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Abstract: During chronic kidney disease (CKD) progression, an increase in fibroblast growth factor
(FGF23) is present. In stage 5, a positive correlation between FGF23 and omega-6 (n-6) polyunsat-
urated fatty acids (PUFAs) emerges. Hypothesizing that the rising positive correlation between
monocyte chemoattractant protein 1 (MCP1) and n-6 in stage 4 could be the cause, we previously
explored FGF23 and MCP1’s roles in dyslipidemia and cardiovascular risk in CKD. In the present
paper, we retraced the study evaluating 40 kidney transplant patients (KTx), a cohort where several
factors might modify the previous relationships found. An ELISA and gas chromatography assessed
the MCP1, FGF23, and PUFA levels. Despite the FGF23 increase (p < 0.0001), low MCP1 levels were
found. A decrease in the n-6/n-3 ratio (p = 0.042 CKD stage 4 vs. 5) lowered by the increase in
both n-3 αlinolenic (p = 0.012) and docosapentaenoic acid (p = 0.049) was observed. A negative
correlation between FGF23 and the n-6/n-3 ratio in CKD stage 4 (r2 −0.3 p = 0.043) and none with
MCP1 appeared. According to our findings, different mechanisms in the relationship between FGF23,
PUFAs, and MCP1 in CKD and KTx patients might be present, which is possibly related to the
immunosuppressive status of the last. Future research will further clarify our hypothesis.

Keywords: fibroblast growth factor 23; kidney transplant; polyunsaturated fatty acids; monocyte
chemoattractant protein 1

1. Introduction

End-stage renal disease has doubled in the last decade, and the benefits of kidney
transplantation (KTx) over dialysis are undisputed in terms of improved survival, quality
of life, and cost [1,2].

KTx is associated with a significant reduction in cardiovascular (CV) risk compared
to dialysis [3,4]. However, KTx patients remain at a higher CV risk than the general
population. In addition to the evaluation and correction of the so-called “traditional CV
risk factors”, attention is focused on the assessment of “non-traditional CV factors”, such
as inflammation and oxidative stress, as well as KTx-specific CV risk factors [5–7].

In this context, our group, following the increasingly convincing concept that pro-
inflammatory factors may play a key role in the genesis of CV events in CKD, described an
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association between fibroblast growth factor 23 (FGF23) and the pro-inflammatory factor
monocyte chemoattractant protein 1 (MCP1) in causing dyslipidemia [8].

The first factor, FGF23, which is increased early in CKD to compensate for the mineral
imbalance, contributes directly to CV outcomes through cardiac, vascular, and inflammatory
disease [8–15]. FGF23 is a 251 amino acid protein phosphorylated to the S180 amino acid by
FAM20C kinase, which induces its proteolysis by the FURIN convertase, producing its c-terminal
inactivated fragment. In contrast, the lack of phosphorylation of FGF23 makes it susceptible to
O-glycosylation at T178 by GALNT3, resulting in the only intact and biologically active form
being produced [16]. Under normal conditions, the whole length and the fragment are produced;
an imbalance occurs in some pathological diseases, such as chronic kidney disease [17]. David’s
group reports that inflammation affects the complex network of regulatory factors of FGF23 [18].
In particular, the group describes that while the induction of acute inflammation by injecting
bacteria or interleukin 6 (IL6) in mice increases the circulating level of only cFGF23 without
an effect on iFGF23, in chronic inflammation, they increase both. Considering the intricate
mechanisms connected to the inflammation and regulation of FGF23, we decided to analyze
both iFGF and its cleaved form.

The second potent chemotactic factor, monocyte chemoattractant protein 1 (MCP1),
perfectly complements the first and is stimulated by inflammatory cytokines, growth
factors, and oxidative stress conditions [19,20].

The well-recognized critical direct or indirect (receptor-mediated) role in the devel-
opment of CV disease (atherosclerotic plaque formation, ischemia/reperfusion injury,
transplant rejection) identifies MCP1 as a potential therapeutic target [21–24].

Regarding dyslipidemia, several articles describe the importance of the balance be-
tween the omega-6 (n-6) precursors of some potent inflammatory mediators of CKD and
their recognized counterpart, omega-3 (n-3) polyunsaturated fatty acids (PUFAs), suggest-
ing the useful n-6/n-3 ratio as a biomarker of CV and chronic disease [25–27].

