
PERIMETER INEQUALITY UNDER CIRCULAR AND STEINER

SYMMETRISATION: GEOMETRIC CHARACTERISATION OF EXTREMALS

MATTEO PERUGINI

Abstract. We study the perimeter inequality under circular symmetrisation, and we provide a
full geometric characterisation of equality cases. A careful inspection of the proof shows that a

similar characterisation holds true also for the perimeter inequality under Steiner symmetrisation.

Our result is based on a new short proof of the perimeter inequality under symmetrisation.

1. Introduction

In this paper we give a geometric characterisation of the extremals of circular and Steiner
perimeter inequalities.

1.1. Overview. Symmetrisation procedures have been proved to be important tools in mathemat-
ical analysis, and indeed they have been widely used to deduce geometric properties of minimizers
of variational problems, and of solutions to PDEs. For instance, Steiner symmetrisation is a fun-
damental instrument in the proof by Ennio De Giorgi of the isoperimetric inequality (see [9, 10],
and [13, Chapter 14]), while Schwarz symmetrisation was used to prove the classic Faber-Krahn
inequality (see [12, Chapter II.8]).

Despite these techniques have been used for many decades, the detailed study of the equality
cases for the perimeter inequalities under symmetrisation, is a relatively recent topic of investiga-
tion. One of the first results in this direction is due to De Giorgi: in his proof of the isoperimetric
inequality he showed that if a set satisfies equality in Steiner’s inequality, then it must be convex
along the direction in which one performs the symmetrisation. After that, the problem of char-
acterizing the equality cases for Steiner’s inequality was resumed, and intensively investigated by
Chleb́ık, Cianchi and Fusco. In their seminal work [7], the authors gave necessary conditions that
a set must satisfy in order to be an extremal [7, Theorem 1.1], and provided sufficient conditions
under which rigidity of equality cases holds true. Here, by rigidity we mean the case where the
only sets achieving equality are those that are already symmetric (w.r.t. the symmetrisation pro-
cedure under consideration). The results obtained in [7] were successfully extended to the Steiner
symmetrisation in any codimension in [2] (thus including also the Schwarz symmetrisation), but
still no full characterisation of the cases of equality was proved.

Finally in [4], Cagnetti, Colombo, De Philippis and Maggi gave a full analytic characterisation
of equality cases for the Steiner’s inequality in terms of the properties of the barycenter function
(see [4, Theorem 1.9]). Thanks to new tools introduced by the same authors in [5], they were able
to further push the study of the rigidity, obtaining new important results. Still in the framework of
Steiner symmetrisation, inspired by [4] and employing some general notions of convex analysis, the
author was able to extend the analytic characterisation of equality cases to the anisotropic setting
(see [14, Theorem 1.8]).

Despite a full characterisation of equality cases was successfully achieved for the Steiner’s in-
equality, for other types of symmetrisation procedures such result is still missing. In particular, in
the aforementioned work presented in [5], the authors were able to fully characterize the rigidity
of equality cases for the Gaussian perimeter inequality under Ehrhard’s symmetrization, but they
only showed useful necessary conditions (not sufficient) for equality cases (see [5, Theorem A]).
Lastly, a similar situation to the one just described for the Gaussian perimeter was obtained but
in the setting of the perimeter inequality under spherical symmetrisation. Indeed in [6] the author
together with Cagnetti and Stöger were also able to provide the full characterisation of the rigidity
problem, but regarding the characterisation of extremals nothing more than a result that can be
considered as the spherical counterpart of [7, Theorem 1.1] was achieved (see [6, Theorem 1.1]).
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The analytic characterisations given in [4, Theorem 1.9] and [14, Theorem 1.8] have proven to
be quite helpful in the study of rigidity. However, they can be quite difficult to use in specific
situations, since they are expressed in terms of fine properties of the barycenter function of the one
dimensional slices of the sets.

In this paper we present a geometric characterisation of extremals for the perimeter inequal-
ity under both circular and Steiner symmetrisation. Such characterisation is written in terms of
geometric properties of the (measure-theoretic) inner unit normal νE to the set E to which the
symmetrisation is applied (see Theorem 1.3). In the Steiner setting, these properties appear easier
to check than the analytic conditions given in [4, Theorem 1.9]. In the framework of circular sym-
metrisation, to the best of our knowledge this is the first characterisation result for the extremals
of the perimeter inequality.

We will provide a detailed proof of our result for circular symmetrisation, and we will then show
how this can be adapted to the Steiner setting. Inspired by [11, Section 4.1.5], we introduce a
measure associated to the distribution function of the set under consideration (see (3.8)). This
allows us to give a short and direct proof of the perimeter inequality and, in turn, to describe the
extremals.

As far as we know, the circular symmetrisation for sets, and its application to rearrangements
of functions, was firstly introduced by Pólya in [15] (see also [16, A.7–A8], and [12, Chapter II.9]).
Let us now precisely introduce the circular symmetrisation for sets (see also Figure 1.1).

1.2. Circular symmetrisation for sets. Let us start presenting some of the notation we will
use in this paper. Let k ∈ N, with k ≥ 2. We will decompose Rk as R2 × Rk−2, and we will write
(x, z) ∈ Rk, with x ∈ R2 and z ∈ Rk−2. We will denote by | · | the Euclidean norm of R, R2, Rk−2,
Rk, or the total variation of a Radon measure, depending on the context. For d ∈ N, with 1 ≤ d ≤ k
we denote by Hd, and Ld the d-dimensional Hausdorff and Lebesgue measure in Rk, respectively.
We set R2

0 := R2 \ {(0, 0)}, S1 = {x ∈ R2
0 : |x| = 1}, and Sk−1 = {(x, z) ∈ Rk : |(x, z)| = 1}.

Moreover, given r > 0 we write ∂B(r) = {x ∈ R2 : |x| = r} to denote the boundary of the
2-dimensional ball centered at the origin with radius r. Lastly, for every x ∈ R2

0 we set x̂ = x/|x|.
We are now going to define the circular symmetral of a Borel set in Rk with respect to the

half-hyperplane {(x1, x2, z1, . . . , zk−2) ∈ Rk : x1 > 0, x2 = 0} = (0,∞) × {0} × Rk−2. For every
Borel set E ⊂ Rk we define

E(r,z) := {x ∈ R2
0 : |x| = r and (x, z) ∈ E} ⊂ ∂B(r) for every (r, z) ∈ (0,∞)× Rk−2. (1.1)

Note that, by definition, we have

0 ≤ H1(E(r,z)) ≤ 2πr, for every (r, z) ∈ (0,∞)× Rk−2.

Let now µ : (0,∞)× Rk−2 → [0,∞) be a Lebesgue measurable function satisfying

0 ≤ µ(r, z) ≤ 2πr, for Lk−1-a.e. (r, z) ∈ (0,∞)× Rk−2. (1.2)

We will say that E is µ-distributed if

µ(r, z) = H1(E(r,z)), for Lk−1-a.e. (r, z) ∈ (0,∞)× Rk−2.

Given a Lebesgue measurable function µ : (0,∞) × Rk−2 → [0,∞) satisfying (1.2), we define the
set Fµ ⊂ Rk as

Fµ :=
{
(x, z) ∈ R2

0 × Rk−2 : 2|x| arccos(x̂ · e1) < µ(|x|, z)
}
, (1.3)

where e1 ∈ R2 is defined as e1 = (1, 0).

Remark 1.1. Note that by definition of Fµ, we have

(x, z) ∈ Fµ =⇒ (w, z) ∈ Fµ ∀w with |w| = |x| and arccos(ŵ · e1) ≤ arccos(x̂ · e1).
If E ⊂ Rk is a µ-distributed Borel set, we say that Fµ is the circular symmetral of E with respect
to the half-hyperplane {(x1, x2, z1, . . . , zk−2) ∈ Rk : x1 > 0, x2 = 0}.
There is a particular bond between circular symmetrisation and Steiner symmetrisation. Firstly,
both symmetrisation techniques act by slicing sets with lines of dimension 1, and second, as ob-
served by Pólya and Szegö themselves, the limit as c→ −∞ of the circular symmetrisation of a set
E w.r.t. the half-hyperplane {(x1, x2, z1, . . . , zk−2) ∈ Rk : x1 > c, x2 = 0} “tends” to the Steiner
symmetrisation of E w.r.t. the full hyperplane {(x1, x2, z1, . . . , zk−2) ∈ Rk : x2 = 0}.
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Figure 1.1. A pictorial representation in R3 of a µ-distributed set E and of its
circular symmetral Fµ.

1.3. Main results. Let us now present the main results of this work. The first result consists
in a precise description of the geometric properties of the symmetral set Fµ defined in (1.3). In
the following, given any set E ⊂ Rk of locally finite perimeter we denote with ∂∗E and with
νE(x, z) the reduced boundary of E, and the (measure-theoretic) inner unit normal to ∂∗E at
(x, z), respectively (see Section 2 for more details). Given any vector ν ∈ Rk we set

νx = (ν1, ν2), νz = (ν3, ν4, . . . , νk).

In particular, given any vector field ν : Rk → Rk we use the following notation:

νx⊥(x, z) = (x̂ · νx(x, z))x̂, νx∥(x, z) = νx(x, z)− νx⊥(x, z) ∀ (x, z) ∈ R2
0 × Rk−2. (1.4)

Given E ⊂ Rk set of locally finite perimeter, we set

νEc (x, z) := (x̂ · νEx (x, z), |νEx∥(x, z)|, νEz (x, z)), for Hk-a.e. (x, z) ∈ ∂∗E ∩ (R2
0 × Rk−2). (1.5)

First of all, we show some useful symmetry properties of the (measure-theoretic) inner unit normal
νFµ of Fµ.

Proposition 1.2. Let µ : (0,∞) × Rk−2 → [0,∞) be a Lebesgue measurable function satisfying
(1.2) such that Fµ is a set of locally finite perimeter. Then, for every (r, z) ∈ (0,∞)×Rk−2 such
that (∂∗Fµ)(r,z) ̸= ∅, the functions

x 7→ x̂ · νFµ
x (x, z), x 7→ |νFµ

x∥ (x, z)|, x 7→ νFµ
z (x, z), (1.6)

are constant in (∂∗Fµ)(r,z), that is x 7→ ν
Fµ
c (x, z) is constant in (∂∗Fµ)(r,z).

