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Abstract
Some computational phenomena rely essentially on pragmatic considerations, and
seem to undermine the independence of the specification from the implementation.
These include software development, deviant uses, esoteric languages and recent
data-driven applications. To account for them, the interaction between pragmatics,
epistemology and ontology in computational artefacts seems essential, indicating the
need to recover the role of the language metaphor. We propose a User Levels (ULs)
structure as a pragmatic complement to the Levels of Abstraction (LoAs)-based struc-
ture defining the ontology and epistemology of computational artefacts. ULs identify
a flexible hierarchy in which users bear their own semantic and normative require-
ments, possibly competing with the logical specification. We formulate a notion of
computational act intended in its pragmatic sense, alongside pragmatic versions of
implementation and correctness.

Keywords Computational artefacts · Pragmatics · Correctness · Levels of
Abstraction · User levels

1 Introduction

The current literature in the Philosophy of Computer Science presents two standard
approaches to computational artefacts (Angius et al., 2021).

According to the first one, they have a dual nature, abstract and physical, character-
ized by structural and functional implemented properties (Kroes, 2009). Such duality
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is expressed standardly by the distinction between hardware and software, but it is
notoriously weak in light of the historical evolution, as once programs were executed
by physical actions on levers, buttons, and wire. Moreover, the associated notion of
implementation as the realization of a specification is not unique: it can be seen as
semantic interpretation, forcing us to accept a continuous shift of syntax and semantics
(Rapaport, 1999); or as the relationship between abstract and concrete (Turner, 2014).

According to the second, more recent approach (Primiero, 2016), computational
artefacts are equipped with an ontology of several levels of abstraction (LoA),
including layers otherwise ignored: the designer and its intention; the algorithm and
its solution to the problem posed; the high-level vs. low-level language and their
instruction-order distinction; finally, the user. Implementation is here generalised to
a pair composed of an epistemological construct and an ontological domain for each
level of abstraction (Primiero, 2019).

In both approaches, the notion of correctness is crucial and is always deter-
mined by the specification. In the LoAs approach, distinct notions of correctness
can be identified: functional, procedural, and executional, all required for a correctly
functioning physical computing system (Primiero, 2019). Both approaches provide
logical-mathematical accounts of the relation between abstraction and implementa-
tion, but they leave out important aspects.

First, the role of linguistic metaphors in the design, implementation, and execution
phases of such artefacts. The literature relying on the dual approach did not investigate
the role of language almost at all, and works based on the LoAs hierarchy invests only
high-level programming with a performative role. Nonetheless, linguistic aspects of
computing are pervasive, starting from “Hello World!” programs, naturally presented
as performative speech acts: they say something and, by saying it, they do something.
At the very beginning of programming history, linguistic metaphors were widely used
(Nofre et al., 2014) and the importance of pragmatic aspects of computation had
already been taken into account (Zemanek, 1966). Recent studies in cognitive science
consider the hypothesis that programming draws on some of the same resources as
natural language processing (Fedorenko et al., 2019). Apart from rare (but periodic)
attempts to stress the parallels between coding and literary expression (Cox&McLean,
2012), the linguistic nature of programming is taken for granted, and then almost
forgotten. Philosophical approaches to computer science standardly dispute about its
epistemological nature as a mathematical, scientific, or engineering discipline (Tedre,
2011, 2014; Primiero, 2019).We aim to complete this debate, considering the linguistic
nature of computational artefacts.

The second forgotten aspect concerns the understanding and representation of all
pragmatic, contextual, and expressive features in computational artefacts’ ontology
and epistemology. Such limitation is in line with the definition and description of
computational artefacts limited to syntax and semantics. Contexts in which compu-
tations get different meanings, esoteric programming languages, change of intended
use, and even the role that humans play in the results of modern data-driven applica-
tions fall under such pragmatic considerations, and seem to undermine the traditional
independence of the specification from the implementation.

The present contribution aims to explain the interaction between pragmatics, episte-
mology and ontology in computational artefacts by recovering the role of the language
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metaphor. This task has been partially considered for programming languages (Adam-
czyk, 2011), but never for computational artefacts at large. This allows extending the
ontological and epistemological analysis of computational systems to include prag-
matic aspects. To this aim, we introduce a User Levels (ULs) structure as a pragmatic
complement to the LoAs-based structure already mentioned above. LoAs include
agents operating in a hierarchical structure, in which syntax, semantics, and correct-
ness are attributed to specific levels, with specification acting as a normative element.
Using a distinction introduced in Tanaka-Ishii (2015), we might call LoAs a construc-
tive system and ULs a structural one. Artificial sign systems are usually considered as
constructive ones, where a sign depends hierarchically on other signs (Tanaka-Ishii,
2015, p. 997). Such a hierarchy of signs is not present in structural systems, typically
natural sign systems, in which the signification is given holistically by the contribu-
tion and mutual influence of signs. Evolution is another aspect in which structural and
constructive systems differ: constructive systems stop evolving once all the signs are
clarified inwhat they stand for, converging to a fixed point; on the contrary, the mutual
circular influence of signs drives structural systems towards a continuous evolution in
response to the environment. Put differently, only structural systems are able to evolve.
When dealing with linguistic and pragmatic aspects of computational artefacts, the
LoAs model fails in describing them because it tries to apply a constructive system to
a system that reveals structural characteristics. Therefore we aim to introduce struc-
tural aspects in the taxonomy of LoAs, in order to fill “the gap between humanity and
mechanical inhumanity” (Tanaka-Ishii, 2015, p. 995).

ULs identify a communication structure with a flexible hierarchy. Users are bearers
of their own semantic and normative requirements, possibly competing with those of
the logical specification. While the physical level of the machine acts as ontological
support for all other levels, correctness becomes heavily dependent on the UL under
consideration. The hierarchy is flexible, as for each LoA it is possible to identify one
or more users who, through a particular use of the computational artefact in a specific
context, enable their level to be meaningful. The semantic and normative instances of
users and of contexts in which they operate are taken to contribute to the design as
well as to the extended semantics and correctness of the computational artefact. Such
correctness is more expressive than, and in some cases possibly limiting, the artefact’s
standard semantic correctness as implementation of the given formal specification.
We formulate a notion of computational act intended in its pragmatic sense, alongside
pragmatic versions of implementation and correctness.

The paper is structured as follows. In Sect. 2 we overview the standard views on
the notions of ontology and correctness as available in the current literature. In Sect. 3
we review the role that linguistics has had so far in the literature on the philosophy
of computer science and introduce aspects of computing whose understanding seems
to require a pragmatic approach, namely: development, deviant uses, esoteric pro-
gramming languages, and data-driven computation. In Sect. 4 we answer to such a
requirement for a pragmatic aspect in the ontology and correctness of computational
artefacts with the formulation of a theory which accounts for users and their acts,
allowing the formulation of pragmatic definitions of implementation and correctness,
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and drawing the appropriate connections with the more standard Levels of Abstrac-
tion view. Finally, in Sect. 5 we summarize further lines of research for the pragmatics
aspects of computational artefacts.

2 The standard Views on Ontology and Correctness

In order to introduce and justify pragmatic elements in a theory of computational
artefacts, we first briefly review current approaches to issues of their ontology and
correctness.

2.1 The Dualist View

Conventional academic wisdom, widespread in the early literature in the Philosophy
of Computer Science, and possibly also common among the general public with a
minimum understanding of computational systems, suggests that computational sys-
tems are characterized by a dual nature. This dualism can take the trivial form of the
dichotomy hardware vs. software, but more refined interpretations are also possible:
specification vs. implementation, physical machine vs. virtual machines, abstract vs.
concrete. The nature of these systems appears double, if not evenmultiple, also, but not
only, due to the fact that the concept of computational system is multiply realizable,
hence, it can be analyzed from a functionalist point of view.