As chronic inflammation in CKD plays a crucial role in strong dyslipidemic CV risk,
we previously observed an increase in FGF23, MCP1, and n-6/n-3 during eGFR decline.
We also found an inversion of the correlation between FGF23 and n-6/n-3 fatty acids,
specifically positive in stage 3 and negative in stage 5. We then hypothesized that this
inversion was triggered by the increase in MCP1 in intermediate CKD stage 4, which is
positively correlated with both FGF23 and total omega-6 (n-6) polyunsaturated fatty acid
(PUFA) [8].

To validate our hypothesis, in the present pilot study, we repeated the same experiment
in patients with CKD in patients with KTx, which is considered an excellent clinical
condition, to investigate the risk factor of the reciprocal relationship between reduced renal
function and CV risk; indeed, immunosuppressive therapy causes the onset of hypertension
in more than 50% of patients, mainly due to dyslipidemia [28–30].

Replicating our previous study in patients with KTx in whom immunosuppressive
therapy could counteract the possible triggering of MCP1 could validate our hypothesis
regarding its possible role in modifying the FGF23-n-6/n-3 correlation.

2. Materials and Methods
2.1. Patients

All enrolled 40 kidney transplanted (KTx) patients > 18 years old were recruited between
2019 and 2020 at our institution’s (Fondazione IRCCS Ca’ Granda Ospedale Maggiore Poli-
clinico) Department of Nephrology, Dialysis, and Renal Transplantation. To obtain 40 patients
for our pilot study, no sample size analyses were performed, and the recruitment was ended
after the inclusion of the 40th patient. In agreement with the clinical protocols of our depart-
ment, immunosuppressive therapy was mainly composed of (a) steroids: n = 34, prednisone
mean dosage 6.25 ± 3.0 mg/die; (b) calcineurin inhibitors: cyclosporine n = 8 mean dosage
118 ± 35 mg/die—tacrolimus n = 29 mean dosage 5 ± 3 mg/die; and mycophenolate: my-
cophenolate mofetil n = 25 mean dosage 1272 ± 428 mg/die—sodium mycophenolate n = 10
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mean dosage 720 ± 169 mg/die. Inhibitors of mTOR were prescribed in 4 patients: sirolimus
n = 3 mean dosage 1.6 ± 0.2 mg/die—everolimus n = 1 at a daily dosage of 1.25 mg.

Participants’ blood samples were collected on the morning of the same day of the visit
after an overnight fast of at least eight hours for clinical and laboratory evaluations. In
addition, 24 h urine samples were collected for routine analysis. Glomerular filtration rate
(eGFR) was estimated through the CKD-EPI formula.

According to eGFR values, KTx patients were considered affected by CKD stage 3:
60 mL/min > GFR > 30 mL/min; CKD stage 4: 30 mL/min > GFR > 15 mL/min; CKD
stage 5: GFR < 15 mL/min. According to eGFR values, KTx patients were affected by CKD
stage 3 if their eGFR was between 60 and 30 mL/min/1.73 m2. Patients with an eGFR
between 30 and 15 mL/min/1.73 m2 were considered affected by CKD stage 4; CKD stage
5 was attributed to patients with eGFR under 15 mL/min/1.73 m2. Exclusion criteria were
KTx patients affected by active cancer, symptomatic infectious diseases in the previous
two months, decompensated chronic liver disease, heart failure (NYHA II-IV), endocrine
diseases disorders other than diabetes mellitus and mineral metabolism abnormalities,
hospitalization in the last two months, inability to cooperate. All patients with an assumed
overall life expectancy of <6 months were also excluded. Ethical approval: This study was
conducted following ICP’s good clinical practice guidelines, the Declaration of Helsinki,
and the approval of our institution’s ethics committee (approval document 347/2010,
PROVE: Proteinuria and Vascular Endpoints). All patients signed informed consent to
participate in this study as specified in the ICMJE recommendations.

2.2. Fatty Acid Analysis

Serum aliquots of 50 µL were collected during a routine control. For fatty acids
methylation, 800 µL of 3N hydrochloric acid solution (Sigma-Aldrich, St. Louis, MO, USA)
was added in methanol; then, the samples were incubated for 1 h at 90 ◦C. The samples
were refrigerated at 4 ◦C for 10 min. Next, 2 mL of semi-saturated potassium chloride
solution (KCl) and 350 µL of hexane (Sigma-Aldrich) were added. The samples were
vortexed and then centrifuged at 3000× g rpm for 10 min at 15 ◦C. Finally, the hexane layer
(the top layer) was collected from each vial and transferred to a gas chromatography vial
for fatty acid (FA) profile evaluation with a Shimadzu Nexis GC-2030 gas chromatograph
(Shimadzu, Kyoto, Japan) equipped with a 30 m FAMEWAX Restek fused silica capillary
column (Restek, Bellefonte, PA, USA). Gas chromatography results were analyzed with Lab
Solution 5.97 SP1 software (Shimadzu, Japan). Both individuals and groups of FAs (PUFA,
PUFA n-3, and PUFA n-6) are expressed as relative percentages of the total FAs considered.

