1 = 1

2
∇α∇β A − 1

2(n − 1)
kαβkγ δ∇γ ∇δ A.

Note that in Ref. 14 it was shown that the curvature tensor, as well as the Weyl tensor of the
metric g, defined by (3.11), satisfies (3.10) for some 1-form ω. We refer to Ref. 9 for further results
on manifolds satisfying (3.10).

IV. PERFECT FLUID PSEUDO-Z SYMMETRIC SPACE-TIME

In this section, we consider perfect fluid (PZS)4 space-times. Perfect fluid (PZS)4 were investi-
gated in Ref. 27. They are characterized by a non-null stress-energy tensor given by the following
equation (see Refs. 20, 34, and 36):

Tkl = (μ + p)ukul + pgkl, (4.1)

where μ is the energy density, p is the isotropic pressure, and ui the fluid flow velocity with the
condition uiui = − 1. The fluid is called perfect because of the absence of heat conduction terms
and stress terms corresponding to viscosity.20 In addition, p and μ are related by an equation of state
governing the particular sort of perfect fluid under consideration. In general, this is an equation of
the form p = p(μ, T) where T is the absolute temperature. However, we shall only be concerned with
situations in which T is effectively constant so that the equation of state reduces to p = p(μ). In this
case, the perfect fluid is called isentropic.20 From Theorem 3.4, we immediately have

Theorem 4.1. Let M be a non-conformally flat (PZS)4 perfect fluid space-time: then Hkl = 0
and the Petrov types are I or D.

The most important features of perfect fluid Pseudo-Z symmetric space-times were studied in
Ref. 27. The following argument was stated. The condition Al Zkl = − Ak

3 Z is applied on Einstein’s
equation Zkl = kTkl giving

k(μ + p)uk Alul + kp Ak = − Z

3
Ak . (4.2)

Transvecting with uk, we infer

(kμ − Z

3
)Akuk = 0. (4.3)

If the condition Akuk �= 0 is fulfilled, we have kμ = Z
3 . Now Zkl = kTkl give rise to Z = kT and so

from T = k(3p − μ), to Z = k(3p − μ). It follows immediately that kp = 4
9 Z and that μ = 3

4 p:
this is the equation of state of this kind of space-times. Inserting kμ = Z

3 in Eq. (4.2) one easily
obtain k(μ + p)ukAlul = − k(μ + p)Ak and thus Ak = − ukAlul. Now from R

2 + ϕ = � and Z = R
+ 4ϕ it follows that Z = 4� − R. Inserting these relations in Einstein’s equations it follows after a
straightforward calculation that

Rkl = 7

9
(4� − R)ukul + 1

9
(7� − R

2
)gkl . (4.4)

Thus, the manifold satisfying (4.4) is a quasi-Einstein manifold. For instance, in the Riemannian
case they were investigated in Refs. 6 and 11; in the pseudo-Riemannian case they arose during
the study of exact solutions of Einstein equations and during the investigations of quasi-umbilical
hypersurfaces of pseudo-Euclidean spaces.12, 15 For example, the Robertson-Walker space-times are
quasi-Einstein.12 We refer to Refs. 7 and 16 for recent results on quasi-Einstein manifolds. Thus,
the following theorem holds.

Theorem 4.2. (Ref. 27) Let (PZS)4 be a perfect fluid space-time manifold: if the condition Akuk

�= 0 is fulfilled, then the space is quasi-Einstein and the one form Ak is proportional to the fluid flow
velocity.
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The fluid flow velocity is thus irrotational. This is a generalization of the result due to
Ray-Guha:32 a perfect fluid pseudo-Ricci Symmetric space-time is a quasi-Einstein manifold with
each of its associated scalars equal to R

3 .
If the condition Akuk = 0 is fulfilled, we have from (4.2) (kp + Z

3 )Ak = 0 and thus kp = − Z
3

(being Ak �= 0). Again from Z = k(3p − μ) we infer kμ = − 2Z and the state equation p = μ

6 .
Inserting again in Einstein equations, we get

Rkl = 7

3
(R − 4�)ukul + 1

6
(5R − 14�)gkl . (4.5)

Thus, the following theorem may be stated.