In this ontological framework, computational systems can be subsumed under the
broader category of technical artefacts, i.e., intentionally produced entities character-
ized by a teleological nature. A technical artefact is defined not only by observables,
such as appearance, chemical composition, or electric charge, i.e., its structural prop-
erties, but also, and above all, by its functional properties, i.e., the purpose for which
that particular object was made. In the early literature, see (Angius et al., 2021, sec.
2.3), the study of the conditions under which a computational artefact possesses its
functions, and how these functions are related with both its structural properties and
the intentions of the agent, is limited to two main theories:

• the causal theory of function (Cummins, 1975), according to which the intentions
of the agent play no role in defining the function, which are solely determined by
the physical abilities and behaviours of the artefact;

• and the intentional theory of function (McLaughlin, 2000; Searle, 1995), according
towhich the intention of the designer plays a primary role in establishing the function
of the artefact, and the structural properties are chosen only in relation to their ability
to accomplish it.

The major drawback of the first theory lies in its inability to deal with malfunctioning
(Kroes, 2009; Fresco & Primiero, 2013; Floridi et al., 2015), and side-effects (Turner,
2011): if the physical properties of a pocket calculator entail that, whenever it is used
to perform the 2 + 2 operation, the number 5 appears on the display as output, then,
according to this theory, the device would function correctly despite the mathematical
error, since the intention to produce a correct result plays no role in defining the
function of this artefact.
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On the other hand, the intentional theory, despite being able to deal with correct-
ness, malfunctioning, and side effects, it is not able to identify where the function
resides: if it is in the artefact, then we are pushed back to the question of how it pos-
sesses the intended function; if it is in the mind of the agent, then one can invoke
the Princess Elizabeth argument, and ask for a better explanation for the connection
between mental states of the agent and physical properties of artefacts (Angius et al.,
2021, sec. 2.3). Therefore, a purely dualist approach, is not properly able to explain
the relation between specification and function of a computational system, and how
both are driven by the intention of the agent.1

Moreover, the distinction between hardware and software, is far from being satis-
factory, and the history of its criticism has lasted for over four decades. In the late 70’s,
Moor (1978) pointed out that the hardware vs. software distinction, together with the
digital vs. analogue, and themodel vs. theory distinctions, constitute the threemyths of
computer science. In particular, the hardware vs. software distinction is ontologically
irrelevant, and it has only, if any, a pragmatic significance. Furthermore, this distinc-
tion is imprecise not only from a historical point of view, since at the beginning of
computing the act of programming was realized in particular configurations of pushed
and pulled levers; but also because most modern software still mimics this type of
interaction: we all press buttons,move levers selecting options and scroll pages. Thus,
the strict abstract/concrete dichotomy seems insufficient to account for the required
correctness of implementation.

In the scope of the dualist approach, the implementation, generically intended as
the realization of the specification, can be interpreted in, at least, two different ways:

1. as the semantic interpretation of a syntactical model given by the specification,
(Rapaport, 1999);

2. as the relation between the specification (abstract), and the artefact (concrete)
(Turner, 2011, 2014, 2018).

Under the first reading, given its semantic role, the implementation should also provide
the criteria for correctness. However this represents a serious issue for this account:
the normative role of implementation does not give any tool to deal with incorrect
implementations (Primiero, 2019). Consider again the pocket calculator that returns 5
when 2+ 2 is performed: is this a correct result, given it is the semantic interpretation
of the specification? Moreover, if we consider the case of the implementation of one
language into another, this approach does not even account for correct implementa-
tions, since the implementing language should provide a semantic interpretation of
the implemented language, and this is possible only if the former is associated with a
semantics providing meaning and correctness criteria for the latter (Turner, 2018).

Under the second reading, the implementation does not bear any normative prop-
erties, which are entirely invested in the specification. However, this account is not
able to deal with the complex and layered ontology of computational systems since

1 Partly to answer to the mentioned limitations, the evolutionary theory of functionwas developed (Preston,
2022, sec. 2.3). The latter not only applies to organisms, but may also apply to the evolutionary development
of how technical artefacts are used by agents over time. These three theories are not mutually exclusive but
should rather be perceived as the end points of a threefold spectrum, allowing for a multitude of different
theories within its limits. A case in point is the ICE (Intention, Causal role, Evolution) theory of function
(Vermaas & Houkes, 2006), which will be taken into consideration in Sect. 3.2.
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it identifies a unique implementation relation between a specification level and an
artefact level (Primiero, 2019).

2.2 Layered Ontology

To answer the shortcomings of the dualist approach, a theory based on themethodology
of the Levels of Abstraction (LoA) has been introduced. First successful especially in
mathematical and philosophical research (Floridi, 2008), it has been recently applied to
computational systems and to information (Primiero, 2016). In this theoretical frame-
work, the ontology of computational systems extends the structural/functional one
characteristic of technical artefacts (Kroes, 2009), since each level plays a functional
role for lower ones, and a structural role for upper ones.

The Intention, defining the computational problem to be solved, expresses the func-
tions that the system must achieve, and it is implemented in a set of requirements by
the Specification. The latter plays a functional role, explaining the concrete functions
that the software must implement, and it is realized by the procedure to solve the
problem, namely an Algorithm. This represents the structural level with respect to
the specification, and expresses the procedures that High-level programming lan-
guage instructions must implement. The linguistic implementation defines and is
realized by the functional properties for Assembly/machine code operations. Machine
code, finally, identifies the functional properties implemented by the Execution level,
expressing the physical structural properties of the running software.

Each LoA embeds a pair consisting of an epistemological construct and an onto-
logical domain appropriately related by an instantiation relation of implementation
across different LoAs (Primiero, 2019, p. 212). So the pair 〈Problem, I ntention〉
is implemented in the pair 〈Task, Algori thm〉, and this in turn in the pair
〈I nstruction, Programming Language〉. Consequently, a layered notion of cor-
rectness can be specified for each level: if the functionalities of the specification are
displayed with the intended efficiency, then the computing artefact is functionally cor-
rect; if it displays correctly the functionalities intended by the underlying algorithm,
then it is procedurally correct; if it runs correctly on the architecture on which it is
installed, then it is executionally correct. A correct (or wellfunctioning) physical com-
puting system is one which presents correct implementations at all the required levels.
This view matches the understanding of miscomputations at different LoAs (Fresco
& Primiero, 2013).

A theory of computational artefacts, articulated along different LoAs, requires an
equally detailed analysis of the information and its propagation through these levels
(Primiero, 2016). At the lowest level we are confronted with the physical machine
and wired logic: here information is made up of a series of 0’s and 1’s in the form
of bits, physically realized into configurations of matter, e.g,. electric charge flow-
ing along wires, electronic configuration of silicon clusters. At this first level, we do
not properly speak of information, but only of structured data. The introduction of
syntactically well-defined low-level languages allows us to use textual instructions to
perform mathematical operations on bits, which have a direct correspondence with
the actions that can be performed on the physical device. The operational information
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embedded in machine code is qualified as well-formed performative data, thus it is
only required to be syntactically well formed: this type of purely quantitative informa-
tion possesses neither semantics nor alethic value. The programming language level
abstracts from the physical layer. At this level, Instructional information is described
in terms ofwell-formed and meaningful data. Instructions denote the information con-
tent of appropriate executable strings and are satisfied by the operational information
of the machine code. Like in the case of orders, there is still no alethic assessment.
Alethic and epistemic considerations step in as soon as we analyze the level at which
the instructions are evaluated in relation to the meaning as intended by the algo-
rithm, and by the task it aims to correctly perform. The algorithm can be defined, in
abstract terms, as a general recursive or Turing-computable function, implemented
in a program, developed to perform a task represented by the expected behavior of
the machine. Just as the algorithm is implemented in the programming language, it
in turn also acts as an implementation for intentions aimed at solving a problem. The
correctness of the algorithm, and of the program that implements it, will therefore be
determined according to the intentions of the designer and its semantic value depends
on the implementations realized at lower LoAs. The abstract informational content
of an algorithm also defines truthfulness of its instances, and not just their correct-
ness. An algorithm can then be defined as abstract, correctness- and truth-determining
information for all previous levels, acting as a normative definition for the computa-
tional artefact. These considerations lead to a philosophical formulation of (digital)
Computing as the systematic study of the ontologies and epistemology of informa-
tion structures (Primiero, 2016, p. 122). However, the distinction between ontologies
and epistemology, between object domains and linguistic means of control, is purely
theoretical, and often blurred in practice. In the Agile methodology,2 for example,
each project is the result of a dialogue between parties, there are no clearly defin-
able priorities between the phases, there is no hierarchical domain between the LoAs,
the influence of the specification on the implementation is not any stronger than the
reverse relation, in a context of continuous communication and collaboration between
the several actors involved in the process. An example of such blurring of LoAs will
be offered below in Sect. 3.1.