We observe that a weaker version of the above result in the Steiner setting was already known
(see [2, Remark 2.5]). Let us now introduce some further notation that we will need in order

to state the next theorem. Thanks to Proposition 1.2 we can define the Borel vector field ν̄
Fµ
c :

(0,∞)× Rk−2 → Rk as

ν̄
Fµ
c (r, z) =

{
ν
Fµ
c (x, z) if (∂∗Fµ)(r,z) ̸= ∅, and x ∈ (∂∗Fµ)(r,z),

0 otherwise.
(1.7)

Proposition 1.2 is the new ingredient for the characterisation of equality cases for the perimeter
inequality under circular symmetrisation. In the following, we define the diffeomorphism Φ :
(0,∞)× Rk−2 × S1 → R2

0 × Rk−2 as:

Φ(r, z, ω) := (rω, z) for every (r, z, ω) ∈ (0,∞)× Rk−2 × S1.
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Thus, more in general, for every Borel set B ⊂ (0,∞)× Rk−2, we set

Φ(B × S1) :=
{
(x, z) ∈ Rk : (|x|, z) ∈ B

}
.

We can now state our main result.

Theorem 1.3. Let µ : (0,∞)×Rk−2 → [0,∞) be a Lebesgue measurable function satisfying (1.2),
let U ⊂ (0,∞)×Rk−2 be an open set, and let E ⊂ Rk be a µ-distributed set such that E has finite
perimeter in Φ(U × S1). Then, Fµ has finite perimeter in Φ(U × S1) and

P (Fµ; Φ(B × S1)) ≤ P (E; Φ(B × S1)), ∀B ⊂ U Borel. (1.8)

Moreover, equality holds in (1.8) for some Borel set B ⊂ U if and only if both the following two
conditions are satisfied.

a) For Lk−1-a.e. (r, z) ∈ B we have that (E)(r,z) is H1-equivalent to a connected arc in R2.

b) There exists N ⊂ ∂∗E with Hk−1(N) = 0, with the property that for every (r, z) ∈ B
such that (∂∗E \N)(r,z) ̸= ∅, and (∂∗Fµ)(r,z) ̸= ∅, we have that

νEc (x, z) = ν̄
Fµ
c (r, z) ∀x ∈ (∂∗E \N)(r,z). (1.9)

Remark 1.4. By definition of νEc , condition b) of the above result implies that for every (r, z) ∈ B
such that (∂∗E \N)(r,z) ̸= ∅, and (∂∗Fµ)(r,z) ̸= ∅ the functions

x 7→ x̂ · νEx (x, z), x 7→ |νEx∥(x, z)|, x 7→ νEz (x, z),

are constant in (∂∗E \N)(r,z).

Roughly speaking, we can say that condition b) of Theorem 1.3 holds true if and only if the
symmetric properties of νFµ described by Proposition 1.2 holds true also for νE . Let us point
out that in [6, Theorem 1.4] condition a) and a weaker version of condition b) were shown to
be necessary condition for a set E to be an extremal of (1.8). In particular, condition b) of [6,
Theorem 1.4] (see also condition b) of [2, Theorem 1.1]) was only discussed for Lk−1-a.e. (r, z) ∈ B,
and no information was given on the Lk−1-negligible subset of B where coarea formula cannot be
used. In order to clarify the meaning of condition b) of Theorem 1.3, let us give some examples.

x1

x1

x2 x2

z z

E
Fµ

(∂∗E)(r,z) (∂∗Fµ)(r,z)

N

Figure 1.2. A pictorial representation of a µ-distributed set E ⊂ R3 that satisfies
both conditions a) and b) of Theorem 1.3, thus being an equality case for (1.8).

Example 1.5 (Case of equality). Let us explain with an example in R3 the meaning of condition
b) of Theorem 1.3. In Figure 1.2 we marked in green the sets

(
(∂∗E(r,z)), z

)
, and

(
(∂∗Fµ)(r,z), z

)
for some (r, z) ∈ (0,∞) × R (in the picture, with a little abuse of notation, we simply call
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x1

x1

x2 x2

z z

E1

Fµ

(∂∗Fµ)(r,z)
(∂∗E1)(r,z)

(∂∗E1)(r,z)

Figure 1.3. A pictorial representation of a µ-distributed set E1 ⊂ R3 that does
not satisfy condition b) of Theorem 1.3.

them (∂∗E)(r,z), and (∂∗Fµ)(r,z), respectively). In the picture in the left one can notice the H2-
negligible set N , which is represented by the blue dashed vertical line. Let us point out that the
isolated green dot appearing in the left picture is indeed part of

(
(∂∗E(r,z)), z

)
, and it coincides

with
(
(∂∗E(r,z)), z

)
∩ N . It can be shown that νEc evaluated at that isolated point differs from

νEc evaluated at any other point of
(
(∂∗E(r,z)), z

)
\ N . Nonetheless, νEc is constant when re-

stricted to
(
(∂∗E(r,z)), z

)
\N and it coincides with ν

Fµ
c (x, z) restricted to

(
(∂∗Fµ)(r,z), z

)
, namely

νEc (x, z) = ν̄
Fµ
c (r, z) for all x ∈ (∂∗E \N)(r,z). Thus, condition b) of Theorem 1.3 holds true.

Example 1.6 (Non equality case). In Figure 1.3 we show an example of a µ-distributed set E1 ⊂ R3

that does not satisfy condition b) of Theorem 1.3. Indeed, it can be shown that νE1
c (x, z) changes

depending on weather (x, z) belongs to the green or to the red part of ((∂∗E1)(r,z), z). Note that this

phenomenon cannot be avoided by removing an H2-negligible set from ∂∗E1. Thus, condition b) is
not satisfied and therefore E1 is not an extremal of (1.8). Let us stress that, despite the set E1

does not satisfy condition b) of Theorem 1.3, it does satisfy all the necessary conditions in order
to be a case of equality for (1.8) that are listed in [6, Theorem 1.4].

Theorem 1.3 is a refinement of [6, Theorem 1.4], where the inequality (1.8) was already stated
without an explicit proof. Let us stress that, apart from some technical intermediate results,
the arguments we use to prove Theorem 1.3 differ from the standard ones used while proving
perimeter inequalities under symmetrisation (see once more [7, Theorem 1.1], and [6, Theorem
1.1]), and deeply rely on the new information given by Proposition 1.2 about the symmetral set
Fµ. Indeed, as a consequence of that, our proof of (1.8) is much more direct, and leads quite simply
to the characterisation of the equality cases.

Finally, we are able to show that analogous results hold true for the Steiner symmetrisation (see
Theorem 5.9). In fact, we believe that our short proof of (1.8) and the techniques we used to show
Theorem 1.3 can be adapted to other symmetrisation procedures, and that they can be helpful in
simplifying the study of rigidity of perimeter inequality under symmetrisation.

Structure of the paper. The paper is divided as follows. In Section 2 we recall some basic
notions of geometric measure theory and functions of bounded variation. In Section 3 for the
reader convenience we start off by stating once more the precise notation we will use throughout
the paper, and then we focus on proving Proposition 1.2 and other technical results we will need
later on. In Section 4 we present the proof of Theorem 1.3. Lastly, in Section 5 we state, without
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proofs, the Steiner counterpart of the results we obtained for the circular symmetrisation, thus
including a Steiner version of both Proposition 1.2, and Theorem 1.3 (see Proposition 5.5, and
Theorem 5.9, respectively).

Acknowledgements. The author would like to thank Filippo Cagnetti for his valuable comments
and for inspiring conversations about the subject.

2. Fundamentals of geometric measure theory

The aim of this section is to introduce some basic concepts of Geometric Measure Theory that
will be largely used in the article. For more details the reader can have a look in the monographs
[1, 11, 13, 17]. For (x, z) ∈ Rk and ν ∈ Sk−1, we will denote by H+

(x,z),ν and H−
(x,z),ν the closed

half-spaces whose boundaries are orthogonal to ν:

H+
(x,z),ν :=

{
(x̄, z̄) ∈ Rk : (x− x̄, z − z̄) · ν ≥ 0

}
, H−

(x,z),ν :=
{
(x̄, z̄) ∈ Rk : (x− x̄, z − z̄) · ν ≤ 0

}
.

In the following, given a measurable set E ⊂ Rk we will denote by χE its characteristic function,
while the k-dimensional ball of Rk of radius r > 0 and center in (x, z) is denoted with Br(x, z).

2.1. Density points. Let E ⊂ Rk be a Lebesgue measurable set and let (x, z) ∈ Rk. The upper
and lower k-dimensional densities of E at (x, z) are defined as

θ∗(E, (x, z)) := lim sup
ρ→0+

Hk(E ∩Bρ(x, z))

ωk ρk
, θ∗(E, (x, z)) := lim inf

ρ→0+

Hk(E ∩Bρ(x, z))

ωk ρk
,

respectively, where ωk ρ
k = Hk(Bρ(x, z)). It turns out that (x, z) 7→ θ∗(E, (x, z)) and (x, z) 7→

θ∗(E, (x, z)) are Borel functions that agree Hk-a.e. on Rk. Therefore, the k-dimensional density
of E at (x, z)

θ(E, (x, z)) := lim
ρ→0+

Hk(E ∩Bρ(x, z))

ωk ρk
,

is defined for Hk-a.e. (x, z) ∈ Rk, and (x, z) 7→ θ(E, (x, z)) is a Borel function on Rk. Given
t ∈ [0, 1], we set

E(t) := {(x, z) ∈ Rk : θ(E, (x, z)) = t}.

The set ∂eE := Rn \ (E(0) ∪ E(1)) is called the essential boundary of E.

2.2. Functions of bounded variation. Let f : (0,∞) × Rk−2 → R be a Lebesgue measurable
function, and let Ω ⊂ (0,∞) × Rk−2 be open, such that f ∈ L1(Ω). Then we say that f is of
bounded variation in Ω, and we write f ∈ BV (Ω) if and only if

sup
{ˆ

Ω

f(r, z) div T (r, z) dr dz : T ∈ C1
c (Ω;Rk−1) , |T | ≤ 1

}
<∞, (2.1)

where C1
c (Ω;Rk−1) is the set of C1 functions from Ω to Rk−1 with compact support. More in

general, we say that f ∈ BVloc(Ω) if f ∈ BV (Ω′) for every open set Ω′ compactly contained in
Ω. If f ∈ BVloc(Ω) the distributional derivative Df of f is representable as a Rk−1-valued Radon
measure defined on Ω, and its total variation |Df | is finite in Ω, and its value |Df |(Ω) coincides
with (2.1). Moreover, for every T ∈ C1

c (Ω;Rk−1) we have
ˆ
Ω

f(r, z)divT (r, z) dr dz = −
ˆ
Ω

T (r, z) · dDf(r, z).

