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ABSTRACT 

Human cellular reprogramming to induced pluripotency is still an inefficient process, which 

has hindered studying the role of critical intermediate stages. Here we take advantage of high 

efficiency reprogramming in microfluidics and temporal multi-omics to identify and resolve 

distinct sub-populations and their interactions. We perform secretome analysis and single-

cell transcriptomics to show functional extrinsic pathways of protein communication 

between reprogramming sub-populations and the re-shaping of a permissive extracellular 

environment. We pinpoint the HGF/MET/STAT3 axis as a potent enhancer of 

reprogramming, which acts via HGF accumulation within the confined system of 

microfluidics, and in conventional dishes needs to be supplied exogenously to enhance 

efficiency. Our data suggests that human cellular reprogramming is a transcription factor-

driven process that is deeply dependent on extracellular context and cell population 

determinants. To further investigate the relationship between the fates that characterize this 

process, we aim to implement the results produced herein with chromatin accessibility data 

from the same cells. We hypothesize that different epigenetic states of cells at early time-

points may sustain or repress the ability of cells to undergo one trajectory or the other. 
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FIGURE 24: SR CLUSTERS PROFILE IS ENRICHED BY SECRETED PATHWAYS. GSEA RESULTS FOR EACH CLUSTER. ONLY SIGNIFICANT 

RESULTS ARE SHOWN. THE GENE SET MADE OF THE SECRETED PROTEINS FOUND IN THIS WORK IS WRITTEN IN BOLD. NES, 
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1 Introduction 

1.1 Road to Cell Reprogramming 

1.1.1 Stemness 

1.1.1.1 Stem cells potency 

Stem cells, essential components of the human body, are undifferentiated cells capable of 

transforming into various cell types and renewing themselves. These cells exist in both 

embryos and adult tissues. The process of specialization occurs through several stages, each 

diminishing the developmental potential. As cells progress from pluripotent to unipotent 

states, their ability to differentiate into different cell types becomes progressively limited. 

Unipotent stem cells possess restricted differentiation capacity compared to pluripotent ones, 

showcasing the gradual reduction in developmental potency. Due to these features, they are 

becoming a very powerful tool in a plethora of field, including regenerative and precision 

medicine, toxicology testing, disease modeling, and so forth. 

Their classification is based on the level of “potency”, namely their potential to specialize in 

a multitude of different cell types: 

• Totipotent stem cells: exemplified by the zygote formed after fertilization, they 

possess the highest differentiation potential, able to form all cells in an organism, 

including both embryo and extra-embryonic structures. 

• Pluripotent stem cells (PSCs): examples are embryonic stem cells (derived from 

preimplantation embryos) and induced pluripotent stem cells (generated from 

somatic cells through artificial means). Pluripotent stem cells can form cells of all 

germ layers but not extraembryonic structures. 

• Multipotent stem cells: like hematopoietic stem cells, they have a narrower 

differentiation spectrum, specializing in specific cell lineages. These cells can 

differentiate into several types within their lineage. After a few divisions, multipotent 

cells become oligopotent, capable of differentiating into a limited number of related 

cell types within their lineage. 

• Unipotent stem cells: they are the most specialized, with the ability to differentiate 

into only one cell type, yet they possess a unique property of repeated division. For 

instance, myeloid stem cells can give rise to white blood cells but not red blood cells. 

Unipotent stem cells, due to their restricted differentiation and robust division 

capabilities, hold significant promise in therapeutic applications within regenerative 

medicine. 
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1.1.1.2 Stem cells biology 

Stem cells with the greatest differentiation potential reside in the early stages of embryo 

development. Indeed, they must guarantee the whole organism’s development. Their 

appearance starts from the zygote, after the fusion of a spermatocyte with an oocyte 

(fertilization)1. After some divisions, a blastocyst is formed, housing short-lived embryonic 

stem cells along its inner wall. These embryonic stem cells, or ES cells, are pluripotent, 

possessing the capacity to develop into any cell type in the organism. The blastocyst 

comprises two distinct cell types: the inner cell mass (ICM), which gives rise to the epiblasts, 

initiating the development of the fetus, and the trophectoderm (TE), responsible for forming 

extraembryonic support structures, including the placenta. While TE specializes, ICM cells 

maintain their undifferentiated, fully pluripotent, and proliferative state2. Human embryonic 

stem cells (hESCs) are derived from the ICM3,4. 

During embryogenesis, cells organize into germ layers - endoderm, mesoderm, and ectoderm 

- each ultimately leading to differentiated cells and tissues in the fetus and later in the adult 

organism5. Upon differentiating into one of these germ layers, hESCs become multipotent 

stem cells, with their potential limited to cells within the specific germ layer. This 

differentiation process is quick in human development. Subsequently, pluripotent stem cells 

are distributed throughout the organism as undifferentiated cells, capable of both 

proliferating by generating the next generation of stem cells and differentiating into 

specialized cells under particular physiological conditions. 

The specialization of stem cells is influenced by signals, categorized as external (such as 

physical cell contact or chemical secretions from surrounding tissues) and internal (signals 

regulated by genes within DNA). Stem cells also serve as internal repair systems within the 

body. They continuously replenish and generate new cells, a process that remains unlimited 

as long as the organism is alive. The activity of stem cells varies depending on the organ 

they are located in; for example, in bone marrow, they undergo constant division, whereas 
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in organs like the pancreas, division occurs only under specific physiological conditions 

(Figure 1). 

 

1.1.2 Cell programming 

For an extended period, the process of differentiation was perceived as a unidirectional 

journey, where cell states followed a predetermined path within the 'epigenetic landscape' 

conceptualized by Conrad Waddington in 1957. 

Figure 1: The stem cells biology. Upon the fusion of an egg and a sperm, a totipotent zygote 

emerges, capable of forming both the inner cell mass (ICM) and the extra-embryonic (EE) 

tissue within the blastocyst. When extracted from the blastocyst in vitro, ICM cells can be 

sustained in culture, evolving into pluripotent embryonic stem cell (ESC) lines. As the 

embryo develops, these pluripotent stem cells within the ICM gradually lose their potency 

and transform into tissue-specific, multipotent stem cells, marking a progression towards 

increased lineage specialization. Adapted from Eckfeldt et al., 2005185. 
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In subsequent classic studies, the notion that 'committed' cells irreversibly follow a 

predetermined path was challenged. These studies indicated that committed cells, while 

retaining their genetic information, can alter their fate in response to specific stimuli. For 

instance, experiments with Drosophila melanogaster pupae's imaginal disc cells showcased 

'transdetermination', i.e., cells destined for specific structures transformed into different 

tissues upon transplantation, displaying remarkable plasticity6,7. Although these fate 

switches occurred infrequently, they demonstrated the surprising adaptability of explanted 

cells. 

Another significant study involved transplanting cells between quails and chickens. Despite 

their resemblance, these cells had distinct nuclei, allowing tracking of their fate. The research 

by Le Lievre and Le Douarin8 revealed that neural crest cells, when transplanted, adopted 

new fates influenced by their new cellular surroundings, generating diverse tissues such as 

bone, cartilage, and connective tissue in the avian embryo. 

Parallel experiments across various species, including both embryonic and adult somatic 

cells transferred into enucleated oocytes, led to the formation of all three germ layers and 

even the development of entire organisms. These experiments, conducted by researchers like 

Gurdon, Byrne, Melton, Hochedlinger, and Jaenisch, provided unequivocal evidence that the 

identity of differentiated cells can be completely reversed9–12. These findings challenged the 

traditional belief in the irreversibility of cell differentiation. 

1.1.3 The role of transcription factors in lineage switching 

A significant principle contributing to the discovery of induced pluripotency involved the 

observation that lineage-associated transcription factors, which regulate cellular identity 

during development by activating specific genes and suppressing inappropriate ones, can 

alter cell fate when expressed in different cell types13,14. In 1986, Lassar and colleagues 

demonstrated 'transdetermination' by converting fibroblasts into myoblast-like cells using 

the demethylating agent 5-azacytidine and the expression of specific cDNAs15. Subsequent 

research identified MyoD as the key transcription factor driving this conversion16, 

illustrating how transcription factors could reprogram differentiated somatic cells into 

different phenotypes. 

Further studies in the hematopoietic system, a well-defined mammalian cellular 

differentiation system, provided fundamental insights. Experiments revealed that forced 

expression of GATA1 induced erythroid and megakaryocytic markers in monocytic cell 

lines17, demonstrating that transcription factors not only activate new gene programs but also 

suppress existing ones, a characteristic of transdifferentiation. Additionally, it was found that 
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the expression of PU.1 in megakaryocytic and erythrocyte precursors converted these cells 

into myeloblasts18. Later, primary B and T cells were efficiently converted into functional 

macrophages by overexpressing the myeloid transcription factor C/EBPα19,20, demonstrating 

the remarkable plasticity of mature hematopoietic cells. In vivo experiments in mice 

illustrated the conversion of exocrine cells into insulin-producing cells by overexpressing 

specific transcription factors, alleviating diabetes symptoms21. Additionally, the discovery 

that specific combinations of transcription factors, such as Gata4, Mef2c, and Tbx5, could 

convert fibroblasts into cardiomyocytes further expanded the possibilities of lineage 

conversion22,23. Neural factors like Ascl1, Brn2, and Myt1l were shown to transform 

fibroblasts into induced neuron-like cells24 (Figure 2). 

Remarkably, these experiments demonstrated the feasibility of converting cells not only 

within the same tissue or germ layer but also between different tissues and embryonic origin. 

These pioneering direct programming experiments laid the groundwork for the systematic 

exploration of transcription factors capable of inducing the conversion of differentiated cells 

into a pluripotent state. 

1.1.4 Cell reprogramming 

Prior to achieving somatic cell reprogramming to pluripotency mediated by transcription 

factors, other approaches were utilized to achieve the same goal. These methods include 

nuclear transfer to eggs or oocytes, cell fusion and extract treatment. Nevertheless, from a 

cost-efficacy point of view, the obtainment of human induced pluripotent stem cells (hiPSCs) 

via the use of transcription factors remains the best option. 

Figure 2: Examples of transcription factors-induced direct reprogramming. Adapted 

from Graf., 201113. 
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Yamanaka and Takahashi employed a meticulous screening approach to identify factors 

crucial for reprogramming somatic cells into pluripotent cells. They initially tested 24 

candidate genes associated with pluripotency, focusing on the activation of the ES-specific 

gene Fbx1525. Through a systematic reduction strategy, they determined the minimal set of 

factors necessary for reprogramming fibroblasts into pluripotent-like cells. This minimal 

combination, consisting of Oct4, Sox2, Klf4, and Myc (OSKM), was defined as the 

Yamanaka factors. The cells generated using OSKM expressed pluripotency markers such 

as Nanog and SSEA-1 and formed teratomas when injected into immunocompromised 

mice25. 

However, these "first generation" induced pluripotent stem (iPS) cells were only partially 

reprogrammed; they expressed lower levels of key pluripotency genes compared to 

embryonic stem (ES) cells, displayed incomplete demethylation of the Oct4 promoter, and 

failed to generate live chimeras25. To address these limitations, subsequent efforts focused 

on more stringent criteria, using endogenous Nanog or Oct4 activation as markers for 

pluripotency. The resulting Oct4-iPS or Nanog-iPS cells, termed "second generation" iPS 

cells, were fully reprogrammed. They exhibited global gene expression and chromatin 

configuration identical to ES cells, complete demethylation of Nanog and Oct4 loci, 

reactivation of the X-chromosome in female lines, contribution to germline-competent 

chimeras, and correct expression of all well-known pluripotency markers26–28. Inducible 

lentiviral vectors demonstrated that the four factors needed to be expressed for at least 12 

days to obtain iPS cells, and the frequency of reprogramming increased with time, with up 

to 0.5% of input mouse embryonic fibroblasts giving rise to iPS cells 3 to 4 weeks after 

infection29. 

Moreover, iPS cells capable of generating "all-iPS" mice upon injection into tetraploid 

blastocysts were developed30,31. These advancements were not limited to mice; iPS cells 

were derived from various species, including humans32–34, rats35, rhesus monkeys36, and 

endangered species37, showcasing the conservation of pluripotency transcriptional networks 

across evolution. Additionally, iPS cells were successfully generated from diverse somatic 

cell types, underscoring the universal applicability of induced pluripotency. Examples of 

differentiated cells that were reprogrammed include keratinocytes38, hematopoietic cells39, 

and so forth. Stem cells and certain progenitor cells were found to be more readily 

reprogrammed, likely due to their expression of specific pluripotent stem cell genes40,41. 

1.1.4.1 hiPSCs application in biology and medicine 

Cell reprogramming has revolutionized regenerative medicine by demonstrating that the 

earliest stages of embryonic development can be regained by a process considered 
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irreversible until then. This discovery has revolutionized the fields of pharmaceuticals, 

clinics, and research laboratories. The ability to derive self-renewing hiPSCs from any 

patient provides an unprecedented platform for gaining in-depth understanding of various 

diseases, conducting in vitro drug screening, and exploring gene repair strategies alongside 

cell-replacement therapies42–44. This breakthrough offers limitless opportunities for 

advancing our knowledge of diseases, developing new therapies, and improving patient-

specific treatments (Figure 3). 

In the realm of disease modeling, hiPSCs technology has emerged as a powerful tool, 

particularly for understanding genetically inherited diseases affecting inaccessible tissues 

like neuropathologies. Numerous studies have showcased the effectiveness of human iPSCs 

in replicating genetic diseases within laboratory settings. Differentiated cells derived from 

patients' hiPSCs often mirror the disease traits observed in vivo, providing valuable insights 

into disease mechanisms. 

For instance, hiPSCs derived from spinal muscular atrophy (SMA) patients, a condition 

characterized by the loss of motor neurons, displayed a progressive loss of motor neurons 

during in vitro differentiation, resembling the developmental motor neuron loss seen in 

SMA45. Similarly, cardiomyocytes derived from iPSCs of patients with LEOPARD 

syndrome, a disease associated with hypertrophic cardiomyopathy, exhibited enlargement, 

reflecting the hypertrophy observed in affected individuals46. 