This has two important consequences. First, to sharpen the blurreddistinction above,
the introduction of pragmatic aspects can be useful, as we aim to do in Sect. 4. Second,
if languages (from machine code to designers’ intentional states) act as control means
over objects domains (from bits to complex systems such as networks), limiting the
performative role to programming languages seems reductive. In absence of assembly
languages and high-level programming languages (as it was the case in the early days
of computing when programming was done directly in machine language, and as it
may become again the case with the new low code/no code paradigm, or in data-driven
applications) the LoAs theory considers the information content of computational pro-
cesses devoid of both operational and instructional information, limiting such content
to structured data, abstract information and intentions. While possible, this might not
be desirable, as it leads to two distinct conclusions: either the information content

2 Agile methodology is a project management approach, opposed to the traditional waterfall model and
based on the AgileManifesto (Beck et al., 2001), that involves breaking the project into phases, emphasizing
continuous collaboration and improvement.
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is deprived of syntactic correctness and semantic value; or one is forced to move
them to another LoA, falling back into the same issues that characterize the semantic
interpretation of the dualist approach. Similar considerations can also be made in rela-
tion to the introduction of assembly languages, high-level programming languages,
and automatic compilation. Furthermore, nowadays, the syntactic correctness of the
written code is, in most cases, no longer checked during the compilation phase, but
during the writing of the code itself, which again suggests a much more dynamic,
less structured view on correctness. User-friendly interfaces and simplified dialects
are increasingly pervasive in software development, underlining the importance of
both the language metaphor and the users in the evolution of computational systems.
We argue that these aspects have their own status and should integrate, rather than
compete with, the standard layered ontology of computational artefacts.

3 Language and Pragmatics in Computer Science

Programs can be interpreted as performative speech acts which, in their announce-
ment to the world, say something and, by saying it, they do something. Nonetheless,
the linguistic metaphor has been given little consideration in recent philosophical and
technical contributions in computer science, limited to programming languages, and
preferring purely logical-mathematical approaches. By linguistic metaphor in com-
puter science one refers to all syntactic, semantic and pragmatic aspects of the use
of language that surrounds and is embedded in the process of design, development,
and use of computational artefacts. While syntactic and semantic aspects have been
more extensively considered, we focus here on the little investigated aspects of the
pragmatics of language in this context.

Such reduced attention to pragmatics could be seen at least as an indication of
disregard for both early computer science research and common sense, since the
anthropomorphization of computers has always been a natural step, for both scientists
and users, sinceBabbage, Turing and vonNeumann (Nofre et al., 2014, p. 45). Together
with the tradition of considering mathematics as “the language of nature”, the anthro-
pomorphic view of computers extended this linguistic analogy from pure mathematics
to machine code. Starting from the mid-1950 s, with the appearance of different mod-
els of computers, the need to develop a machine-independent language was urgent.
During this phase, “the language metaphor lost its anthropomorphic connotation and
acquired a more abstract meaning, closely related to the formal languages of logic
and linguistics” (Nofre et al., 2014, p. 41). Programming languages and algorithms
emerged as independent of the hardware, a step which at the beginning of the next
decade led programming languages to become connected with formal languages and
with the notion of universality. In the 1960 s, with programming a discipline on its
own, the languagemetaphor spread from computer science to involve other disciplines,
from the analysis of natural language to molecular biology.

Meanwhile, the Association for Computer Machinery was clearly aware of the
importanceof the linguistic andpragmatic aspects of computing. In 1965, the title of the
annual ACMConference held in August in San Dimas, California, was “Programming
Languages and Pragmatics”. During the conference, (Zemanek, 1966) represents the
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only attempt to fill the gap between semiotics and computer science for decades,
stressing the importance not only of syntax and semantics, but also of pragmatics.
The following terms and their definitions, first introduced in Morris (1938), were
mentioned in (Zemanek, Zemanek (1966), p.139):

• pragmatics: deals with the origin, uses and effects of signs within the behavior in
which they occur;

• semantics: deals with the signification of signs in all modes of signifying;
• syntactics: deals with combination of signs without regard for their specific signi-
fications or their relation to the behavior in which they occur.

From first attempt to formalize such a behavioral, human-inspired approach to semi-
otics due to positivist notion of protocol, (Zemanek, 1966) would bring semiotics to
its natural end-point in programming.

According to his analysis, the relations between the three dimensions of semiotics is
vague, and can bemodified on the basis of the principles of the investigation (Zemanek,
1966, p. 141). If we consider the three semantic levels

• object world, i.e., the objects of a real or invented world,
• object language, i.e., their names, and
• metalanguage, i.e., the names of the names,

as primary notions, syntax expresses the relation within any one level, semantics
the relations between two levels, while pragmatics expresses the ability to construct
relations from outside the scheme (Zemanek, 1966, p. 140). Moreover, both natu-
ral languages and programming languages are endowed with both prescriptive and
descriptive components expressing declaration and command, dealing with states or
with actions (Zemanek, 1966, p. 140). Such components cannot be treated indepen-
dently of the semiotic triple, especially of pragmatics. Additionally, “formal” is not
at all identical to “syntactical”, nor to “artificial”, as syntax can be treated informally
and it is possible to formalize pragmatics, artificial languages can be informal and
natural languages can be formalized. Finally, considering the performative aspect of
languages, programming, like poetry, has a creative component, while, more than
poetry, has a real effect on the physical world.

These pragmatics considerations should not be restricted to programming language,
as they include all other aspects of systems such as the relation to the compiler, the
machine language, the operating system, the hardware and the output. The relation
between programming languages and humans offers another occasion for Zemanek to
showhis foresight. On the one hand, three years before the first public demonstration of
amouse controlling a computer system, he hypothesized the reduction of sophisticated
languages to simple pointing, as shown by the billions of ostensive gesture made by all
of us on our mobile phones, expanding pragmatics to involve not only programmers,
but also final users. On the other hand, long before the introduction of contemporary
voice assistants, he stressed how much conversational features would be essential
when dealing with talking computational systems (Zemanek, 1966, p. 143).

Despite the relevance of pragmatics considerations in current computational trends
already anticipated by Zemanek, after this initial approach there has been only scat-
tered discussions about applying semiotics to programming languages. The language
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metaphor, despite its importance, was taken for granted and set aside in the vast
majority of investigations in computer science. The first attempt to study program-
ming language systems, including compiler and interpreter, by means of semiotics
is presented in Andersen et al. (1994). According to them, computers are symbolic
machines constructed and controlled by means of signs not only in the obvious case of
the interface, but also deep down “in the intestines of the system”, from program text to
the compiler as meta-sign, from assembly to machine code, every part of the machine
is text to be interpreted or prescription about states of the system and every such part
can be treated semiotically (Andersen et al., 1994, p. 16). Such extended semiotic
approach is complementary to the standard ontological and epistemological accounts
of computational artefacts summarized in the previous section. However, while in
agreement with the dualist theory, it is definitely at odds with the LoAs theory. The
rigid demarcation between the different aspects of information doesn’t allow a unique
semiotic approach for any level, since semantics and syntax are strictly confined in
specific level, and pragmatics is not even mentioned.