During a routine control visit, serum aliquots of 50 µL were collected. The fatty
acids (FAs) analysis was performed, starting with the sample methylation. A total of
50 µL of serum was put into Pyrex vials with 800 µL of 3N hydrochloric acid solution
(Sigma-Aldrich, St. Louis, MO, USA) in methanol. Then, the samples were incubated
for 1 h at 90 ◦C. After incubation, samples were refrigerated at 4 ◦C for 10 min. In the
next step, 2 mL of semi-saturated potassium chloride solution (KCl) and 350 µL of hexane
(Sigma-Aldrich) were added to each sample. The vials were vortexed for at least 20 s and
then centrifuged at 3000× g rpm for 10 min at 15 ◦C.

Finally, the hexane layer (the top layer) was collected from each vial and transferred to
a gas chromatography vial for fatty acid profile evaluation with a Shimadzu Nexis GC-2030
gas chromatograph (Shimadzu, Kyoto, Japan) equipped with a 30 m FAMEWAX Restek
fused silica capillary column (Restek, Bellefonte, PA, USA). The resulting chromatograms
were analyzed with Lab Solution 5.97 SP1 software (Shimadzu, Japan). Both individuals
and groups of FAs (PUFA, PUFA n-3, and PUFA n-6) are expressed as relative percentages
of the total FAs considered.
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2.3. Enzyme-Linked Immunosorbent Assay (ELISA) for Monocyte Chemoattractant Protein 1
(MCP1) and FGF23 Intact/c-Terminal

Blood samples were centrifuged for 10 min at 3500× g rpm to separate serum and
plasma and stored immediately at −80 ◦C until assay. Serum levels of MCP1 were measured
with a commercially available ELISA kit (R&D Systems, Minneapolis, MN, USA) according
to the manufacturer’s instructions.

The mean minimum detectable dose was 1.7 pg/mL, and the coefficients of variation
for intra-assay and inter-assay on serum samples were 4.7–7.8% and 4.6–6.7%, respectively.
Plasma concentrations of intact/terminal FGF23 were also measured using the commer-
cially available kit (Immutopics, Inc., San Clemente, CA, USA). The lowest detectable
concentration of intact FGF23 was 1.5 pg/mL, and the coefficients of variation for intra-
assay and inter-assay were 2.0–4.1% and 3.5–9.1%, respectively. The lowest measurable
human FGF23 c-terminal concentration was 1.5 RU/mL, and the coefficients of variation
for intra-assay and inter-assay were 1.4–2.4% and 2.4–4.7%, respectively.

2.4. Statistical Analysis

All descriptive tables report data as mean and standard deviation unless otherwise
stated. t-test analysis assessed differences between demographic and clinical biomarkers;
Kruskal–Walli’s test assessed differences between CKD groups; graphs also show the total
median line for each parameter considered. Data were correlated by two-tailed Spearman’s
bivariate analysis. Negative correlations are expressed with the prefix “(−).” The bivariate
correlation plot also shows a 95% regression. A p < 0.05 was considered statistically
significant for all analyses. All analyses were performed with SPSS v.21 software (IBM,
Armonk, NY, USA).

3. Results

The cohort studied was characterized by 40 patients. The transplant vintage of the
cohort examined was a median of 1043 days [min 13–max 11,291 days]. Concerning
pre-transplant nephropathy, 11 patients were affected by glomerular diseases, 8 had a
genetic disease, and 4 had diabetic nephropathy. Finally, in three and four cases, a urologic
disease or other types of nephropathies were respectively present. In eight cases, the basal
nephropathy was not identified. In two patients, a previous history of cardiovascular
disease (atrial fibrillation and venous thrombosis) was present.

Table 1 shows the demographic, clinical, and key biomarker data of the analyzed
cohort of 40 patients. The patients were divided according to their CKD stage: 23 in stage 3,
13 in stage 4, and 4 in stage 5.

Table 1. Demographic, clinical, and biomarker data among CKD stages 3, 4, 5.