One can write the Radon–Nykodim decomposition of Df with respect to Lk−1 as Df = Daf+Dsf ,
where Dsf and Lk−1 are mutually singular, and where Daf ≪ Lk−1. We denote the density of
Daf with respect to Lk−1 by ∇f , so that ∇ f ∈ L1(Ω;Rk−1) with Daf = ∇f dLk−1. Moreover,
for Lk−1-a.e. (r, z) ∈ Ω, ∇f(r, z) is the approximate differential of f at (r, z).
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2.3. Sets of finite perimeter. Let E ⊂ Rk be a Lebesgue measurable set, and let O ⊂ Rk be an
open set. We say that E ⊂ Rk is a set of finite perimeter in O if and only if

sup

{ˆ
Rk

χE(x, z)div(x,z) T (x, z) dx dz : T ∈ C1
c (O;Rk)

}
<∞, (2.2)

where by div(x,z) we mean the classical divergence in Rk w.r.t. the variables (x, z). If E ⊂ Rk is
a set of finite perimeter in O, we denote with P (E;O) its relative perimeter in O, where P (E;O)
coincides with the quantity in (2.2). If P (E) := P (E;Rk) < ∞ we say that E is a set of finite
perimeter, while more generally if P (E;V ) < ∞ for every V ⊂⊂ O, we say that E is a set of
locally finite perimeter in O. If E ⊂ Rk is a set of finite perimeter and finite volume in O, then
we have that χE ∈ BV (O), while in general if E ⊂ Rk is a set of finite perimeter in O then
χE ∈ BVloc(O). Moreover, if E ⊂ Rk is a set of locally finite perimeter in O we define the reduced
boundary ∂∗E ⊂ Rk of E as the set of those points such that

νE(x, z) := lim
ρ→0+

DχE(Bρ(x, z))

|DχE |(Bρ(x, z))
,

exists and belongs to Sk−1. The Borel function νE : ∂∗E → Sk−1 is called the (measure-theoretic)
inner unit normal to E. Given E ⊂ Rk set of locally finite perimeter in O, we have that DχE =
νEHk−1 (∂∗E ∩O) and,ˆ

Rk

χE(x, z)div(x,z) T (x, z) dx dz = −
ˆ
∂∗E∩O

T (x, z) · νE(x, z) dHk−1(x, z), ∀T ∈ C1
c (O;Rk).

The relative perimeter of E in A ⊂ O is then defined by

P (E;A) := |DχE |(A) = Hk−1(∂∗E ∩A)

for every Borel set A ⊂ O. If E is a set of locally finite perimeter in O, it turns out that

(∂∗E ∩O) ⊂ (E(1/2) ∩O) ⊂ (∂eE ∩O) .

Moreover, Federer’s theorem holds true (see [1, Theorem 3.61] and [13, Theorem 16.2]):

Hn−1((∂eE ∩O) \ (∂∗E ∩O)) = 0.

3. Properties of Fµ and µ

We start this section stating two important results. The first one, is a special case of Coarea
Formula (see [6, Proposition 6.1], and [13, Theorem 18.8]). In the following, given O ⊂ Rk open
set, and given E ⊂ Rk set of locally finite perimeter in O, we denote with L1(Rk,Hk−1 ∂∗E ∩O)
the space of integrable functions from Rk to R w.r.t. the Radon measure Hk−1 ∂∗E ∩O.

Proposition 3.1. Let µ : (0,∞) × Rk−2 → [0,∞) be a Lebesgue measurable function satisfying
(1.2), let U ⊂ (0,∞)×Rk−2 be an open set, and let E ⊂ Rk be a µ-distributed set such that E has
finite perimeter in Φ(U × S1). Let g : Rk → [−∞,∞] be a Borel function, such that either g ≥ 0
on ∂∗E ∩ Φ(U × S1), or g ∈ L1(Rk,Hk−1 ∂∗E ∩ Φ(U × S1)). Then,ˆ

∂∗E∩Φ(U×S1)
g(x, z)|νEx∥(x, z)| dHk−1(x, z) =

ˆ
U

dr dz

ˆ
(∂∗E)(r,z)

g(x, z) dH0(x).

Next result is about circular one-dimensional slices of sets of finite perimeter (see [6, Theorem
6.2]), and it can be seen as the circular counterpart of a classic result by Vol’pert (see [18], and [8,
Theorem D]).

Proposition 3.2 (Vol’pert). Let µ : (0,∞) × Rk−2 → [0,∞) be a Lebesgue measurable function
satisfying (1.2), let U ⊂ (0,∞)× Rk−2 be an open set, and let E ⊂ Rk be a µ-distributed set such
that E has finite perimeter in Φ(U × S1). Then, there exists a Borel set GE ⊂ ({µ > 0} ∩ U) with
Lk−1(({µ > 0} ∩ U) \GE) = 0 such that the following properties hold true:

(i) for every (r, z) ∈ GE:

(ia) E(r,z) is a set of finite perimeter in ∂B(r);

(ib) ∂∗
(
E(r,z)

)
= (∂∗E)(r,z);
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We are now going to show some useful properties of the symmetric set Fµ. Such properties (see
Proposition 1.2) are the new fundamental ingredient with which proving the perimeter inequality
under circular symmetrisation, and then characterize the cases of equality. In the following, for
every γ ∈ [−2π, 2π] we define Rγ as the the counterclockwise rotation of an angle γ in the plane
(x1, x2). Lastly, for every (r, z) ∈ (0,∞)× Rk−2 we set

∂B2
r (0, z) :=

{
(x, z) ∈ R2

0 × Rk−2 : |x| = r
}
. (3.1)

Roughly speaking, ∂B2
r (0, z) stands for the 1-dimensional circle in R2

0×{z} ⊂ Rk centered in (0, z)
and having radius r.

Lemma 3.3. Let µ : (0,∞) × Rk−2 → [0,∞) be a Lebesgue measurable function satisfying (1.2).
Let (r, z) ∈ (0,∞)× Rk−2, and set xr := (r, 0). Then, the functions

γ 7→ θ∗(Fµ, (Rγxr, z)) and γ 7→ θ∗(Fµ, (Rγxr, z))

are even in [−π, π] and non increasing in [0, π].

Proof. The fact that γ 7→ θ∗(Fµ, (Rγxr, z)) and γ 7→ θ∗(Fµ, (Rγxr, z)) are even in [−π, π] follows
directly from Remark 1.1. We now divide the rest of the proof into two steps.

Step 1: We show that, if 0 ≤ γ1 < γ2 ≤ π, and ρ > 0 is so small that

Bρ((Rγ1xr, z)) ∩Bρ((Rγ2xr, z)) = ∅, (3.2)

then for every (λ, z) ∈ (0,∞)× Rk−2 one has

H1
(
Fµ ∩ ∂B2

λ(0, z) ∩Bρ((Rγ2
xr, z)) ∩ Tγ2

A
)

≤ H1
(
Fµ ∩ ∂B2

λ(0, z) ∩Bρ((Rγ1
xr, z)) ∩ Tγ1

A
)
, (3.3)

for every A ⊂ Rk where, for every γ ∈ [−π, π], we set

Tγ(x, z) := (Rγx, z).

If Fµ ∩ Bρ((Rγ2
xr, z)) ∩ ∂B2

λ(0, z) = ∅, the left hand side of (3.3) equals 0 and therefore the
inequality is satisfied. Instead, suppose that

Fµ ∩Bρ((Rγ2
xr, z)) ∩ ∂B2

λ(0, z) ̸= ∅.

Then, from (3.2) and Remark 1.1 we have

Fµ ∩Bρ((Rγ1
xr, z)) ∩ ∂B2

λ(0, z) = Bρ((Rγ1
xr, z)) ∩ ∂B2

λ(0, z).

Therefore,

H1
(
Fµ ∩ ∂B2

λ(0, z) ∩Bρ((Rγ2
xr, z)) ∩ Tγ2

A
)

≤ H1
(
∂B2

λ(0, z) ∩Bρ((Rγ2
xr, z)) ∩ Tγ2

A
)

= H1
(
∂B2

λ(0, z) ∩Bρ((Rγ1
xr, z)) ∩ Tγ1

A
)

= H1
(
Fµ ∩ ∂B2

λ(0, z) ∩Bρ((Rγ1
xr, z)) ∩ Tγ1

A
)
,

which gives (3.3).

Step 2: We will show that if 0 ≤ γ1 < γ2 ≤ π, then

θ∗(Fµ, (Rγ2
xr, z)) ≤ θ∗(Fµ, (Rγ1

xr, z)),

and

θ∗(Fµ, (Rγ2
xr, z)) ≤ θ∗(Fµ, (Rγ1

xr, z)).
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Let ρ > 0 be such that (3.2) is satisfied. Then,

Hk(Bρ(Rγ1xr, z)) ∩ Fµ) =

ˆ
Bρ((Rγ1xr,z))

χFµ(x, z) dHk(x, z)

=

ˆ
Rk−2

ˆ r+ρ

r−ρ

H1(Fµ ∩Bρ((Rγ1
xr, z)) ∩ ∂B2

λ(0, z)) dλ dz

≥
ˆ
Rk−2

ˆ r+ρ

r−ρ

H1(Fµ ∩Bρ((Rγ2
xr, z)) ∩ ∂B2

λ(0, z)) dλ dz

= Hk(Bρ((Rγ2xr, z)) ∩ Fµ),

where the inequality follows from (3.3) with A = Rk. Thus,

Hk(Bρ(Rγ1
xr, z)) ∩ Fµ)

ωkρk
≥ Hk(Bρ(Rγ2

xr, z)) ∩ Fµ)

ωkρk
.

Passing to the liminf and the limsup as ρ→ 0+, the conclusion follows. □

Proposition 3.4. Let µ : (0,∞) × Rk−2 → [0,∞) be a Lebesgue measurable function satisfying
(1.2) such that Fµ is a set of locally finite perimeter. Suppose that (x, z) ∈ ∂∗Fµ, and let r ∈ (0,∞)
and β ∈ (−π, π] be such that x = r(cosβ, sinβ). Then,

νFµ(Rγx, z) =
(
Rγν

Fµ
x (x, z), νFµ

z (x, z)
)
, (3.4)

for every γ ∈ [min{−β, 0},max{−β, 0}] such that (Rγx, z) ∈ (∂∗Fµ)(r,z).