In cognitive science, the development of cognitive models of computer pro-
gramming have been attempted since the 1970 s, and recently have established the
connection between programming and reading abilities (Fedorenko et al., 2019, p. 4-
7). Some further pragmatic approaches to programming languages have been proposed
for implementation (Scott, 2009), actual use (Connolly&Cooke, 2004), understanding
agent-oriented programming languages (Bordini et al., 2011) and software publishing
(Lee, 2000), and to create programming languages based on speech acts (McCarthy,
2007).

The extensions of pragmatic and linguistic aspects from programming languages
alone to computational artefacts at large is still missing though, despite the early
intuitions by Zamanek. Even Turner (2018), which provides one of the most complete
philosophical account of computational artefacts currently available, insists on the
use of language in a rather standard way, referring to types of languages in use in
the development of computational systems, programming languages paradigms, and
the distinction between specification and implementation languages. Also the relation
to Wittgensteinean themes concentrates on rule-following and understandability of
proofs, leaving aside more pragmatic aspects. In the next sections, we consider several
pragmatic aspects of computational systems which represent a serious challenge for
the LoAs interpretation of specification and implementation, their relationship with
correctness, and the origin of normativity. On the basis of the analysis of these cases,
we will then propose a pragmatic refinement of the LoAs structure, in order to create
a bridge between semiotics and standard theory of computational systems.

3.1 Development

From a pragmatic point of view, the standard interpretation of information technology
increases the regulatory role attributed to functional specifications, while diminishing
the normative role of economic, technological, legislative aspects, or those related to
company policies.
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Let us consider the development of aMessage Hub, i.e., an application that collects
all the messages received and sent using other messaging systems. Its specification,
thus expressed, does not seem to present issues. In technological terms, it is perfectly
achievable, it does not violate any physical law, as shown by projects of this type
already implemented in the past. Unfortunately, corporate policies and consequent
software restrictions, led to the progressive elimination of Application Programming
Interfaces (APIs) by many firms, making applications installed on our devices closed
systems unable to communicate with each other, unless performing risky procedures,
(e.g., jailbreak). Do company policies have a normative function? Arguably, their nor-
mative role is of a different order than what covered by the specification, namely they
exercise a normative function on the specification itself. The same kind of consider-
ations can be made for privacy laws, copyright laws, criminal law, and others: they
all perform a normative function on the specification, determining the identity of the
artefact (Angius & Primiero, 2018, 2020).

Not taking these aspects into consideration maymean investing resources, time and
money in projects that will never be legally distributed. While this does not entail that
company policies and institutional laws represent the regulatory element of computa-
tional artefacts, it shows that normativity does not only reside in the specification but
must also be sought elsewhere. It could be objected that the definition of specification
we are referring to is an informal definition, whereas normativity, and the consequent
definitions of malfunctioning and correct functioning, classically are ascribed to the
specification intended as a description of the logical function implemented by the
artefact. We argue that any relevant normative element contributes in determining the
specification against which eventually correctness is evaluated. Under this assump-
tion, in the following pages, we will consider some issues that arise in the absence of
proper consideration of relevant pragmatic elements, and the contexts in which they
develop.

A first such element is the extreme dynamism and variability of the functional spec-
ification of the artefact, whether seen in formal terms or not (for a formal interpretation
see Primiero et al. (2019a)). Only discontinued projects, i.e., obsolete and no longer
maintained software, have static and immutable specifications: the greater the diffu-
sion and success of a computational artefact, the greater the frequency of modification
and revision of its specifications. The massive presence of Beta versions, or public
and free test versions, distributed for the purpose of identifying bugs and any possible
evolution through large scale use, seem to identify in pragmatic elements and in col-
lective acts, rather than in the specification, the true normative element that guides the
development and evolution of a computational artefact. Nowadays, the specification
of any computational system germinates as an idea in the mind of some human being.
In the very early stages, it typically takes on the appearance of an e-mail, requesting
an economic quotation, sent to some software house, or to some digital media agency,
in which a brief functional description is included. If the quote is accepted, and if
the artefact is intended for human users, after a preliminary exchange of information
between the customer and the development team, it is transformed into a visual mock-
up, created by a designer, which simulates the User Experience (UX). The UX thus
passes to the scrutiny of the programmer(s) to evaluate its technical feasibility. It is
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only at this point that Unified Modeling Language (UML) diagrams, or other equiv-
alent tools, come into play, with a use that, in most cases of software development,
remains limited to managing data structures and Database (DB) design. At this point,
even before starting the implementation, the specification may change again due to
technological reasons, for example because the distribution of information within the
UX does not allow for a performing DB, and changes may therefore be necessary that
involve in the best case only the positioning of the information, in the most serious
cases also the functionality of the artefact. At the same time, the UX is enriched with
aesthetic elements that contribute to create the User Interface (UI). In this phase of
development, the regulatory element is represented by the Brand Identity, namely the
set of graphic and communication elements that participate in creating the perception
and reputation of the computational artefact. In this context, a fundamental element is
the name and its bundle identifier which, in carrying out the function of rigid designator
of the computational artefact, succeed in a task precluded both to the specification and
to the implementation. This process is recursively repeated, until the computational
artefact is no longer maintained.

In this process, the identification of what a computational artefact is, seems to
go beyond the abstract description of its functioning. Consider the general case of
the development of an application for mobile phones. One must first decide for a
Native development, typically by writing Java or Kotlin code using Android Studio for
Android-based devices, and also by writing Objective-C or Swift code using X-Code
for Apple devices; or for a Cross-Platform development, writing a hybrid application
using a suitable, typically JavaScript-based, development framework. Despite having
the same functional specification, the two native applications not only arewritten using
different programming languages, and different SDKs, in order to be executed on dif-
ferent hardware systems; they also differ in both UI and UX. Consider a basic element
for amobile application, the navigationmenu: to develop theAndroid version it will be
necessary to use an element calledNavigation Drawer which has completely different
UI and UX from the Tab Bar, typical of iOS and iPadOS applications. It seems that
we are facing two different computational artefacts, despite their specification being
identical. Their identity is not difficult to reconstruct formally (Angius & Primiero,
2018), less so from the pragmatic point of view of the users involved.

In the case of applications for iOS or iPadOS devices, a particular hardware is also
needed to develop them, i.e., a MacOS machine, or a so-called Hackintosh machine.
Unfortunately, however, the relationship between dedicated software/hardware and
hacking opens up new possibilities for indeterminacy, demonstrating how the speci-
fication alone might not be able – on its own – either to offer an adequate description
of the correctness criteria or to identify the corresponding implementation. Consider
the case of jailbroken iPhones: on most devices, it is possible to install unauthorized
firmware and operating systems that enable features forbidden by the original ones, e.g
to install applications not present on the App Store, allow shared data among several
applications, and so on. It is important to notice that the act of jailbreaking a phone is
not illegal per se, but it usually enables access to pirated or legally restricted content,
and it goes against the producer policies, resulting in a forfeiture of the guarantee of
the device. Under these circumstances, it becomes unclear whether the correctness
of its functioning is established by the original firmware and its specification, or by

123



A Pragmatic Theory...

the unauthorized one. We could extend these questions to the most diverse types of
computational artefacts such as overclocked processors, modded consoles, and so on.
On the other hand, the name, the brand identity and, in more formal and contemporary
terms, the aforementioned bundle identifier are able to provide an adequate criterion at
least for the identification of a computational artefact, even if unauthorized or illegal,
e.g., viruses, malware, et cetera, a family of artefacts which is acquiring more and
more technical and conceptual relevance (see e.g. (Primiero et al., 2019b)).

Once the development has been completed, the product must be distributed. In the
case of software for iOS devices, as in our example, it is necessary to publish the appli-
cation developed through the App Store. Normativity is represented here by Apple’s
application development guidelines, but also by the discretion of the individual Apple
employee assigned to carry out the verification. The online magazine Medium.com
published a few years ago an article (Imaginovation, 2017) which lists various reasons
why an application may not respect these guidelines which include, in addition to the
most obvious crashes and bugs during the verification process, the lack of privacy
policy or metadata, the use of offensive language or private APIs, graphics that are not
in line with the Apple quality standards or long loading times. The 63,300,000 results
produced by Google by carrying out the search “reasons why app could be rejected
from app store” confirm that this is not a rare occurrence, and the variety of these
results confirms the strong component of human discretion present in this process.

