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Abstract. We show that monadic intuitionistic quantifiers admit the following tem-

poral interpretation: “always in the future” (for ∀) and “sometime in the past” (for ∃). It

is well known that Prior’s intuitionistic modal logic MIPC axiomatizes the monadic frag-

ment of the intuitionistic predicate logic, and that MIPC is translated fully and faithfully

into the monadic fragment MS4 of the predicate S4 via the Gödel translation. To realize

the temporal interpretation mentioned above, we introduce a new tense extension TS4 of

S4 and provide a full and faithful translation of MIPC into TS4. We compare this new

translation of MIPC with the Gödel translation by showing that both TS4 and MS4 can be

translated fully and faithfully into a tense extension of MS4, which we denote by MS4.t.

This is done by utilizing the relational semantics for these logics. As a result, we arrive

at the diagram of full and faithful translations shown in Figure 1 which is commutative

up to logical equivalence. We prove the finite model property (fmp) for MS4.t using alge-

braic semantics, and show that the fmp for the other logics involved can be derived as a

consequence of the fullness and faithfulness of the translations considered.
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§1. Introduction. It is well known that, unlike classical quantifiers, the in-
terpretation of intuitionistic quantifiers is non-symmetric in that ∀xA is true at
a world w iff A is true at every object a in the domain Dv of every world v
accessible from w, while ∃xA is true at w iff A is true at some object a in the
domain Dw of w. This non-symmetry is also evident in the Gödel translation
of the intuitionistic predicate calculus IQC into the predicate S4, denoted QS4,
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since ∀xA is translated as 2∀xAt while ∃xA as ∃xAt, where At is the translation
of A.

Our aim is to provide a more symmetric temporal interpretation of intuition-
istic quantifiers as “always in the future” (for ∀) and “sometime in the past” (for
∃). In this paper we restrict our attention to monadic quantifiers (that quantify
over one fixed variable), but in Section 7 we discuss the connection to the full
predicate case, which is treated in detail in [4]. One of the main reasons to treat
the monadic case separately is because it gives rise to a new interesting temporal
system TS4 (see below).

It is well known that the monadic fragment of IQC is axiomatized by Prior’s
monadic intuitionistic propositional calculus MIPC [8, 25]. The monadic frag-
ment of QS4 was studied by Fischer-Servi [14] who showed that the Gödel trans-
lation of IQC into QS4 restricts to the monadic case. We denote the monadic
fragment of QS4 by MS4. One of our main contributions is to introduce a tense
counterpart of MS4, denoted by TS4, and prove that a modification of the Gödel
translation embeds MIPC into TS4 fully and faithfully. This allows us to give the
desired temporal interpretation of intuitionistic monadic quantifiers as “always
in the future” (for ∀) and “sometime in the past” (for ∃).

While MS4 and TS4 are not comparable, we introduce a common extension,
which we denote by MS4.t. The system MS4.t can be thought of as a tense ex-
tension of MS4. We prove that there exist full and faithful translations of MIPC,
MS4, and TS4 into MS4.t, yielding the diagram in Figure 1. The Gödel trans-
lation is denoted by ( )t, our new translation by ( )\, and the three translations
into MS4.t by ( )[, ( )#, and ( )†, respectively.

MS4

MIPC MS4.t

TS4

( )#( )t

( )\

( )[

( )†

Figure 1. Diagram of translations.

We prove these results by employing relational semantics. In addition, we
utilize algebraic semantics to prove that MS4.t has the fmp. It is then an easy
consequence of the fullness and faithfulness of the translations considered that
the other systems also have the fmp. That MIPC has the fmp was proved in [7],
but the proof contained a gap, which was corrected in [15, 23]. The fmp for MS4
follows from the results in [17, Sec. 12]. An advantage of our approach is in that
it provides a uniform means for proving the fmp for all four systems in Figure 1.

In [4] we extended the translation of MIPC into MS4.t to the predicate set-
ting.1 We showed that the same interpretation of intuitionistic quantifiers can

1While [4] is a sequel to this paper, as it often happens, it appeared in print before this
paper.
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be realized via a full and faithful translation of IQC into a version of predicate
S4.t that can be thought of as a predicate analogue of MS4.t. We conclude this
paper by comparing the translations investigated here with those studied in [4].

§2. Logics of interest. In this section we present our four main logics of
interest (see Figure 1). We start by recalling the monadic intuitionistic propo-
sitional calculus MIPC. This system was introduced by Prior [26, p. 38] and
it was shown by Bull [8] that MIPC axiomatizes the monadic fragment of the
intuitionistic predicate calculus IQC (that is, the fragment of IQC consisting of
all predicate formulas containing one fixed variable). For this reason we denote
the modalities of MIPC by ∀ and ∃. Let L be a propositional language and let
L∀∃ be the extension of L with two modalities ∀ and ∃.

Definition 2.1. The monadic intuitionistic propositional calculus MIPC is
the intuitionistic modal logic in the propositional modal language L∀∃ containing

1. all theorems of the intuitionistic propositional calculus IPC;
2. the S4-axioms for ∀:

(a) ∀(p ∧ q)↔ (∀p ∧ ∀q),
(b) ∀p→ p,
(c) ∀p→ ∀∀p;

3. the S5-axioms for ∃:
(a) ∃(p ∨ q)↔ (∃p ∨ ∃q),
(b) p→ ∃p,
(c) ∃∃p→ ∃p,
(d) (∃p ∧ ∃q)→ ∃(∃p ∧ q);

4. the axioms connecting ∀ and ∃:
(a) ∃∀p↔ ∀p,
(b) ∃p↔ ∀∃p;

and closed under the rules of modus ponens, substitution, and necessitation
(ϕ/∀ϕ).

Remark 2.2. There are several equivalent axiomatizations of MIPC (see, e.g.,
[2, Lem. 2]).

We next recall the monadic extension of S4 studied by Fischer-Servi [14] who
showed that it axiomatizes the monadic fragment of the predicate S4. Let L2∀
be a propositional bimodal language with two modal operators 2 and ∀. As
usual, 3 is an abbreviation for ¬2¬ and ∃ is an abbreviation for ¬∀¬.

Definition 2.3. The monadic S4, denoted MS4, is the smallest bimodal logic
containing all theorems of the classical propositional calculus CPC, the S4-axioms
for 2, the S5-axioms for ∀, the left commutativity axiom

2∀p→ ∀2p,

and closed under modus ponens, substitution, 2-necessitation, and ∀-necessi-
tation.

Remark 2.4. Recalling the definition of fusion of two logics (see [16]), MS4 is
obtained from the fusion S4⊗S5 by adding the left commutativity axiom 2∀p→
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∀2p which is the monadic version of the converse Barcan formula. The monadic
version of the Barcan formula is the right commutativity axiom ∀2p → 2∀p.
Adding it to MS4 yields the product logic S4× S5; see [16, Ch. 5] for details.

The following lemma will be useful in Section 3.

Lemma 2.5. An equivalent axiomatization of MS4 is obtained by replacing the
left commutativity axiom 2∀p→ ∀2p by ∃2p→ 2∃p.