Theorem 4.3. Let (PZS)4 be a perfect fluid space-time manifold: if the condition Akuk = 0 is
fulfilled, then the space is quasi-Einstein.

V. SCALAR FIELD PSEUDO-Z SYMMETRIC SPACE-TIMES

In the sequel, we consider a (PZS)4 scalar field space-time and study its properties. The
Lagrangian (density) of a real spin-0 field ψ is defined as20,3,4

L = −1

2
(∇kψ)(∇lψ)gkl − V (ψ). (5.1)

In the previous expression, V (ψ) is a potential that models the self-interaction between particles.
The Euler-Lagrange equations are

∇l∇lψ − dV (ψ)

dψ
= 0, (5.2)

where �2ψ = ∇ j∇ jψ = g jl∇ j∇lψ is the covariant d’ Alembertian operator in curved space.20, 36

In the case V (ψ) = m2

2�2 ψ
2 (m is the particle mass and � is the Planck constant divided by 2π ), these

are known as the Klein-Gordon equation.20 The stress-energy tensor of a scalar field ψ space-time
is written as3, 4, 20

Tkl = (∇kψ)(∇lψ) − 1

2
gkl[(∇ jψ)(∇ jψ) + V (ψ)]. (5.3)

This defines a scalar field minimally coupled with matter. Upon quantisation, this field theory
describes collection of neutral particles subjected to their mutual interaction and gravitational at-
traction. In this case of a (PZS)4 scalar field space-time, we have a differential structure that may
modify the mutual interaction. Moreover, the coupling determines constrictions on the scalar field
and on the potential V (ψ). Scalar field space-times were investigated in Refs. 3 and 4.

If we define u j = ∇ j ψ√
|(∇lψ)(∇lψ)| (with the condition (∇ jψ)(∇ jψ) �= 0), we obviously have ujuj

= − 1 if (∇ jψ)(∇ jψ) < 0 and ujuj = + 1 if (∇ jψ)(∇ jψ) > 0, and the stress energy tensor may be
written in the form Tkl = αukul + βgkl being α = |(∇ lψ)(∇ lψ)| and β = − 1

2 [(∇lψ)(∇lψ) + V (ψ)].
From Theorem 3.4, we immediately have the following.

Theorem 5.1. Let M be a non-conformally flat (PZS)4 scalar field space-time: if (∇ jψ)(∇ jψ)
< 0, then Hkl = 0 and the Petrov types are I or D.

A possible example of a non-conformally flat (PZS)4 of the Petrov types I or D satisfying the
condition (∇ jψ)(∇ jψ) < 0 is possibly that described in example 3.6 with uj defined as before.

Again if the condition Al Zkl = − Ak
3 Z is applied on Einstein’s equation Zkl = kTkl, one can

obtain the following relation:

k[(∇kψ)Al(∇lψ) + β Ak] = − Ak

3
Z . (5.4)
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The previous equation is then transvected with ∇kψ to obtain easily

(
k[(∇kψ)(∇kψ) + β] + Z

3

)
Al(∇lψ) = 0. (5.5)

If we suppose that Al(∇ lψ) �= 0, then we have

k[(∇kψ)(∇kψ) + β] = − Z

3
. (5.6)

Inserting back in Eq. (5.4) we obtain Ak = ∇kψ
[ Al (∇lψ)

(∇ j φ)(∇ j ψ)

]
. We thus state the following.

Theorem 5.2. Let (PZS)4 be a scalar field space-time: if the condition Al(∇ lψ) �= 0 is fulfilled,
then the one form Ak is proportional to the field gradient.