Figure 3: hiPSCs applications. hiPS cells can be derived from somatic cells of the tissue repertoire 

of a patient. After specific treatments in vitro, hiPSCs can be induced to form cells form specialized 

cells that have several applications, such as disease modeling, drug screening and testing of cellular 

toxicity response. Adapted from Bellin et al., 201244. 
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In the case of diseases like Long QT syndrome and Timothy syndrome, conditions 

characterized by prolonged QT intervals on electrocardiography, hiPSCs derived from 

patients were differentiated into cardiomyocytes. These cardiomyocytes displayed 

prolonged action potentials in single-cell electrophysiological assays, replicating a key 

feature of these diseases47,48.  

Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT) is a life-threatening 

condition in young patients characterized by an increased susceptibility to arrhythmias under 

catecholaminergic stress, despite having a structurally normal heart. In recent studies, 

researchers utilized cardiomyocytes derived from patient-specific iPSCs to investigate 

CPVT. These iPSC-derived cardiomyocytes from patients with both dominant and recessive 

forms of CPVT exhibited clear signs of the disease when compared to healthy controls49–51. 

Additionally, iPSC-derived cardiomyocytes from patients with mutations in SCN5A, a gene 

associated with cardiac disorders, displayed features of a cardiac 'overlap syndrome.' This 

syndrome involves the coexistence of Long QT syndrome (LQTS) and Brugada syndrome, 

highlighting the complexity of cardiac disorders that can be studied using hiPSC technology. 

Such faithful replication of disease traits in vitro enhances our understanding of these 

conditions and opens avenues for drug screening and therapeutic development. 

This technology also opened new avenues in the search for treatments of complex non-

monogenic disorders like schizophrenia and Alzheimer's disease. Studies have indicated that 

iPSCs can provide valuable insights into potential treatments, including novel antipsychotic 

drugs for schizophrenia52 and β-secretase inhibitors for both familial and sporadic 

Alzheimer’s disease53. These findings demonstrate the feasibility of using iPSC-derived cells 

for predictive drug screening. Additionally, this technology offers a starting point for 

identifying effective drug dosages while minimizing side effects. Researchers can explore 

modifications to molecules to reduce toxicity while retaining their therapeutic properties, 

marking a significant advancement in drug discovery and development. 

hiPSCs are an invaluable tool for modeling diseases in vitro; however, one of the aspects 

leading to development of patient-specific stem cells has also been the prospect of generating 

a ready supply of immune-compatible cells and tissues for autologous transplantation. 

Although the clinical translation of hiPSCs-based cell therapies seems more futuristic than 

the in vitro use of hiPS cells for research and drug development, a proof of principle study 

has attempted to use homologous recombination to repair the genetic defect in hiPS cells 

derived from a humanized mouse model of sickle-cell anemia54. Directed differentiation of 

the repaired hiPS cells into hematopoietic progenitors followed by transplantation of these 

cells into the affected mice led to the partial rescue of the disease phenotype. The gene 
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corrected hiPS-cell-derived hematopoietic progenitors showed engraftment in the injected 

mice and an at least temporal correction of the disease phenotype. Importantly however, a 

bona fide hematopoietic stem cell with the capacity for long-term multilineage reconstitution 

has yet to be generated from pluripotent cells. 

In another landmark study, Wernig and colleagues derived dopaminergic neurons from iPS 

cells that, when implanted into the brain became functionally integrated and improved the 

condition of a rat model of Parkinson’s disease55. The successful implantation and functional 

recovery in this model is evidence of the therapeutic value of pluripotent stem cells for cell-

replacement therapy in the brain, one of the most promising areas for future hiPS cell 

applications. 

1.1.4.2 The molecular landscape of cell reprogramming 

The acquisition of pluripotency has been highly dissected at cellular and molecular levels. 

At the' onset of reprogramming, the presence of MYC promotes rapid cell expansion and 

resistance to apoptosis; other than that, its role is considered marginal and sometimes even 

dispensable56. In contrast, OCT4, SOX2, and KLF4 allow the suppression of somatic 

mesenchymal genes and the acquisition of an epithelial phenotype, from which pluripotent 

clones subsequently emerge32,33,57. Many theories have followed on the pathways followed 

for acquiring pluripotency, postulating that this was a more or less stochastic58–60 or 

deterministic61,62 process. This is because until a few years ago, the focus had not been on 

the concept that even if reprogramming is not a natural process, it still needs to exploit the 

principles of development and organogenesis. One possibility, then, is that pluripotency 

factors gradually restore niches in embryonic development that allow the subsequent 

transition to a stage closer to pluripotency. The first evidence for this came from the 

identification in the terminal parts of reprogramming of a transient acquisition by cells 

transiting to pluripotency of a molecular signature comparable to that of primitive endoderm 

with the FOXH1 gene as the hallmark of this state63. In parallel, it was observed that in the 

middle stages of reprogramming, as soon as an epithelial phenotype is acquired, the 

reprogramming cells express genes and signatures of the broad mesoderm, including 

LEFTY2 and the HOX genes64.  

These transcriptional signatures are obviously accompanied by epigenetic modifications that 

in-primis activate paused genes that, from a developmental point of view, are closer to the 

somatic cell of origin and then activate repressed genes and DNA methylated regions64. 

If, therefore, one wants to identify the molecular hallmarks of reprogramming and its 

dynamics, one can identify: 



19 

  

1. Transient increase in chromatin accessibility and paused/bivalent genes at the 

expense of exclusively active or repressed regions. 

2. Removal of somatic DNA methylation to reach the end of reprogramming in a 

hypomethylated state. 

3. Acquisition of gene regulatory networks of pluripotency and expression of hallmark 

genes. 

If, therefore, differentiation can be defined as the set of cellular choices that lead to the 

definition of a phenotype and the establishment of transcriptional and epigenetic barriers that 

irreversibly lead the cell to ultimate somatic development, then reprogramming can be 

defined as that process whereby forcibly these barriers are removed in the order opposite to 

which they were placed. Obviously, in implementing this, as cellular reprogramming is not 

an evolutionarily conserved process, it is possible to accumulate the expansion of 

reprogramming intermediates or alternative non-productive fates. 

In the latter view, it is essential to distinguish what represents a reprogramming intermediate 

from what instead heads down an unproductive pathway but is sometimes beneficial to the 

process. 

Whilst there is a body of literature describing reprogramming trajectory in mouse65–67, the 

fine dynamics of human reprogramming intermediates, which constitute the bottleneck of 

the process, remain largely unexplored due to the complexity of recognizing and selecting 

rare phenotypes that will evolve into a hiPSC fate. 

It has been recently suggested that reprogramming of murine cells may also depend on 

population dynamics through cell-non-autonomous mechanisms in a context-dependent 

manner, i.e. mediated by cell-secreted factors66,68,69. 
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1.2 Next Generation Sequencing 

Next-generation sequencing (NGS), also known as high-throughput sequencing, 

encompasses a variety of cutting-edge sequencing techniques that have transformed the 

fields of genomics and molecular biology in recent years. One of the primary advantages of 

NGS technologies is their ability to sequence genetic material (i.e., DNA and RNA) in a 

rapid and cost-effective manner, surpassing the capabilities of earlier sequencing methods. 

Furthermore, the data generated by NGS exhibit unprecedented quality, robustness, and 

minimal noise. It's worth noting that the success of an NGS project relies on expertise both 

in the wet lab for sample preparation and in bioinformatics for data analysis to ensure high-

quality data and accurate interpretation. Currently, NGS technologies have become a staple 

for researchers tackling a wide array of biological questions. The unprecedented scale and 

efficiency of sequencing achievable today have propelled advancements across diverse 

areas, from genome analysis to the study of how proteins interact with nucleic acids. 

1.2.1 History of DNA sequencing 

The fundamental information about the hereditary and biological characteristics of living 

organisms resides within the arrangement of nucleic acids forming polynucleotide chains. 

These nucleic acids can be either ribose-based (RNA) or deoxyribose-based (DNA). 

Consequently, the ability to deduce the order of these nucleotides, known as the sequence, 

plays a pivotal role in addressing numerous biological inquiries70. In 1953, Watson and Crick 

successfully unveiled the three-dimensional structure and composition of DNA71. However, 

at that time, there were no techniques available to sequence or "decode" DNA. While 

methods for determining protein sequences, such as Edman degradation, were already in 

existence, DNA molecules presented distinct challenges due to their considerable length and 

the relative similarity of their constituent units72. From that moment, extensive efforts were 

undertaken to develop methodologies for DNA sequencing, marking the emergence of the 

genomic era. 

1.2.1.1 First generation sequencing 

The effort to sequence DNA was started by Wu and Kaiser in 1965. Their approach involved 

supplying DNA polymerase and one radiolabeled nucleotide at a time to a phage genome 

with 5' overhanging "cohesive" ends73. This concept was later generalized to the use of 

specific oligonucleotides to serve as primers for DNA polymerase. A significant 

breakthrough occurred when the conventional two-dimensional fractionation method, which 

often included both electrophoresis and chromatography, was replaced by a more powerful 

single separation technique utilizing electrophoresis through polyacrylamide gels. This 
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innovative technique was employed in two major protocols: Maxam and Gilbert's 

"fragmentation technique" in 197574 and Sanger's "dideoxy technique" in 197775. The former 

gained widespread adoption and is often referred to as the initiation of "first-generation DNA 

sequencing." In contrast, Sanger's methodology was considered a groundbreaking 

advancement that permanently reshaped the course of sequencing. Briefly, it exploited the 

concepts of DNA priming, the blockage of DNA polymerase by dideoxy nucleotides and 

radiolabel to retrieve DNA sequences. Subsequent refinements were made to this approach, 

including the transition from radiolabeled to fluorophore-ligated nucleotides and the 

adoption of capillary electrophoresis. These developments paved the way for the creation of 

automated DNA sequencing machines76–79. These advancements marked the onset of a new 

era in biology, dedicated to unraveling genome composition and the functions of genes. 

Consequently, in 1990, the Human Genome Project was initiated at the National Institutes 

of Health (NIH) in the USA. This monumental scientific research project, recognized as one 

of the largest of its kind, was an international collaborative effort with the primary objective 

of determining the DNA sequence and mapping the genes on the human genome, both in 

terms of their physical locations and functional roles. 

1.2.1.2 Second generation sequencing 

In 1993, a groundbreaking technique known as "pyrosequencing" was introduced by Nyrén, 

Pettersson, and Uhlen. This innovation laid the foundation for a new era of DNA sequencing. 

The key advancement was the usage of a dual-step luminescent reaction that employed a 

pyrophosphate molecule, released during nucleotide incorporation, as its substrate80. While 

both Sanger's and Nyrén's methods are considered "sequence-by-synthesis" (SBS) 

techniques, pyrosequencing offered several advantages, including the use of natural 

nucleotides, real-time observation, and the incorporation of paramagnetic beads. These 

enhancements significantly increased the number of sequenced molecules in a single run. 

Automated sequencing machines based on this methodology were subsequently developed 

by 454 Life Sciences (later acquired by Roche). 

Following the success of the 454 system, numerous parallel sequencing techniques emerged. 

Among them, the most notable ones are the Solexa81 method, later acquired by Illumina, and 

the SOLiD82 sequencing technique from Applied Biosystems (later known as Life 

Technology). 

This ushered in the era of "second-generation DNA sequencing," characterized by the ability 

to perform an extensive number of parallel sequencing reactions on a minuscule scale. 

Among the available technologies, Illumina platforms have gained widespread adoption and 

are the most commonly used sequencing platforms. They played a crucial role in producing 
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the data analyzed in this study and will be further characterized in chapter 1.2.2. These 

innovations were instrumental in the early completion of the Human Genome Project in 

2003, a milestone achieved two years ahead of the expected timeline. 

Albeit very recent (2015), DNBSEQTM is a technology by MGI that falls into this category, 

being an SBS approach. The innovation stands in the circularization of a single stranded 

DNA molecule, followed by rolling circle amplification (RCA). This method ensures that 

the same DNA molecule is used as template, avoiding the propagation of sequencing errors 

that the DNA polymerase might introduce.  

1.2.1.3 Third generation sequencing 

Third-generation sequencing technologies are those that can sequence individual molecules 

without the need for DNA amplification steps. The feature usually is coupled with the 

capability to sequence very long reads. Among these methods, the single molecule real-time 

(SMRT) platform by Pacific Biosciences is the most widely utilized. This sequencing 

process takes place on a chip composed of arrays of microfabricated holes with a diameter 

of less than 100 nanometers. These nanostructures have a single DNA polymerase molecule 

at their base, responsible for the sequencing process. Because the wavelength of the 

excitation light is greater than the diameter of the hole, it allows the light to be focused 

exclusively at the hole's bottom, a phenomenon known as the evanescent wave. This is where 

the insertion of fluorescent nucleotides occurs. This approach effectively eliminates 

background excitation light from non-inserted nucleotides. One of the significant advantages 

of this technology is its ability to generate reads of up to 10,000 base pairs (10 kb) in length83. 

A second approach has been commercialized by Oxford Nanopore Technologies84. It 

provides a similar output to the SMRT method, but it is based on a different platform. 

Nanopores are arrays of tiny holes that are embedded in an electro-resistant membrane. Each 

pore is connected to a channel and a sensor chip. The technology leverages the conformation 

changes that occur when a single nucleotide passes through the channel, that results in shifts 

of the electric current. Since every different nucleotide result in a specific current change, 

the sensor is able to register and assign to each passage through the channel the 

corresponding nucleotide. One of the advantages relies on the potential to study not only the 

5 canonical nucleotides that build up a DNA or RNA molecule, but also any modification 

attached to them (e.g., methylation, oxidation). 

1.2.2 NGS workflow and state of the art 

NGS is a versatile technology with a wide range of applications, and the specific use of NGS 

can vary depending on the biological questions researchers are addressing. However, the 
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primary distinctions among different applications typically revolve around the type of input 

material used, its preparation, and the subsequent analysis methods employed to obtain the 

desired results. Regardless of the sources, the common NGS workflow typically starts with 

DNA (or cDNA in case of RNA input) molecules and concludes with the bioinformatic 

processing of raw sequencing data. 