Proof. We show that MS4 ` ∃2p → 2∃p. That ∃2p → 2∃p together with
the other axioms of MS4 implies 2∀p→ ∀2p is proved similarly. Since ∀ is an S5-
modality, 2∃p→ 2∀∃p is a theorem of MS4. By the left commutativity axiom,
2∀∃p → ∀2∃p is also a theorem of MS4. Therefore, MS4 ` 2∃p → ∀2∃p,
and hence MS4 ` ∃2∃p → ∃∀2∃p. But ∃2p → ∃2∃p, ∃∀2∃p → ∀2∃p, and
∀2∃p → 2∃p are all theorems of MS4 because ∀ is an S5-modality. Thus,
MS4 ` ∃2p→ 2∃p, concluding the proof. a

To introduce our main tense logic TS4, we first need to recall the tense logic
S4.t. Let LT be the propositional tense language with two modalities [F ] and
[P ]. As usual, [F ] is interpreted as “always in the future” and [P ] as “always
in the past.” We use the following standard abbreviations: 〈F 〉 for ¬[F ]¬ and
〈P 〉 for ¬[P ]¬. Then 〈F 〉 is interpreted as “sometime in the future” and 〈P 〉 as
“sometime in the past.”

Definition 2.6. Let S4.t be the smallest bimodal logic containing all theo-
rems of the classical propositional calculus CPC, the S4-axioms for [F ] and [P ],
the tense axioms

p→ [P ]〈F 〉p
p→ [F ]〈P 〉p

and closed under modus ponens, substitution, [F ]-necessitation, and [P ]-necessi-
tation.

Remark 2.7. The system S4.t is the extension of the least tense logic K.t
in which both tense modalities satisfy the S4-axioms. It was studied by several
authors. Esakia [10] showed that the Gödel translation can be extended to embed
the Heyting-Brouwer logic HB of Rauszer [28] into S4.t fully and faithfully. The
language of HB is obtained by enriching the language of IPC by an additional
connective of coimplication, and the logic HB is the extension of IPC by the
axioms for coimplication, which are dual to the axioms for implication. Wolter
[31] extended the celebrated Blok-Esakia Theorem to this setting.

We are ready to define TS4 by combining S4 and S4.t. In Section 4 we will
translate MIPC into TS4 fully and faithfully. We will use S4 to translate in-
tuitionistic connectives and S4.t to translate monadic intuitionistic quantifiers.
LetML be the multimodal propositional language with three modalities 2, [F ],
and [P ]. We use 3, 〈F 〉, and 〈P 〉 as usual abbreviations.

Definition 2.8. The logic TS4 is the least multimodal logic containing all
theorems of the classical propositional calculus CPC, the S4-axioms for 2, [F ],
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and [P ], the tense axioms for [F ] and [P ], the connecting axioms

3p→ 〈F 〉p
〈F 〉p→ 3(〈F 〉p ∧ 〈P 〉p)

and closed under modus ponens, substitution, and three necessitation rules (for
2, [F ], and [P ]).

Our final logic of interest is the monadic tense logic MS4.t which is obtained by
combining MS4 and S4.t. As we will see, both MS4 and TS4 translate fully and
faithfully into MS4.t. In order to avoid confusion between the tense modalities
of TS4 and MS4.t, we denote the tense modalities of MS4.t by 2F and 2P . Let
LT∀ be the propositional language with the tense modalities 2F and 2P , and
the monadic modality ∀.

Definition 2.9. The tense MS4, denoted MS4.t, is the least multimodal logic
containing all theorems of the classical propositional calculus CPC, the S4.t-
axioms for 2F and 2P , the S5-axioms for ∀, the left commutativity axiom

2F∀p→ ∀2F p,

and closed under modus ponens, substitution, and the necessitation rules (for
2F , 2P , and ∀).

Remark 2.10. We can think of MS4.t as a tense extension of MS4. It is
worth stressing that MS4.t is not the monadic fragment of the standard predicate
extension QS4.t of S4.t. To see this, it is well known that the Barcan formula
∀x2Fϕ → 2F∀xϕ and the converse Barcan formula 2F∀xϕ → ∀x2Fϕ are
both theorems of any tense predicate logic containing the standard axioms of
first order logic. Therefore, both are theorems of QS4.t. Thus, the monadic
fragment of QS4.t contains both the left commutativity axiom 2F∀p → ∀2F p
and the right commutativity axiom ∀2F p → 2F∀p. On the other hand, it is
easy to see (e.g., using the Kripke semantics for MS4.t which we will define in
the next section) that, while MS4.t contains the left commutativity axiom, the
right commutativity axiom is not provable in MS4.t.

§3. Relational semantics. In this section we investigate the relational se-
mantics for MIPC, MS4, TS4, and MS4.t. The relational semantics for MIPC and
MS4 have already been studied in the literature, and the relational semantics for
TS4 and MS4.t are obtained by a straightforward adaptation.

Definition 3.1. Let R be a quasi-order (reflexive and transitive relation) on
a set X. As usual, for x ∈ X, we write

R[x] = {y ∈ X | xRy} and R−1[x] = {y ∈ X | yRx},
and for A ⊆ X, we write

R[A] =
⋃
{R[x] | x ∈ A} and R−1[A] =

⋃
{R−1[x] | x ∈ A}.

We say that A ⊆ X is an R-upset if R[A] = A and that it is an R-downset if
R−1[A] = A.

We first describe the relational semantics for MIPC. There are several such
(see, e.g., [3]), but we concentrate on the one introduced by Ono [23].
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Definition 3.2. An MIPC-frame is a triple F = (X,R,Q) where X is a set,
R is a partial order, Q is a quasi-order, and the following two conditions are
satisfied:

(O1) R ⊆ Q,
(O2) xQy ⇒ (∃z)(xRz & zEQy).

Here EQ is the equivalence relation defined by xEQy iff xQy and yQx.

x

z yEQ

R Q

Figure 2. Condition (O2).

Remark 3.3. If U is an R-upset of an MIPC-frame F, then Condition (O2)
implies that EQ[U ] = Q[U ]. This motivates our interpretation of ∃ as “sometime
in the past.” Indeed, taking Q[U ] is the standard way to associate an operator
on ℘(X) to the tense modality “sometime in the past” (see, e.g., [30, p. 151]).

Definition 3.4. A valuation on an MIPC-frame F = (X,R,Q) is a map v
associating an R-upset of F to any propositional letter of L∀∃. The connectives
∧,∨,→,¬ are then interpreted as in intuitionistic Kripke frames, and ∀,∃ are
interpreted as

x �v ∀ϕ iff (∀y ∈ X)(xQy ⇒ y �v ϕ),
x �v ∃ϕ iff (∃y ∈ X)(xEQy & y �v ϕ).

As usual, we say that ϕ is valid in F, and write F � ϕ, if x �v ϕ for every
valuation v and every x ∈ X.

It is well known that MIPC is a canonical logic (see, e.g., [3]). Thus, we have:

Theorem 3.5. MIPC is a canonical logic, hence it is sound and complete with
respect to its relational semantics. Therefore,

MIPC ` ϕ iff F � ϕ for every MIPC-frame F.