Roughly speaking, what the above result says is that, given (x, z) ∈ ∂∗Fµ as in the state-
ment, if there exists any other point (x̄, z) ∈ ∂∗Fµ satisfying the following properties, namely x̄ ∈
(∂∗Fµ)(|x|,z), arccos(ˆ̄x·e1) ≤ |β|, and x2 x̄2 ≥ 0, then there exists an angle γ ∈ [min{−β, 0},max{−β, 0}]
such that x̄ = Rγx and the corresponding νFµ(x̄, z) can be written as

νFµ(x̄, z) = (Rγν
Fµ
x (x, z), νFµ

z (x, z)).

Proof of Proposition 3.4. In the following, we set xr = (r, 0). If β = 0 there is nothing to prove, so
we can assume β ̸= 0. We will only consider the case β > 0, since for β < 0 the proof is analogous.
Also, since R0x = x and the statement is true for x, we only need to consider the case γ ̸= 0. Let
γ ∈ [−β, 0), and ρ > 0 be such that r − ρ > 0, and

∅ = Bρ((x, z)) ∩Bρ((Rγx, z)) = Bρ((Rβxr, z)) ∩Bρ((Rγ+βxr, z)).

In the following, to ease the notation, let us set

ν = νFµ(x, z) and νγ = (Rγν
Fµ
x (x, z), νFµ

z (x, z)).

We have

Hk
(
H+

(Rγx,z),νγ
∩ Fµ ∩Bρ((Rγx, z))

)
= Hk

(
H+

(Rγ+βxr,z),νγ
∩ Fµ ∩Bρ((Rγ+βxr, z))

)
=

ˆ
Rk−2

ˆ r+ρ

r−ρ

H1(Fµ ∩Bρ((Rγ+βxr, z)) ∩H+
(Rγ+βxr,z),νγ

∩ ∂B2
λ(0, z)) dλ dz

=

ˆ
Rk−2

ˆ r+ρ

r−ρ

H1(Fµ ∩Bρ((Rγ+βxr, z)) ∩ Tγ(H+
(Rβxr,z),ν

) ∩ ∂B2
λ(0, z)) dλ dz

≥
ˆ
Rk−2

ˆ r+ρ

r−ρ

H1(Fµ ∩Bρ((Rβxr, z)) ∩H+
(Rβxr,z),ν

∩ ∂B2
λ(0, z)) dλ dz

=

ˆ
Rk−2

ˆ r+ρ

r−ρ

H1(Fµ ∩Bρ((x, z)) ∩H+
(x,z),ν ∩ ∂B2

λ(0, z)) dλ dz

= Hk
(
H+

(x,z),ν ∩ Fµ ∩Bρ((x, z))
)
,
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where in the inequality we used (3.3) with A = H+
(x,z),ν , and the fact that γ < 0. From the last

chain of inequalities we obtain

Hk
(
H+

(Rγx,z),νγ
∩Bρ((Rγx, z))

)
ωkρk

≥
Hk

(
H+

(Rγx,z),νγ
∩ Fµ ∩Bρ((Rγx, z))

)
ωkρk

≥
Hk

(
H+

(x,z),ν ∩ Fµ ∩Bρ((x, z))
)

ωkρk
.

Passing to the limit as ρ→ 0+, we have

1

2
= lim

ρ→0+

Hk
(
H+

(Rγx,z),νγ
∩Bρ((Rγx, z))

)
ωkρk

≥ lim sup
ρ→0+

Hk
(
H+

(Rγx,z),νγ
∩ Fµ ∩Bρ((Rγx, z))

)
ωkρk

≥ lim inf
ρ→0+

Hk
(
H+

(Rγx,z),νγ
∩ Fµ ∩Bρ((Rγx, z))

)
ωkρk

≥ lim
ρ→0+

Hk
(
H+

(x,z),ν ∩ Fµ ∩Bρ((x, z))
)

ωkρk
=

1

2
,

where the last equality follows from the fact that ν is the inner unit normal to ∂∗Fµ at (x, z).
Therefore,

1

2
= lim

ρ→0+

Hk
(
H+

(Rγx,z),νγ
∩ Fµ ∩Bρ((Rγx, z))

)
ωkρk

.

Since by assumption Rγx ∈ ∂∗Fµ, it has to be

νFµ(Rγx, z) =
(
Rγν

Fµ
x (x, z), νFµ

z (x, z)
)
,

and this allows us to conclude. □

Now we state a useful remark. For a similar result in the context of Steiner symmetrisation see [2,
Remark 2.5].

Remark 3.5. Let us notice that, by symmetry of the set Fµ w.r.t. the hyperplane {x2 = 0} ⊂ Rk,
the following property holds true. Given any ν ∈ R2 we denote with Ref(ν) ∈ R2 the reflection of ν
with respect to {x2 = 0} ⊂ R2, namely Ref(ν) = (ν1,−ν2). Then, for every (x, z) ∈ ∂∗Fµ we have
that (Ref(x), z) ∈ ∂∗Fµ and

νFµ(Ref(x), z) =
(
Ref(νFµ

x (x, z)), νFµ
z (x, z)

)
.

We are now ready to prove Proposition 1.2.

Proof of Proposition 1.2. Let (r, z) ∈ (0,∞)×Rk−2 such that the slice (∂∗Fµ)(r,z) ̸= ∅. We divide
the slice in two parts, namely

(∂∗Fµ)(r,z) = (∂∗Fµ)
+
(r,z) ∪ (∂∗Fµ)

−
(r,z)

where we set (∂∗Fµ)
+
(r,z) = (∂∗Fµ)(r,z) ∩ {x2 ≥ 0}, and (∂∗Fµ)

−
(r,z) = (∂∗Fµ)(r,z) ∩ {x2 < 0}. We

now divide the proof in steps, depending on how many points are contained in the slice.
Step 1a. Let us suppose that H0((∂∗Fµ)

+
(r,z)) = 1. Let x ∈ R2

0 such that {x} = (∂∗Fµ)
+
(r,z), and

suppose in addition that x2 = 0. Then, by symmetry properties of Fµ, the point x is the only
point in the entire slice (∂∗Fµ)(r,z), and so we conclude.

Step 1b. Let us suppose that H0((∂∗Fµ)
+
(r,z)) = 1. Let x ∈ R2

0 such that {x} = (∂∗Fµ)
+
(r,z), and

suppose in addition that x2 > 0. Then, by symmetry properties of Fµ, the points x, and Ref(x)
namely the reflection of x w.r.t {x2 = 0} (see Remark 3.5), are the only points in the entire slice
(∂∗Fµ)(r,z). Applying Remark 3.5 we get that the two vectors νFµ(x, z), and νFµ(Ref(x), z) are
symmetric to each other w.r.t. {x2 = 0}, and so by a direct computation we show that the three
functions in (1.6) are constant in the slice (∂∗Fµ)(r,z). This concludes the second part of the first
step.
Step 2. Let us suppose that H0((∂∗Fµ)

+
(r,z)) > 1. Let x ∈ (∂∗Fµ)

+
(r,z) and let β ∈ (0, π] be such

that x = r(cosβ, sinβ). Thanks to Proposition 3.4 we get that

νFµ(Rγx, z) =
(
Rγν

Fµ
x (x, z), νFµ

z (x, z)
)
,
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for every γ ∈ [−β, 0] such that (Rγx, z) ∈ (∂∗Fµ)
+
(r,z). As a consequence of the fact that the above

relation holds true for every x ∈ (∂∗Fµ)
+
(r,z), we get that the three functions in (1.6) are constant in

(∂∗Fµ)
+
(r,z). By symmetry of Fµ w.r.t. {x2 = 0}, the same conclusion holds true when restricting

the three functions in (1.6) to (∂∗Fµ)
−
(r,z). Finally, the fact that the constant values of those three

functions does not change when passing from (∂∗Fµ)
+
(r,z) to (∂∗Fµ)

−
(r,z) is a consequence of Remark

3.5. This concludes the proof of the second step. Putting together the informations obtained in all
these steps, we conclude. □

We now focus our attention on the properties of the function µ. Parts of the following results were
already stated without an explicit proof in [6, Section 6]. For completeness, and future references
we decide to provide here a detailed proof. In the following, we denote by C0

c (Ω;Rk−1) the class of
all continuous functions from Ω to Rk−1, while with C0

b (Ω;Rk−1) we denote the set of continuous
and bounded function from Ω to Rk−1.

In the following, given µ : (0,∞)×Rk−2 → [0,∞) a Lebesgue measurable function satisfying (1.2),
we denote by ξ : (0,∞)× Rk−2 → [0,∞) the function defined as

ξ(r, z) := µ(r, z)/r for Lk−1-a.e. (r, z) ∈ (0,∞)× Rk−2. (3.5)

Lemma 3.6. Let µ : (0,∞) × Rk−2 → [0,∞) be a Lebesgue measurable function satisfying (1.2),
let U ⊂ (0,∞)×Rk−2 be an open set, and let E ⊂ Rk be a µ-distributed set such that E has finite
perimeter in Φ(U × S1). Then, both the function µ, and the function ξ defined in (3.5) are in
BVloc(U). In addition, |Dzµ|, and |rDrξ| are finite Radon measures on U , and for every Borel set
B ⊂ U we haveˆ

B

φ(r, z) dDziµ(r, z) =

ˆ
∂∗E∩Φ(B×S1)

φ(|x|, z) νEzi(x, z) dH
k−1(x, z), (3.6)

ˆ
B

φ(r, z)rdDrξ(r, z)=

ˆ
∂∗E∩Φ(B×S1)

φ(|x|, z) x̂·νEx (x, z) dHk−1(x, z), (3.7)

for every i ∈ {1, . . . , k − 2}, and for every bounded Borel function φ : B → R. Moreover, let σµ be
the Rk-valued Radon measure on U defined as

σµ(B) :=

ˆ
B

d(rDrξ, 2Lk−1 ({µ > 0} ∩ U), Dzµ)(r, z), ∀B ⊂ U Borel. (3.8)

Then, for every Borel set B ⊂ U we get

ˆ
B

φ(r, z) · dσµ(r, z) ≤
ˆ
∂∗E∩Φ(B×S1)

φ(|x|, z) · νEc (x, z) dHk−1(x, z), (3.9)

for every bounded Borel function φ : B → Rk with non-negative second component, where νEc
was defined in (1.5). In particular, equality sign holds true in (3.9) if and only if (E)(r,z) is

H1-equivalent to a connected arc for Lk−1-a.e. (r, z) ∈ B.