1.2.2.1 Experimental workflow 

As previously mentioned, the technology applied in this study is based on Illumina 

platforms. The experimental workflow comprehends three main steps: library preparation, 

cluster amplification and sequencing. 

Library preparation. A library is defined as a collection of DNA fragments that are 

prepared for sequencing. These fragments are generated randomly from DNA using methods 

such as sonication or enzymatic digestion. In Illumina-based protocols, these fragments 

typically fall within the range of 300-400 base pairs in length. Once the fragments are 

obtained, a ligation step is employed to attach specific oligonucleotide sequences, known as 

adapters and indexes, to both the 5' and 3' ends of each fragment, thereby creating a library 

for each sample. Adapters are sequences that are complementary to the oligos fixed to the 

glass surface of the flow cell. They enable the hybridization of fragments to the flow cell 

during the sequencing step. Conversely, indexes are unique sequences assigned to fragments 

originating from the same sample. This enables the sequencing of multiple samples within 

the same flow cell or lane, thus reducing costs, time, and potential biases.  

Cluster amplification. The DNA library is subsequently attached to a glass slide flow cell 

that is coated with oligonucleotides complementary to the adapters. These hybrids serve as 

primers for the "bridge amplification" process, which involves repetitive denaturation and 

polymerase-driven extension steps. This amplification step is crucial as it enables the 

replication of DNA fragments, resulting in the formation of clonal clusters comprising 

approximately 1000 identical double-stranded DNA molecules. This clustering is essential 

to ensure that the sequencing signal is robust enough to be distinctly detected for each base 

of every fragment. 
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Sequencing. Illumina sequencing protocols enable the sequencing of fragment ends with 

read lengths of up to 150 base pairs and employ a "sequencing-by-synthesis" methodology. 

In this approach, fluorophore-labeled deoxynucleotide triphosphates (dNTPs) and DNA 

polymerase are introduced into the flow cell channels simultaneously. These dNTPs possess 

a reversible 3'-OH terminator that makes their incorporation a unique event. During each 

incorporation, laser excitation is used to illuminate the dNTPs, allowing for the optical 

identification of individual bases. Following this, the terminator blocking the 3' hydroxyl 

group is removed to enable the next base incorporation. This iterative process continues, one 

base at a time, ultimately revealing the sequence of the fragment ends. Modern sequencers, 

such as the NovaSeq6000, have reduced the number of laser excitation rounds to two (instead 

of four), which accelerates the fluorescence acquisition step. The four different nucleotides 

are distinguished as follows: one base does not emit light upon excitation, two bases emit 

light with either one wavelength or another, and the last base emits light when excited by 

both wavelengths85(Figure 4).  

A fundamental requirement for the success of an NGS study is the capacity of the generated 

data to potentially address the specific biological question of interest. This accomplishment 

hinges not only on the proper execution of the sequencing experiment but also on the 

establishment of a robust experimental design. Such a design encompasses numerous 

variables, including the sequencing protocol, sequencing depth, and the number of 

replicates86. 

During the sequencing step, short DNA sequences known as reads are produced, and these 

reads typically cover only a portion of the original DNA fragment. As a result, sequencing 

can be conducted in two modes: single-end (SE) or paired-end (PE). In the SE mode, reads 

are generated from one end of the fragment, while in the PE mode, reads are derived from 

both ends of the fragment. The paired-end approach is particularly advantageous for NGS 

applications that involve the analysis of splice junctions, chimeric entities, and similar 

Figure 4: Illumina NGS chemistry overview. Experimental workflow of Illumina 

technology85. 
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complex structures. In addition to SE or PE sequencing, the length of the generated reads is 

another crucial feature to consider. Longer reads enhance the mappability of the data, making 

it easier to align them to a reference genome or transcriptome87. Furthermore, NGS libraries 

can be prepared in either unstranded or strand-preserving (forward or reverse) fashion. 

Strand-specific libraries help with the analysis and quantification of antisense or overlapping 

transcripts, particularly in transcriptomic studies. 

Another important aspect of the sequencing protocol is the choice of the sequencing depth, 

defined as the number of sequenced reads for a given sample. This number is largely 

dependent on the aim of the experiment; deeper sequencing levels corresponds to the 

identification or quantification of rare and lowly abundant species. For instance, a 

sequencing depth of 5 million mapped reads could be sufficient to detect medium and highly 

expressed transcripts, whilst sequencing up to 100 million reads could be necessary to 

precisely quantify low expressed RNAs (such as lincRNAs). 

The inclusion of an appropriate number of biological replicates in NGS studies can be pivotal 

in obtaining more reliable and robust results. Several factors influence the determination of 

this number: 

• Variability in Sequencing Procedure: Accounting for the inherent variability in the 

sequencing process itself is important. Replicates can help assess and mitigate 

technical variability, ensuring that observed differences are more likely due to 

biological factors of interest rather than technical noise. 

• Biological Variability: The biological system under study may exhibit inherent 

variability among individual samples, such as genetic diversity or biological 

fluctuations. Replicates enable researchers to capture and account for this natural 

variation. 

• Statistical Power: The desired statistical power of the study plays a role in 

determining the number of replicates. Statistical power is the ability to detect 

statistically significant differences among experimental groups. Increasing the 

number of biological replicates can enhance the statistical power of the study, making 

it more likely to detect meaningful differences when they exist. 

In summary, the decision on the number of biological replicates in an NGS study should be 

a carefully considered balance between minimizing technical variability, accounting for 

biological variability, and achieving the desired statistical power to draw meaningful 

conclusions and detect significant differences in the data. 
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1.2.2.2 Computational workflow 

The computational workflow of sequencing data is organized in three levels, namely 

primary, secondary, and tertiary analysis. Since the third level comprehends a plethora of 

applications depending on the NGS technology, I will focus on the first two. 

Primary analysis: When sequencing data is generated, the resulting reads are organized 

based on the sample from which they originated. This process is referred to as 

demultiplexing, which allows for the accurate separation of data from different samples 

within the same sequencing run (Figure 5). This data and the corresponding quality score are 

stored in a text-based format file, named FASTQ88. The second step recommended in 

sequencing analysis is the quality control of reads. FastQC89 is an excellent tool used to 

check the quality of data coming from high throughput sequencing pipelines. The quality 

control of raw data consists in the analysis of sequence quality, GC content, duplicated 

sequences that enable the detection of biases, e.g., sequencing errors, PCR artifacts or 

contaminations. There are guidelines and software programs that provide indications on 

acceptable scores for these analyses; however, model- and experiment-specific biases may 

influence these scores, so they must be considered. Finally, the trimming step allows to 

remove reads, entirely or parts of, based on their quality or to remove adapters that have 

been retained in the read90,91. 

Secondary analysis. It consists of one unique step, the alignment. The alignment step 

involves the mapping of reads to a reference genome or transcriptome. The quality of this 

step can be evaluated through the percentage of uniquely mapped reads that should range 

Figure 5: Library demultiplexing overview. DNA (or cDNA) fragments are sequenced in 

pool (left) and then assigned to the correct sample using their specific index (right). Adapted 

from Illumina85. 
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between 70% and 90%, when mapping against the human genome86. In case reads are 

mapped against the transcriptome, this value could be lower due to the loss of reads coming 

from unannotated transcripts. Many software92–94 have been developed to perform reads 

alignment, and their different features are best suited for different technologies (Figure 6). 

 

1.2.2.3 NGS State of the art 

NGS empowers the simultaneous investigation of hundreds to thousands of genes across 

multiple samples and facilitates the discovery and analysis of various genomic features in a 

single sequencing operation. This encompasses the detection of diverse genetic alterations, 

ranging from single nucleotide variants (SNVs) to copy number variations and structural 

variants, as well as the identification of RNA fusion events. NGS offers an optimal balance 

of throughput, making it possible to process a substantial amount of data in a single run, 

while also ensuring swift and cost-effective studies. Furthermore, NGS boasts several 

additional advantages, including reduced sample input requirements, heightened accuracy, 

and the ability to identify variants at lower allele frequencies compared to traditional Sanger 

sequencing methods. 

The speed, throughput, and precision of NGS have initiated a revolution in genetic analysis, 

unlocking new applications in genomic and clinical research. It has also found application 

in fields such as reproductive health, environmental studies, agriculture, and forensic 

science, broadening its impact across diverse domains of science and research (Figure 7). 

Figure 6: NGS computational workflow. The steps that characterize a typical NGS 

computational workflow are divided in primary (green), secondary (purple) and tertiary (red) 

analyses. Common software are reported in grey. 
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1.2.3 Single-cell RNA sequencing 

Over the past decade, population-based RNA sequencing methods, often referred to as bulk 

RNA-seq, have played a crucial role in unraveling genome-wide variations in gene 

expression across a wide spectrum of disciplines, including cancer biology, developmental 

biology, and cellular homeostasis64,95,96. However, as bulk RNA-seq data represents an 

average of gene expression across individual cells, it can obscure the nuanced transcriptional 

patterns within distinct subpopulations, especially those of the least prevalent cell types or 

states97. 

The advent of single-cell RNA sequencing (scRNA-seq) has effectively addressed this 

challenge, providing unprecedented opportunities to explore gene expression profiles at the 

resolution of individual cells. Since its initial introduction in 2009, scRNA-seq has opened 

new avenues for uncovering the inherent cellular heterogeneity within complex systems98,99. 

Today, thanks to the emergence of efficient and cost-effective technologies, it is possible to 

construct sequencing libraries encompassing thousands of individual cells, thus encouraging 

the adoption of single-cell technology as a routine procedure. 

These technological advancements have facilitated the discovery of novel cell types100,101 

and the investigation of dynamic cellular processes at previously unattainable spatial and 

temporal resolutions102–105. Moreover, scRNA-seq has become a fundamental component of 

the rapidly evolving field of precision medicine106,107. The wealth of new information 

acquired through scRNA-seq has the potential to reshape our understanding of 

developmental biology, gene regulation, and the diversity of cells in both health and disease. 
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Figure 7: NGS state of the art. Number of publication on PubMed with the pattern “next 

generation sequencing” per year. 
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1.2.3.1 Sample preparation 

A key aspect of sample preparation for scRNA-seq analysis revolves around the barcoding 

of the entire transcriptome of individual cells. Once a viable single-cell suspension is 

prepared, cell viability is assessed, and lysed cells are removed108, various technologies have 

prioritized the refinement of methods for isolating single cells and subsequently applying 

barcodes to them. In recent years, microfluidic-based technologies have gained significant 

popularity owing to their cost-effectiveness, high efficiency, and their ability to generate data 

with moderate file sizes, which helps maintain data integrity and coherence109,110. These 

microfluidic technologies, exemplified by platforms like Chromium111(Figure 8), inDrop112, 

and Drop-seq113, operate by allowing the passive co-flow of cells, microparticles (often 

referred to as beads), and a lysis buffer. This combination results in the formation of water-

in-oil droplets, each encapsulating precisely one cell and one bead. Within these droplets, 

the transcriptional content of each cell is captured and subsequently amplified using unique 

primers that are attached to the surface of individual microparticles. These primers share a 

common three-part structure: 

• Cellular Barcode: A short sequence shared by all primers on a single microparticle, 

serving the purpose of identifying all transcripts originating from the same cell. 

• Unique Molecular Identifier (UMI): A molecular tag specific to each transcript, 

which ensures the integrity of the sequenced reads by flagging PCR duplicates114. 

• Poly-T Tail: Facilitates the capture and amplification of the 3' end of each transcript. 

This approach allows for the precise and efficient capture, barcoding, and amplification of 

the transcriptome of individual cells within the microfluidic droplets. 

Figure 8: GEMs generation. The Chromium platform uses oil to create micro-chambers 

where reactions can occur. In each chamber (GEM), a bead covered with primers, cells and 

enzymes are stored. Adapted from 10X Genomics186. 
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1.2.3.2 Applications 

Tertiary analysis of scRNA-seq data must face several obstacles, including large-scale data 

and high levels of noise interference due to dropout events115–117. Some standardized 

pipelines have been proposed to facilitate downstream analysis118, however standalone 

software might be helpful to obtain the biological insights of interest. Reads quantification 

of single transcripts is a feature common to every scRNA-seq pipeline. Differently from bulk 

approaches, the aforementioned UMIs avoid misinterpretation of gene expression levels due 

to technical artifacts114. Once read counts are retrieved, data can be used to: 

• Cluster cells. As transcriptionally unique populations of cells often correspond to 

distinct cell types, a primary objective of scRNA-seq is to identify cell 

subpopulations based on their transcriptional similarities119. Therefore, the process 

of grouping cells into clusters enables the de novo discovery of cell types or the 

identification of various subpopulations within a single-cell state. This clustering 

approach is fundamental for unraveling the heterogeneity of cellular populations and 

gaining insights into the diversity of cell types and states within a given sample. 

• Identify cell markers. The characterization and annotation of the groups of cells 

identified by a clustering algorithm can be achieved by identifying marker genes, 

often referred to as the cluster gene signature, through a process known as differential 

expression analysis. In this analysis, marker genes are singled out by comparing the 

gene expression profiles of cells within each individual cluster to those of all other 

cells in the dataset. This method allows researchers to pinpoint genes that are 

uniquely and significantly associated with each cluster, providing valuable insights 

into the distinct functional or phenotypic characteristics of the cell populations within 

the data. 

• Trajectory inference. Since many biological mechanisms are inherently dynamic 

processes, they cannot always be effectively characterized using a discrete approach 

like clustering. Trajectory inference pipelines are a class of computational methods 

emerged to model continuous biological systems, including developmental 

processes. Monocle120 first introduced the concept of pseudotime, a robust 

methodology to describe developmental systems. Lately, the optimal transport 

problem has also been implemented to model cellular process over time, hence 

inferring trajectories66.  