Again Zkl = kTkl gives rise to Z = kT and thus from T = (∇kψ)(∇kψ) + 4β we easily have Z
= k[(∇kψ)(∇kψ) + 4β]. Combining with (5.6) after straightforward calculations we infer

Z = −18kV (φ), k(∇lψ)(∇lψ) = −7

9
Z . (5.7)

We thus get (∇lψ)(∇lψ) = 14V (ψ). From the previous results inserting back in the Lagrangian,
it is easily seen that L = − 4

7 (∇kψ)(∇lψ)gkl = −8V (ψ). Thus, the Euler-Lagrange equations
become

dV (ψ)

dψ
= 0, ∇l∇lψ = 0. (5.8)

From the relation ∇k V (ψ) = dV (ψ)
dψ

∇kψ , we easily infer ∇k V (ψ) = 0. Thus, the relevant con-
ditions imposed on the scalar field may be written as

g jl(∇ jψ)(∇lψ) = K , g jl∇ j∇lψ = 0, (5.9)

being K = 14V (ψ) a constant. If the condition Al(∇ lψ) = 0 is fulfilled from (5.4), we have
Ak(βk + Z

3 ) = 0 and thus βk = − Z
3 (being Ak �= 0). Combining with Z = k[(∇kψ)(∇kψ) + 4β]

we infer

Z = −6

5
kV (ψ), k(∇lψ)(∇lψ) = 7

3
Z , (5.10)

and finally (∇lψ)(∇lψ) = − 14
5 V (ψ). These results give the same equations (5.9) (with a constant

K′). We may state the following.

Theorem 5.3. Let (PZS)4 be a scalar field space-time. Then the field ψ satisfies Eq. (5.9).

The first equation is a generalization of the well-known eikonal equation from geometrical
optics (see Refs. 17–20). The eikonal equation arises during the study of Maxwell’s equations for
the vector potential �k (see Ref. 36)

∇l∇l�k − Rl
k�l = −4π jk

(being jk the current density) in terms of waves oscillating with nearly constant amplitude, i.e., with
the ansatz �k = CkeiS, being Ck a constant vector field and S a scalar function called phase of the
wave. Neglecting source terms, small derivatives terms and the curvature term, it is inferred that
gkl(∇kS)(∇ lS) = 0. The second equation is simply the wave equation for the scalar field.

We focus on some consequences of the first of equations (5.9) (∇ jψ)(∇ jψ) = K. As it is well
known8, 36 the vector kj = ∇ jψ is orthogonal to the surface of constant ψ . Moreover, it is obviously
a closed form, i.e., ∇nkl = ∇ lkn. We infer thus

km(∇nkl − ∇l kn) + kn(∇l km − ∇mkl) = 0.
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This last relation may be written in the form8

k[m∇n]kl + ∇l k[mkn] = 0,

where A[i j] = 1
2 (Ai j − A ji ) (see Ref. 8). Transvecting with kl the previous relation takes the final

form

(k[m∇n]kl)k
l + kl∇l k[mkn] = 0. (5.11)

Now from klkl = K being K constant we have simply km∇n(klkl) = 0 and thus km(∇nkl)kl = 0
and finally (k[m∇n]kl)kl = 0. Considering (5.11) this implies that8

kl∇l k[mkn] = 0. (5.12)

We have just proved that the integral curves of the vector kj are geodesics (see Ref. 8, p. 86 or
Ref. 36). Thus, we state the following.

Theorem 5.4. Let (PZS)4 be a scalar field space-time manifold. Then the integral curves of field
∇ jψ are geodesics. If K = 0, they are null geodesics.

Now we consider a possible solution of Eq. (5.9): they may be evaluated in a local inertial (flat)
frame for which34

gkl = ηkl = diag(−1, 1, 1, 1).

We have thus

(ψx )2 + (ψy)2 + (ψz)
2 − (ψt )

2 = K ,

ψxx + ψyy + ψzz − ψt t = 0,
(5.13)

being ψx = ∂ψ

∂x , ψxx = ∂2ψ

∂x2 and so on. The first of the previous equations admits a complete integral
of the form (see Refs. 18 and 36)

ψ0 = α1x + α2 y + α3z + α4t, (5.14)

where ai are constants subjected to the conditions

a4 =
√√√√ 3∑

i=1

a2
i − K and

3∑
i=1

a2
i − K ≥ 0.