Remark 3.6. In addition, MIPC has the fmp [7, 15, 23] and hence is decidable.
As we will see in Section 6, the fmp of MIPC can be derived from the fmp of
MS4.t.

The relational semantics for MS4 was introduced by Esakia [12].

Definition 3.7. An MS4-frame is a triple F = (X,R,E) where X is a set, R
is a quasi-order, E is an equivalence relation, and the following commutativity
condition is satisfied:

(∀x, y, z ∈ X)(xEy & yRz)⇒ (∃u ∈ X)(xRu & uEz).(E)
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u

y

z
E

E

R R

Figure 3. Condition (E).

Definition 3.8. A valuation on an MS4-frame F = (X,R,E) is a map v
associating a subset of X to each propositional letter of L2∀. The boolean
connectives are interpreted as usual, and

x �v 2ϕ iff (∀y ∈ X)(xRy ⇒ y �v ϕ),
x �v ∀ϕ iff (∀y ∈ X)(xEy ⇒ y �v ϕ).

By Lemma 2.5, in the axiomatization of MS4, the left commutativity axiom
2∀p→ ∀2p can be replaced by ∃2a→ 2∃a. Therefore, MS4 can be axiomatized
by Sahlqvist formulas (see, e.g, [5, Sec. 3.6]). Thus, by the Sahlqvist completeness
theorem (see, e.g., [5, Thm. 4.42]), it is sound and complete with respect to its
relational semantics:

Theorem 3.9. MS4 is a Sahlqvist logic, hence it is sound and complete with
respect to its relational semantics. Therefore,

MS4 ` ϕ iff F � ϕ for every MS4-frame F.

Remark 3.10. In addition, MS4 has the fmp and is decidable. This can be
derived from the results in [17, Sec. 12] (see also [16, Thms. 6.52, 9.12]). As we
will see in Section 6, the fmp of MS4 can also be derived from the fmp of MS4.t.

We next recall the relational semantics for S4.t.

Definition 3.11. An S4.t-frame is a pair F = (X,Q) where X is a set and Q
is a quasi-order on X.

Remark 3.12. While S4.t-frames coincide with S4-frames, the difference is in
the interpretation of the modalities as we use Q to interpret [F ] and its inverse
relation Q˘ to interpret [P ].

Definition 3.13. A valuation on an S4.t-frame F = (X,Q) is a map v associ-
ating a subset of X to each propositional letter of LT . The boolean connectives
are interpreted as usual, and the tense modalities are interpreted as

x �v [F ]ϕ iff (∀y ∈ X)(xQy ⇒ y �v ϕ),
x �v [P ]ϕ iff (∀y ∈ X)(yQx ⇒ y �v ϕ).

Remark 3.14. It is straightforward to see that all the axioms of S4.t are
Sahlqvist formulas. Therefore, S4.t is a Sahlqvist logic, and hence it is sound
and complete with respect to its relational semantics. That S4.t has the fmp
follows from [29, pp. 313–314] (see also [18, p. 44] and Remark 6.18(3)).

We now introduce the relational semantics for TS4.
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Definition 3.15. A TS4-frame is a triple F = (X,R,Q) where X is a set and
R,Q are quasi-orders on X satisfying Conditions (O1) and (O2).

It follows that TS4-frames are a version of MIPC-frames, where the relation R
is a quasi-order. We interpret 2 using R, and [F ], [P ] using Q and its inverse
Q .̆

Definition 3.16. A valuation on a TS4-frame F = (X,R,Q) is a map associ-
ating a subset of X to each propositional letter ofML. The classical connectives
are interpreted as usual, and the modalities 2, [F ], and [P ] are interpreted as

x �v 2ϕ iff (∀y ∈ X)(xRy ⇒ y �v ϕ),
x �v [F ]ϕ iff (∀y ∈ X)(xQy ⇒ y �v ϕ),
x �v [P ]ϕ iff (∀y ∈ X)(yQx⇒ y �v ϕ).

Consequently,

x �v 3ϕ iff (∃y ∈ X)(xRy & y �v ϕ),
x �v 〈F 〉ϕ iff (∃y ∈ X)(xQy & y �v ϕ),
x �v 〈P 〉ϕ iff (∃y ∈ X)(yQx & y �v ϕ).

Remark 3.17. It is straightforward to check that if (X,R,Q) is a TS4-frame,
then (X,R,EQ) is an MS4-frame, and that if (X,R,E) is an MS4-frame, then
(X,R,QE) is a TS4-frame, where QE is defined by

xQEy iff (∃z ∈ X)(xRz & zEy).

If (X,R,Q) is a TS4-frame, by definition we have that

xQy iff (∃z ∈ X)(xRz & zEQy).

Thus, Q = QEQ
. On the other hand, there exist MS4-frames (X,R,E) such that

E 6= EQE
(see [3, p. 24]). Therefore, this correspondence is not a bijection.

Since all TS4-axioms are Sahlqvist formulas, we have:

Theorem 3.18. TS4 is a Sahlqvist logic, hence it is sound and complete with
respect to its relational semantics. Therefore,

TS4 ` ϕ iff F � ϕ for every TS4-frame F.

Remark 3.19. In Section 6 we will see that TS4 has the fmp and hence is
decidable.

Finally, we introduce the relational semantics for MS4.t. As with S4 and
S4.t, we have that MS4.t-frames are simply MS4-frames, the difference is in
interpreting tense modalities.

Definition 3.20. A valuation on an MS4.t-frame F = (X,R,E) is a map
v associating a subset of X to each propositional letter of LT∀. The boolean
connectives are interpreted as usual, and

F, x �v 2Fϕ iff (∀y ∈ X)(xRy ⇒ y �v ϕ),
F, x �v 2Pϕ iff (∀y ∈ X)(yRx⇒ y �v ϕ),
F, x �v ∀ϕ iff (∀y ∈ X)(xEy ⇒ y �v ϕ).

Since both MS4 and S4.t are Sahlqvist logics, the same is true for MS4.t. Thus,
we have:
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Theorem 3.21. MS4.t is a Sahlqvist logic, hence it is sound and complete
with respect to its relational semantics. Therefore,

MS4.t ` ϕ iff F � ϕ for every MS4.t-frame F.

In Section 6 we will prove that MS4.t has the fmp and hence is decidable.

§4. The four translations. In this section we define the translations of
Figure 1 and show that they are full and faithful by using relational semantics.
We start by recalling that the Gödel translation of MIPC into MS4 is defined by

⊥t = ⊥
pt = 2p for each propositional letter p

(ϕ ∧ ψ)t = ϕt ∧ ψt

(ϕ ∨ ψ)t = ϕt ∨ ψt

(ϕ→ ψ)t = 2(¬ϕt ∨ ψt)

(∀ϕ)t = 2∀ϕt

(∃ϕ)t = ∃ϕt.

Definition 4.1. The translation (−)\ : MIPC → TS4 is defined as (−)t on
propositional letters, ⊥, ∧, ∨, and →; and for ∀ and ∃ we set:

(∀ϕ)\ = [F ]ϕ\

(∃ϕ)\ = 〈P 〉ϕ\.

Remark 4.2. Thus, (−)\ realizes the desired temporal interpretation of the
intuitionistic monadic quantifiers: ∀ as “always in the future” and ∃ as “sometime
in the past.”