Total
n = 40

CKD 3
n = 23

CKD 4
n = 13

CKD
5n = 4

p-Value
3 vs. 4

p-Value
3 vs. 5

p-Value
4 vs. 5

Demographic Data

Age (years) 55 ± 16 53 ± 17 57 ± 17 62 ± 9 0.46 0.30 0.60

Gender m/f (N) 22/18 18/5 3/10 1/3

Clinical Data

eGFR (mL/min/1.73 m2) 34.44 ± 16.54 45.52 ± 13.66 23.48 ± 4.20 11.98 ± 3.06 <0.0001 <0.0001 <0.0001

P-Creat (mg/dL) 2.24 ± 0.96 1.73 ± 0.41 2.44 ± 0.44 4.33 ± 1.30 <0.0001 <0.0001 <0.0001

COL tot (mg/dL) 192.91 ± 30.12 187.26 ± 28.04 194.31 ± 33.28 215.25 ± 23.77 0.522 0.078 0.265

TGL (mg/dL) 164.77 ± 64.75 156.68 ± 51.65 163.54 ± 78.03 207.25 ± 75.71 0.766 0.114 0.340

HDL (mg/dL) 55.30 ± 13.42 55.21 ± 15.84 57.46 ± 9.58 48.75 ± 12.31 0.651 0.454 0.155

LDL (mg/dL) 101.55 ± 30.47 100.09 ± 22.17 96.47 ± 39.62 125.05 ± 27.29 0.743 0.062 0.202
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Table 1. Cont.

Total
n = 40

CKD 3
n = 23

CKD 4
n = 13

CKD
5n = 4

p-Value
3 vs. 4

p-Value
3 vs. 5

p-Value
4 vs. 5

Na (mmol/L) 141.63 ± 2.69 141.95 ± 1.78 141.62 ± 2.99 140.25 ± 1.50 0.696 0.091 0.400

K (mmol/L) 4.44 ± 0.46 4.48 ± 0.39 4.39 ± 0.49 4.40 ± 0.75 0.562 0.744 0.981

Biomarker Data

Ca (mg/dL) 9.46 ± 0.72 9.63 ± 0.69 9.50 ± 0.57 8.52 ± 0.79 0.563 0.009 0.015

S-phosphorus (mg/dL) 3.43 ± 0.87 3.15 ± 0.59 3.62 ± 0.73 4.23 ± 1.80 0.055 0.036 0.320

FGF23 INT (pg/mL) 152.8 ± 113.90 108.0 ± 60.05 169.4 ± 82.97 345.0 ± 214.25 0.017 <0.0001 0.023

FGF23 CT (RU/mL) 242.6 ± 191.80 200.5 ± 191.70 239.3 ± 94.82 485.3 ± 284.57 0.502 0.018 0.013

MCP1 (pg/mL) 241.4 ± 104.10 247.7 ± 122.40 242.4 ± 77.56 203.2 ± 78.89 0.889 0.494 0.393

p-values regarding gender were calculated with a chi-square test; p-values regarding all other parameters were
calculated with a t-test. Abbreviations: eGFR = estimated glomerular filtration rate, P-Creat = plasma creati-
nine, COL = cholesterol, TGL = triglyceride, HDL/LDL = high- and low-density lipoprotein, Na = sodium,
K = potassium, Ca = calcium, S-phosphorus = serum phosphorus, FGF23 INT/CT = fibroblast growth
factor 23 intact/C-terminal, MCP1 = monocyte chemoattractant protein 1. Data are expressed as
mean ± standard deviation.

Table 1 shows the overall cohort’s demographic, clinical, and key biomarker data
according to their CKD stage: 23 in stage 3, 13 in stage 4, and 4 in stage 5.

The mean age of the overall cohort was 55 ± 16 years, and 55% of the KTx patients
were male. The mean value of the eGFR was 34 ± 16 mL/min. Regarding the renal function
parameters, the eGFR decreased, and plasma creatinine increased significantly from CKD
3 to 5 (for both p < 0.001). In line with the KTx status, the mean phosphorus levels were
generally low, whereas the lipid parameters were mainly in range. The comparison between
stage 3 and stage 5 values showed a significant reduction in Ca levels (p = 0.009), and no
significant difference was observed for Na and K.

Compared to the CKD population studied in our previous research, the levels of MCP1
in CKD were 465 ± 159.59 pg/mL vs. the present value in Ktx patients: 241 ± 104 pg/mL
(p > 0.0001).

As for the biomarkers analyzed, both i/cFGF23 increased (p < 0.0001, p = 0.018 respec-
tively) from CKD stage 3 to 5, whereas no significant differences were found for MCP1
levels (Table 1).