Equation (5.14) obviously satisfies the second condition of (5.13) (the wave equation). We have thus
obtained a particular solution of the system (5.13). In an arbitrary Lorentzian metric, the equation

g jl(∇ jψ)(∇lψ) = 0 (5.15)

was extensively studied in the literature18, 19 and it is of great importance in General Relativity.8, 36

Following a similar method employed in Refs. 18 and 19, we are able to produce an arbitrary
solution of the generalized eikonal equation

g jl(∇ jψ)(∇lψ) = K (5.16)

if a special class of solution is known. A particular solution is given by

ψ0 = ψ0(qi a1, . . . , ar ), (5.17)

where ai are r parameters and qi are the coordinates on a local chart. A general integral can thus be
written as

ψ(qi , a1, . . . , ar ) = ψ0(qi , a1, . . . , ar ) − h(a1, . . . , ar ), (5.18)

where h(a1, . . . , ar) is an arbitrary function (see Refs. 18 and 19). In Ref. 18, three parameters are
considered for the solution in flat space-time (see Eq. (5.14)); in Ref. 19, the parameters are the
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complex stereographic coordinates ζ, ζ̄ on the sphere S2. Now the field ψ(qi, a1, . . . , ar) (5.18) is
extremized with respect to the parameters

∂ψ

∂ai
= ∂ψ0

∂ai
− ∂h

∂ai
= 0, i = 1, 2, . . . , r. (5.19)

As stated in Ref. 18, if the condition

∣∣ ∂2ψ0

∂ai∂a j

∣∣ �= 0

is fulfilled, Eq. (5.19) can be solved for ai = ai(qj), i = 1, 2, . . . , r and inserting back in (5.18) a
solution of the generalized eikonal equation is obtained. In fact, being ψ = ψ(qj, a1(qj), a2(qj), . . . ,
ar(qj)) we infer

∇ jψ = ∂ψ

∂q j
+

r∑
i=1

∂ψ

∂ai

∂ai

∂q j
= ∂ψ0

∂q j
+

r∑
i=1

∂ψ

∂ai
∇ j ai = ∇ jψ0. (5.20)

In Refs. 18 and 19, the authors stated that given arbitrary Cauchy data for the eikonal equation,
then the function h(a1, . . . , ar) is determined, and thus by construction, the general solution of such
equation. Moreover, as pointed out in Refs. 18 and 19, the regions where Eq. (5.19) cannot be solved
for ai = ai(qj), i = 1, 2, . . . , r are named the caustics of the solution.

This method allows us to find the general solution of gjl(∇ jψ)(∇ lψ) = K in a flat space-time,
being ψ0 defined in Eq. (5.14) with three independent parameters. Finally, we underline that the filed
ψ0 in general non-flat metric should solve the wave equation gkl∇k∇ lψ0 = 0 and, by construction,
the general solution too.

The condition gjl(∇ jψ)(∇ lψ) = K has a further peculiar geometric picture. In Theorem 1 in
Ref. 4, the scalar field space time manifold was partitioned in three components named T, S, and F. In
the T region, it is (∇ jψ)(∇ jψ) < 0 (time-like), in the S region (∇ jψ)(∇ jψ) > 0 (space-like) and finally
in the F region (∇ jψ)(∇ jψ) = 0. Moreover, ∇kψ is always an eigenvector of the energy momentum
tensor with corresponding eigenvalue λ = 1

2 (∇kψ)(∇kψ) − V (ψ) (see Ref. 4). Further in the T
region, the eigenvalues are λ and σ = − 1

2 (∇kψ)(∇kψ) − V (ψ) (degenerate) and in the S region
they are σ and λ (degenerate). From the condition (∇lψ)(∇lψ) = 14V (ψ) and from Theorem 1
in Ref. 4 we easily infer.

Theorem 5.5. Let (PZS)4 be a scalar field space-time. If the condition Al(∇ lψ) �= 0 is fulfilled,
then the space-time may be decomposed in the following sets:

(1) V (ψ) < 0 with eigenvalues λ = 6V (ψ) (degenerate) and σ = −8V (ψ),
(2) V (ψ) < 0 with eigenvalues λ = 6V (ψ) and σ = −8V (ψ) (degenerate).

From the above discussion, an analogous result is valid if the condition Al(∇ lψ) = 0 is fulfilled.
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