1.2.3.3 Multiome 

Complex biological systems might not be easy to disentangle by solely addressing gene 

expression differences at the single-cell level. Transcriptional regulation upon histone 
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modification rearrangements, DNA methylation status, and chromatin accessibility plays an 

important role in many processes. While single-cell epigenetics has seen successful 

implementation in recent years121,122, one ongoing challenge is the integration and 

correlation of epigenetic information with scRNA-seq data. Such integration can be 

complicated because even replicates, which involve multiple measurements taken from the 

same experimental condition, are still composed of different individual cells. Each cell, even 

within the same condition or replicate, can exhibit inherent biological variability due to 

factors like genetic diversity, stochastic gene expression, and microenvironmental 

influences. 

Multiome analysis allows the user to experimentally overcome such hindrance by combining 

scRNA-seq and single-cell Assay for Transposable-Accessible Chromatin sequencing 

(scATAC-seq) data from the same exact cell. 10X Genomics provided a methodology to 

isolate nuclei and flag accessible DNA and retro-transcribed RNA, by using different 

barcodes123(Figure 9).  

 

   

Figure 9: Multiome workflow. Transposed nuclei and enzyme enter the GEM with beads 

covered in 10X primers. Afterwards, different adapters are ligated to Accessible DNA 

fragments and retro-transcribed RNA. Adapted from 10X Genomics123. 
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2 Materials and Methods 

2.1 Microfluidic device 

In this work, we used a microfluidic device, fabricated by soft lithography technique and 

replica molding, previously published by our collaborators’ group124. Polydimethylsiloxane 

(PDMS) with a 10:1 base/curing agent ratio (Dow Corning) was coupled to a borosilicate 

glass slide (Menzel–Gläser) through plasma treatment of surfaces. 

Briefly, the microfluidic platform consists of 5 independent culture chambers, with the 

following dimensions: 18.8 mm of length, 1.5 mm of width, and 0.2 mm height with a 5.6 μL 

volume. The device is sterilized by autoclaving before use. During experiments the 

microfluidic chips are placed in a dish, surrounded by a water bath to reduce medium 

evaporation. 

2.2 Cell culture 

BJ cells (Miltenyi Biotec, 130-096-726), human newborn skin fibroblasts, were cultured 

with complete Dulbecco’s modified Eagle’s medium (DMEM, Thermo Fisher, 41965 or 

11965), supplemented with 10% fetal bovine serum (FBS, Thermo Fisher, 10270106 or 

10099-141). Cells were maintained at 37 °C in the presence of 5% CO2 and periodically 

tested for mycoplasma contamination. 

2.3 Reprogramming in microfluidics 

Microfluidic cell cultures were performed as follows. On day 0 human fibroblasts were 

seeded in the microfluidic chambers, at a density of 60 cell/mm2, after a coating with 

25 μg/mL of cold fibronectin (Sigma Aldrich). Before placing chips in the incubator, 1 ml of 

PBS 1× was added to the bottom of the dish, in order to maintain proper humidity. From day 

1 to day 8, in the morning medium was replaced using Reprogramming Medium, whereas 

in the night mmRNAs transfection was performed, as reported in Gagliano et al., 2019124. 

From day 9 to day 15, medium change was performed every 12 h using Pluripotency 

Medium. 

2.4 Reprogramming of human fibroblasts to hiPSC 

colonies 

We generated hiPSCs from human foreskin BJ fibroblasts using microfluidic technology as 

previously described124. For proteomic analysis, a total of 10 mRNA transfections were 

performed using StemRNA-NM reprogramming kit (Stemgent, 00-0076) and StemMACS 



33 

  

mRNA transfection kit (Miltenyi, 130-104-463), in E7 medium, made from E6 medium 

(Thermo Fisher, A1516401) supplemented with 100 ng/mL FGF2 (Peprotech, 100-18B-

1000), switched to E8 medium (Stem Cell Technologies, 05990) from day 11. Whereas, for 

single-cell RNA-seq, 8 mRNA transfections were performed in supplemented Pluriton 

medium (Stemgent, 00-0070), switched to StemMACS iPSBrew XF medium (Miltenyi 

Biotec, 130-104-368) from day 9. Validation experiments were performed either in 

microfluidics according to single-cell RNA-seq protocol or in standard 24-well plates 

according to manufacturer’s instructions; they were performed under suboptimal conditions 

to enhance reprogramming efficiency differences, and medium was supplemented with HGF 

100 ng/mL (Peprotech, 100-39), IL-6 50 ng/mL (Peprotech, 200-06), IL-6r 10 ng/mL 

(Peprotech, 200-06 R), NRG1 100 ng/mL (R&D, 396-HB), during the whole process 

duration, according to the specified perturbation conditions using both Pluriton medium and 

Nutristem hPSC XF Medium (Biological Industries, 06-5100-01-1 A) supplemented with 

20 ng/mL FGF2. The loss of function experiments were performed in microfluidics 

supplementing the medium with Jak Inhibitor I 1uL (Millipore, 420097) and c-METi 600 

uM (Selleck, PF-02341066) from day 1 to day 6. In STAT3 knock-out experiments, siRNA 

STAT3 10 uM (Qiagen, 1027416) or MOCK siRNA 10 uM (Qiagen, 1027284) was added in 

the transfection mix from day 1 to day 6. In all cases, the whole process was performed in a 

hypoxia incubator (5% O2, 5% CO2) at 37 °C. 

2.5 Sample preparation for LC-MS/MS 

During reprogramming, at every medium change or reprogramming transfection, medium 

was collected in three replicates, pooling together the conditioned medium from the same 40 

channels for each replicate. The media were stored at −80 °C until prepared for proteomic 

analysis. After thawing, media from four collections (two consecutive days) were pooled 

together. For example, sample D1-D2 was conditioned by the cells within the microfluidic 

chamber from day 1 to day 3 mornings. 3 kDa cut-off centrifugation membranes (Amicon 

Ultra 0.5 mL, Ultracel 3 K, Merck) were used for filter-aided sample preparation (FASP)56. 

Proteins were concentrated by centrifugation for 20 min at 4 °C and 14,000 g, then washed 

twice with a 50 mM triethylammonium bicarbonate (TEAB, Thermo Scientific) buffer 

containing 8 M urea (Sigma-Aldrich). Protein content was quantified by Pierce BCA Protein 

Assay Kit (Thermo Scientific). Each sample proteins were reduced for 60 min at 56 °C with 

100 mM DTT (Sigma-Aldrich) and alkylated for 30 min at room temperature in the dark 

with 55 mM iodoacetamide (Sigma-Aldrich). Samples were washed with 50 mM TEAB for 

three times. An equal amount of protein for each sample was digested by trypsin (Promega) 

at 37 °C for 16 h. Digested peptides were desalted by C-18 spin column (Pierce) and vacuum 
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dried. Then, labeling by 6-plex Tandem Mass Tag (TMT6, ThermoScientific)125 was 

performed according to manufacturer’s instructions using 50 μg of peptides from each 

sample. The six-time point samples of each of the three replicates were pooled, then desalted 

and vacuum dried. 

2.6 Mass spectrometry analysis 

25 pre-fractions were collected on UPLC (Agilent 1290) with high pH C18 column 

(2.1 mm × 30 mm). Before MS analysis, peptides were resuspended in 10 µL of 0.1% formic 

acid. Thermo Fusion Mass Spectrometer coupled with Thermo EasynLC1000 Liquid 

Chromatography was used to get peptides profiles. 90 min of LC-MS gradients were 

generated by mixing buffer A (0.1% formic acid in water) with buffer B (0.1% formic acid 

in 80% ACN in water) by different proportions. Using NSI as the ion source and Orbitrap as 

the detector, the mass scan Range was at 300-1800 m/z, and the resolution was set to 120 K. 

The MS/MS was isolated by Quadrupole and detected by Ion trap, whose resolution was set 

to 60 K. The activation type was HCD. 

2.7 Proteomic bioinformatic analysis 

Peak list files were searched against UniProt human reference proteome (UP000005640) by 

MaxQuant (v. 1.6.3.4)126. TMT6 modification and carbamidomethyl on cysteine were set as 

fixed modifications. The oxidation of methionine, acetylation of protein N-terminus, and 

phosphorylation (STY) were set as variable modifications. Peptide-spectrum matches 

(PSMs) were adjusted to 1% and then assembled further to a final protein-level false 

discovery rate (FDR) of 1%. Proteins not identified in at least 2 replicates in at least one time 

point were excluded from further analysis. Common contaminants (keratins and Bos taurus 

proteins) were also filtered out, for a final number of 4542 proteins identified. Missing values 

were imputed by the mean value of the other two replicates. TMT intensities were 

normalized according to BCA quantification to obtain a relative quantification proportional 

to protein concentration in culture. The distributions of the three replicates of TMT 

intensities were scaled by their respective medians. A principal component analysis (PCA) 

was performed in MATLAB R2017a (The Mathworks) using mean-centered TMT 

intensities. A list of secreted proteins was manually annotated by integrating the following 

resources: secreted proteins predicted by MDSEC as reported in Protein Atlas database127 

(http://www.proteinatlas.org), secreted proteins in Gonzalez et al., 2010128; a list of ligands 

from Gene Ontology-Molecular Function categories “cytokine activity”, “growth factor 

activity”, and “hormone activity”, and senescence-associated secreted proteins (SASP) 

annotated from literature129–132. Of the proteins identified in this study, only those secreted 
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according to the criteria above were further studied, in order to avoid the proteins possibly 

derived from cell death. Differentially secreted proteins between time pairs were assessed 

with student t-test, using a threshold of 5%. Proteins whose concentration was maximal only 

at the first time point (D1-D2 sample) were excluded from further analysis, as potential 

residual proteins from FBS used during fibroblast expansion. Functional enrichment analysis 

of Reactome pathways was performed using ReactomePA (v1.36.0)133 Bioconductor 

package. Reactome hierarchy was visualized using ClueGO (v2.5.6)134 within Cytoscape 

(v3.8.0)135. Genes specific to different human embryonic stages were derived from a 

published single-cell RNA-seq study136, of these core ECM genes were selected based on 

the annotations in Naba et al., 2012137. Proteins playing a role as ligands were taken from 

Ramilowski et al., 2015138. Hierarchical clustering with heat map data visualization was 

performed in MATLAB R2017a, using Euclidean distance and complete linkage. 

2.8 Sample preparation for single-cell RNA-seq 

For each time-point, cells were detached using TrypLE-express (ThermoFisher, Gibco 

12604). Harvested cells were then centrifuged at 300 g and resuspended at the final cell 

density of 100 cells/mL using a solution containing 40% KnockOut Serum Replacement 

(KSR, ThermoFisher, Gibco 10828) in DMEM. For each timepoint, two replicates were 

produced, each containing cells from 4 independent chips that were pooled together then 

divided in aliquots containing 5000-80,000 cells. Samples were cryopreserved in DMEM 

supplemented with 40% KSR and 15% DMSO and stored in liquid nitrogen. 

scRNA-seq libraries were generated using one or two samples for each replicate. Briefly, 

each cryopreserved aliquot was thawed at 37 °C until a tiny ice crystal remained in solution. 

Then each sample was diluted under gentle shaking by dropwise adding 10 volumes of 

DMEM supplemented with 40% KSR. Cells were washed twice using a washing buffer 

containing 8% MACS Running Buffer (Miltenyi, 130-091-221) in PBS. Cells were then 

resuspended in the washing buffer and filtered through a 40 µm cell strainer (Biosigma, 

010198Z). Cell viability and concentration were checked by visual inspection using Trypan 

Blue (Logos Biosystems, L12002). 

Single-cell RNA seq libraries were produced according to 10X Single Cell 3’ v2.0 standard 

protocol and sequenced on Novaseq 6000 (Illumina). 

2.9 Single-cell RNA-seq data pre-processing 

scRNA-seq data pre-processing was performed using the cellranger software (v 2.2). Fastq 

files were generated using the cellranger pipeline mkfastq using 10X standard Chromium 
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barcode sequences. Alignment, filtering, barcode and UMI counting were performed using 

the cellranger count pipeline. Human pre-built genome index has been applied (hg38 genome 

reference and GRCh38 annotation, including protein coding, linc and antisense RNAs). Each 

feature-barcode matrix from each independent sample was merged to build up the final 

dataset, containing 33,694 genes and 44,197 cells, then subjected to cells and genes filtering. 

Cells having less than 1000 detected genes and with the mitochondrial associated reads 

percentage greater than 10% were filtered out. Furthermore, in order to have a homogenous 

sampling for each reprogramming day, the cell dataset was randomly subsampled to 2500 

cells per time point. The final dataset retained only those genes expressed in at least 5% of 

all the cells, leading to 12,932 total genes. Gene expression values were normalized to CPM 

(counts per million) and transformed to the log2 scale using a pseudocount of 1. Finally, cell-

cycle scores and, consequently, phases were assigned to each cell by Seurat’s (v.3.1.5) 

CellCycleScoring function. 

2.10 Single-cell RNA-seq data visualization and clustering 

To better visualize and characterize single cell data, high dimensionality was reduced. First, 

we computed the neighborhood graph using the function compute_neighborhood_graph 

from the Python (v 3.9.5) package wot (v 1.0.5)66, using 50 neighbors and choosing the first 

100 PCA components and the first 20 diffusion map components. The resulting 120 

components were used as input to initialize the Force-Directed Layout Embedding (FLE) 

algorithm, using forceatlas2 (v 1.0.3) with 1000 iterations and reducing the space to 2 

dimensions (FLE1 - FLE2). The same components were also applied to perform an 

unsupervised graph-based algorithm (louvain) using the FindNeighbours and FindClusters 

(resolution = 0.6) functions in the Seurat (v.3.1.5)139 package. This step resulted in the 

identification of 12 clusters, annotated based on the enrichment of somatic and 

developmental signatures64 at the single-cell level (SR = somatic related; 

DR = developmental related; NA = not assigned) and ordered by their composition in terms 

of time-points. 