The PUFA profile among the CKD stages was then analyzed and reported in Table 2. No
increase in total PUFAs was observed among the CKD stages, including the AA/LA ratio,
an inflammation parameter associated with CVD. When n-3 PUFA was examined in detail,
no significant trend towards an increase in total n-3 was observed. However, a significant
increase in n-3 alpha-linolenic acid (ALA) was observed from CKD 3 to 5 (p = 0.012) and in
docosapentaenoic acid (DPA) from CKD 3 to 5 (p = 0.049) and CKD 4 to 5 (p = 0.019). Regarding
n-6, no significant trend towards a decrease was observed in total and in each n-6 PUFA analyzed
(Table 2).

Table 2. Fatty acid profiles among CKD stages.

CKD 3 CKD 4 CKD 5 p-Value
3 vs. 4

p-Value
3 vs. 5

p-Value
4 vs. 5

PUFA 35.37 ± 4.12 34.95 ± 3.82 33.80 ± 3.56 0.769 0.486 0.603
PUFA n-3 2.76 ± 1.37 2.61 ± 1.04 3.73 ± 1.01 0.739 0.192 0.076

ALA (18:3 n-3) 0.27 ± 0.10 0.35 ± 0.16 0.41 ± 0.06 0.101 0.012 0.435
EPA (20:5 n-3) 0.09 ± 0.14 0.06 ± 0.03 0.03 ± 0.01 0.607 0.411 0.060
DPA (22:5 n-3) 0.32 ± 0.17 0.31 ± 0.12 0.52 ± 0.19 0.796 0.049 0.019
DHA (22:6 n-3) 2.15 ± 1.22 1.94 ± 0.9 2.79 ± 0.81 0.596 0.333 0.116

PUFA n-6 32.53 ± 4.18 32.27 ± 3.41 30.00 ± 3.71 0.849 0.272 0.272
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Table 2. Cont.

CKD 3 CKD 4 CKD 5 p-Value
3 vs. 4

p-Value
3 vs. 5

p-Value
4 vs. 5

LA (18:2 n-6) 24.47 ± 4.65 24.10 ± 3.96 23.08 ± 1.87 0.814 0.568 0.631
GLA (18:3 n-6) 0.08 ± 0.07 0.09 ± 0.07 0.05 ± 0.03 0.776 0.411 0.319

DGLA (20:3 n-6) 1.44± 0.56 1.19 ± 0.39 1.08 ± 0.53 0.176 0.257 0.669
AA (20:4 n-6) 6.62 ± 2.03 6.97 ± 2.1 5.83 ± 2.43 0.632 0.495 0.373

AdA (22:4 n-6) 0.29 ± 0.12 0.28 ± 0.14 0.21 ± 0.10 0.853 0.251 0.388
Osbond (22:5 n-6) 0.08 ± 0.06 0.07 ± 0.07 0.05 ± 0.03 0.688 0.367 0.572

AA/LA 0.28 ± 0.11 0.33 ± 0.15 0.25 ± 0.11 0.240 0.700 0.370

The PUFA is expressed as a relative % of the total considered FA. Abbreviations: PUFA: polyunsaturated fatty
acids, ALA: α linolenic acid, EPA: eicosapentaenoic acid, DPA: docosapentaenoic acid, DHA: docosahexaenoic
acid, LA: linoleic acid, GLA: gamma linolenic, DGLA: dihomo-γ-linolenic acid, AA: arachidonic acid, AdA:
adrenic acid. The values in green indicate that these markers increase during the CKD stage. The p-value was
calculated with a t-test. n = 23 in CKD3, n = 13 in CKD4, n = 4 in CKD5).

Therefore, analyzing the n-6/n-3 ratio, which is considered a helpful benchmark
for the analysis of PUFA profile balance, compared to our previous study in the CKD
population in which a significant increase occurred (p = 0.03 from the median), a significant
decrease in KTx patients was observed from CKD stage 4 to 5 (p = 0.042) following the
previous increase of n-3 observed in the levels (Figure 1).
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Figure 1. The n-6/n-3 trend data according to CKD stage. Blue line = median (n = 23 in CKD3, n = 13
in CKD4, n = 4 in CKD5). The values in red indicate that this marker decrease during the CKD stage.

We analyzed each correlation to investigate further the relationship between i/cFGF23,
PUFA, and MCP1.

Starting with analyzing a possible correlation between PUFA and FGF23, only negative
correlations appeared in CKD stage 4 with iFGF23 (r2 −0.3 p = 0.043) (Figure 2). Further-
more, there was no correlation between the AA/LA ratio and iFGF23 (CKD3 r2 0.006 p = 0.7,
CKD4 r2 0.0001 p = 0.96, and CKD5 r2 0.84 p = 0.08) or with cFGF23 (CKD3 r2 −0.03 p = 0.38,
CKD4 r2 −0.06 p = 0.43, and CKD5 r2 0.48 p = 0.3) between CKD stages.