The above examples tell us that a wide range of components complement and
modify the rigid formal structure of the functional specification of computational
artefacts during their development and deployment. These include commercial and
industrial policies, versioning processes determining continuously new improvements
and extensions, the choice of compatible hardware for any given software, and finally
the deployment strategies and requirements. These aspects, which we characterize
as essentially pragmatic in nature, exceed the purely functional description while
certainly they exert an essential role in determiningwell-functioning and correct use of
the computational artefacts at hand. The human component, though, is also responsible
for idiosyncratic, unconventional, deviant uses.

3.2 Deviant Uses

We now consider how the specification of a computational artefact can change under
the pressure of more or less conventional uses.

The intentions of the anonymous developers of the famous Amiga 500 software
called X-Copy were to create a backup software, certainly not to give birth to mod-
ern computer piracy, nor to contribute to the boom in sales of Commodore products
between the 80 s and 90 s of the last century. The history of computing is full of
episodes in which software behaviors that are initially considered as bugs, discovered
by users or by the developers themselves through the test use of the artefact, reveal new
and unexpected features, which are later included in the specification of later versions
of the artefact itself. Consider the “unsend” functionality of GMail: lore has it that
the first Google mail server architectures took more than 5 s to send an email. This
would tend to be considered a malfunction, and as such it seems it was initially seen
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by the creators of the famous e-mail service, until it was transformed into a feature by
changing the text of the “send” button to “unsend”, thus allowing users 5 s to change
their mind and withdraw the sent message.

These considerations relate with a peculiar aspects of technical artefacts: the change
of intended use. A person with a particularly refined taste could decide to use an old
Olivetti Lettera 32 typewriter and an old Siemens S62 telephone as furnishing acces-
sories; or, particularly appreciating their design, they could use a pair of old Apple
Macintosh G3 as bedside tables. The worldwide presence of company museums, in
which technical artefacts are exhibited as pieces of art, confirms that this function
should not be neglected. This type of iconic information that some technical, and com-
putational artefacts are able to represent, is closely related to the meta-representation
generated in each individual user of such artefacts: a bottle of Coca Cola is not “just”
a bottle, the Bataclan door painted by Banksy is not “just” a door, an iPhone is not
“just” a phone, Deep Blue is not “just” an IBM computer; the message they represent
is intelligible only on the basis of the user’s meta-representation, which can obviously
be different from user to user. It is therefore not just a simple change of intended use,
on which however a few more words need to be spent: without changing the intended
use, the computational artefacts would still be simple calculators, there would be no
word processors, websites, web-televisions, video-games, social networks, et cetera.
A pragmatic approach emphasizes the importance of the use of technical artefacts,
not only the designed and preordained conventional use, but also the creative and the
innovative use. In these cases, the definition of actual use does not need to match the
definition of correctness for the artefact at hand. A lighter can act as a bottle opener
and a shoe horn can be used to comfortably scratch your back, a coffee machine can
be a work of art and a system bug can become a feature.

The ICE-theory of functionmentioned in Sect. 2.1 seems a particularly suitable tool
for modelling these kind of situations. The theory combines three general approaches
to function: the I(ntetionalist), the C(ausal-role), and the E(volutionist) ones. The
three approaches are embedded in a framework which theoretizes action with a partly
normative and partly descriptive intent, see (Vermaas & Houkes, 2006, p. 9):

Definition 1 (ICE-function theory,) An agent a ascribes the capacity to φ as a function
to an artefact x, relative to a use plan p for x and relative to an account A, iff:

I. the agent a has the capacity belief that x has the capacity to φ, when manipulated
in the execution of p, and the agent a has the contribution belief that if this
execution of p leads successfully to its goals, this success is due, in part, to x’s
capacity to φ;

II. the agent a can justify these two beliefs on the basis of A; and
III. the agents d who developed p have intentionally selected x for the capacity to φ

and have intentionally communicated p to other agents u.

This theorymodels the evolution of technical artefacts starting from passive use, but
it extends to a taxonomy of several types of designing. Consider everyday spreadsheet
use: making additions and subtractions, changing the size of a cell to make it fit a huge
amount of money, changing to red the background color of all the cells in the column
labeled as “DEBTS”, and so on. Everything goes as intended by the original design.
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The first type in the array of (new) designs takes into account the fact that users can
manipulate artefacts in a way that differs from the original use plan, for example when
using our spreadsheet to create pixel-art. User u1 may have the intuition that resizing
all the cells in the same square shape, and changing color to their background in a
certain way, allows her to create amazing pixel-artworks. To reach the second type in
the design array, i.e., innovative using, communication with other users is necessary.
User u1 may share her discovery by means of several media: she can post pictures
of her artwork on social media, she can talk/text to other users about her discovery,
she can sell her artwork as Non Fungible Token, and so on. As a consequence, the
expanded functionality is also made available to other final users.

Idiosyncratic and innovative using are usually not considered as cases of designing,
because they are based on experience or luck, and they lack any scientific or theoretical
knowledge. Expert redesigning fills this gap, adding the required expertise basis. Con-
sider two spreadsheet users, d1, d2, who also are an independent graphic designer and
an independent programmer respectively. On the basis of their scientific knowledge
and of the new function spread throughout the final users community, d1 can design
and share picture templates, allowing unskilled final users to follow them and use the
spreadsheet as a coloring book, while d2 can write and share macros that allow final
users to fill a cell or a group of cells with color gradients.

While the communities of final users made of independent designers and pro-
grammers (as well as other possible users communities) keep experimenting with
new features (and possibly discovering new ones), also the original programmers and
designers become aware of them. They may recognize the commercial potential of
such features and decide to include them in the specification of the next release of the
spreadsheet, moving to the final step of the array: product design. From the final user
point of view, we are back to the passive using phase, and the process can start again
from the beginning, with new features and behaviours.

3.3 Esolangs

Another pragmatic challenge, also related to creativity and agency, is represented by
an operation that, prima facie, seems to involve only syntactical modifications, such
as the translation from a programming language to another. We already mentioned
that the problem of the translation from programming languages to machine code is
a matter of pragmatics, however, one may argue that, when dealing with different
programming languages and not with machine code, translation changes syntax while
preserving semantic, so that function computation remains unaltered (Connolly &
Cooke, 2004, p. 154). Unfortunately, there are several cases in which this is not true.
For example, to translate a client-side program on a server-side data structure and
architecture, not only syntactical changes are necessary, but also semantic ones, in
many cases followed by essential human intervention.

In order to explain the concepts just expressed, a series examples consisting of vari-
ousHelloWorld programs, developed using different esoteric programming languages
(Esolang), will be proposed below. Esolangs are all those very complex programming
languages, designed to be particularly cryptic and created for the purpose of testing
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the limits of programming and programmers, for research, or just for fun. The already
mentioned Hello World Convention, consists of the first program that is generally
written when learning a new programming language; the result of this program is the
“Hello World” output addressed to the human user through any output device.

Let’s start by considering languages that are famous for the obfuscation of their
code, i.e., the difficulties that human readers encounter when they try to understand
them. Brainfuck, has an extremely minimal syntax, consisting exclusively of 8 admit-
ted characters (> < + − . , [ ] ), resulting in high lexical complexity of programs
written in this language, and undermining the distinction between high-level and low-
level programming languages. Befunge uses a two dimensional grid which allows the
execution of the program to proceed in any direction of the grid, not only breakingwith
the convention that imposes a fixed direction in interpretation, but also annihilating
the idea of a “line of code”, by allowing the instruction pointer to change direction or
flow off one side of the screen onto the other.

Example 1 “Hello World” in Brainfuck

Example 2 “Hello World” in Befunge

Still in the scope of obfuscated code, another particularly famous esolang is Mal-
bolge, designed to be as difficult as possible to program. Any operation performed
by a Malbolge program involves a complex procedure, in which several aspects (e.g.,
the use of a primitive ternary CPU, the memory shared by code and data, the encryp-
tion/decryption of data, the use of a so-called crazy operation), combine to create a
deliberately chaotic development environment.