2.11 Single-cell RNA-seq differential gene expression and 

gene sets enrichment 

Differentially expressed genes among clusters were identified using the FindAllMarkers 

function from Seurat (v.3.1.5), taking just LFC (log2 fold change) more than 0.25. For each 

gene, significance was assessed with the Wilcoxon rank-sum test P values, adjusted for 

multiple testing using the Benjamini–Hochberg correction to retrieve the false discovery rate 

(FDR). Only genes with FDR < 0.01 were considered. As expected, many gene markers were 
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shared by clusters from the same group (SR or DR) because of the continuous nature of data. 

We therefore decided to select unique markers and to take duplicated markers once, 

preferring the cluster where the LFC was the highest. 

To perform enrichment of gene signatures in clusters, we used pre-ranked Gene Set 

Enrichment Analysis (GSEA) from fgsea (v 1.14.0)140 R package. Pre-ranked lists for each 

cluster were generated by assigning to each gene its LFC relative to the average expression 

across all the other clusters. Common pathways were defined as belonging to several 

databases, i.e. Hallmark141, KEGG, Biocarta, Reactome and Gene Ontology Biological 

Process. 

Enrichment scores (ES) of gene signatures at the single cell level were obtained by 

computing the z-score for each gene across the data sheet. After truncating these scores at 5 

or −5, the enrichment score was defined by the average z-score over all genes in the gene 

set. 

2.12 Single-cell RNA-seq trajectory inference 

To infer the reprogramming trajectory, two different approaches were used: wot (v 1.0.5)66 

and Monocle3 (v 0.2.3.0)142. The former applies the Mass Optimal Transport theory to the 

gene expression space to infer, for each cell in a given sample, the most probable ascending 

and descending cells in the previous and following timepoints. First, birth-death rates were 

computed for each cell by applying a logistic function to the enrichment scores for Cell-

cycle143 and Apoptosis (R-HSA-109581, hsa04210, HALLMARK_APOPTOSIS in 

Liberzon et al., 2015141). ß and δ logistic functions were optimized (center = −0.1 and center 

= 0.15, respectively). Second, transport maps were generated in batch for each pair of 

subsequent time-points using the functions wot.ot.OTModel (epsilon = 0.2) and 

compute_all_transport_maps. Finally, trajectories were inferred using 

population_from_cell_sets and trajectories functions starting from D15 cells that showed 

high enrichment (> 2) for the signatures Matrisome137 and Late pluripotency64. For each 

timepoint, cells having a trajectory probability greater than the mean were considered to 

belong to the trajectory. 

Monocle 3, on the other hand, learns a trajectory graph looking at the gene expression 

changes required for each cell to move from one state to another during a dynamic biological 

process. In particular, UMAP coordinates in Monocle 3 were replaced with the FLE ones, in 

order to obtain an FLE-based Monocle trajectory. Furthermore, cluster_cells and 

learn_graph were performed by tuning the parameters k (30) and ncenter (96), respectively. 
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2.13 Single-cell RNA-seq interaction analyses 

Interaction analyses have been performed on a set of 82 ligand-receptor pairs obtained as 

follows. 

A putative list of 3333 couples has been generated from the ligands identified in the 

secretome analysis with every possible receptor. Afterwards, receptors have been filtered out 

in case they were not defined as receptor on BioGrid or they did not belong to any of these 

GO terms: GO-CC:0009897, GO-CC:0098802 and GO:0004714. The resulting list of 1082 

pairs was then filtered based on the expression of both ligand and receptor in at least one cell 

(491). Finally, we selected only those pairs that were experimentally validated138. 

Interaction scores between trajectories throughout the time-course were evaluated as shown 

in Schiebinger et al., 201966. Top interactors were selected by ordering the results by 

standardized interaction score (sIS). Then, the highest ligand-receptor pair for each day was 

assessed. All the unique couples with a sIS comprised between the first and the last day-

specific occurrence was taken. 

HGF/MET cluster-to-cluster interaction scores were computed as the product between the 

average gene expression value of MET in one cluster and the value of HGF in another. 

Significance was assessed with empirical p-value, generating a null distribution of 1000 

permutations on the association between cells and clusters. 

2.14 STAT3 targets expression 

STAT3 targets were identified using a ChIP-seq dataset on HUS64 human embryonic stem 

cells144. In particular, STAT3 target genes were defined as genes with STAT3 significant 

peaks at ±3000 bp from the transcription start site. For each cell, the STAT3 pathway 

enrichment was computed from the scaled gene expression matrix as the average value for 

all the STAT3 targets. For each enrichment value, the corresponding p-value was calculated 

by performing a hypergeometric test and using a random gene list to obtain the null 

distribution. 

2.15 Bulk RNA-seq analysis of reprogramming data 

To analyze the relationship between mouse feeders and human reprogramming cells at day 

8, we re-analyzed bulk RNA-seq data from Cacchiarelli et al., 201564. Fastqs have been 

trimmed using Trim Galore (https://github.com/FelixKrueger/TrimGalore) for quality and 

adapters removal. Then, reads have been mapped with TopHat (v. 2.1.0)145 and Bowtie2 (v. 

2.3.2)94 with default parameters against a hybrid build of the human (hg38) and mouse 
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(mm10) genomes. Reads aligned to the mouse reference were few (alignment rate <20%), 

but it was consistent with the purified nature of the samples, where mouse cells should just 

represent contamination. Finally, read quantification was performed with HTSeq (v. 0.9.1)146 

on GENCODE human (GRCh38) and mouse (mm10) genome annotations, including protein 

coding, linc and antisense RNAs. The final count matrix was created by merging mouse and 

human genes by orthology and differential expression analysis was performed between 

human and mouse (feeders) samples using DESeq2147. 

2.16 Immunofluorescence staining 

For immunofluorescence staining, cells were fixed in 4% paraformaldehyde for 10 min at 

room temperature, then permeabilized with 0.1% Triton X-100 for 10 min, blocked in 

blocking solution (DPBS with 10% horse serum and 0.1% Triton X-100 for intracellular 

targets) for 45 min, followed by overnight incubation with primary antibodies. The following 

antibodies were used for immunofluorescence: rabbit anti-NANOG (Cell Signaling, 

4903)(1:200), mouse anti TRA1-60 (Millipore, MAB4360)(1:100), mouse anti-STAT3 (Cell 

Signaling, 9139)(1:300), goat anti- HGFR/c-MET (R&D, AF276)(1:200). Alexa488 or 

Alexa594 conjugated rabbit, mouse or goat secondary antibodies (1:200) were used (Life 

Technologies, A21202; A21207; A11058). The nuclei were stained with Hoechst 33342 (Life 

Technologies). 

Images were acquired on a confocal TCS SP5 microscope (Leica) at 40x magnification and 

on a fluorescence microscope DM6B (Leica) at 5 and 10x magnification. 

2.17 Assessment of reprogramming efficiency 

Reprogramming efficiency was quantified after immunostaining with TRA1-60 and 

NANOG markers. When the efficiency of reprogramming was too high to allow counting 

single colonies, it was quantified as relative TRA1-60+ and NANOG+ cell area divided by 

the total area occupied by the cells. Since TRA1-60 is a membrane/extracellular marker and 

NANOG is a nuclear marker, we considered TRA1-60 area positive only where it overlapped 

with NANOG positive nuclear area, for having the double positive cells as result. 

2.18 Secondary reprogramming experiments 

Secondary reprogramming experiments were performed as previously reported in 

Cacchiarelli et al., 201564. Briefly, 105 TERT-immortalized secondary fibroblasts (hiF-T) 

harbouring a doxycycline-inducible OSKM cassette were seeded with or without irradiated 

mouse embryonic fibroblast (MEF) in a 3:1 ratio. The day after seeding, cells were treated 

with doxycycline (Sigma Aldrich, D9891-1G) (2 µg/mL) to start the OSKM expression. In 



40 

  

addition, LSD1 inhibitor RN-1 (MERK, 489479) was added at the final concentration of 

10 nM to further increase the reprogramming efficiency. Both treatments were prolonged for 

21 days. Colony counting and visualization in bright-field were performed by using a TRA-

1-60 chromogenic staining148. 

2.19 Sample preparation for Multiome analysis 

For Multiome analysis, each cryopreserved aliquot was thawed at 37°C as mentioned in 

chapter 2.8. The cells from each time point were combined to generate a final sample 

containing an equal representation of each reprogramming day. Subsequently, 15,000 viable 

cells were filtered through a 40µm cell strainer (Biosigma, 010198Z) and used as input for 

the standard Single Cell Multiome ATAC + Gene Expression assay (10X Genomics, 

1000285). Briefly, the cells were permeabilized using digitonin and incubated at 37°C for 

30 minutes with the Tn5 transposase. After the incubation, the transposed nuclei were loaded 

into the Chromium controller (10X Genomics, 1000204) for DNA and mRNA capture and 

single-nuclei level barcoding. The sample obtained was divided into two parts to generate 

scRNA-seq and scATAC-seq libraries, respectively. Both were sequenced independently on 

an Illumina Novaseq 6000, following the 10X Genomics specifications. 

2.20 Multiome data pre-processing 

Multiome data pre-processing was performed using the cellranger-arc software (v 2.0). Fastq 

files were generated using the cellranger-arc pipeline mkfastq using 10X standard Chromium 

barcode sequences. Alignment, filtering, barcode and UMI counting, as well as peak calling 

(for scATAC-seq profiles) were performed using the cellranger-arc count pipeline. Human 

pre-built genome index has been applied (hg38 genome reference and GRCh38 annotation, 

including protein coding, linc and antisense RNAs). To be able to merge this dataset with 

the scRNA-seq data from this work, scRNA-seq data was re-processed using a newer version 

of cellranger (v 7.0.0). Gene-barcode matrix from Multiome was subjected to cells filtering. 

Cells having less than 1000 detected genes and with the mitochondrial associated reads 

percentage greater than 7% were filtered out, 0. The final dataset retained only those genes 

expressed in at least 5% of all the cells, leading to 36601 total genes. The scRNA-seq dataset 

from this work and the Multiome were merged using reciprocal PCA (RPCA) function of 

Seurat (v 4.3.0.1)139 package to find anchors. With this approach, we project each dataset 

into the others' PCA space and constrain the anchor by the same mutual neighborhood 

requirement. The merged gene expression values were normalized to CPM (counts per 

million) and transformed to the log2 scale using a pseudocount of 1. 
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2.21 Merged scRNA-seq data visualization and clustering 

Principal Component Analysis (PCA) dimensionality reduction and uniform manifold 

approximation and projection (UMAP) were performed using the functions RunPCA and 

RunUMAP from Seurat. The same components were also applied to perform an unsupervised 

graph-based algorithm (louvain) using the FindNeighbours and FindClusters (resolution = 

0.5) functions from Seurat.  

2.22 Multiome data processing 

Multiome data was processed using Signac (v 1.10.0)149. Plots for the concomitant 

visualization of gene expression and chromatin accessibility were performed with the 

functions LinkPeaks and CoveragePlot. 

2.23 Statistics and reproducibility 

Sequencing data were analyzed and plots were produced in R (v 4.2.0). Data variability is 

presented as boxplots, where bars indicate the median, boxes indicate the 25th and 75th 

percentiles, whiskers represent median + /- the interquartile (25-75%) range multiplied by 

1.5. The number of replicates and the tests used to assess statistical differences are reported 

within each figure caption. Experiments shown in Figure 4 have been repeated 10 times 

independently with similar results. 
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3 Results 

3.1 Human cell reprogramming in microfluidic system 

Low efficiency has long hindered the capability of dissecting the molecular regulatory logic 

behind human somatic reprogramming. However, it has been recently reported that the 

generation of hiPSCs can be drastically improved in a microfluidic confined 

environment124,150,151, due to the accumulation of secreted factors152–157 that sustains the 

acquisition of both primed124,151 and naive human pluripotency158. Therefore, we took 

advantage of reprogramming in microfluidics (uF) to test the hypothesis that the 

communication between distinct intermediate sub-populations and their shared extracellular 

environment lying in-between contributes to shaping the route to pluripotency. With respect 

to non-uF methods, this system generates a more efficient reprogramming, with a 

considerably and significantly higher number of pluripotent colonies retrieved at the end of 

the process (Figure 10).  

3.1.1 Experimental design 

The main objective was to develop an integrated temporal multi-omic approach, combining 

high-efficiency reprogramming with high-throughput single-cell RNA sequencing (scRNA-

seq) and tandem mass spectrometry (LC-MS/MS) on conditioned media to decipher finely 

regulated dynamics of secreted proteins accumulating in the extracellular space and 

corroborate it with cellular heterogeneity arising during intermediate stages of 

reprogramming.  

Figure 10: Comparison of efficiency between reprogramming systems. Left: Schematics 

of the in-scale conventional (Well) and microfluidic (µF) setup. Right: Comparison of 

reprogramming efficiency between the two systems. Two-sided Wilcoxon’s test was used to 

assess differences among the conditions. n = 8 for Well and n = 15 for µF 

(***P = 0.0001593). 

 



43 

  

Reprogramming of human fibroblasts was achieved with daily transfections of non-modified 

messenger RNAs (mRNAs) encoding for POU5F1 (OCT4), SOX2, KLF4, MYC, LIN28, 

and NANOG (Methods). The reprogramming protocols used to generate the single-cell 

transcriptome and secretome data were almost identical: however, some adjustments were 

made to maximize the effectiveness of identifying the endogenous secreted proteins (Figure 

11).  

For instance, we used a chemically defined medium based on E6 medium with the addition 

of FGF2 which shows to preserve the high efficiency of microfluidic reprogramming while 

enabling high-resolution and accurate detection of cell-secreted proteins (Figure 12).  

Figure 11: Experimental design. scRNA-seq data were collected by stopping parallel 

experiments at day 0, 3 and every 48 h. Proteomic data were obtained by tandem mass 

spectrometry analysis of conditioned media along the same reprogramming experiments. 

The differences in medium usage and reprogramming factors suppliance (RNA 

transfections) are reported. 

Figure 12: Reprogramming efficiency of the protocol used for secretome data. 