Therefore, there was no significant correlation between PUFA and MCP1 during renal
decline (Table 3). There was also no correlation between MCP1 and the AA/LA ratio.
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Fatty Acid 
MCP1 

CKD3 n = 23 
MCP1 

CKD 4 n = 13 
MCP1 

CKD5 n = 4 
 r2 p-Value r2 p-Value r2 p-Value 

PUFA −0.330 0.144 0.070 0.829 <0.001 1.000 
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Figure 2. Graphs representing correlation between n-6/n-3 and i/cFGF23 respectively among CKD
stage 4. Table representing the correlation between n-6/n-3 and i/cFGF23 among CKD stages by
Two-tailed Spearman bivariate analysis. Significant negative correlation in red indicated by “−”.

Table 3. Correlation between PUFA and MCP1 among CKD stages.

Fatty Acid MCP1
CKD3 n = 23

MCP1
CKD 4 n = 13

MCP1
CKD5 n = 4

r2 p-Value r2 p-Value r2 p-Value

PUFA −0.330 0.144 0.070 0.829 <0.001 1.000
PUFA n-3 0.087 0.708 0.130 0.688 0.400 0.600

ALA (18:3 n-3) −0.081 0.726 −0.040 0.901 −0.400 0.600
EPA (20:5 n-3) 0.030 0.400 −0.090 0.760 −0.010 0.890
DPA (22:5 n-3) 0.113 0.626 −0.344 0.274 0.800 0.200
DHA (22:6 n-3) 0.118 0.610 0.144 0.656 0.400 0.600

PUFA n-6 −0.425 0.055 −0.098 0.762 −0.400 0.600
LA (18:2 n-6) −0.403 0.070 −0.154 0.632 −0.200 0.800

GLA (18:3 n-6) <−0.001 0.910 −0.090 0.340 −0.770 0.120
DGLA (20:3 n-6) −0.179 0.437 −0.259 0.416 <0.001 1.000

AA (20:4 n-6) 0.066 0.775 0.242 0.449 −0.400 0.600
AdA (22:4 n-6) −0.030 0.380 −0.010 0.700 −0.040 0.790

Osbond (22:5 n-6) 0.140 0.078 −0.070 0.390 −0.530 0.260
n-6/n-3 −0.153 0.507 −0.123 0.704 −0.400 0.600
AA/LA 0.170 0.060 <0.001 0.990 0.010 0.880

p < 0.05 and “−” indicates a negative correlation. Correlation analysis by two-tailed Spearman bivariate analysis.
n = 23 in CKD3, n = 13 in CKD4, n = 4 in CKD5.

Finally, the analysis of i/cFGF23 and MCP1 was performed. A direct correlation was
found only in CKD stage 3 with both i/cFGF23s (r2 0.5 p = 0.0001 for both) (Figure 3).
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4. Discussion

The significant advantages of transplantation over dialysis are well-known. However,
it is well-known that the reason lies in improving the CV system [31]. CV disease accelerates
the progression of CKD to end-stage, and intervention of non-traditional factors, such as
inflammation, has been shown to prevent and partially reduce the damage of traditional
factors, such as dyslipidemia [32].

In this context, our recent study focusing on CKD patients described an association
between the biomarker FGF23, the n-6/n-3 PUFA ratio, and the chemokine MCP1 [8].
Specifically, we reported a negative correlation between FGF23 and the n-6/n-3 ratio in
CKD stage 3, which became utterly positive in CKD stage 5. We therefore hypothesized
that MCP1 and its emerging positive correlation with all n-6 PUFAs in the intermediate
“switch stage” 4 CKD may trigger this detrimental inverse correlation [8].

To evaluate the repeatability of our findings in different renal disease conditions, we
then planned to repeat the same steps of the study in a cohort of kidney transplant recipients,
hypothesizing an influence of immunosuppressive therapy on patients’ MCP1 levels.

As a first step in our study, we evaluated the immunosuppressant’s effect on MCP1
levels. Despite the increase in FGF23 i/c, no change in MCP1 was observed, which was in
contrast to the increase observed in our previous study in CKD patients.

The role of FGF23 in enhancing inflammatory activation in hepatocytes via both
PLCγ/calcineurin/NFAT signaling and nuclear translocation of NFκB is well-established,
as its directly and indirectly involved in enhancing MCP1 levels [12,33,34]. Immuno-
suppressive agents such as calcineurin inhibitors or tacrolimus can interfere with the
nuclear translocation of NFAT and NFKB and significantly reduce monocyte production of
chemokines and interleukins, including MCP1 [35–38].