Proof of Lemma 3.6. We divide the proof in several steps.
Step 1. Let us prove that µ ∈ BVloc(U). Let us start by proving that µ ∈ L1

loc(U). Let V ⊂⊂ U ,
then

∥µ∥L1(V ) =

ˆ
V

µ(r, z) dr dz =

ˆ
V

dr dz

ˆ
E(r,z)

1 dH1(x) =

ˆ
E∩Φ(V×S1)

1 dHk <∞.

This proves that µ ∈ L1
loc(U). Similarly, we get that ξ ∈ L1

loc(U). In order to conclude this first
step we need to show that for every V ⊂⊂ U open set, we have

sup

{ˆ
V

µ(r, z)div T (r, z) dr dz : T ∈ C1
c (V ;Rk−1), |T | ≤ 1

}
<∞. (3.10)
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Let i ∈ {1, . . . , k − 2}, and let φ ∈ C1
c (V ) with |φ| ≤ 1. Then,

ˆ
V

µ(r, z)
∂φ

∂zi
(r, z) dr dz =

ˆ
V

dr dz

ˆ
E(r,z)

∂φ

∂zi
(|x|, z) dH1(x)

=

ˆ
Φ(V×S1)

χE(x, z)
∂φ

∂zi
(|x|, z) dHk(x, z) = −

ˆ
∂∗E∩Φ(V×S1)

φ(|x|, z)νEzi(x, z) dH
k−1(x, z)

≤ P (E; Φ(V × S1)) <∞.

Let us now recall that, for any φ ∈ C1(V )

div(x,z)(φ(|x|, z)x̂) =
∂φ

∂r
(|x|, z) + 1

|x|
φ(|x|, z),

where by div(x,z) we denoted the divergence in Rk with respect to the variables (x, z); we do that

to distinguish when we consider the divergence in (0,∞) × Rk−2 w.r.t. the variables r, and z.
Then, for any φ ∈ C1

c (V ) with |φ| ≤ 1 we get

ˆ
V

µ(r, z)
∂φ

∂r
(r, z) dr dz =

ˆ
Φ(V×S1)

χE(x, z)
∂φ

∂r
(|x|, z) dx dz

=

ˆ
Φ(V×S1)

χE(x, z)

(
div(x,z)

(
φ(|x|, z)x̂

)
− 1

|x|
φ(|x|, z)

)
dx dz

= −
ˆ
∂∗E∩Φ(V×S1)

φ(|x|, z) x̂ · νE(x, z) dHk−1(x, z)−
ˆ
Φ(V×S1)

χE(x, z)
1

|x|
φ(|x|, z) dx dz

= −
ˆ
∂∗E∩Φ(V×S1)

φ(|x|, y, t) x̂ · νEx (x, z) dHk−1(x, z)−
ˆ
V

ξ(r, y, t)φ(r, y, t) dr dz,

≤ P (E; Φ(V × S1)) + ∥ξ∥L1(V ) <∞,

where for the last inequality we used that ξ ∈ L1
loc(U), and V ⊂⊂ U . Putting together the above

calculations we get that (3.10) holds true, and this proves that µ ∈ BVloc(U). Since the maps
(r, z) 7→ 1/r and (r, z) 7→ µ(r, z) belong to BV (V ), thanks to [1, Example 3.97] we have that
ξ(r, z) = µ(r, z)/r ∈ BV (V ) for every V ⊂⊂ U open set, and so ξ(r, z) ∈ BVloc(U). In particular,

Drµ = Dr(rξ) = rDrξ + ξ dr dz. (3.11)

This concludes the first step.

Step 2a. Let us prove that relations (3.6), and (3.7) holds true for every φ ∈ C1
c (U). Let

φ ∈ C1
c (U) be a test function, and let V ⊂⊂ U be an open set such that supp(φ) ⊂ V . Then, by

properties of BVloc functions, together with the calculation we made in the first step, we have

−
ˆ
U

φ(r, z) dDziµ(r, z) =

ˆ
U

µ(r, z)
∂φ

∂zi
(r, z) dr dz

=

ˆ
V

µ(r, z)
∂φ

∂zi
(r, z) dr dz = −

ˆ
∂∗E∩Φ(V×S1)

φ(|x|, z)νEzi(x, z) dH
k−1(x, z)

=−
ˆ
∂∗E∩Φ(U×S1)

φ(|x|, z)νEzi(x, z) dH
k−1(x, z).

Thus, for all i ∈ {1, . . . , κ− 2}, and for all φ ∈ C1
c (U) we have,

ˆ
U

φ(r, z) dDziµ(r, z) =

ˆ
∂∗E

φ(|x|, z)νEzi(x, z) dH
k−1(x, z), (3.12)

which proves that (3.6) holds true for every φ ∈ C1
c (U). Let us now prove that (3.7) holds true

for every φ ∈ C1
c (U). Let φ ∈ C1

c (U) be a test function, and let V ⊂⊂ U be an open set such
that supp(φ) ⊂ V . Then, analogously to what we proved above, by properties of BVloc functions,
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together with the calculation we made in the first step, we have

−
ˆ
U

φ(r, z) dDrµ(r, z) =

ˆ
U

µ(r, z)
∂φ

∂r
(r, z) dr dz =

ˆ
V

µ(r, z)
∂φ

∂r
(r, z) dr dz

= −
ˆ
∂∗E∩Φ(V×S1)

φ(|x|, y, t) x̂ · νEx (x, z) dHk−1(x, z)−
ˆ
V

ξ(r, y, t)φ(r, y, t) dr dz,

= −
ˆ
∂∗E∩Φ(U×S1)

φ(|x|, y, t) x̂ · νEx (x, z) dHk−1(x, z)−
ˆ
U

ξ(r, y, t)φ(r, y, t) dr dz,

from which we get

ˆ
U

φ(r, z) dDrµ(r, z) =

ˆ
∂∗E∩Φ(U×S1)

φ(|x|, z) x̂ · νEx (x, z) dHk−1(x, z) (3.13)

+

ˆ
U

ξ(r, z)φ(r, z) dr dz.

Comparing (3.13) with (3.11), we get that (3.7) holds true for every φ ∈ C1
c (U). Before concluding

this first step, let us observe as a consequence of the previous calculations, we have that

|Dziµ|(U) ≤ P (E; Φ(U × S1)), for i = 1, . . . , k − 2, (3.14)

|rDrξ|(U) ≤ P (E; Φ(U × S1)). (3.15)

This proves that |Dzµ| and |rDrξ| are finite Radon measures on U , and we conclude the first step.
Step 2b. We are now ready to prove (3.6), and (3.7) whenever B ⊂⊂ U . We will only show (3.6),
since the proof of (3.7) is similar. Let i ∈ {1, . . . , k− 2}, let B ⊂⊂ U be a Borel set, let φ : B → R
be a bounded Borel function, and let V ⊂⊂ U open set such that B ⊂ V . We call φ̄ : V → R the
Borel function that coincides with φ in B, and it is zero in V \ B. Since every function in C0

b (V )
can be approximated uniformly on compact subsets of V by functions in C1

c (V ), and since Dziµ is
a bounded Radon measure on V , we have that (3.6) holds true for every function in C0

b (V ). Let λ
be the bounded Radon measure on V defined by

λ(B) := |Dziµ|(B) +Hk−1
(
∂∗E ∩

(
Φ(B × S1)

))
(3.16)

for every Borel set B ⊂ V . By Lusin Theorem, for every h ∈ N there exists φh ∈ C0
b (V ) such that

∥φh∥L∞(V ) ≤ ∥φ̄∥L∞(V ) and

λ ({(r, z) ∈ V : φ̄(r, z) ̸= φh(r, z)}) <
1

h
.

For each h ∈ N we can apply (3.6) to φh, obtaining

ˆ
V

φh(r, z) dDziµ(r, z) =

ˆ
∂∗E∩(Φ(V×S1))

φh(|x|, z) νEzi(x, z) dH
k−1(x, z).
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Using this identity, we have∣∣∣∣∣
ˆ
B

φ(r, z) dDziµ(r, z)−
ˆ
∂∗E∩Φ(B×S1)

φ(|x|, z) νEzi(x, z) dH
n(x, z)

∣∣∣∣∣
=

∣∣∣∣∣
ˆ
V

φ̄(r, z) dDziµ(r, z)−
ˆ
∂∗E∩Φ(V×S1)

φ̄(|x|, z) νEzi(x, z) dH
n(x, z)

∣∣∣∣∣
≤

∣∣∣∣ˆ
V

(φ̄(r, z)− φh(r, z)) dDziµ(r, z)

∣∣∣∣
+

∣∣∣∣∣
ˆ
V

φh(r, z) dDziµ(r, z)−
ˆ
∂∗E∩Φ(V×S1)

φh(|x|, z) νEzi(x, z) dH
k−1(x, z)

∣∣∣∣∣
+

∣∣∣∣∣
ˆ
∂∗E∩Φ(V×S1)

(φ̄(|x|, z)− φh(r, z)) ν
E
zi(x, z) dH

k−1(x, z)

∣∣∣∣∣
=

∣∣∣∣ˆ
V

(φ̄(r, z)− φh(r, z)) dDziµ(r, z)

∣∣∣∣
+

∣∣∣∣∣
ˆ
∂∗E∩Φ(V×S1)

(φ̄(r, z)− φh(r, z)) ν
E
zi(x, z) dH

k−1(x, z)

∣∣∣∣∣
≤
ˆ
V

|φ̄(r, z)− φh(r, z)| d |Dziµ| (r, z)

+

ˆ
∂∗E∩Φ(V×S1)

|φ̄(r, z)− φh(r, z)| dHk−1(x, z) ≤ 4

h
∥φ̄∥L∞(V ).