Efficiency evaluated within the same microfluidic channels used for proteomic analyses 

(n=40 for Repl.1, n=35 for Repl.2 and n=39 for Repl.3). Data are presented as mean values 

+/- SD. 
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3.1.2 Quality assessment 

It is crucial to address the quality of reprogramming before processing the samples for any 

downstream analysis of interest. To achieve this goal, it is worth looking at the 

morphological changes associated with conventional human cell reprogramming, since it 

has been already reported that they are recapitulated in our microfluidic system124. These 

critical steps can be considered hallmarks and they consist of quick mesenchymal to 

epithelial transition (MET - before day 5), epithelial cells clustering (from day 5 to day 8) 

and hiPSCs colony formation as soon as day 9 (Figure 13). To further confirm the presence 

of pluripotent colonies at the end of the process, we also performed immunostaining of 

multiple channels at day 14 using antibodies against NANOG and TRA-1-60, known 

pluripotency markers (Figure 13). The presence of both signals further demonstrates that 

reprogramming in microfluidics yields a great proportion of pluripotent cells with respect to 

the seeded ones. 

3.2 Development of a temporal multi-omic approach 

3.2.1 Quality controls 

The analysis of the secretome data was performed on three independent replicates of 

conditioned media, pooled from microfluidic channels every 2 days (Figure 11). By filtering 

out proteins solely quantified in one replicate, 4542 proteins were kept, the majority 

identified in 3 replicates (81%) and the others identified in only 2 replicates. First, 

consistency of data was addressed by correlating protein concentration of one replicate 

against the other two. The scatterplots show that replicates from the same sampling day are 

indeed highly correlated. Then, secretome data dimensionality was reduced via a principal 

Figure 13: Morphological evaluation. Top: Morphological changes occurring during 

reprogramming, sampled at day 0 (D0), day 5 (D5), day 9 (D9) and day 13 (D13). Bottom: 

Immunostaining of a single microfluidic channel at day 14 for pluripotency markers 

(NANOG and TRA-1-60). Scale bar: 100nm. 
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component analysis (PCA). It is a linear statistical procedure that allows for large datasets 

to be visualized. It results in a graph where all the features (e.g., secretome profile) of a 

sample are represented as a dot in a bidimensional space. The distance between dots (i.e., 

samples) correspond to how similar they are. In this peculiar case, on one hand we could 

observe that replicates grouped together according to their day of origin, and, on the other 

hand, that samples followed a reprogramming temporal trajectory (Figure 14). Altogether, 

these results confirmed that data was highly reproducible. 

For the sequencing data, cells were collected before the first transfection (D0), 3 days after 

transfection (D3) and then every 2 days (D5-D15). We generated sequencing libraries from 

independent captures for at least two replicates per time-point, collecting altogether more 

than 40,000 single-cell transcriptomes. Sequencing quality was evaluated by looking at the 

number of detected genes, number of reads per cells and percentage of reads associated with 

mitochondrial genes (Figure 15).  

Indeed, if a cell shows a low number of genes and their associated counts, as well as high 

levels of mitochondrial genes expression, it might suggest that some ambient RNA has been 

mis-interpreted as a cell by the software. For this reason, we kept cells with more than 1,000 

detected genes and less than 10% of mitochondrial gene counts (Figure 15). To avoid any 

bias due to the inconsistent number of cells per each sampling day, we also randomly 

subsampled the dataset to consist of 20,000 high-quality single-cell transcriptomes for a total 

of 12,932 features detected.  

Figure 14: Secretome data consistency. Left: Visualization of proteomic data correlation between 

replicates. Each dot represents an identified protein. Log2 relative quantification is shown on the 

axes (a.u.). Right: PCA plot proteomic data, shown as the distribution of the proteomic pattern for 

sampled conditioned medium over a 48-hour period. 
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In a manner akin to our approach with secretome data, we also ensured a high degree of 

correlation among the replicates in the scRNA-seq dataset. However, since single-cell 

transcriptional data is sparse (i.e., contains a considerable number of missing values), 

dimensionality reduction cannot be achieved via linear models (e.g., PCA). Therefore, it was 

accomplished through a non-linear algorithm, specifically the force layout embedding (FLE 

– Figure 16).

Figure 15: Sequencing data quality control and filtering. Left: Scatter plot representing 
the number of reads (x axis) over the number of detected genes (y axis) for each cell. Color 
gradient shows the percentage of reads associated with mitochondrial genes. The dotted line 
has been put at 1,000 detected genes, used for filtering. Right: Schematic representation of 

cells/genes filtering from raw data to the final dataset. 

Figure 16: scRNA-seq data consistency. Left: Heatmaps of Pearson correlation 
coefficient for each replicate, divided by each time-point. Correlation has been evaluated 
by comparing the distribution of each replicate in the clusters identified in Figure 21. 
Right: FLE plot for scRNA-seq data. Sequencing data is shown as the distribution of 

transcriptional patterns for single cells across sampled time-points. 
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The resultant diagram visually represents the gene expression profile of each cell as a point 

within a Euclidean space, with cells being clustered based on their transcriptional 

similarities. Intriguingly, the graphical representation demonstrates a significant degree of 

uniformity within the fibroblast population on day 0 (D0), but greater diversity in cell 

placement as subsequent sampling days progress, reflecting their transcriptional variation 

over time. 

3.2.2 Transcriptional waves contribute to the secretion of specific 

proteins 

To test the hypothesis that both cellular and extracellular dynamics are interconnected, we 

compared the differential features of each dataset along the time. As expected, during the 

transition from D0 to D3, gene expression was the most influenced by the transfection of 

reprogramming factors, as evidenced by the high number of differentially expressed genes. 

From D3 on, transcriptional changes start to decrease until D7, where they reach the 

minimum magnitude. Finally, we observed at D7-D9 and D11-D13, two more transcriptional 

waves in line with the onset of developmental transitions and final acquisition of 

pluripotency. Notably, in between the two first transcriptional waves (from D5 to D7), we 

observed a great increase in the number of secreted proteins (Figure 17). 

We have examined the temporal dynamics pertaining to both transcription and secretion of 

this set of proteins that peaked between D5 and D7 (Figure 18). The transient up-regulation 

of the genes encoding for these proteins peaked at D7, followed by their maximum level of 

secretion at D9. We hence reason that the initial massive changes in gene expression might 

induce the specification of a set of secreted molecules that becomes manifest in the medium 

at D7. 

Figure 17: Comparative dynamics of features. Absolute number of differential features 

for each -omics data, both up- (Up - red) and down-regulated (Down - blue). Each value 

refers to the differential analysis between subsequent time-points. Peaks of deregulation are 

highlighted (arrows). 
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3.3 A rich extracellular signaling environment is shaped 

during human cell reprogramming 

The massive number of secreted proteins at D5-D7 pointed us to investigate the quality of 

secreted proteins and cell population dynamics occurring in such a peculiar window of time. 

3.3.1 Accumulation of embryonic extracellular matrix 

To characterize the secreted proteins, we specifically selected 555 proteins known to be 

secreted. Besides proteins that were only up-regulated at the initial stages of reprogramming 

(D1-D2), we also got rid of intracellular proteins potentially released by dead cells. The 

identified categories were classified into two broad groups, one of them being extracellular 

matrix (ECM)-related functional annotation. Many ECM-related categories were highly 

significant, including ECM deposition, degradation, and remodeling, and both integrin- and 

non-integrin-mediated cell-ECM interactions (Figure 19). A previous RNAi screen also 

identified the critical role of cell adhesion in human reprogramming, highlighting the role of 

intercellular factors needed for filament assembly, branching, and disassembly159. 

In our data, we found an overall increasing trend of ECM-related protein accumulation, with 

different ECM components exhibiting distinct dynamics (Figure 19). These dynamic 

changes started already at days 3-4 (SPP1, COL4A1/2, SPARC), in some cases at days 5-6 

(LAMC1), or even later (COL18A1). We wondered whether the observed global changes 

somehow resembled embryo development stages. We selected the ECM proteins in our data 

that were previously reported to be expressed at mRNA level at different stages of human 

embryo development136. The concentration dynamics of these proteins in this system showed 

the progressive establishment of an ECM that recapitulates the one deposited at the stage of 

Figure 18: Definition of a relationship between transcription and secreted proteins. 

Median z-score of the 155 proteins found up-regulated from day 5 (D5) to day 7 (D7) in 

proteomic data. Trends have been evaluated along the time-course for both -omics data. 
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the late inner cell mass. In conclusion, our data support the idea that during reprogramming, 

not only fibroblasts are converted to a primed pluripotent phenotype, but also the 

extracellular context is shaped accordingly. 

3.3.2 Dynamics of extrinsic regulatory signals 

The other class of categories that we identified was related to soluble and regulatory signals. 

we narrowed the results to a selection of signaling pathways enriched within the Reactome 

database. Among receptor tyrosine kinase pathways, PDGF and WNT have already been 

shown to be implicated in embryo development and reprogramming160,161. we also identified 

the MET pathway as a link between cell-cell communication via soluble environment, and 

cell-ECM interaction via PTK2 (also known as FAK) adhesion. Moreover, the regulation of 

insulin-like growth factor (IGF) pathway through IGF binding proteins (IGFBPs) was 

significantly enriched, in line with previous studies162 (Figure 20). 

Looking at the temporal profiles of enriched signaling pathway proteins and ligands, we 

found a progressive accumulation of proteins that were previously shown to play a role in 

mouse cell-non-autonomous reprogramming regulation: some senescence-associated 

secreted proteins (SASP), such as CXCL1 (also known as Gro-α), CXCL8, CCL2, IL6163; 

YAP-target CCN1, also known as CYR61164; inflammatory cytokines, such as IL6/11/19, 

CSF1/2/3, LIF69 (Figure 20). We conclude that secreted proteins follow precise dynamics 

during reprogramming and encompass several potential regulators of autocrine/paracrine 

signaling, including those involved in ECM-mediated and soluble communication. 
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Figure 19: Accumulation of embryonic extracellular matrix. Top: ECM-related results 

from the enrichment analysis within the Reactome database of the 555 proteins identified as 

secreted. Edges connecting different categories reproduce Reactome hierarchy relationships. 

Bottom: Hierarchical clustering of proteins identified in this study and belonging to the core 

ECM components137 at specific stages of embryo development136. 
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Figure 20: Dynamics of extrinsic regulatory signals. Top: Signaling-related results from 

the enrichment analysis within the Reactome database of the 555 proteins identified as 

secreted. Edges connecting different categories reproduce Reactome hierarchy relationships. 

Bottom: Hierarchical clustering of proteins identified in this study and belonging to signaling 

pathways. 
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3.4 Extracellular environment and cell heterogeneity are 

interconnected 

In Figure 18, we have already speculated the potential existence of a connection between the 

transcriptome of cells and the way the environment undergoes remodeling. However, which 

cells are responsible for this contribution was still unclear. We hence leveraged the power of 

scRNA-seq in evaluating heterogeneity to tackle this issue.  

3.4.1 Resolving cell population heterogeneity 

We applied an unsupervised community detection algorithm165 to our scRNA-seq data and 

we identified 12 cell clusters. We then took advantage of formerly defined reprogramming-

associated gene signatures from my lab64 to annotate them (Figure 21). 7 clusters showed 

high expression of somatic genes (“Somatic-Related” clusters, SR), whereas 4 clusters were 

highly enriched by the developmental signature (“Developmental-Related” clusters, DR). 

Finally, a residual cluster was not enriched by either of those signatures and it was 

characterized by a lower number of detected genes and total UMI counts, thus we named it 

“NA” and excluded it from further analyses. 

As expected, SR clusters included non-transfected fibroblasts (SR1) and cells captured at 

earlier days (SR2-5), while DR clusters were enriched by cells collected at later time points 

(from D9 to D15) and highly cycling (Figure 22). However, also SR6 and SR7 displayed 

more than 97% of cells from day 11 and were characterized by low but detectable expression 

of embryonic genes (e.g., POU5F1, LEFTY2): nevertheless, they were negative for 

NANOG, indicating reshaping of fibroblast identity but at the same time inefficient 

acquisition of pluripotency. Furthermore, these cells were in the G0/G1 phase of the cell 

cycle, thus confirming their somatic nature and suggesting peculiar identity in the 

reprogramming timeline (Figure 22). Despite their developmental features, DR4 cells also 

Figure 21: Cell clustering and annotation. Left and middle: Somatic and Developmental 

signatures enrichment scores shown along the FLE map. Right: FLE map showing the 

distribution of cells across identified clusters. 
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did not express NANOG, while showing high and very specific transcriptional levels of 

mesendoderm genes (e.g., CER1, EOMES), suggesting a possible similarity with a 

differentiating stage. DR clusters exhibited higher expression of pluripotent and embryonic-

related signatures136, thus they appear to contain the productively reprogramming cells.  

3.4.2 SR clusters contribute to the establishment of a specific 

environment 

Although we disentangled their features, the role of the SR clusters was still less clear. 

However, when looking at the transcription levels of proteins highly concentrated in the 

environment (Figures 19 and 20), we observed that most of them were heavily transcribed 

by these clusters (Figure 23). We confirmed this relationship by performing Gene Set 

Enrichment Analysis (GSEA) using the secreted proteins previously identified and some 

gene signatures that were found enriched in the proteomic analysis (Figure 24). As 

speculated, the secreted proteins detected by mass spectrometry appear to be transcribed by 

the cells in the SR clusters, except for SR3 that might not be involved in the secretory 

Figure 22: Characterization of cell heterogeneity. Left: Time-points and cell-cycle phase 

distribution for each cluster. Right: Heatmap of Z-scored normalized counts, averaged by 

clusters, for key reprogramming related genes (right). NA cluster not shown. 
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phenotype. These results highlight the presence of an unproductive somatic fate, whose role 

is to express and secrete those factors that we found to be shaping the extracellular 

environment during reprogramming and that have been found to characterize later stages of 

embryonic development. 