Definition 4.3. The translation (−)† : TS4→ MS4.t is defined by

p† = p for each propositional letter p

(ϕ ◦ ψ)† = ϕ† ◦ ψ† for ◦ = ∧,∨

(¬ϕ)† = ¬ϕ†

(2ϕ)† = 2Fϕ
†

([F ]ϕ)† = 2F∀ϕ†

([P ]ϕ)† = ∀2Pϕ
†.

Remark 4.4.

1. The translation (−)† : TS4→ MS4.t is suggested by the correspondence be-
tween TS4-frames and MS4-frames described in Remark 3.17. Each MS4.t-
frame F = (X,R,E) is an MS4-frame, the relation QE on the corresponding
TS4-frame is the composition of R and E, and the inverse relation QĔ is
the composition of E and R .̆ Therefore, the modalities [F ] and [P ] are
translated as 2F∀ and ∀2P , respectively. Notice that, since MS4 lacks a
modality corresponding to the relation R ,̆ we are not able to translate TS4
into MS4.
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2. It is natural to consider a modification of (−)† : TS4→ MS4.t where [P ] is
translated as 2P∀. However, such a modification does not result in a faith-
ful translation. Nevertheless, as we will see in Section 5, its composition
with (−)\ : MIPC→ TS4 is full and faithful.

The translation of MS4 into MS4.t reflects that MS4.t is a tense extension of
MS4.

Definition 4.5. The translation (−)# : MS4 → MS4.t replaces in each for-
mula ϕ of L2∀ every occurrence of 2 with 2F .

We show that these four translations are full and faithful by using relational
semantics. For this we first need to generalize the well-known notion of the
skeleton of an S4-frame (see, e.g., [9, Sec. 3.9]).

Definition 4.6.

1. If R is a quasi-order on a set X, we define ∼ to be the equivalence relation
on X given by

x ∼ y iff xRy and yRx.

We let X ′ be the set of equivalence classes of ∼, and define R′ on X ′ by

[x]R′[y] iff xRy.

2. Let F = (X,R,E) be an MS4-frame. Recall that QE is defined on X by
xQEy iff (∃z ∈ X)(xRz & zEy) (see Remark 3.17). Define Q′ on X ′ by

[x]Q′[y] iff xQEy.

We call Ft = (X ′, R′, Q′) the skeleton of the MS4-frame F.
3. Let F = (X,R,Q) be a TS4-frame. Define Q′ on X ′ by

[x]Q′[y] iff xQy.

We call F\ = (X ′, R′, Q′) the skeleton of the TS4-frame F.
4. For an MS4.t-frame F = (X,R,E) let F† = (X,R,QE) where QE is defined

as in (2).

Remark 4.7. If a TS4-frame F = (X,R,Q) is such that R is a partial order,
then F is isomorphic to its skeleton F\. However, we cannot always recover an
MS4-frame F = (X,R,E) from its skeleton Ft even if R is a partial order. Indeed,
it is not always the case that E = EQE

. Nonetheless, if F is canonical (and in
particular finite) and R is a partial order, then E = EQE

; see [3, Sec. 2] for
details.

Proposition 4.8.

1. If F is an MS4-frame, then Ft is an MIPC-frame.
2. If F is a TS4-frame, then F\ is an MIPC-frame.
3. If F is an MS4.t-frame, then F† is a TS4-frame.

Proof. (1). It is well known that (X ′, R′) is an intuitionistic Kripke frame.
That Q′ is well defined follows from Condition (E). Showing that Q′ is a quasi-
order and that (O1), (O2) hold in Ft is straightforward.

(2). We have that Q′ is well defined on X ′ because R ⊆ Q in F. Showing that
Q′ is a quasi-order and that (O1), (O2) hold in F\ is straightforward.
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(3). Since MS4.t-frames coincide with MS4-frames, it follows from Remark 3.17
that F† is a TS4-frame. a

It is well known that an S4-frame validates the Gödel translation of an intu-
itionistic formula ϕ iff its skeleton validates ϕ (see, e.g., [9, Cor. 3.82]). We will
prove in Proposition 4.11 that analogous results hold for the four translations
defined in this section. For this we need the following technical lemma.

Lemma 4.9. For any formula χ of L∀∃, we have

MS4 ` χt → 2χt.

Consequently, if F = (X,R,E) is an MS4-frame and v a valuation on F, then
the set of points x ∈ X such that F, x �v χ

t forms an R-upset of F.

Proof. We prove that MS4 ` χt → 2χt by induction on the complexity of
χ. This is obvious when χ = ⊥. The cases when χ is p, ϕ → ψ, or ∀ϕ follow
from the axiom 2ϕ → 22ϕ. We next consider the cases when χ is ϕ ∧ ψ or
ϕ ∨ ψ. Suppose that the claim is true for ϕ and ψ, so ϕt → 2ϕt and ψt → 2ψt

are theorems of MS4. Then ϕt ∧ ψt → 2(ϕt ∧ ψt) and ϕt ∨ ψt → 2(ϕt ∨ ψt)
are also theorems of MS4. Finally, if χ is ∃ϕ and MS4 ` ϕt → 2ϕt, then
MS4 ` ∃ϕt → ∃2ϕt. Therefore, since MS4 ` ∃2ϕt → 2∃ϕt by Lemma 2.5, we
conclude that MS4 ` ∃ϕt → 2∃ϕt.

Let F = (X,R,E) be an MS4-frame, v a valuation of F, and x ∈ X. Since
MS4 ` χt → 2χt, if F, x �v χ

t, then F, x �v 2χt. Therefore, for each y such
that xRy we have F, y �v χ

t. Thus, {x ∈ X | F, x �v χ
t} is an R-upset. a

The next result generalizes to our setting a well-known correspondence result
[9, Lem. 3.81] between IPC-models and S4-models.

Proposition 4.10.

1. For each valuation v on an MS4-frame F there is a valuation v′ on Ft such
that for each x ∈ F and L∀∃-formula ϕ, we have

Ft, [x] �v′ ϕ iff F, x �v ϕ
t.

2. For each valuation v on a TS4-frame F there is a valuation v′ on F\ such
that for each x ∈ F and L∀∃-formula ϕ, we have

F\, [x] �v′ ϕ iff F, x �v ϕ
\.

3. Each valuation v on an MS4.t-frame F is also a valuation on F† and for
each x ∈ F and ML-formula ϕ, we have

F†, x �v ϕ iff F, x �v ϕ
†.

4. Each valuation v on an MS4.t-frame F is also a valuation on F as an MS4-
frame and for each x ∈ F and L2∀-formula ϕ, we have

F, x �v ϕ iff F, x �v ϕ
#.