Example 3 “Hello World” in Malbolge

Given the extremecomplexity of the language, no real programshavebeenwritten in
Malbolge for a long time; thefirstworking “HelloWorld”programcame twoyears after
the release of the language, produced by aLisp programgoing through the logical space
of all possible programs, see (Cooke, 2000). The first program “99 Bottles of Beer”,
closely linked to non-trivial conditions and cycles, was released only seven years after
the birth of Malbolge by Hisashi Iizawa and is universally considered a masterpiece of
the obfuscated code, also because it supports the hypothesis that Malbolge is Turing-
complete. The temporal variable in this case seems to be a confirmation of the fact
that the implementation between languages cannot be a process limited to purely
syntactical translation.
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Fig. 1 “Hello World” in Piet (left) and Velato (right) - source: Esolangs

Elevating obfuscation to an art form, Piet and Velato fill the gap between program-
ming language and artistic expression, see Fig. 1. Piet, named after Dutch painter
Piet Mondrian, is a stack-based programming language, in which programs resemble
geometric colorful paintings. Velato uses MIDI files as source code, defined by the
intervals and the order of the notes encoded in them. By allowing some flexibility in
composition, the resulting programs can be adapted not to sound like random strings
of notes, in fact “[t]here is a tendency for Velato programs to have jazz-like harmonies”
(Esolang, 2014). These examples highlight “the conflict between programming lan-
guages, designed with the assumption that human beings are capable of expressing
logic, and the actual human beings who write code in them” (Temkin, 2017).

Entropy is a programming language which, despite its conventional syntax, has a
peculiarity which makes it extremely interesting for our analysis: data remains uncor-
rupted until accessed and becomes more corrupt as it is used. An Entropy programmer
needs to abandon the pursuit of precision, since “[a]ny output from an Entropy pro-
gram will be approximate, and the more the data is accessed, the more random it will
become” (Esolang, 2014). Let us consider again our Hello World program:

Example 4 “Hello World” in Entropy

The result of the execution of this program is a variation of the classic “Hello
World” message such as “Hello + World” or “Eello Qorld” and so on. Obviously, the
more complex a program is and the more it accesses data series, the more casual and
divergent the result will be from initial expectations and specifications. It is evident
that the definitions of correctness given above for the LoAs structure (Primiero, 2019)
fail to include programs written in Entropy:
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• the definition of functional correctness is inapplicable to Entropy programs as it is
not possible to define with certainty the expected efficiency of their functions;

• Entropy programs can be procedurally correct only as long as data remains
untouched, failing functionally the more procedural correctness is investigated;

• executional correctness is also unsuitable for the description of Entropy programs
since, according to this definition, none of them will work correctly (functionally)
on the installed architecture.

On the opposite side of the spectrum of correctness we locate FatFinger.JS. This
JavaScript library allows the use of typing and spelling errors, which would normally
be interpreted as syntax errors.

Example 5 “Hello World” in FatFinger.JS

Using FatFinger.JS these lines of code will be interpreted as:

The considerations made in relation to Entropy can be transposed in this case, still
confirming the limitation of the definitions of functional, procedural and executional
correctness:

• it is difficult to establish with certainty the functional correctness of programs
written using FatFinger.JS because the functional efficiency of such programs will
generally (but not certainly) be higher than the functional efficiency of programs
written without using it;

• it is not possible to clearly define the scope of definition of procedural correctness
as both syntactically correct programs and programs containing various types of
errors will show the functionalities intended by the underlying algorithm;

• similarly, regarding execution correctnesswe find ourselves in the curious situation
in which both syntactically correct programs and programs containing syntax errors
will work correctly on the considered architectures.

For the various cases of unintended uses, as well as for languages that deviate from a
stable relation between specification and implementation, a pragmatic interpretation
may become necessary. Users are traditionally ignored by computer theories, focusing
on the production of computational artefacts and almost never on their use.
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3.4 Classification by Data

A final case we want to consider briefly has less relevance for traditional digital com-
puting systems,while it opens our pragmatic approach to describe novel computational
technologies implementing learning based on data. Considermodernmachine learning
systems trained to classify data. Notoriously, a significant component in the result of
such processes is represented by the data labeling of the training set. The input data on
which the system learns, and the associated labeling, provides a significant component
in the way the functional, procedural and executional correctness of such systems can
be evaluated. Asking whether the result of a classification task with a given label set
will be correct with respect to the (intuitive) function specification of the system ("label
datapoint d1 as label L1 if its denotation can be correctly categorised as such”) should
therefore account for it, while the procedure it implements (e.g.: “label datapoint d1
as label L1 if a sufficient number of data in a specified neighborhood can be classified
in a similar way”) may diverge from it. In particular, deviant phenomena such biased
labeling in the training set will contribute significantly to the evaluation of correctness
and trustworthiness in their use. A training set in which (human) users have (even
unconsciously) imported significant bias (e.g. by labeling images which account for
social, cultural, religious or political judgements), will be reflected in the results of the
classifier used on new inputs: shall we say that a classifier designed to classify humans
as male/female is functionally incorrect when it systematically misjudges a young girl
who happens to have (by chance, or by choice) non-feminine traits? Obviously so,
but the training component that produces such a result is indeed part of the system’s
input. Only it appears to be originating from a user level (training data) which is far
more hidden and less explicitly accounted for than other levels, and which is strictly
related, closely talking to another user level (labeller) which influences and guides the
computational result. Also establishing procedural correctness becomes difficult, as a
label expressing a factual error by its (missing) association with a sufficient number of
data will result in a correct functional result. The possibility that the trained algorithm
might then run on different input sets, generating different results opens up the issue
of executional correctness.

In the next section we introduce the concept of user levels (ULs) and investigate
their relationshipwith the levels of abstraction (LoA)method applied to computational
artefacts.

4 The ULModel

The considerations in the previous section lead to the conclusion that, at least for certain
ways of intending computational artefacts, the semantics of information cannot be
confined to any single LoA, but rather seems to propagate along all levels. In pragmatic
terms: for each level of abstraction it is possible to identify one or more users who,
through a particular use of the computational artefact, make this level significant. We
organize such pragmatic component in a novelUser Levels Model, which accounts for
the contribution of different types of users in the definition of computational systems.
We start off with some more simple examples.
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For the programmers of ENIAC (Electronic Numerical Integrator and Computer)
instructions and operations coincide in a single level of abstraction, thus making the
wired logic meaningful. Or consider the following examples from Scott (2009):

Example 6 Euclid’s algorithm for computing the greatest common divisor in machine
language, expressed here as hexadecimal numbers (base 16), for the x86 (Pentium)
instruction set:

Example 7 Euclid’s algorithm for computing the greatest common divisor in x86
assembly language:

For sufficiently competent users, it is possible to identify the semantics of the
computational artefact, even at low levels of abstraction. Some users will be able
to distinguish a program for calculating the greatest common divisor from another
written, for example, to carry out sums, starting from the level of themachine language;
others will need to move to the level of assembly languages, still others will have the
need and the skills to use high-level languages, others will significantly operate at
the algorithm level. Finally, end users will be able to distinguish and attribute the
semantics of the artefact via UI. In all these case, the correctness criterion might still
be characterised at the level of the algorithm, while pragmatically there might be no
need to ascend through the entire hierarchy of LoAs from user interface to intention.
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A first step to provide an integration of the LoA hierarchy which accounts for such
pragmatic component consists therefore in identifying the concept of user who, as a
particular signifier in context, is able to contribute to the meaning of the artefact at
her own level. Such analysis of the notion of user extends the taxonomy presented in
Fresco and Primiero (2013). A second step consists in adapting the common belief
that the analogy between programming languages and speech acts can be extended to
computational artefacts at large, especially with regards to performativity, dependence
on context and the relationship with linguistic excess. Hence, by means of a series of
practical examples, wewill articulate the concept of computational act as an extension
of the concepts of code act (Cox & McLean, 2012) and of speech act (Searle, 1969).
Austin (1962) is usually considered to have offered the first complete formulation
of Speech act theory. Sentences or utterances are not just a means to say something,
but they are proper way to act, to do something. A sentence can be considered as a
performative act, consisting of

• a locutionary act, i.e., the actual utterance and its meaning;
• an illocutionary act, providing the force, e.g., informing, ordering, asking, warning,
etc;

• a perlocutionary act, representing the actual effect achieved by the utterance, e.g.,
scaring or persuade someone, making someone do or realize something, etc.