The relationship between MCP1, FGF23, and inflammation hides further intricate
mechanisms. MCP1 attracts circulating monocytes to inflamed tissue, and the monocyte-
derived macrophage called M0 could be polarized by several external stimuli in pro-
inflammatory M1 cells or anti-inflammatory M2 ones [39]. The exhibition of the M1
phenotype by several factors (e.g., interferon-gamma, tumor necrosis factor α (TNFα),
lipopolysaccharide) leads to anti-bacterial, anti-virus, and anti-tumoral activity and the
induction of type II diabetes, atherosclerosis, and autoimmune disease. Conversely, the M2
feature of several factors (e.g., IL4, 10, 12), despite the immunosuppression, tissue repair,
and angiogenesis properties, could induce tumor progression, fibrosis, and allergies [40–42].
In this panorama, FGF23, produced by M1 macrophages via the NFκB and JAK/STAT1
pathways, acts as a paracrine factor stimulating TNFα in M0 and then promoting M1
polarization and inhibiting the arginase-1 expression responsible for the activation in the
M2 macrophages leading to the 1,25(OH)2 D production. An FGF23 counterregulatory
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action occurred in M2 through 1,25(OH)2 D, blocking the arginase-1 suppression and the
TNFα production responsible for FGF23 production in M1 [43]. Moreover, MCP1 itself
could play a paracrine role in this mechanism. Indeed, its abrogation reduces NFκB and
TNFα action, increasing M2 polarization [44]. Furthermore, while arachidonic acid inhibits
M2 macrophage polarization, its metabolites stimulate it [45].

Overall, the intricate role of FGF23, MCP1, and FA in macrophage polarization regulat-
ing pro-inflammatory and anti-inflammatory macrophage functions during CKD progression
should not be underestimated, enhancing the reason for our previous and present study offering
interesting yet unclear questions that can and should be elucidated in future studies.

In the presence of a steady increase in FGF23, maintaining a low level of MCP1 would
have allowed us to verify its hypothetical role and involvement not only in increasing
pro-inflammatory n-6 PUFAs but also in establishing the positive correlation between
FGF23 and the n-6/n-3 PUFA ratio described in our previous study [8].

We then focused on the PUFA profile, and despite the increase in FGF23, no change in
n-6 PUFAs occurred. Conversely, a partial non-significant increase in total “CV protective”
n-3 despite the significant increase was detected only in n-3 ALA and DPA individually in
the KTx patients.

Only a partial unsurprisingly increase in n-3 was observed when the PUFA synthesis
pathway was considered. Indeed, EPA derives from ALA and then is metabolized to DPA.
A reduction in the EPA level could be the result of three different events: it can be due to a
decrease in EPA synthesis from ALA (and a consequent increase in ALA levels); it can be
due to an increased DPA level (and a consequent resulting increase rise in DPA levels); or
it could be the result of increased EPA metabolization, which could not affect the ALA or
DPA level but could increase the concentration of EPA metabolites.

Then, considering the complicated event in FA metabolism, the helpful n-6/n-3 pa-
rameter has usually been viewed, where the increase in the n-6/n-3 ratio is associated with
the atherosclerotic process triggered by a pro-inflammatory environment. In contrast, a
reduction of the ratio is desirable for modulating the inflammatory event in a positive way,
possibly reducing CV risk [46].

Looking at the level of the n-6/n-3 PUFA ratio, a significant decrease was found during
the renal decline in patients with KTx in contrast to our previous study on CKD.

Then, the starting increase of n-3 seems to avoid the detrimental effect of increasing
the n-6 series, which is mainly due to the conversion of arachidonic acid (AA) into some
potent eicosanoid inflammatory mediators of CKD (e.g., prostaglandins, thromboxane, and
leukotrienes) contributing to the progression of CKD [47,48].

To evaluate the hypothesized activation of the cascade towards AA production, the
activity of the FADS enzymes responsible for the conversion of LA into AA is often con-
sidered. This is assessed by calculating the parameter AA/LA ratio, which indicates a
pro-inflammatory environment highly prone to the onset of pathological cardiovascular
processes [49]. In the present study, the AA/LA ratio analysis does not show any increase,
confirming our data.

In our previous article on patients with CKD in whom FGF23 increased steadily as
in the KTx patients, the landscape was completely reversed with a significant decrease in
CV-protective n-3 from CKD 3 to 4 and a significant increase in pro-inflammatory n-6 from
CKD 3 to 5 and from CKD 4 to 5.