Proof. (1). Define v′ on Ft by v′(p) = {[x] ∈ X ′ | R[x] ⊆ v(p)}. We show
that Ft, [x] �v′ ϕ iff F, x �v ϕt by induction on the complexity of ϕ. Since
v′(p) = {[x] | F, x �v 2p}, the claim is obvious when ϕ is a propositional letter.
We prove the claim for ϕ of the form ∀ψ and ∃ψ since the other cases are well
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known (see, e.g., [9, Lem. 3.81]). Suppose ϕ = ∀ψ. By the definition of Q′ and
induction hypothesis, we have

Ft, [x] �v′ ∀ψ iff (∀[y] ∈ X ′)([x]Q′[y] ⇒ Ft, [y] �v′ ψ)

iff (∀y ∈ X)(xQEy ⇒ Ft, [y] �v′ ψ)

iff (∀y ∈ X)(xQEy ⇒ F, y �v ψ
t).

On the other hand,

F, x �v (∀ψ)t iff F, x �v 2∀ψt

iff (∀z ∈ X)(xRz ⇒ (∀y ∈ X)(zEy ⇒ F, y �v ψ
t))

iff (∀y ∈ X)(xQEy ⇒ F, y �v ψ
t).

Thus, Ft, [x] �v′ ∀ψ iff F, x �v (∀ψ)t.
Suppose ϕ = ∃ψ. As noted in Remark 3.3, Q′ and EQ′ coincide on R′-upsets,

and it is straightforward to see by induction that the set {[y] | Ft, [y] �v′ ψ} is
an R′-upset. Therefore, by the induction hypothesis,

Ft, [x] �v′ ∃ψ iff (∃[y] ∈ X ′)([x]EQ′ [y] & Ft, [y] �v′ ψ)

iff [x] ∈ EQ′ [{[y] | Ft, [y] �v′ ψ}]
iff [x] ∈ Q′[{[y] | Ft, [y] �v′ ψ}]
iff x ∈ QE [{y | Ft, [y] �v′ ψ}]
iff x ∈ QE [{y | F, y �v ψ

t}].

On the other hand, since {y | F, y �v ψ
t} is an R-upset (see Lemma 4.9), and E

and QE coincide on R-upsets,

F, x �v (∃ψ)t iff F, x �v ∃ψt

iff (∃y ∈ X)(xEy & F, y �v ψ
t)

iff x ∈ E[{y | F, y �v ψ
t}]

iff x ∈ QE [{y | F, y �v ψ
t}].

Thus, Ft, [x] �v′ ∃ψ iff F, x �v (∃ψ)t.
(2). As in (1) we define v′ by v′(p) = {[x] ∈ X ′ | R[x] ⊆ v(p)}. We show that

F\, [x] �v′ ϕ iff F, x �v ϕ
\ by induction on the complexity of ϕ. It is sufficient to

only consider the cases when ϕ is of the form ∀ψ or ∃ψ. Suppose ϕ = ∀ψ. Then
by the definition of Q′ and induction hypothesis,

F\, [x] �v′ ∀ψ iff (∀[y] ∈ X ′)([x]Q′[y] ⇒ F\, [y] �v′ ψ)

iff (∀y ∈ X)(xQy ⇒ F\, [y] �v′ ψ)

iff (∀y ∈ X)(xQy ⇒ F, y �v ψ
\)

iff F, x �v [F ]ψ\

iff F, x �v (∀ψ)\.

Suppose ϕ = ∃ψ. As noted in Remark 3.3, Q′ and EQ′ coincide on R′-upsets.
Since the set {[y] | F\, [y] �v′ ψ} is an R′-upset, by the induction hypothesis, we
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have

F\, [x] �v′ ∃ψ iff (∃[y] ∈ X ′)([x]EQ′ [y] & F\, [y] �v′ ψ)

iff [x] ∈ EQ′ [{[y] | F\, [y] �v′ ψ}]

iff [x] ∈ Q′[{[y] | F\, [y] �v′ ψ}]

iff x ∈ Q[{y | F\, [y] �v′ ψ}]

iff x ∈ Q[{y | F, y �v ψ
\}]

iff (∃y ∈ X)(yQx & F, y �v ψ
\)

iff F, x �v 〈P 〉ψ\

iff F, x �v (∃ψ)\.

(3). It is clear that if v is a valuation on F, then v is also a valuation on F†.
We show that F†, x �v ϕ iff F, x �v ϕ

† by induction on the complexity of ϕ. The
only nontrivial cases are when ϕ is of the form 2ψ, [F ]ψ, and [P ]ψ. Suppose
ϕ = 2ψ. Then, by the induction hypothesis,

F†, x �v 2ψ iff (∀y ∈ X)(xRy ⇒ F†, y �v ψ)

iff (∀y ∈ X)(xRy ⇒ F, y �v ψ
†)

iff F, x �v 2Fψ
†

iff F, x �v (2ψ)†.

Suppose ϕ = [F ]ψ. Then, by the induction hypothesis,

F†, x �v [F ]ψ iff (∀y ∈ X)(xQEy ⇒ F†, y �v ψ)

iff (∀z ∈ X)(xRz ⇒ (∀y ∈ X)(zEy ⇒ F†, y �v ψ))

iff (∀z ∈ X)(xRz ⇒ (∀y ∈ X)(zEy ⇒ F, y �v ψ
†))

iff (∀z ∈ X)(xRz ⇒ F, z � ∀ψ†)

iff F, x �v 2F∀ψ†

iff F, x �v ([F ]ψ)†.

Suppose ϕ = [P ]ψ. Then, by the induction hypothesis,

F†, x �v [P ]ψ iff (∀y ∈ X)(yQEx ⇒ F†, y �v ψ)

iff (∀y, z ∈ X)(yRz & zEx ⇒ F†, y �v ψ)

iff (∀z ∈ X)(zEx ⇒ (∀y ∈ X)(yRz ⇒ F†, y �v ψ))

iff (∀z ∈ X)(zEx ⇒ (∀y ∈ X)(yRz ⇒ F, y �v ψ
†))

iff (∀z ∈ X)(zEx ⇒ F, z � 2Pψ
†)

iff (∀z ∈ X)(xEz ⇒ F, z � 2Pψ
†)

iff F, x �v ∀2Pψ
†

iff F, x �v ([P ]ψ)†.
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(4). This is an immediate consequence of the definition of (−)# and the
relational semantics for MS4 and MS4.t. a

Proposition 4.11.

1. For each MS4-frame F and L∀∃-formula ϕ, we have

Ft � ϕ iff F � ϕt.

2. For each TS4-frame F and L∀∃-formula ϕ, we have

F\ � ϕ iff F � ϕ\.

3. For each MS4.t-frame F and ML-formula ϕ, we have

F† � ϕ iff F � ϕ†.

4. For each MS4.t-frame F and L2∀-formula ϕ, we have

F � ϕ iff F � ϕ#.

Proof. We only prove (2) since the proofs of (1), (3), and (4) are similar. If
F 2 ϕ\, then there is a valuation v on F such that F, x 2v ϕ

\ for some x ∈ X. By
Proposition 4.10(2), v′ is a valuation on F\ such that F\, [x] 2v′ ϕ. Therefore,
F\ 2 ϕ. If F\ 2 ϕ, then there is a valuation w on F\ and [x] ∈ X ′ such that
F\, [x] 2w ϕ. Let v be the valuation on F given by v(p) = {x | [x] ∈ w(p)}. Since
F\ is an MIPC-frame, w(p) is an R′-upset of F\ for each p. So v(p) is an R-upset
of F for each p. Therefore, w = v′ because

v′(p) = {[x] ∈ X ′ | R[x] ⊆ v(p)} = {[x] ∈ X ′ | x ∈ v(p)} = w(p).