 

 

 

 

 

 

 

 

Figure 23: Contribution of SR clusters to the secretome. Heatmaps of highly dynamic 

proteins from the secretome analysis. The colors display log2 fold change protein 

concentration with respect to D1-D2 (Secretome - left) and Z-scored log2 counts per million 

(scRNA-seq - right). Hierarchical clustering was performed on scRNA-seq data according 

to each separate cluster of cells. Proteins involved in primitive node formation are 

highlighted (red names). 
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3.5 Trajectory inference reveals different fates 

Among all the gene sets analyzed, Matrisome137 and Late pluripotency64 associated genes 

were found to best describe the phenotype of D13-15 endpoints. Therefore, we decided to 

computationally investigate the routes linking such states to the somatic start-point by 

applying Waddington Optimal Transport (WOT)66. The algorithm applies the Mass Optimal 

Transport theory to the gene expression space to infer, for each cell in a given sample, the 

most probable ascending and descending cells in the previous and following timepoints. By 

applying this tool to selected cells at the furthest time-point (D15), we were able to compute 

the route from D15 to D0. Results showed a common path until day 5 (D5), after which cells 

started to exhibit different trajectories. We validated these findings through an unsupervised 

pseudotime-based approach using Monocle3142,166, which not only confirmed the bifurcation 

at day 7 (D7) leading to endpoints inside SR7 matrisomal and DR3 pluripotent clusters, but 

also introduced two additional outcomes inside DR4 and SR2, respectively (Figure 25). 

Figure 24: SR clusters profile is enriched by secreted pathways. GSEA results for each 

cluster. Only significant results are shown. The gene set made of the secreted proteins found 

in this work is written in bold. NES, Normalized enrichment score. 
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3.5.1  An early reprogramming fate is characterized by a secretory 

phenotype 

While the mesendodermal nature of DR4 was previously assessed (Paragraph 3.4.1), we 

focused on the characterization of SR2. GSEA using common pathways (Methods) revealed 

the enrichment for terms related to signaling molecules, therefore, we hypothesized that this 

cluster might be implicated in the secretion of the ligands detected in the medium. Indeed, 

most of them were significantly enriched, with SASP having the highest enrichment score 

(Figure 26). We found SASP genes are highly expressed and specific of this cluster, such as 

cytokines (CXCL1, IL1B, CXCL8), metalloproteases (MMP1, MMP3), HGF and its 

activators, PLAU and PLAUR. Notably, almost all of them were detected by LC-MS/MS 

with some (CXCL1, CXCL8, CCL2, SPP1, PLAU) being the first to be accumulated in the 

medium (Figure 27). 

In conclusion, we were able to define human somatic reprogramming as a process consisting 

of two major outcomes, matrisomal and pluripotent, deriving from the same starting cells 

which bifurcate around day 7 (D7). Moreover, among matrisomal somatic cells, we 

identified and characterized an early sub-population of cells which contributes to the 

expression and secretion of SASP-related signaling molecules. 

Figure 25: Trajectory inference analysis. Monocle3 (black line) and WOT (colored dots) 

trajectory inferences are displayed on the FLE graph. Arrows point to the starting point 

(blue) and 4 end points (red) of the inferred trajectories. A representative scheme of the 

trajectories is shown on the top-right. 
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3.6 Reprogramming fates interact through different 

ligand-receptor pairs 

To rationally understand whether somatic subpopulations arising during reprogramming are 

actively involved in the population cross-talk with productive reprogramming intermediates, 

we developed a ligand-receptor interaction analysis from the cells laying on the somatic 

trajectory towards the reprogramming ones (Figure 28). Using the previously identified 

Figure 26: SR2 cluster shows a secretory phenotype. Left: GSEA has been performed 

on SR2 cluster using signaling-related genesets used in Fig. 17. The results are shown 

as a barplot, displaying FDR (x axis) and NES (colors). Right: Enrichment Score graph 

relative to the GSEA of SR2 cluster for senescence-associated secreted proteins geneset 

(SASP). Black lines on the x axis represent a match between the ranked list and the 

geneset analyzed. NES, Normalized enrichment score. FDR, False Discovery Rate.

Figure 27: SASP genes are specific to SR2 cluster. SR2 cluster marker genes 
relative expression, shown in a heatmap of Z-scored normalized counts, averaged by 

clusters. Genes with (*) have been detected in secretome analysis. 
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secreted proteins (Fig. 1) that fall in the list of experimentally validated ligand-receptor 

couples138, we restricted the number of putative interactors involved in subpopulation 

crosstalk to a set of 82 pairs (Figure 28). We were able to identify a standardized interaction 

score (sIS) by leveraging the gene expression trends of ligands along the matrisome route 

and of receptors along the path to pluripotency (Methods). 

The results showed that almost every ligand-receptor pair had a significant sIS in at least one 

time-point (Figure 29). Moreover, when looking at the couples with the greatest scores, we 

observed many ligands involved in signaling cascades which are already known to be 

associated with pluripotency maintenance, such as Wnt, Tgfβ and Inhb signalling160,167,168. 

Among these interactors, 8 ligands were related to SASP, of these 4 were soluble and highly 

dynamic in both transcriptomic and proteomic data: SPP1, INHBA, NRG1 and HGF. As 

INHBA is a known pluripotency regulator168, and SPP1 is the major HGF-regulated gene169, 

we focused our analyses on HGF and NRG1.  

Figure 28: Interaction Score analysis. Left: Schematic representation of ligand-receptor 

interactions hypothesized during reprogramming. Fibroblasts (D0, left) develop two fates: a 

somatic secretory phenotype (bottom) and induced pluripotency (top). Black arrows show 

the directionality of the examined interaction. Right: Schematic representation of ligand-

receptor pairs selection for interaction score analyses, as described in Methods. 

 

Figure 29: Interaction Score results. Heatmap of z-scored standardized interaction scores 

for all the ligand-receptor pairs analyzed. 
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3.6.1 HGF-MET 

The HGF-MET interaction occurred at early time-points of the reprogramming (Figure 30) 

with HGF expressed by cluster SR2 and SR5 and its receptor MET expressed by cluster 

DR1. Both HGF and MET were highly expressed in the early intermediate stages and 

decreased in the later time points, suggesting a role in the reprogramming intermediates. 

Thus, we explored whether the same HGF-MET dynamics was present in a conventional 

(i.e., Petri dish) human reprogramming approach170 and not strictly related to the 

microfluidic environment. scRNA-seq data exploration, using authors-defined clusters, 

showed that the cluster noRepro1, enriched for SR signatures, expressed high levels of HGF, 

whereas MET expression was observed in the mixed intermediate cluster, overlooked by the 

authors (Figure 31). Remarkably, the analysis of RNAseq data from reprogramming of 

secondary human fibroblasts cultured on mouse embryonic fibroblast feeder (MEF)64, 

showed the expression of HGF only from MEFs while MET was upregulated in human cells 

undergoing reprogramming at day 8 (OSKM - Figure 31). Therefore, we performed 

reprogramming experiments with depletion or addition of MEFs and observed a drastic 

reduction in the ability of generating pluripotent colonies when cultured in absence of feeder 

cells (Figure 31), suggesting a pivotal role of HGF-MET interaction in sustaining 

pluripotency. These results showed a common behavior of HGF vs MET expression in the 

Figure 30: HGF-MET dynamics in microfluidic system. HGF and MET gene expression 

profiles (log2 CPM) displayed on the FLE map as fold change relative to HGF and averaged 

across the time course (bottom-left). 
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early phase of the reprogramming, being expressed by matrisome producing/supporting cells 

and reprogramming intermediates respectively, regardless of reprogramming approach and 

culture system.  

3.6.2 NRG1-ERBB3 

On the other hand, the NRG1-ERBB3 interaction showed higher sIS between clusters along 

the same developmental trajectory in a sequential fashion: NRG1 is expressed by DR clusters 

at earlier stages (until D9), while its receptor, Erb-B2 Receptor Tyrosine Kinase 3 (ERBB3), 

is expressed by late DR clusters (starting from D7) (Figure 32). The same information can 

be retrieved from Liu et al., 2020170 and Cacchiarelli et al., 201564, observing the sequential 

expression of NRG1 then ERBB3 only along the reprogramming intermediates, with NRG1 

decreasing halfway during reprogramming route, ERBB3 increasing from halfway, and a 

central timeframe of co-presence (Figure 33). Therefore, as NRG1-ERBB3 expression 

occurs only along the reprogramming trajectory, we did not get significant results when 

comparing MEFs versus human reprogramming intermediates from our human secondary 

system64. 

Altogether, these findings suggest a crosstalk between cell subpopulations, with an active 

role of non-pluripotent cells in supporting the route of other cells to pluripotency. We 

Figure 31: HGF-MET dynamics in other systems. HGF and MET gene expression profiles 

shown in Liu et al., 2020170, as averaged across their identified clusters (top) and in 

Cacchiarelli et al., 201564, shown as mouse and human mean normalized expression at 

sampling day 8 (bottom-left; ** BH-adjusted p-value <0.01). Bottom-right: Representative 

pictures of HiF-T DOX secondary reprogramming performed with or without depletion of 

MEFs in standard 12-well plates, assessed by immunostaining of TRA-1-60. 
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demonstrated that such non-pluripotent cells can be part of the same (i.e. NRG1 and ERBB3 

both expressed during DR trajectory to pluripotency) or different trajectories (i.e. HGF 

ligand expressed by SR trajectory towards matrisome vs MET receptor expressed by DR 

trajectory towards pluripotency). 

Figure 33: NRG1-ERBB3 dynamics in other systems. NRG1 and ERBB3 gene expression 

profiles shown in Liu et al., 2020170, as averaged across their identified clusters (top) and in 

Cacchiarelli et al., 201564, shown as mean FPKM across the time-course (bottom). 

 

 

 

Figure 32: NGR1-ERBB3 dynamics in microfluidic system. NGR1 and ERBB3 gene 

expression profiles (log2 CPM) displayed on the FLE map as fold change relative to NRG1 

and averaged across the time course (bottom-left). 
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3.7 HGF-MET crosstalk functionally sustains the 

acquisition of pluripotency through STAT3 

Considering the results from the ligand-receptor analyses, we wondered whether the HGF-

MET interaction has a functional role in the progression of intermediate states towards 

pluripotency. HGF is a growth factor involved in many cell functions and it is mostly 

secreted by mesenchymal cells, while acting on epithelial ones171. In our reprogramming, it 

is biologically active as its activator complex PLAU/PLAUR was also found in the secreted 

medium (Figure 23). On the other hand, MET is a tyrosine kinase receptor activated by its 

ligand HGF. This binding induces MET catalytic activity and results in downstream initiation 

of multiple pathways, including STAT3 direct phosphorylation or via Janus kinase 1 (JAK1 

– Figure 34). This activation axis is shared with other two ligands (i.e., LIF and IL6), known 

to be involved in murine pluripotency68,172. However, their gene expression pattern cannot 

justify their action in this context, with IL6R and LIF not being expressed in scRNA-seq. 

Figure 34: HGF/c-MET/STAT3 axis. A schematic representation of HGF/c-MET/STAT3 

signaling pathway (Created with BioRender.com). 
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3.7.1 STAT3 pathway is active in reprogramming cells 

To test the STAT3 pathway involvement in our reprogramming setup, we investigated its 

activation throughout the reprogramming process in microfluidics. First, HGF and MET 

were differentially expressed by SR (higher HGF) and DR (higher MET) clusters and came 

up as early interactors in a cluster-based interaction analysis. Furthermore, STAT3 nuclear 

target transcriptional enrichment144 revealed their activation from day 5, along the 

reprogramming route (Figure 35), in agreement with MET signalling activity. Finally, at the 

protein level, we observed STAT3 nuclear localization (indicative of STAT3 activation) 

during intermediate days (D4, D7) and at the end of the process (D12 – Figure 35). 

Figure 35: STAT3 nuclear activation. Top: In the FLE graph, green dots represent cells 

with positive enrichment scores for STAT3 target genes (Methods). Bigger circles 

summarize averaged HGF (left) and MET (right) gene expression in identified clusters. 

Significant inter-cluster HGF-MET interactions are displayed (arrows). Arrow thickness 

relates to the strength of the interaction. Bottom: Time course of STAT3 activation during 

the microfluidic reprogramming process. Representative images showing a first wave 

around day 4 to day 7, and then a second wave at the end of the process, when it is active 

just in the hiPSC colonies. 
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To give further evidence, we then investigated the localization of MET and STAT3 at day 6. 

We found that cells of smaller size (undergoing the mesenchymal-to-epithelial transition) 

show the highest intensity of both c-MET and nuclear STAT3 (Figure 36).  

3.7.2 Perturbation of STAT3 pathway components affect the 

efficiency of reprogramming 

Once the involvement of STAT3 was established, we separately inhibited two kinases along 

the STAT3 axis, MET and JAK1, using small molecules and assessed reprogramming 

efficiency by immunostaining analysis of NANOG at day 12. Consistent with our 

hypothesis, we observed a significant loss of reprogramming efficiency upon inhibition of 

STAT3. These data were strengthened by a direct knock-down of STAT3 mRNA using 

specific siRNA, that efficiently reduced reprogramming efficiency at day 12 (Figure 37). 

Figure 36: MET co-localizes with nuclear STAT3. Top: Representative images of 

expression of nuclear STAT3 and c-MET during reprogramming performed in microfluidics 

at day 6. Bottom: Correlation between the expression intensity of nuclear STAT3, c-MET, 

and cell size obtained from experimental data shown on top. Data from n = 61 cells (n = 3 

independent experiments). 
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Lastly, we tested whether the addition of signaling molecules was capable of further 

improving reprogramming yield in conventional culture systems that are otherwise far less 

efficient than microfluidic systems. For this purpose, we selected molecules that were found 

dynamic in the secretome analysis or involved in cell-cell interactions (e.g. HGF, IL6 and 

NRG1). In conventional culture (i.e., Petri dishes), we saw a significant increase of about 2-

fold in reprogramming efficiency in terms of relative TRA-1-60+/NANOG+ area when 

medium was supplemented with either HGF, IL6 and its soluble receptor (sIL6R) to activate 

STAT3 signaling, and NRG1 throughout the reprogramming process (Figure 38). Consistent 

with the idea that multiple signals are involved in the first phase of reprogramming and the 

second phase of hiPSCs stabilization, secretome and single-cell RNA sequencing data 

showed more accumulation of HGF and IL6 in early phases of the reprogramming process, 

while NRG1 came out at later stages. To mimic this timing, we added HGF alone or with 

IL6/sIL6R in the first half, and NRG1 in the second half. This resulted in a further increase 

in the reprogramming efficiency up to three folds (Figure 38). However, when 

supplementing the medium with HGF, IL-6, sIL-6R and NRG1 together, we were able to 

reach the highest efficiency (i.e. 5-fold over controls), thus suggesting that the combination 

of specific signalling pathways further boosts hiPSCs formation (Figure 38). 