Passing to the limit as h→ ∞ we obtain (3.6) whenever B ⊂⊂ U . This concludes step 2b.
Step 2c. We finally prove (3.6), and (3.7). As done in step 2b, we will only show (3.6). Fix
i ∈ {1, . . . , k − 2} and consider the Radon measure λ on U defined as in (3.16). Let B ⊂ U
be a Borel set, and let (Bh)h∈N ⊂ B be a sequence of compact sets, with the property that
λ(B \ Bh) < ϵh, where (ϵh)h∈N ⊂ [0, 1] and limh→∞ ϵh = 0. Let φ : B → R be a bounded
Borel function, and let us set φh(r, z) = χBh

(r, z)φ(r, z) for every (r, z) ∈ B, for every h ∈ N.
By construction, up to pass to a subsequence, we have that limh→∞ φh(r, z) = φ(r, z) for λ-a.e.
(r, z) ∈ B. Thus,∣∣∣∣∣
ˆ
B

φ(r, z) dDziµ(r, z)−
ˆ
∂∗E∩Φ(B×S1)

φ(|x|, z)νEzi(x, z) dH
k−1(x, z)

∣∣∣∣∣
=

∣∣∣∣∣
ˆ
B

(φ(r, z)− φh(r, z)) dDziµ(r, z)−
ˆ
∂∗E∩Φ(B×S1)

(φ(|x|, z)− φh(|x|, z))νEzi(x, z) dH
k−1(x, z)

∣∣∣∣∣
≤ sup

(r,z)∈B

φ(r, z)λ(B \Bh) ≤ ϵh sup
(r,z)∈B

φ(r, z).

Passing to the limit in the above relation as h→ ∞ we prove (3.6). Formula (3.7) can be obtained
in similar way using the approximation argument we just presented.
Step 3. Let us prove (3.9). Let B ⊂ U be a Borel set, and let g : B → [0,∞] be a Borel function.
Let us denote with Pr(∂∗E) the projection in U of the set ∂∗E ∩ Φ(U × S1), namely

Pr(∂∗E) :=
{
(r, z) ∈ U : (∂∗E)(r,z) ̸= ∅

}
.

By construction, it can be shown that Lk−1(Pr(∂∗E)\ ({µ > 0}∩U)) = 0, while by Proposition
3.2 we have that Lk−1(({µ > 0} ∩ U) \ Pr(∂∗E)) = 0. Thus, by the Coarea formula (3.1) we getˆ

B∩{µ>0}∩U

2g(r, z) dr dz =

ˆ
B∩Pr(∂∗E)

2g(r, z) dr dz ≤
ˆ
B∩Pr(∂∗E)

g(r, z)

ˆ
(∂∗E)(r,z)

1 dH0(x) dr dz

=

ˆ
∂∗E∩Φ((B∩Pr(∂∗E))×S1)

g(|x|, z) |νEx∥(x, z)| dHk−1(x, z)

=

ˆ
∂∗E∩Φ(B×S1)

g(|x|, z) |νEx∥(x, z)| dHk−1(x, z),
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where for the inequality sign we used Proposition 3.2, and the properties of the set Pr(∂∗E) to
infer that H0((∂∗E)(r,z)) ≥ 2 for Lk−1-a.e. (r, z) ∈ Pr(∂∗E). The above relation, together with
(3.6), and (3.7) proves (3.9). This concludes the third step and the proof of the lemma. □

Remark 3.7. Under the assumptions of the above lemma, let B ⊂ U be a Borel set, and let
E ⊂ Rk be a µ-distributed set of finite perimeter in Φ(U × S1) such that (E)(r,z) is H1-equivalent

to a connected arc for Lk−1-a.e. (r, z) ∈ B. Then, we get that (3.9) holds true with equality and
in addition, as a consequence of Proposition 3.1, we can drop the assumption of the non-negativity
of the second component of the vector field appearing the formula, namelyˆ

B

φ(r, z) · dσµ(r, z) =
ˆ
∂∗E∩Φ(B×S1)

φ(|x|, z) · νEc (x, z) dHk−1(x, z), (3.17)

for every bounded Borel function φ : B → Rk.

Let us mention that the idea of considering the Radon measure σµ was inspired by [11, Section
4.1.5]. The next result can be seen as a refinement of [6, Proposition 6.8].

Lemma 3.8. Let µ : (0,∞) × Rk−2 → [0,∞) be a Lebesgue measurable function satisfying (1.2),
let U ⊂ (0,∞)×Rk−2 be an open set, and let E ⊂ Rk be a µ-distributed set such that E has finite
perimeter in Φ(U × S1). Then, the set Fµ ⊂ Rk defined in (1.3) is a set of finite perimeter in
Φ(U × S1). Moreover,

|σµ|(B) = P (Fµ; Φ(B × S1)), ∀B ⊂ U Borel, (3.18)

where σµ is the Radon measure defined in (3.8).

Proof. We divide the proof in several steps. We start by proving that the set Fµ ⊂ Rk is of finite
perimeter in Φ(U × S1). The argument we are going to use is standard, but for the seek of com-
pleteness and for future references we decided to include it (see [6, Proposition 4.3] for the same
argument but in the spherical symmetrisation setting). Let Ω ⊂⊂ U be an open set. By Lemma 3.6
ξ ∈ BV (Ω). Thus, by standard approximation techniques, let (ξj)j∈N ⊂ C1

c (Ω;Rk) be a sequence

of non negative functions such that ξj → ξ for Lk−1-a.e. (r, z) ∈ Ω, and |∇ξj |Lk−1 ∗
⇀ |Dξ|, where

the function ξ was defined in (3.5), and with the symbol
∗
⇀ we denote the weak star convergence

of Radon measures. In the following, denoting with µj(r, z) = rξj(r, z), we call Fµj
⊂ Rk the set

defined as in (1.3) w.r.t. the function µj .
Step 0. In this step we present some circular notation that we will need for the following calcula-
tions. Let φ ∈ C1

c (Φ(Ω× S1),Rk) with |φ| ≤ 1. A direct calculation shows that

div(x,z)φ(x, z) = div(x)φx(x, z) + div(z)φz(x, z)

= div(x)∥φx∥(x, z) +∇xφx(x, z)[x̂] · x̂+
φx(x, z) · x̂

|x|
+ div(z)φz(x, z), (3.19)

where div(x), and div(z) stand for the classical divergence in R2 w.r.t. the variables x1, and x2,

and the classical divergence in Rk−2 w.r.t. the variables z1, . . . , zk−2, respectively, div(x)∥φx∥(x, z)

stands for the tangential divergence in R2 of φx∥(·, z) at (x, z) in ∂B(|x|), and finally ∇x is the
classical gradient in R2 w.r.t. the variables x1, and x2. Thus,ˆ

Φ(Ω×S1)
χFµj

(x, z)div(x,z)φ(x, z) dx dz = I+ II+ III, (3.20)

where we set

I :=

ˆ
Φ(Ω×S1)

χFµj
(x, z)div(x)∥φx∥(x, z) dx dz;

II :=

ˆ
Φ(Ω×S1)

χFµj
(x, z)∇xφx(x, z)[x̂] · x̂ dx dz +

ˆ
Φ(Ω×S1)

χFµj
(x, z)

φx(x, z) · x̂
|x|

dx dz;

III :=

ˆ
Φ(Ω×S1)

χFµj
(x, z)div(z)φz(x, z) dx dz.
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Step 1. In this step we study the quantity identified with I. Let us observe that, by construction
of Fµj , the slice (Fµj )(r,z) is a connected arc in ∂B(r) for Lk−1-a.e. (r, z) ∈ Ω. By the theory of
sets of finite perimeter in ∂B(r) (see for instance [6, Section 3.2]), and Proposition 3.2 we get that

2 = H0(∂∗((Fµj
)(r,z))) ≤ H0(∂∗((E)(r,z))) = H0((∂∗E)(r,z)) for Lk−1-a.e. (r, z) ∈ {µj > 0} ⊂ Ω,

while H0(∂∗((Fµj
)(r,z))) = 0 for Lk−1-a.e. (r, z) ∈ Ω \ {µj > 0}. Thus, applying the structure

theorem for sets of finite perimeter on ∂B(r) (see once more [6, Section 3.2]) we getˆ
Φ(Ω×S1)

χFµj
(x, z)div(x)∥φx∥(x, z) dx dz =

ˆ
Ω

dr dz

ˆ
(Fµj

)(r,z)

div(x)∥φx∥(x, z) dH1(x)

≤
ˆ
Ω

H0((∂∗E)(r,z)) dr dz =

ˆ
∂∗E∩Φ(Ω×S1)

|νEx∥(x, z)| dHk−1(x, z) ≤ P (E; Φ(U × S1)), (3.21)

where for the last equality sign we used Proposition 3.1. This concludes the first step.
Step 2. In this step we study the quantity identified with II. Let us introduce the following
quantity

Vj(r, z) :=

ˆ
(Fµj

)(r,z)

φx(x, z) · x̂ dH1(x) = r

ˆ ξj(r,z)/2

−ξj(r,z)/2

φx(rω(θ), z) · ω(θ) dθ ∀ (r, z) ∈ Ω,

where ξ(r, z) = µj(r, z)/r, and ω(θ) = (cos(θ), sin(θ)) ∈ S1. By regularity properties of µj , and of
φx the above quantity is differentiable in the r variable, and a direct computation shows that

∂

∂r
Vj(r, z) =

ˆ ξj(r,z)/2

−ξj(r,z)/2

φx(rω(θ), z) · ω(θ) dθ

+
1

2
r
∂

∂r
ξj(r, z) (φx(rω(ξj(r, z)/2), z) · ω(ξj(r, z)/2) + φx(rω(−ξj(r, z)/2), z) · ω(−ξj(r, z)/2))

+ r

ˆ ξj(r,z)/2

−ξj(r,z)/2

∇xφx(rω(θ), z)[ω(θ)] · ω(θ) dθ.

In order to keep the notation a bit more compact, let us set

Ax(r, z) = φx(rω(ξj(r, z)/2), z) · ω(ξj(r, z)/2),
Bx(r, z) = φx(rω(−ξj(r, z)/2), z) · ω(−ξj(r, z)/2).

Let us observe that, by construction, the function Vj has compact support in Ω. Thus, integrating
both sides of the above relation over Ω and applying Fubini theorem together with the fundamental
theorem of calculus we get

0 =

ˆ
Ω

∂

∂r
Vj(r, z) dr dz =

ˆ
Ω

dr dz

ˆ ξj(r,z)/2

−ξj(r,z)/2

φx(rω(θ), z) · ω(θ) dθ

+
1

2

ˆ
Ω

r
∂

∂r
ξj(r, z)Ax(r, z) dr dz

+
1

2

ˆ
Ω

r
∂

∂r
ξj(r, z)Bx(r, z) dr dz

+

ˆ
Ω

r

ˆ ξj(r,z)/2

−ξj(r,z)/2

∇xφx(rω(θ), z)[ω(θ)] · ω(θ) dθ dr dz.