From this contrasting result obtained in the two different CKD populations analyzed,
we assumed that the role of FGF23 in increasing n-6 and decreasing n-3 was attenuated
when MCP1 was kept low by the immunosuppressive therapy in KTx.

Analyzing the correlation between MCP1 and PUFAs, in CKD patients, we observed
an increasing direct correlation of MCP1 with some n-6s (DGLA, Osbond, ARA, GLA) and
a negative correlation with n-3 between stages, while in KTx patients, no correlation was
observed following the fact that the absence of increased MCP1 could avoid its influence
on the PUFA balance in favor of the pro-inflammatory one. The lack of correlation between
AA/LA and MCP1 supports our data.
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Regarding the correlation between i/cFGF23 and MCP1, if a positive correlation
occurred previously in CKD patients, now in KTx patients, we observed that only a positive
correlation in CKD stage 3 disappears in CKD stage 5. We hypothesized that in CKD stage
3 with relatively low FGF23 levels, keeping MCP1 low with immunosuppressive therapy
makes the correlation positive, which is lost when FGF23 increases and MCP1 is kept stable.

Finally, we analyzed the correlation between FGF23 and PUFA. While in CKD patients,
we obtained an inverse positive correlation between FGF23 and n-6/n-3, in KTx patients,
we observed a negative correlation between FGF23 and the n-6/n-3 ratio in CKD stage 4.
Again, there was no correlation between FGF23 and AA/LA.

The answer to why only stage 4 shows a negative correlation may lie in the n6/n3 ratio
difference observed across the CKD stages. Indeed, while no change in n-6/n-3 occurred
from stages 3 to 4, a significative reduction was observed from CKD stages 4 to 5. Then, we
hypothesized that the renal functional status at stage 4 causes a strong increase in FGF23,
whose action on MCP1 (and may not be the only one), which is responsible for n-6 growth,
was reduced by the immunosuppressive therapy. Therefore, the n-6 pro-inflammatory
pathway block caused their reduction and the negative correlation in CKD stage 4 between
FGF23 and n-6/n-3. In CKD stage 5, the negative correlation was probably maintained:
Future studies including more patients might confirm this hypothesis.

This last lack in CKD stage 5 is irrelevant, however, considering that the blockage of
the mechanism occurring in stage 4 already answered the present work’s purpose.

Then, comparing the data obtained from the CKD patients treated and untreated with
immunosuppressants, it appears that the increase in n-6/n-3 PUFAs exerted by FGF23 is
indirect and could be mediated with MCP1. Eliminating MCP1 via immunosuppressive
therapy avoids the pro-inflammatory effect of FGF23 that caused the increase in the n-6/n-3
ratio and the emergence of its positive correlation. The small cohort studied could be a
limitation of this study, but the present research would only confirm our previous data; in
any case, the strict inclusion and exclusion criteria guarantee a good homogeneity of the
patients. Despite the limited number of patients studied, we decided not to group patients
for different CKD stages. The different CKD stages depict different clinical conditions
potentially characterized by varying degrees of additional, more impactful comorbidities
(mineral metabolism abnormalities, anemia, inflammation). Strengths of this study are
the criteria of patient selection that allowed us to obtain homogeneous subgroups and
the comparison with our previous study that permitted a complete “vision” of the role of
MCP1, FGF23, and their interaction with FA. The limitation of this study is the cohort size
of the CKD5 subgroup, but being a pilot study regarding transplanted patients, this was
considered during the study design step.

In conclusion, this pilot study, which replicates the previous one using the “human
transplantation model” to better understand the mechanism related to dyslipidemia and
inflammation, highlights the role of MCP1 as a trigger. Given the broad spectrum of ac-
tions underlying immunosuppressive therapy, MCP1 can be considered only one of the
potential triggers for this mechanism. Given the present result, an anti-MCP1 strategy or a
better understanding of the mechanism of immunotherapeutic agents may have potential
therapeutic value to reduce the detrimental interrelationship between FGF23, dyslipidemia,
and inflammation based on CV pathophysiological mechanisms in CKD. The reported pos-
sibility that MCP1 and its receptor may help to monitor kidney transplantation reinforces
the importance of previous studies on MCP1 as a future predictor [50,51]. In a forthcoming
paper, it would also be worthwhile to anticipate this study in the opposite direction by
analyzing how immunosuppressive treatment alters the endogenous metabolism of FA,
which is associated with or determines pro-inflammatory metabolites.
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