Under this context, speech acts and programs share a performative nature, with the
latter endowed with the ability to both exceed and undermine the distinction between
speech and writing, as they are able to address both humans ad machines, and make
things happen, cf. (Cox & McLean, 2012, p. 35).

4.1 Users

The study of the use of technical artefacts in general, and of computational artefacts
in particular, tends to be confined to the field of design, with few philosophical con-
tributions, most of which focus on political and social considerations deriving from
the linguistic-performative nature of code writing, and focusing exclusively on human
users. The presence of human agents with the ability to act at certain LoAs also charac-
terizes the taxonomy set out in Fresco and Primiero (2013). In summary, the taxonomy
includes the following users:

1. the Architect operating at Functional Specification Level (FSL);
2. the System designer in charge of the Design Specification Level (DSL);
3. the Algorithm designer responsible for the Algorithm Design Level (ADL);
4. the Engineer in control of the Algorithm Implementation Level (AIL);
5. the Algorithm Execution Level (AEL), with no corresponding agent beyond the

physical machine.

The attribution of syntax, semantics and normativity to specific levels makes the LoAs
highly hierarchical: the physical machine will allow the program written by the Engi-
neer to run on the basis of the algorithm designed by the Algorithm Designer. The
latter, in turn, will work following the specifications imposed by the System Design

123



A. G. Buda, G. Primiero

Description (SDD) produced by the System Designer on the basis of the Software
Requirements Specification (SRS) established by the Architect.

On the contrary, the UL model is based primarily on the notion of (not necessarily
human) user. By de-localizing the semantics involved in the use of the artefact, the
UL model reveals a softer hierarchy: in this new structure all possible uses denote a
semantic relation between signifier and signified. By signifier we intend the modes
and requests of use of the artefact by any users; by signified we intend the collection of
functional andnon-functional requirements by all users converging in the specification.
This type of layered organization is, by hypothesis, destined to be provisional, given its
dependence on the technological and ergonomic advances of computational artefacts,
as well as their deviant use. No matter how many ULs may be introduced to enrich the
system at any given point, each of these will contribute to the definition of the peculiar
meaning and correctness of the artefact through its use within a given context. Under
this reading, the specification, and the underlying algorithm, loose their hegemony
on correctness, to become the collector of the semantic contributions of the different
signifiers conveyed by each UL, as well as of their regulatory requests.

The UL model qualifies as a structural system, in the sense intended by Tanaka-
Ishii (2015) and illustrated above. As such, a list of its components does not have a
fixed order, their roles may intertwine and overlap, each one communicates with the
others and their nature may change. This is the case especially for the list of ULs
of computational artefacts provided below, where for example some users that were
typically humans in the past, have become today physical or virtual machines:

• thedeveloper (low-level, high-level, front-end, back-end etc.) takes care of the imple-
mentation of the artefact. It communicates with other levels according to their tasks:
e.g., the low-level developer communicates with assembler, compiler and system
designer; the high-level developer communicates with system designer and algo-
rithmdesigner; front-end developer and back-end developer communicatewith each
other; and the former communicates directly with the interface designer;

• the designer (system, interface, algorithm etc.) is responsible for designing the
artefact, or part of it. In addition to the dialectics highlighted in the previous point,
the system designer dialogues with the owner, whereas the interface designer and
front-end developer dialogue with the user through their production of the UI;

• the machine corresponds to the level of the physical machine;
• the operating system is made up of many levels, and it constitutes the privileged
way of man–machine communication;

• the producer deals with the production of the computational artefact (hardware and
software);

• the publisher dealswith the publication,marketing and dissemination of the artefact,
also covering the role of policy maker with regard to its own distribution channels;

• the compiler role, once held by human users, is now the prerogative of machines,
and it deals with the “translation” from high-level to low-level languages;

• the assembler, similar to the compiler and similarly once held by humans, refers to
the lower levels of the artefact, dealing with the “translation” in assembly language;

• the end user is the final user of the computational artefact. Under appropriate con-
texts, any other UL, excluding the machine level, can be considered as an end user;
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• the policy maker dictates the rules governing the production, dissemination and use
of computational artefacts. These norms are created and modified as a result of the
production, dissemination and use of computational artefacts, e.g. the changes in
the music world induced by the advent of peer-to-peer software, the tightening of
the rules on hate speech following the widespread diffusion of social networks, or
the creation of the new legal category of computer crimes;

• the owner of the computational artefact dictates the general guidelines for the real-
ization of the artefact and is responsible for the economic and legal aspects of its
production, dissemination and use.

This is the most obvious list for the UL model of traditional digital computational
systems. The introduction of novel technologies implies the addition of novel ULs:
for example data-driven technologies will include novel users like the data modeller,
the data annotator, the data labeller and so on. The semantic and normative instances
of users, and of the contexts in which they operate, contribute through their interaction
to the semantics and correctness of the computational artefact.

4.2 Computational Acts

Every computational act is a collective linguistic act that involves at least two ULs,
with one of them always performed by the physical machine, the ontological support
of all subsequent levels. This consideration seems to be applicable not only to digi-
tal artefacts, but to all computational artefacts, including the calculation with paper
and pen or in mind, in which a single agent operates at different ULs (i.e., designer,
developer, machine). We argue that meaning for a computer program, while formally
expressed by the logic of the specification, it exceeds it in the many ways it is contex-
tually considered by any given user.

For example, the regulatory role of contexts is not only limited to the developer UL,
for whom such element allows the typing of variables and where the use of brackets
determine variable declaration or function scope or interruption of logical flow. It rather
extends to all levels, in a phenomenon similar to what we have seen with semantics. So
the physical layer determines the operations that can actually be performed without
running into overflow, (Connolly & Cooke, 2004); the firmware level is equipped
with the so-called protection software, implemented in order to prevent “untrusted
programs” or “untrusted users” from any access to the operating system kernel and
input/output channels, (Kittler, 1996); and the level of the operating system and its
graphical interface affect thoughts and actions of the users, (Cox & McLean, 2012).

Context is also important for ULs traditionally considered as passive, such as the
compiler level. Consider the case of polyglot programs, where one or more algorithms
are implemented using different programming languages, usually making creative use
of comments, like in the following public domain “Hello World” written in ANSI C,
PHP and bash:

Example 8 Polyglot “Hello World” in ANCI C, PHP e bash - source Wikipedia.
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The influence of the compiler level becomes clear when we consider polyglots
that implement different algorithms. Depending on the compiler that will translate the
program, different results starting from the same program are possible. A (possibly
extreme) example is the challenge launched on Stack Exchange to write a polyglot in n
different languages. The program must return 1 when executed in the first language, 2
when executed in the second, 3 in the third, and so on.Currently, a correctly functioning
program has been obtained in 377 different languages, many of them esolangs, making
it practically impossible to reproduce the code on printed paper without modifying
it, rendering the polyglot no longer functional. The challenge, which lasted for over
five years with hundreds of contributors, further underlining the collective nature of
the computational act, is still open, see https://codegolf.stackexchange.com/questions/
102370/add-a-language-to-a-polyglot.