Thus, F\, [x] 2v′ ϕ. By Proposition 4.10(2), F, x 2v ϕ\. Consequently, F 2
ϕ\. a

In order to show that the translations are full, we also need the following
result, which generalizes to our setting a well-known fact that each IPC-frame is
the skeleton of an S4-frame.

Proposition 4.12.

1. For each MIPC-frame G there is an MS4-frame F such that G is isomorphic
to Ft.

2. Each MIPC-frame G is also a TS4-frame and G\ is isomorphic to G.
3. For each TS4-frame G there is an MS4.t-frame F such that G = F†.

Proof. (1). Let G = (X,R,Q) be an MIPC-frame. We show that F =
(X,R,EQ) is an MS4-frame. If xEQy and yRz, then by definition of EQ and
Condition (O1), xQy and yQz. Since Q is transitive, xQz. Condition (O2) then
implies that there is u ∈ X with xRu and uEQz. Thus, F is an MS4-frame. Since
R is a partial order, it is an immediate consequence of Definition 4.6(1) that ∼
is the identity relation. It then follows from condition (O2) that Q = QEQ

, and
hence G is isomorphic to Ft.

(2). Let G = (X,R,Q) be an MIPC-frame. It is clear from the definition of
TS4-frames that G is also a TS4-frame. Since R is a partial order, ∼ is the
identity relation. Therefore, G is isomorphic to G\.

(3). Let G = (X,R,Q) be a TS4-frame. As we observed in Remark 3.17,
F = (X,R,EQ) is an MS4-frame, and so an MS4.t-frame. By definition of TS4-
frames we have that Q = QEQ

, and hence G = F†. a
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We are ready to prove the main result of this section that the four translations
are full and faithful. That the Gödel translation of MIPC into MS4 is full and
faithful was first observed by Fischer-Servi [14] using the translations of MIPC
and MS4 into IQC and QS4 respectively, and the predicate version of the Gödel
translation. In [15] she gave a different proof of this result, using that MIPC
has the fmp. Our proof utilizes the relational semantics and generalizes the
semantic proof that the Gödel translation of IPC into S4 is full and faithful (see,
e.g., [9, Sec. 3.9]).

Theorem 4.13.

1. The Gödel translation (−)t of MIPC into MS4 is full and faithful; that is,

MIPC ` ϕ iff MS4 ` ϕt.

2. The translation (−)\ of MIPC into TS4 is full and faithful; that is,

MIPC ` ϕ iff TS4 ` ϕ\.

3. The translation (−)† of TS4 into MS4.t is full and faithful; that is,

TS4 ` ϕ iff MS4.t ` ϕ†.

4. The translation (−)# of MS4 into MS4.t is full and faithful; that is,

MS4 ` ϕ iff MS4.t ` ϕ#.

Proof. We prove (2). For faithfulness, suppose that TS4 0 ϕ\. By Theo-
rem 3.18, there is a TS4-frame F such that F 2 ϕ\. By Propositions 4.8(2) and
4.11(2), F\ is an MIPC-frame and F\ 2 ϕ. Thus, by Theorem 3.5, MIPC 0 ϕ.
For fullness, let MIPC 0 ϕ. Then there is an MIPC-frame G such that G 2 ϕ.
By Proposition 4.12(2), there is a TS4-frame such that G is isomorphic to F\.
Therefore, F\ 2 ϕ. Proposition 4.11(2) implies that F 2 ϕ\. Thus, TS4 0 ϕ\.

The proofs of (1), (3), and (4) are obtained analogously using Theorems 3.5,
3.9 3.18, and 3.21, and Propositions 4.8, 4.11, and 4.12 a

§5. Compositions of the translations. In this section we show that the
translations introduced in the previous section form a commutative diagram up
to logical equivalence.

We denote the composition of (−)# and (−)t by (−)t#, and the composition of
(−)† and (−)\ by (−)\†. Since we proved that all these four translations are full
and faithful, we also have that (−)t# and (−)\† are full and faithful translations
of MIPC into MS4.t. We have thus obtained the following diagram of full and
faithful translations. We next show that this diagram is commutative up to
logical equivalence in MS4.t.

MS4

MIPC MS4.t

TS4

( )#( )t

( )\ ( )†
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Lemma 5.1. For each formula ϕ of L∀∃, we have

MS4.t ` ϕt# ↔ 3Pϕ
t#.

Proof. By Lemma 4.9 and Theorem 4.13(4), MS4.t ` ϕt# → 2Fϕ
t#. There-

fore, MS4.t ` 3Pϕ
t# → 3P2Fϕ

t#. The tense axiom then gives MS4.t `
3Pϕ

t# → ϕt#. Thus, MS4.t ` ϕt# ↔ 3Pϕ
t#. a

Theorem 5.2. For each L∀∃-formula χ we have

MS4.t ` χt# ↔ χ\†.

Proof. The two compositions compare as follows:

⊥t# = ⊥ ⊥\† = ⊥

pt# = 2F p p\† = 2F p

(ϕ ∧ ψ)t# = ϕt# ∧ ψt# (ϕ ∧ ψ)\† = ϕ\† ∧ ψ\†

(ϕ ∨ ψ)t# = ϕt# ∨ ψt# (ϕ ∨ ψ)\† = ϕ\† ∨ ψ\†

(ϕ→ ψ)t# = 2F (¬ϕt# ∨ ψt#) (ϕ→ ψ)\† = 2F (¬ϕ\† ∨ ψ\†)

(∀ϕ)t# = 2F∀ϕt# (∀ϕ)\† = 2F∀ϕ\†

(∃ϕ)t# = ∃ϕt# (∃ϕ)\† = (〈P 〉ϕ\)† = (¬[P ]¬ϕ\)†

= ¬∀2P¬ϕ\†

Thus, they are identical except the ∃-clause. Therefore, to prove that MS4.t `
χt# ↔ χ\† it is sufficient to prove that MS4.t ` ϕt# ↔ ϕ\† implies MS4.t `
∃ϕt# ↔ ¬∀2P¬ϕ\†. Since MS4.t ` ¬∀2P¬ϕ\† ↔ ∃3Pϕ

\†, it is enough to
prove that MS4.t ` ∃ϕt# ↔ ∃3Pϕ

\†. From the assumption MS4.t ` ϕt# ↔
ϕ\† it follows that MS4.t ` ∃3Pϕ

t# ↔ ∃3Pϕ
\†. By Lemma 5.1, MS4.t `

ϕt# ↔ 3Pϕ
t# and hence MS4.t ` ∃ϕt# ↔ ∃3Pϕ

t#. Thus, MS4.t ` ∃ϕt# ↔
∃3Pϕ

\†. a
As we pointed out in Remark 4.4(2), there is another natural translation of

MIPC into MS4.t.

Definition 5.3. Let (−)[ : MIPC → MS4.t be the translation that differs
from (−)t# and (−)\† only in the ∃-clause:

(∃ϕ)[ = 3P∃ϕ[.