Figure 37: STAT3 inhibition impairs reprogramming. Left: Reprogramming efficiency 

in microfluidics measured as the relative area occupied by NANOG+ colonies in cells upon 

inhibition of c-Met and JAK1 kinases using small molecules at day 12, compared to the ones 

treated with the vehicle (n = 6 for vehicle, n = 12 for JAKi and n = 7 for c-METi); ANOVA 

followed by two-sided Dunnett’s multiple comparisons test was used to assess differences 

among the conditions (JAKi − *** FDR = 0.0001; cMETi – *** FDR = 0.0001). 

Representative quantification pictures in microfluidic channels assessed by immunostaining 

of NANOG are shown. Right: Reprogramming efficiency in microfluidics upon knock-down 

of STAT3 using siRNAs at day 12 (n = 8 for scramble siRNA, n = 11 for siSTAT3); two-

sided unpaired t-test was used to assess differences among the conditions (***P < 0.0001). 

Representative quantification pictures in microfluidic channels assessed by immunostaining 

of NANOG are shown. 
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3.8 Future perspectives 

3.8.1 Multiome approach to dissect the regulatory logic behind 

different fates 

One of the questions arising from what has been done so far concerns the origin of the 

unproductive fate sustaining the reprogramming process. We hypothesized that there might 

be some epigenetic differences between cells that can efficiently respond to stimuli that 

induce pluripotency, and those that cannot. Whilst transcriptional profiling enabled us to 

characterize these populations, it fails in depicting the causes that generate this phenomenon. 

Therefore, we have profiled a pool of cells from all the time-points from this work using a 

Multiomic approach (Methods). It consists of profiling the transcriptome and the chromatin 

accessibility coming from the same exact cell. The workflow of this analysis is as follows: 

Figure 38: Exogenous signals improve reprogramming. Left: Reprogramming efficiency 

in standard 24-well plates upon addition of HGF, IL-6 and soluble IL6 receptor (sIL6R), or 

NRG1 at day 9 (n = 14 for control, n = 19 for HGF, n = 5 for IL6 + sIL6R, n = 16 for NRG1); 

ANOVA followed by two-sided Dunnett’s multiple comparisons test was used to assess 

differences among the conditions (HGF - *** FDR = 0.0001; IL6 + sILR – **FDR = 0.0083; 

NRG1 – ** FDR = 0.0021). Representative quantification pictures in standard 24-well plates 

assessed by immunostaining of NANOG and TRA-1-60 are shown. Right: Reprogramming 

efficiency in standard 24-well plates upon temporally modulate addition of HGF, IL6 and 

soluble IL6 receptor (sIL6R), and NRG1 at day 9 (n = 14 for control, n = 6 for HGF in the 

early phase and NRG1 in the late phase, n = 4 for HGF + IL6 + sIL6R in the early phase and 

NRG1 in the late phase, n = 4 for HGF + IL6 and sIL6R + NRG1 for the entire process); 

ANOVA followed by two-sided Dunnett’s multiple comparisons test was used to assess 

differences among the conditions (E HGF + L NRG1 - ** FDR = 0.0038; E HGF/IL6 + sILR 

+ L NRG1 – *** FDR = 0.0001; ALL – *** FDR = 0.0001). Representative quantification 

pictures in standard 24-well plates assessed by immunostaining of NANOG and TRA-1-60 

are shown. 
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1. Combine the gene expression profile from Multiome with the previously generated 

scRNA-seq data from this work. 

2. Use the combined data to transcriptionally characterize the cells from the Multiome 

(Figure 39). 

3. Correlate the transcriptional profile of selected genes with the accessibility of their 

genomic loci. 

4. Create Gene Regulatory Networks (GRNs) able to describe what differs one state 

from the other.  

Preliminary results encompass the first three steps and demonstrate the validity of the 

approach. Further analysis will cover the last step and hopefully reveal new interesting 

results. 

3.8.1.1 Anchoring 

First, the gene expression profile from the Multiome data must be characterized. Addressing 

the phenotype of the pool of cells is needed to be able to assign specific epigenetic 

rearrangement to the correct cells. We re-analyzed scRNA-seq data to render them 

compatible with the newly generated data (Methods). Reciprocal PCA (RPCA) is an 

algorithm designed to identify anchors when cell types are conserved, but there are very 

substantial differences in gene expression across experiments. Thus, it is recommended 

during integrative analysis. We visualized scRNA-seq data on a new UMAP and obtained a 

very similar pattern to the FLE from Figure 16 (Figure 40). When highlighting the 

Figure 39: Multiome approach. Cells from the whole time-course are pooled together 

(Pooling) and sequenced for both mRNA and accessible DNA (Same cell Multiomics). The 

transcriptional profile of scRNA-seq data from this work is used to characterize the gene 

expression phenotype of pooled cells (Anchoring).  
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transcriptional profiles from Multiome onto the same UMAP, an almost complete coverage 

of all the described phenotypic states could be reached, confirming the suitability of this 

approach to our purposes (Figure 40). 

3.8.1.2 Chromatin accessibility and gene expression correlation 

The anchoring step was followed by the identification of new clusters (Methods). The results 

showed 14 different clusters that were used to evaluate the agreement with the old ones. This 

led to the annotation of the new clusters with the old nomenclature. To evaluate the 

robustness of the phenotypic characterization of the Multiome cells, we looked at the 

expression of marker genes of late time-points for both fates, i.e. developmental and somatic. 

Since the Multiome approach gives the opportunity to link gene expression with chromatin 

accessibility, the markers were evaluated from both points of view (Figure 41). SOX2, a 

pluripotency marker, shows increasing expression levels from DR1 to DR3 (clusters that 

define the pluripotency route). The same pattern can be observed at the chromatin levels, 

where the locus associated with SOX2 promoter is progressively open from DR1 to DR3, 

resulting in closed in the other clusters. On the other hand, ELN characterizes the late stages 

of the somatic commitment. Albeit its expression peak occurred in SR7, as expected, 

chromatin accessibility revealed that ELN promoter does not appear to be differentially open 

between clusters. In contrast, there is a distal region downstream of ELN locus that is 

specifically open in SR clusters. 

Figure 40: RPCA enables correct anchoring. UMAP visualization of scRNA-seq data 

from this work after re-analysis with (right) or without (left) pooled cells from Multiome 

approach (black dots).  
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Figure 41: Correlation of gene expression and chromatin accessibility at marker genes 

loci.  Reads distribution from accessible DNA at SOX2 (top) and ELN (bottom) loci, divided 

by clusters. Violin plots of gene expression (log2 CPM) are reported on the right. Links are 

generated by correlating gene expression with chromatin accessibility at called peaks.  
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4 Discussion 

4.1 Identification and characterization of an unproductive 

cell fate during reprogramming 

Our integrative approach of secretome and single-cell transcriptomic analyses revealed a 

previously unappreciated crosstalk between subpopulations during the intermediate stages 

of human reprogramming. Whilst population heterogeneity was also described in recent 

papers, both in mouse65–67 and human170,173,174, these works reported the formation of 

distinctive cell clusters and diversification of pluripotent trajectories, viewing the 

unproductive/refractory subpopulations as a “problem” or limitation in the process. Instead, 

here we highlight the crucial role of reprogramming intermediates and the positive 

contribution of non-pluripotent clusters as actively supporting and shaping the route of the 

reprogramming cells towards a hiPSC identity. 

The efficiency of human somatic cell reprogramming heavily relies on the successful 

transient accessibility and overcoming of specific intermediate stages but given the generally 

low reprogramming efficiency, these stages have been hard to identify. Few strategies were 

previously adopted to capture human intermediate reprogramming-committed 

subpopulations such as cell sorting32,173 and secondary reprogramming systems64. 

Supported by the microfluidic culture system, we took a step further through the unbiased 

identification of the reprogramming subpopulation trajectories and interactions based on an 

integrative secreted proteome and scRNA-seq analysis. The former identified a number of 

secreted cytokines, growth factors and ECM-related proteins actually present in the 

extracellular space during reprogramming and contributing to establish an environmental 

signaling resembling the early embryo basal lamina. scRNA-seq identified two main 

trajectories during reprogramming, with one almost exclusively responsible for secretory 

activity and one committed to reprogram. It was probably the reduced secretory activity of 

nascent hiPSCs or their low abundance that led previous works to overlook the role of the 

extracellular environment, failing to recognize nascent hiPSCs as a secretome target173. 

Recently, a few works suggested the potential for cross-population signalling in mouse 

reprogramming65–67 including the role of SASP and senescence163, but until now the 

molecular mechanisms and rationale behind human non-cell autonomous signaling remained 

unclear. 
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4.2 Role of the somatic fate in subpopulation crosstalk 

In this study, scRNA-seq could identify the putative subpopulation interaction dynamics 

during microfluidic reprogramming. In particular, the identification of the two distinctive 

trajectories, somatic secretory and reprogramming, was instrumental for scoring the putative 

ligand-receptor association responsible for the unidirectional support of the developmental 

trajectory towards pluripotency. Secretome analysis, performed here for the first time, could 

further reduce the dimensionality of the interactions, restricting them to those whose soluble 

ligand was actually detected as secreted at protein level. Only four ligands passed these 

restrictive selection criteria: INHBA, SPP1, NRG1 and HGF. INHBA was previously 

described168, SPP1 is downstream of the HGF pathway169, thus we focused on NRG1 and 

HGF, not previously implicated as reprogramming regulators. Interestingly, NRG1 

signalling occurred within the reprogramming trajectory, while HGF involved population 

cross-talk from the secretory somatic to the reprogramming trajectory. 

HGF is part of SASP, however it was not measured in Mosteiro et al., 2016163 who instead 

identified IL6 in mouse cell reprogramming. Both HGF and IL6 signaling have STAT3 as a 

common effector, although via different receptors175, and other works reported a positive 

correlation between STAT3 activity and in vivo reprogramming efficiency68,176. In our 

human reprogramming systems64,124, IL6 was present both at transcriptional and proteomic 

level, however we could not detect its receptor, IL6R, in any subpopulation at any stage. 

Indeed, we were able to enhance reprogramming efficiency with IL6 only upon providing a 

soluble form of IL6R. The axis HGF/MET/STAT3 was first reported in cancer stemness and 

promotes the expression of pluripotent genes175. HGF-MET was demonstrated to take part 

in a mesenchymal-epithelial cross-talk177. 

We performed extensive experimental validation both in microfluidics and in conventional 

culture systems. Our loss of function data clearly show that MET activation and STAT3 

signaling play an important role in preserving the efficiency of reprogramming, supporting 

the idea that HGF/MET/STAT3 may have a crucial role in the phenotypic conversion of 

developmental subpopulation towards pluripotency. Our gain of function experiments within 

the conventional culture system (i.e., Petri dish) support our hypothesis of the role of 

miniaturization in concentrating endogenous HGF and show the possibility of scaling up our 

findings for wider applicability. Whilst a positive role of STAT3 signaling has been 

extensively characterized during maintenance and induction of mouse naive pluripotency178, 

STAT3 signaling pathway is not active in primed human hiPSCs. It is therefore particularly 

striking that we find transient STAT3 activity to be of benefit during human reprogramming 

to primed hiPSC identity, and highlights that we must consider the environmental niche 
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requirements of the intermediate states, which may differ from those of the endpoint target 

identity. 

4.3 An early embryonic stage is recapitulated during 

reprogramming 

HGF/MET physiological expression during development starts in the primitive streak where 

they take part into the so-called branching morphogenesis179,180. Therefore, it is intriguing to 

observe in our data the recapitulation of ECM organization resembling this state181,182, with 

HGF secreted within the somatic trajectory, while its receptor, MET, especially present along 

the reprogramming one (Figure 42). 

In our work, we followed an unbiased approach that supports the idea that the route to 

pluripotency can be broadened by cell-non-autonomous mechanisms. Paracrine signaling is 

established by highly regulated dynamics with multi-factorial contribution. We showed the 

use of HGF for gain of function during reprogramming in a conventional culture system, but 

this efficiency was amenable to further enhancement when multifactorial contributions were 

used. In particular, we used IL6 and soluble IL6R for a more effective downstream activation 

of STAT3. Moreover, we found that NRG1 contribute to enhance efficiency of hiPSC 

formation consistently with previous works, which upon binding ERBB2/ERBB3 receptors 

activates MAPK/ERK pathway and showed improved maintenance and passage of 

hiPSCs183,184.  

Figure 42: Primitive node formation and reprogramming. Left: Heatmap of Z-scored log2 counts 

per million, averaged by day, of genes encoding for primitive node components. Right: Schematic 

representation of primitive node formation (Adapted from Boccaccio and Comoglio, 2006) and 

primitive node components (Created with BioRender.com). Snapshot of early and late events are 

reported according to the expression dynamics on the left. Black arrows show the contribution of SR 

and DR cells based on their average gene expression. 
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5 Conclusion 

In conclusion, this work reports an overview of the environment-mediated subpopulation 

cross-talk during reprogramming and identifies some specific critical players. Important 

implications of our work are related to in vivo reprogramming, where environmental factors 

cannot be controlled but may affect potential applications. Moreover, strategies to reprogram 

in vitro fibroblasts from any donor with high efficiency are down the road and unlock the 

possibilities of using hiPSC as modeling systems for a large number of patients, including 

their use as diagnostic tools in predicting patient-specific genotype-phenotype associations 

in disease. 
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