Thus, after a changing variables, we getˆ
Φ(Ω×S1)

χFµj
(x, z)

φx(x, z) · x̂
|x|

dx dz +

ˆ
Φ(Ω×S1)

χFµj
(x, z)∇xφx(x, z)[x̂] · x̂ dx dz

= −1

2

ˆ
Ω

r
∂

∂r
ξj(r, z)Ax(r, z) dr dz −

1

2

ˆ
Ω

r
∂

∂r
ξj(r, z)Bx(r, z) dr dz (3.22)

This concludes the second step.
Step 3. In this step we study the quantity identified with III. Similarly to what we did in the
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previous step, we consider the following auxiliary quantity

Zi
j(r, z) :=

ˆ
(Fµj

)(r,z)

(φz)i(x, z) dH1(x) = r

ˆ ξj(r,z)/2

−ξj(r,z)/2

(φz)i(x, z) dθ ∀ (r, z) ∈ Ω,

where by (φz)i stands for the i-th component of the vector φz, with i = 1, . . . , k − 2. Let us set

∇zξj(r, z) =

(
∂

∂z1
ξj(r, z), . . . ,

∂

∂zk−2
ξj(r, z)

)
.

Following verbatim the argument used in the step 2, and calling

Az(r, z) = φz(rω(ξj(r, z)/2), z), Bz(r, z) = φz(rω(−ξj(r, z)/2), z),

we get thatˆ
Φ(Ω×S1)

χFµj
(x, z)div(z)φz(x, z) dx dz

= −1

2

ˆ
Ω

r∇zξj(r, z) · (φz(rω(ξj(r, z)/2), z) + φz(rω(−ξj(r, z)/2), z)) dr dz (3.23)

= −1

2

ˆ
Ω

r∇zξj(r, z) ·Az(r, z) dr dz −
1

2

ˆ
Ω

r∇zξj(r, z) ·Bz(r, z) dr dz.

This concludes the third step.
Step 4. In this step we finally prove that Fµ has finite perimeter in Φ(U × S1). Indeed, thanks
to the previous step, in particular plugging into (3.20) the relations obtained in (3.21), (3.22), and
(3.23) we getˆ

Φ(Ω×S1)
χFµj

(x, z)div(x,z)φ(x, z) dx dz ≤ P (E; Φ(U × S1))

− 1

2

ˆ
Ω

r∇ξj(r, z) · (Ax(r, z), Az(r, z)) dr dz −
1

2

ˆ
Ω

r∇ξj(r, z) · (Bx(r, z), Bz(r, z)) dr dz.

Let us now observe that by construction, we have that both quantities |(Ax(r, z), Az(r, z))|, and
|(Bx(r, z), Bz(r, z))| are less than 1. Thus, from the above relation we get thatˆ

Φ(Ω×S1)
χFµj

(x, z)div(x,z)φ(x, z) dx dz ≤ P (E; Φ(U × S1)) +
ˆ
Pr(supp(φ))

r |∇ξj(r, z)| dr dz,

where Pr(supp(φ)) ⊂ Ω is the projection in (0,∞)× Rk−2 of the support of φ, namely

Pr(supp(φ)) = {(r, z) ∈ Ω : (supp(φ))(r,z) ̸= ∅}.

Let us also observe that Pr(supp(φ)) is a compact set in Ω. Recalling that |∇ξj |Lk−1 ∗
⇀ |Dξ| we

immediately get that r|∇ξj |Lk−1 ∗
⇀ r|Dξ|. Moreover, since ξj → ξ for Lk−1-a.e. (r, z) ∈ Ω, by the

definition of µj we get µj → µ for Lk−1-a.e. (r, z) ∈ Ω, which implies that χFµj
→ χFµ

for Lk-a.e.

(x, z) ∈ Φ(Ω× S1). Thus,ˆ
Φ(Ω×S1)

χFµ(x, z)div(x,z)φ(x, z) dx dz = lim sup
j→∞

ˆ
Φ(Ω×S1)

χFµj
(x, z)div(x,z)φ(x, z) dx dz

≤ P (E; Φ(U × S1)) + lim sup
j→∞

ˆ
Pr(supp(φ))

r |∇ξj(r, z)| dr dz

≤ P (E; Φ(U × S1)) + r |Dξ| (Pr(supp(φ))) ≤ P (E; Φ(U × S1)) + r |Dξ| (Ω). (3.24)

In order to conclude, let us observe that

r|Dξ|(Ω) = sup

{ˆ
Ω

ψ(r, z) · d(rDrξ, rDziξ, . . . , rDzk−2
ξ)(r, z) : ψ ∈ C0

c (Ω;Rk), |ψ| ≤ 1

}
(3.11)
= sup

{ˆ
Ω

ψ(r, z) · d(rDrξ,Dziµ, . . . ,Dzk−2
µ)(r, z) : ψ ∈ C0

c (Ω;Rk), |ψ| ≤ 1

}
≤ P (E; Φ(Ω× S1)) ≤ P (E; Φ(U × S1)),
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where for the second last inequality we used (3.6), and (3.7). Combining the above relation with
the estimate obtained in (3.24) we get thatˆ

Φ(Ω×S1)
χFµ(x, z)div(x,z)φ(x, z) dx dz ≤ 2P (E; Φ(U × S1)) <∞. (3.25)

Taking the sup over all test functions φ ∈ C1
c (Φ(Ω × S1)) with |φ| ≤ 1 on the left hand side of

the above relation we get that Fµ has finite perimeter in Φ(Ω × S1) for every Ω ⊂⊂ U open set.
Since the right hand side of (3.25) does not depend on Ω, by standard arguments we conclude that
Fµ has finite perimeter in Φ(U × S1). This concludes step four, and we can now proceed to prove
relation (3.18).
Step 5. As we said, we are left to prove (3.18). By standard measure theory, since |σµ| is a Radon
measures on U , it is sufficient to show that (3.18) holds true for every open set A ⊂ U . We start
proving that

|σµ|(A) ≤ P (Fµ; Φ(A× S1)) ∀A ⊂ U open. (3.26)

Let φ ∈ C0
c (A;Rk) with |φ| ≤ 1, and let V ⊂⊂ U be an open set such that supp(φ) ⊂ V . Then,

since we proved that Fµ has finite perimeter in Φ(U × S1), and since by construction (Fµ)(r,z)
is H1-equivalent to a connected arc in ∂B(r) for Lk−1-a.e. (r, z) ∈ A, we can apply (3.17) thus
obtaining ˆ

A

φ(r, z) · dσµ(r, z) =
ˆ
V

φ(r, z) · dσµ(r, z)

(3.17)
=

ˆ
∂∗Fµ∩Φ(V×S1)

φ(|x|, z) · νFµ
c (x, z) dHk−1(x, z) ≤ P (Fµ; Φ(A× S1)) <∞,

where in the first inequality we used Schwartz inequality. Passing to the sup in the left hand side
among all φ ∈ C0

c (A;Rk) with |φ| ≤ 1 , we prove (3.26). Let us now prove the reverse inequality,
namely

|σµ|(A) ≥ P (Fµ; Φ(A× S1)). (3.27)

Recall now the definition of the Borel vector field ν̄
Fµ
c : (0,∞) × Rk−2 → Rk that was given in

(1.7). Thus, denoting by dσµ/d|σµ| : U → Sk−1 the polar decomposition of σµ, we get

P (Fµ; Φ(A× S1)) =
ˆ
∂∗Fµ∩Φ(A×S1)

1 dHk−1(x, z) =

ˆ
∂∗Fµ∩Φ(A×S1)

ν̄
Fµ
c (|x|, z) · νFµ

c (x, z) dHk−1(x, z)

(3.17)
=

ˆ
A

ν̄
Fµ
c (r, z) · dσµ(r, z) =

ˆ
A

ν̄
Fµ
c (r, z) · dσµ

d|σµ|
(r, z) d|σµ|(r, z) ≤

ˆ
A

1 d|σµ|(r, z) = |σµ|(A),

where in the last inequality we used the Schwartz inequality. This concludes the proof of (3.27)
which together with (3.26) gives (3.18). □

Remark 3.9. Let us observe that, as a consequence of (3.18), and thanks to the argument used
to prove it, we get that

dσµ
d|σµ|

(r, z) = ν̄
Fµ
c (r, z) for |σµ|-a.e. (r, z) ∈ U, (3.28)

where ν̄
Fµ
c was defined in (1.7).

Remark 3.10. Another consequence of relation (3.18) is the following formula for the perimeter
of Fµ, namely for every B ⊂ U Borel we have that

P (Fµ; Φ(B × S1)) = 2

ˆ
B

√
1 +

1

4

∣∣∣∣r ∂∂r ξ(r, z)
∣∣∣∣2 + 1

4
|∇z µ(r, z)|2 dr dz + |(Ds

rξ,D
s
zµ)| (B),

where by ∂
∂r ξ, and ∇zµ we denote the first component of Daξ, and the last (k − 2) components of

Daµ, respectively.
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4. Characterisation of equality cases

Proof of Theorem 1.3. Let us prove (1.8). Indeed,

|σµ|(B)
(3.28)
=

ˆ
B

ν̄
Fµ
c (r, z) · dσµ

d|σµ|
(r, z) d|σµ|(r, z) =

ˆ
B

ν̄
Fµ
c (r, z) · dσµ(r, z)

(3.9)

≤
ˆ
∂∗E∩Φ(B×S1)

ν̄
Fµ
c (|x|, z) · νEc (x, z) dHk−1(x, z) ≤ P (E; Φ(B × S1)),

where for the last inequality we used Schwartz inequality. This, together with (3.18) proves (1.8).
Immediately from the above chain of inequalities we get that conditions a) and b) are sufficient
to have P (Fµ; Φ(B × S1)) = P (E; Φ(B × S1)). Indeed, by condition a) we get an equality sign in
(3.9), while by condition b) we get the equality sign in the last inequality appearing above. Vice
versa, let us assume that P (Fµ; Φ(B × S1)) = P (E; Φ(B × S1)). Then, by the equality sign in
(3.9) we get that condition a) is satisfied. Moreover, by imposing the equality sign also in the last
inequality appearing in the above relations we get that,

ν̄
Fµ
c (|x|, z) · νEc (x, z) = 1 for Hk−1-a.e. (x, z) ∈ ∂∗E ∩ Φ(B × S1).