The translation (−)[ provides a temporal interpretation of intuitionistic mo-
nadic quantifiers that is similar to the translation (−)\ (see also Section 7).

Theorem 5.4. For each L∀∃-formula χ we have

MS4.t ` χ[ ↔ χt#.

Consequently, the translation (−)[ of MIPC into MS4.t is full and faithful.

Proof. The translations (−)[ and (−)t# are identical except the ∃-clause.
Therefore, to prove that MS4.t ` χ[ ↔ χt# it is sufficient to prove that MS4.t `
ϕ[ ↔ ϕt# implies MS4.t ` 3P∃ϕ[ ↔ ∃ϕt#. By Lemma 5.1, MS4.t ` (∃ϕ)t# ↔
3P (∃ϕ)t# which means MS4.t ` ∃ϕt# ↔ 3P∃ϕt#. From the assumption
MS4.t ` ϕ[ ↔ ϕt# it follows that MS4.t ` 3P∃ϕ[ ↔ 3P∃ϕt#. Thus, MS4.t `
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3P∃ϕ[ ↔ ∃ϕt#. Since (−)t# is full and faithful, it follows that (−)[ is full and
faithful as well. a

As a result, we obtain the following diagram of full and faithful translations
that is commutative up to logical equivalence in MS4.t.

MS4

MIPC MS4.t

TS4

( )#( )t

( )\

( )[

( )†

The Gödel translation of IPC into S4 extends to a translation of extensions
of IPC into normal extensions of S4. It has been investigated in detail what
logical properties are preserved by this translation (see, e.g., [9, p. 328]). A
landmark result in this direction is the Blok-Esakia theorem stating that the
lattice of extensions of IPC is isomorphic to the lattice of normal extensions of
the Grzegorczyk logic Grz (see, e.g., [9, p. 325]). It is natural to investigate
whether the Blok-Esakia theorem generalizes to MIPC.

§6. Finite model property. In this section we give a uniform proof of the
fmp for the four logics studied in this paper. Our strategy is to first establish
the fmp for MS4.t via algebraic methods, and then use the full and faithful
translations to conclude that the other three logics also have the fmp.

The algebraic semantics for MS4.t is given by MS4.t-algebras. To define these
algebras, we first recall the definition of S4-algebras, S5-algebras, and S4.t-
algebras, which provide algebraic semantics for S4, S5, and S4.t, respectively.
S4-algebras are known under various names. They were first introduced by
McKinsey and Tarski [22] under the name of closure algebras. Rasiowa and
Sikorski [27] call them topological boolean algebras and Blok [6] calls them inte-
rior algebras. S5-algebras were first introduced by Halmos [20] under the name
of monadic algebras, and S4.t-algebras by Esakia [11] under the name of S42-
algebras.

Definition 6.1. Let B be a boolean algebra.

1. A unary function 2 : B → B is an interior operator on B if

2(a ∧ b) = 2a ∧2b, 21 = 1, 2a ≤ a, 2a ≤ 22a

for all a, b ∈ B.
2. An S4-algebra is a pair B = (B,2) where B is a boolean algebra and 2 is

an interior operator on B.
3. An S5-algebra is an S4-algebra B = (B, ∀) that in addition satisfies a ≤ ∀∃a

for all a ∈ B, where ∃ denotes the dual operator ¬∀¬.
4. An S4.t-algebra is a triple B = (B,2F ,2P ) where B is a boolean algebra

and 2F ,2P are interior operators on B such that

a ≤ 2P3Fa(PF)

a ≤ 2F3Pa(FP)
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for all a ∈ B, where 3F = ¬2F¬ and 3P = ¬2P¬.

MS4.t-algebras are obtained by combining S4.t-algebras and S5-algebras.

Definition 6.2. An MS4.t-algebra is a tuple B = (B,2F ,2P ,∀) where

1. (B,2F ,2P ) is an S4.t-algebra,
2. (B, ∀) is an S5-algebra,
3. 2F∀a ≤ ∀2Fa for each a ∈ B.

Validity of LT∀-formulas in MS4.t-algebras is defined in the usual way (see,
e.g., [9, 27]). If a formula ϕ is valid in an MS4.t-algebra B, we write B � ϕ.
The standard Lindenbaum-Tarski construction (see, e.g., [27, Ch. VI]) yields the
following:

Theorem 6.3. MS4.t is sound and complete with respect to its algebraic se-
mantics. Therefore,

MS4.t ` ϕ iff B � ϕ for every MS4.t-algebra B.

Definition 6.4. Let B = (B,2F ,2P ,∀) be an MS4.t-algebra. We define

1. HF := {a ∈ B | 2Fa = a} the set of 2F -fixpoints,
2. HP := {a ∈ B | 2Pa = a} the set of 2P -fixpoints,
3. B0 := {a ∈ B | ∀a = a} the set of ∀-fixpoints.

Remark 6.5.

1. It is well known (see, e.g., [13, Prop. 2.2.4]) that HF and HP with the
restricted order from B are both Heyting algebras that are bounded sub-
lattices of B. Moreover, it follows from Definition 6.1(4) that HF coin-
cides with the set of 3P -fixpoints and HP with the set of 3F -fixpoints.
Furthermore, ¬ maps HF to HP and vice versa. Indeed, if a ∈ HF ,
then a = 2Fa. By (PF), 3Pa = 3P2Fa ≤ a, so 3Pa = a, and hence
2P¬a = ¬3Pa = ¬a. Therefore, ¬a ∈ HP . Similarly, if a ∈ HP , then
¬a ∈ HF . Thus, ¬ is a dual isomorphism between HF and HP .

2. It is easy to see that B0 is an S4-subalgebra of (B,2F ) because the inequal-
ity 2F∀a ≤ ∀2Fa, which corresponds to the left commutativity axiom, is
equivalent to the equality ∀2F∀a = 2F∀a.

We now prove that MS4.t has the fmp. For this we must show that if MS4.t 6`
ϕ, then ϕ is refuted on a finite MS4.t-algebra.

Definition 6.6. Let B = (B,2F ,2P ,∀) be an MS4.t-algebra and S ⊆ B a
finite subset. Then (B, ∀) is an S5-algebra. Let (B′,∀′) be the S5-subalgebra of
(B, ∀) generated by S. It is well known (see [1]) that (B′,∀′) is finite. Define
2′F and 2′P on B′ by

2′Fa =
∨
{b ∈ B′ ∩HF | b ≤ a}

2′Pa =
∨
{b ∈ B′ ∩HP | b ≤ a}.

We denote (B′,2′F ,2
′
P ,∀′) by BS .

Lemma 6.7. BS is an MS4.t-algebra.
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Proof. (B′,∀′) is an S5-algebra by definition. Since (B,2F ) and (B,2P ) are
both S4-algebras, a standard argument (see [22, Lem. 4.14]) shows that (B′,2′F )
and (B′,2′P ) are also S4-algebras. We show that (B′,2′F ,2

′
P ) is an S4.t-algebra.