Another interesting case of contextual influence between ULs arises between the
high-level developer and algorithm designer levels: it subverts the normative relation-
ship between the two levels, making specification and high-level languages mutually
dependent, undermining the independence of the former from the latter. First of all,
high-level programming languages do not constitute a homogeneous and compact
group. Even leaving aside esoteric languages, it is customary to divide them into
different families based on the computation model: declarative (functional, dataflow,
logic) languages and imperative (vonNeumann, scripting,ObjectOriented) languages.
On the basis of this distinction, let’s consider the example of Euclid’s algorithm for
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calculating the greatest common divisor (GDC) and its implementation in three pro-
gramming languages: C representing the von Neumann family, Prolog for logic-based
languages, and Scheme, chosen from functional languages.

Example 9 Greatest common divisor in C, Scheme, and Prolog - source (Scott, Scott
(2009), p.13).

The von Neumann version of the algorithm shows clearly an imperative character.
In the specification for Scheme the emphasis is on the mathematical relationship of
the GCD function. In logic-based languages the programmer provides a set of rules
for the system to find the right values. The resulting paradoxical situation is that if
we want the specification to be independent from any linguistic implementation, then
we are forced to accept a very general kind of specification, such as “write a ’Hello,
World!’ program” or “write a GCD program”. The specification alone is not able
to identify one program, or distinguish it from others written in different languages,
or running on different hardware platforms. One rather needs the specification to
be related to the actual implemented algorithm, which can be very different from
language to language. In this case, implementation and specification undergo mutual
influence both in informational and regulatory terms, strengthening the hypothesis
of the contextual influence between levels and the relative collective nature of the
computational act.

Like other collective speech acts, the computational act oscillates between process
and expression. Like spoken languages, every computational act says something and
does something. The similarity between programming and composingmusic or poetry
formulated by Donald Knuth in The Art Of Computer Programming is enriched with
meaning; the computational act, in its being poised between a readable state and an
executable state, exceeds each and includes both. New meanings emerge from the
normative and semantic instances of the different ULs, including those which, tradi-
tionally, are not considered active subjects in the definition of the artefact. Between
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all these levels, the final UL seems to exert a particular type of thrust, especially in
the unconventional, and deviant uses. At this point we offer a pragmatic definition of
implementation which accompanies the various existing ones in the literature consid-
ered before, and a definition of pragmatic correctness which extends those based on
functional, procedural and executional criteria:

Definition 2 (Implementation as relationship between signifiers) An implementation I
pragmatically intended is the correspondence relationship betweenmodes and requests
of use of the artefact (signifiers) at different ULs of the same collection of functional
and non-functional requirements (signified), converging in the specification.

Definition 3 (Pragmatic correctness) A physical artefact t is pragmatically correct if
and only if there is convergence of all the modes and requests of use of the artefact
expressed at the different ULs.

If the semantic and normative thrust of the deviant level exceeds that of the formal
specification, i.e. if the uses or interpretation by some users do not conform with the
intended one, but are not specifically excluded from the specification, they are not
rejected, but rather extend the specification, thereby becoming correct uses. The gen-
eral definition of correct physical computing system given for LoA model in Primiero
(2019) remains valid also in the UL model.

Finally, we show how the notion of intentional, computational and physical infor-
mation from the taxonomy defined in Primiero (2016) is complementedwhen analysed
at distinct ULs (see Fig. 2):

• intentional information, which is abstract and truth-bearing from the point of view
of the Levels of Abstraction model, satisfies a pragmatic aspect of meaning from the

Fig. 2 Information in UL model
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semiotic point of view, and it defines the epistemological domain of the underlying
levels. It represents the locutionary aspect of a computational act, i.e., its meaning
in the broadest sense;

• computational information, which is instructional, meaning-bearing information
from the point of view of the Levels of Abstraction model, is related to the semantic
aspects of meaning, and it provides the language to connect the epistemological
domain to its ontological counterpart. It represents the illocutionary aspect of a
computational act, i.e., its force;

• physical information, which plays the role of operational, correctness-bearing infor-
mation, is related to syntax, expressing the ontological support. It represents the
perlocutionary aspect of a computational act, i.e., its actual effects.

The same exact structure is repeated recursively in the scope of computational infor-
mation, in which the information of each UL, considered as instructional information,
is the center of a triadic structure including the information of the levels immediately
below, representing operational information, and above, playing the role of abstract
information. To exemplify this analysis, let’s consider a simple case in which we
have only three ULs: Machine Language (ML), Programming Language (PL), and
Algorithm. Starting from the higher level of abstraction we have (see Fig. 3):

• at Algorithm level: the information conveyed by the programming language will
be operational, correctness-bearing with respect to the algorithm; the information
conveyed by the algorithm is instructional, meaning-bearing; and the information
content of the intention is abstract, truth-bearing;

• at ProgrammingLanguage level: the information conveyed by themachine language
will be operational, correctness-bearing with respect to the programming language;
the information conveyed by the programming language is instructional, meaning-
bearing; and the information content of the algorithm is abstract, truth-bearing;

Fig. 3 Computational Information in UL model
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• at Machine Language level: the physical information will be the operational,
correctness-bearing with respect to the machine language information; the infor-
mation conveyed by the machine language is instructional, meaning-bearing; and
the information content of the programming language is abstract, truth-bearing.

Turning back to the considerations made at the end of Sect. 2.2, the UL structure
succeedswhere the LoA account fails. Consider, as an example, the recent introduction
and growing diffusion of no-code systems among developers. LoA is not able to
precisely define, in its linear hierarchy, this recent practice in the development of a
computational artefact: the user is no longer dealing directly at the high-level language,
nor formulating explicitly requirements for code to be correct. On the other hand, the
recursive structure of the UL allows to model such new tools: the use of a platform
that visually aids the end user to build her application by dragging-and-dropping pre-
formulated components, can be seen as:

• the flowof the required processes at the abstract intentional information level (acting
as algorithm);

• the interaction between user and machine, providing instructional information (act-
ing as a programming interface);

• the lower level of operational information (when the components chosen and com-
bined are seen at the programming language level).

Note that this analysis does not fix the user’s actions at any given level, but it allows
to shift them across levels and let them bear each time a different role.

The evolution of computational systems offers similar examples when a new fea-
ture, or combination of existing features, is discovered through use. In these cases, the
conventional use (e.g. coloring the cells of a spreadsheet with the purpose of highlight-
ing certain values) acts as instructional information for the intentional level regarding
the new feature discovered (i.e. to display enjoyable graphic results), while the actual
innovative result (the coloured spreadsheet on screen representing a Japanese land-
scape) reveals itself as perlocutionary act. The new feature, being excluded from the
original specification, is not evaluated for correctness in the LoA model. On the con-
trary, according to the UL model, the correctness of the new feature – if not explicitly
against the specification – is admitted by considering all modes of use expressed by
all the different ULs involved (namely including the deviant use of colouring cells to
make art). When a deviant use is explicitly against the specification, as in the cases
of hacking, cracking, or uses that cause malfunctioning (e.g., SQL Injection or SSL
Heartbleed), the specification can no longer act as abstract, intentional information
with respect to such use, as the latter obviously contradicts some explicit requirement.
Therefore, such forms of deviant use cannot be considered correct, unless the original
specification is modified.

No matter how many ULs and sub-levels are added, due e.g. to technological and
ergonomic evolution of artefacts, this taxonomical analysis still holds, as shown in
Fig. 4.
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Fig. 4 The resilience of UL Structure to the evolution of computational systems

5 Conclusions and Further Work

A pragmatic approach to computational artefacts, based on their use intended as a
performative and collective computational act, seems to offer a powerful tool to be
placed side by side with the standard theory. In particular it is able to describe both
peculiar phenomena such as esoteric programming languages, and still little explored
aspects of philosophical research in computation, such as the change of intended use,
the evolutionary drive that generates it, or the role of human components in novel
data-driven technologies.

A required part of such theory is a formal elaboration, complete with syntax, and
pure and applied semantics, as well as a complete taxonomy, as far as possible, of
the different ULs. Another issue to be considered is the risk of admissibility of mal-
functioning in the largely permissive nature of the pragmatic interpretation. Further
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investigations may be devoted to applying the above mentioned theory of informa-
tion to computational methods that already use independent agency, such as artificial
neural networks, adversarial programs, genetic algorithms, and genetic programs.
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