Thus, up to remove a set N ⊂ ∂∗E with Hk−1(N) = 0 we have that

ν̄
Fµ
c (|x|, z) · νEc (x, z) = 1 for every (x, z) ∈ (∂∗E \N) ∩ Φ(B × S1),

which recalling Proposition 1.2, is equivalent to say that for every (r, z) ∈ B such that both

(∂∗Fµ)(r,z) ̸= ∅, and (∂∗E \N)(r,z) ̸= ∅, we have that νEc (x, z) = ν̄
Fµ
c (|x|, z) for every x ∈ (∂∗E \

N)(r,z). This directly implies condition b), and so we conclude the proof. □

Remark 4.1. Let B ⊂ U be a Borel set such that we are in an equality case for (1.8) w.r.t. the

set B. Let us stress that calling with B̃ ⊂ B the set

B̃ :=
{
(r, z) ∈ B : (∂∗Fµ)(r,z) ̸= ∅, and (∂∗E \N)(r,z) ̸= ∅

}
,

we have that

P (E; Φ(B̃ × S1)) = P (E; Φ(B × S1)) = P (Fµ; Φ(B × S1)) = P (Fµ; Φ(B̃ × S1)). (4.1)

Indeed, if we consider the following two sets

B1 :=
{
(r, z) ∈ B : (∂∗Fµ)(r,z) = ∅

}
,

B2 :=
{
(r, z) ∈ B : (∂∗E \N)(r,z) = ∅

}
,

we get that B \ B̃ = B1 ∪B2 and

0 = P (Fµ; Φ(B1 × S1)) = P (E; Φ(B1 × S1)) = |σµ|(B1),

0 = P (E; Φ(B2 × S1)) = P (Fµ; Φ(B2 × S1)) = |σµ|(B2)

from which we easily deduce (4.1).

5. Steiner symmetrisation setting

In this section we will present the results obtained for the circular symmetrisation, but for the
Steiner setting. We will present the results without proofs since they can be obtained by adapting
the arguments used in the previous sections.

Let k ∈ N, with k ≥ 2. We will decompose Rk as Rk−1 ×R, and we will write (x′, y) ∈ Rk, with
x′ ∈ Rk−1 and y ∈ R. We are now going to define the Steiner symmetral of a Borel set in Rk with
respect to the hyperplane {(x′, y) ∈ Rk : y = 0} = Rk−1 × {0}. For every Borel set E ⊂ Rk we
define

Ex′ := {y ∈ R : (x′, y) ∈ E} for every x′ ∈ Rk−1,

Let now v : Rk−1 → [0,∞) be a Lebesgue measurable function. We will say that E is v-distributed
if

v(x′) = H1(Ex′), for Lk−1-a.e. x′ ∈ Rk−1.
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Given a Lebesgue measurable function v : Rk−1 → [0,∞) we define the set F [v] ⊂ Rk as

F [v] :=

{
(x′, y) ∈ Rk : |y| < 1

2
v(x′)

}
. (5.1)

Remark 5.1. Note that by definition of F [v], we have

(x′, y) ∈ F [v] =⇒ (x′, z) ∈ F [v] ∀ z ∈ R such that |z| ≤ |y|.

If E ⊂ Rk is a v-distributed Borel set, we say that F [v] is the Steiner symmetral of E with
respect to the hyperplane {(x′, y) ∈ Rk : y = 0}.

5.1. Properties of F [v] and v. Next result is the Steiner counterpart of Lemma 3.3.

Lemma 5.2. Let v : Rk−1 → [0,∞) be a Lebesgue measurable. Let x′ ∈ Rk−1. Then, the functions

z 7→ θ∗(F [v], (x
′, z)) and z 7→ θ∗(F [v], (x′, z))

are even in (−∞,∞) and non increasing in [0,∞).

The following result is the Steiner counterpart of Proposition 3.4.

Proposition 5.3. Let v : Rk−1 → [0,∞) be a Lebesgue measurable function such that F [v] is a
set of locally finite perimeter. Suppose that (x′, y) ∈ ∂∗F [v]. Then

νF [v](x′, z) = νF [v](x′, y) (5.2)

for every z ∈ [min{y, 0},max{y, 0}] such that (x′, z) ∈ (∂∗F [v])x′ .

The following remark is the Steiner counterpart of Remark 3.5 (compare it with [2, Remark 2.5]).

Remark 5.4. Let us notice that, by symmetry of the set F [v] w.r.t. the hyperplane {y = 0} ⊂ Rk,
the following property holds true: for every (x′, y) ∈ ∂∗F [v] we have that (x′,−y) ∈ ∂∗F [v] and

νFµ(x′,−y) = (ν
F [v]
1 (x′, y), . . . , ν

F [v]
k−1 (x

′, y),−νF [v]
k (x′, y)).

The following result represents the Steiner counterpart of Proposition 1.2.

Proposition 5.5. Let v : Rk−1 → [0,∞) be a Lebesgue measurable function such that F [v] is a
set of locally finite perimeter. Then, for every x′ ∈ Rk−1 such that (∂∗F [v])x′ ̸= ∅, the functions

y 7→ ν
F [v]
i (x′, y) for i = 1, . . . , k − 1, y 7→ |νF [v]

k (x′, y)|, (5.3)

are constant in (∂∗F [v])x′ .

Given E ⊂ Rk set of locally finite perimeter, we set

νEs (x′, y) := (νE1 (x′, y), . . . , νEk−1(x
′, y), |νEk (x′, y)|), for Hk-a.e. (x′, y) ∈ ∂∗E. (5.4)

Thanks to Proposition 5.5, we set

ν̄F [v]
s (x′) :=

{
ν
F [v]
s (x′, y) if (∂∗F [v])x′ ̸= ∅, and y ∈ (∂∗F [v])x′ ,

0 otherwise.
(5.5)

Next result is the Steiner counterpart of Lemma 3.6 (compare this result with [7, Lemma 3.1]).

Lemma 5.6. Let v : Rk−1 → [0,∞) be a Lebesgue measurable function, and let E ⊂ Rk be a
v-distributed set of finite perimeter and finite volume. Then, v ∈ BV (Rk−1). In addition, |Div| is
a finite Radon measure on Rk−1 for every i = 1, . . . , k − 1, and for every Borel set B ⊂ Rk−1 we
have ˆ

B

φ(x′) dDiv(x
′) =

ˆ
∂∗E∩(B×R)

φ(x′) νEi (x′, y) dHk−1(x′, y), (5.6)

for every i = 1, . . . , k − 1, and for every bounded Borel function φ : B → R. Moreover, let σv be
the Rk-valued Radon measure on Rk−1 defined as

σv(B) :=

ˆ
B

d(D1v, . . . ,Dk−1v, 2Lk−1 {v > 0})(x′), ∀B ⊂ Rk−1 Borel. (5.7)
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Then, for every Borel set B ⊂ Rk−1 we getˆ
B

φ(x′) · dσv(x′) ≤
ˆ
∂∗E∩(B×R)

φ(x′) · νEs (x′, y) dHk−1(x′, y), (5.8)

for every bounded Borel function φ : B → Rk with non-negative last component, where νEs was
defined in (5.4). In particular, equality sign holds true in (5.8) if and only if (E)x′ is H1-equivalent
to a segment, for Lk−1-a.e. x′ ∈ B.

Remark 5.7. Under the assumptions of the above lemma, let B ⊂ Rk−1 be a Borel set, and let
E ⊂ Rk be a v-distributed set of finite perimeter and finite volume such that (E)x′ is H1-equivalent
to a segment for Lk−1-a.e. x′ ∈ B. Then, we getˆ

B

φ(x′) · dσv(x′) =
ˆ
∂∗E∩B×R

φ(x′) · νEs (x′, y) dHk−1(x′, y), (5.9)

for every bounded Borel function φ : B → Rk.

The next result is the Steiner counterpart of Lemma 3.8 (compare this result with [4, Corollary
3.4], and with [7, Lemma 3.5]).

Lemma 5.8. Let v : Rk−1 → [0,∞) be a Lebesgue measurable function, and let E ⊂ Rk be a
v-distributed set of finite perimeter and finite volume. Then, the set F [v] ⊂ Rk defined in (5.1) is
a set of finite perimeter and finite volume. Moreover,

|σv|(B) = P (F [v];B × R), ∀B ⊂ Rk−1 Borel, (5.10)

where σv is the Radon measure defined in (5.7).

5.2. Characterisation of equality cases. Next result is the Steiner counterpart of Theorem 1.3
(compare this result with [7, Theorem 1.1, Lemma 3.4]).

Theorem 5.9. Let v : Rk−1 → [0,∞) be a Lebesgue measurable function, and let E ⊂ Rk be a
v-distributed set of finite perimeter and finite volume. Then,

P (F [v];B × R) ≤ P (E;B × R), ∀B ⊂ Rk−1 Borel. (5.11)

Moreover, equality holds in (5.11) for some Borel set B ⊂ Rk−1 if and only if both the following
two conditions are satisfied.

a) For Lk−1-a.e. x′ ∈ B we have that (E)x′ is H1-equivalent to a segment.

b) There exists N ⊂ ∂∗E with Hk−1(N) = 0, with the property that for every x′ ∈ B such
that (∂∗E \N)x′ ̸= ∅, and (∂∗F [v])x′ ̸= ∅, we have that

νEs (x′, y) = ν̄F [v]
s (x′) ∀y ∈ (∂∗E \N)x′ ,

where ν̄
F [v]
s was defined in (5.5).

Remark 5.10. By definition of νEs , condition b) of the above result implies that for every x′ ∈ B
such that (∂∗E \N)x′ ̸= ∅, and (∂∗F [v])x′ ̸= ∅ the functions

y 7→ νEi (x′, y) for i = 1, . . . , k − 1, y 7→ |νEk (x′, y)|,

are constant in (∂∗E \N)x′ .

Remark 5.11. Let us point out that if B = Rk−1, condition a) of the above result coincides with
[7, (1.7) of Theorem 1.1], while condition b) is a refinement of [7, (1.8) of Theorem 1.1].
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(2006), pp. 673–728.
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[16] G. Pólya, G. Szegö, Isoperimetric Inequalities in Mathematical Physics, Annals of Mathematics Studies, No.

27, Princeton University Press, Princeton, N. J., 1951.
[17] L. Simon, Lectures on geometric measure theory, Proceedings of the Centre for Mathematical Analysis, Aus-

tralian National University, 3, Centre for Mathematical Analysis, Canberra, 1983.

[18] A. I. Vol′ pert, Spaces BV and quasilinear equations, Mat. Sb. (N.S.), 73 (115) (1967), pp. 255–302.
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