As noted in Remark 6.5(1), ¬ is a dual isomorphism between the algebras HF

and HP of 2F -fixpoints and 2P -fixpoints of B. Therefore,

3′Fa := ¬2′F¬a = ¬
∨
{b ∈ B′ ∩HF | b ≤ ¬a}

= ¬
∨
{b ∈ B′ ∩HF | a ≤ ¬b}

=
∧
{¬b | b ∈ B′ ∩HF , a ≤ ¬b}

=
∧
{c ∈ B′ ∩HP | a ≤ c}.

Since this meet is finite and 2P commutes with finite meets, we obtain

2P3
′
Fa = 2P

(∧
{c ∈ B′ ∩HP | a ≤ c}

)
=
∧
{2P c | c ∈ B′ ∩HP , a ≤ c}

=
∧
{c ∈ B′ ∩HP | a ≤ c}

= 3′Fa.

Thus, 3′Fa ∈ B′ ∩HP which yields

2′P3
′
Fa =

∨
{b ∈ B′ ∩HP | b ≤ 3′Fa} = 3′Fa.

Similarly, we have that 3′Pa =
∧
{c ∈ B′∩HF | a ≤ c} from which we deduce that

2′F3
′
Pa = 3′Pa. This implies that a ≤ 2′P3

′
Fa and a ≤ 2′F3

′
Pa. Consequently,

(B,2′F ,2
′
P ) is an S4.t-algebra.

It remains to show that 2′F∀′a ≤ ∀′2′Fa holds in BS . For this it is sufficient
to show that the set B′0 := B′ ∩B0 of the ∀′-fixpoints of B′ is an S4-subalgebra
of (B′,2′F ) because then 2′F∀′a = ∀′2′F∀′a ≤ ∀′2′Fa. Suppose that d ∈ B′0.
Then 2′F d =

∨
{b ∈ B′ ∩ HF | b ≤ d}. Let b ∈ B′ ∩ HF . By Lemma 2.5,

∃b = ∃2F b = 2F∃2F b = 2F∃b. Therefore, ∃b ∈ B′ ∩ HF . Moreover, b ≤ ∃b
and b ≤ d imply ∃b ≤ ∃d = d. Thus, 2′F d =

∨
{∃b | b ∈ B′ ∩HF , b ≤ d}. Since

(B′,∀′) is an S5-algebra, B′0 is the set of ∃′-fixpoints of B′ and is closed under
finite joins. Consequently, 2′F d ∈ B′0. a

Theorem 6.8. MS4.t has the fmp.

Proof. It is sufficient to prove that each LT∀-formula ϕ refuted on some
MS4.t-algebra is also refuted on a finite MS4.t-algebra. Let t(x1, . . . , xn) be
the term in the language of MS4.t-algebras that corresponds to ϕ, and suppose
there is an MS4.t-algebra B = (B,2F ,2P ,∀) and a1, . . . , an ∈ B such that
t(a1, . . . , an) 6= 1 in B. Let

S = {t′(a1, . . . , an) | t′ is a subterm of t}.
Then S is a finite subset of B. Therefore, by Lemma 6.7, BS = (B′,2′F ,2

′
P ,∀) is

a finite MS4.t-algebra. It follows from the definition of 2′F that, for each b ∈ B′,
if 2F b ∈ B′, then 2′F b = 2F b. Similarly, if 2P b ∈ B, then 2′P b = 2P b. Thus,
for each subterm t′ of t, the computation of t′ in BS is the same as that in B.



20 GURAM BEZHANISHVILI AND LUCA CARAI

Consequently, t(a1, . . . , an) 6= 1 in BS , and we have found a finite MS4.t-algebra
refuting ϕ. a

We conclude this section by showing that the fmp for TS4, MS4, and MIPC can
be obtained as a consequence of Theorem 6.8 via the full and faithful translations
into MS4.t described in Section 4. In order to do so, we state the fmp of MS4.t
in terms of MS4.t-frames thanks to the correspondence between finite MS4.t-
algebras and finite MS4.t-frames. In fact, we will obtain such a correspondence
as a consequence of a representation result for MS4.t-algebras.

Definition 6.9. Let R be a quasi-order on a set X and A ⊆ X. We define

2R(A) = X \R−1[X \A].

If R˘ is the inverse relation of R, we have

2R˘(A) = X \R[X \A].

If E is an equivalence relation on X, we use the notation

∀E(A) = X \ E−1[X \A] = X \ E[X \A].

Proposition 6.10. For each MS4.t-frame F = (X,R,E) we have that F+ :=
(℘(X),2R,2R˘,∀E) is an MS4.t-algebra.

Proof. Since R is a quasi-order, so is R ,̆ hence (℘(X),2R) and (℘(X),2R˘)

are S4-algebras; and since E is an equivalence relation, (℘(X),∀E) is an S5-
algebra (see [21, Thm. 3.5]). In addition, the commutativity condition yields
that 2R∀E(A) ≤ ∀E2R(A) for each A ∈ ℘(X). A standard argument (see [21,
Thm. 3.6]) gives that 2R and 2R˘ satisfy (PF) and (FP). Therefore, F+ is an

MS4.t-algebra. a

Remark 6.11. If B = F+, then the elements of HF and HP are respectively
the R-upsets and R-downsets of F, and the elements of B0 are the E-saturated
subsets of F (that is, unions of E-equivalence classes).

We next prove that each MS4.t-algebra is represented as a subalgebra of F+

for some MS4.t-frame F.

Definition 6.12. Let B = (B,2F ,2P ,∀) be an MS4.t-algebra. The canoni-
cal frame of B is the frame B+ = (XB, RB, EB) where XB is the set of ultra-
filters of B, xRBy iff x∩HF ⊆ y iff y ∩HP ⊆ x, and xEBy iff x∩B0 = y ∩B0.

Lemma 6.13. If B is an MS4.t-algebra, then B+ is an MS4.t-frame.

Proof. Since (B,2F ) is an S4-algebra, we have that RB is a quasi-order
(see [21, Thm. 3.14]); and since (B, ∀) is an S5-algebra, EB is an equivalence
relation (see [21, Thm. 3.18]). It remains to show that Definition 3.7(E) is
satisfied. Let x, y, z ∈ XB be such that xEBy and yRBz. This means that
x ∩ B0 = y ∩ B0 and y ∩ HF ⊆ z. Let F be the filter of B generated by
(x ∩HF ) ∪ (z ∩ B0). We show that F is proper. Otherwise, since x ∩HF and
z ∩ B0 are closed under finite meets, there are a ∈ x ∩HF and b ∈ z ∩ B0 such
that a ∧ b = 0. Therefore, a ≤ ¬b. Thus, a = 2Fa ≤ 2F¬b, so 2F¬b ∈ x.
Since B0 is an S4-subalgebra of (B,2F ) (see Remark 6.5(2)) and b ∈ B0, we
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have 2F¬b ∈ B0. This yields 2F¬b ∈ x ∩ B0 = y ∩ B0, which implies 2F¬b ∈
y ∩HF ⊆ z. Therefore, ¬b ∈ z which contradicts b ∈ z. Thus, F is proper, and
so there is an ultrafilter u of B such that F ⊆ u. Consequently, x∩HF ⊆ u and
z∩B0 ⊆ u∩B0. Since z∩B0 and u∩B0 are both ultrafilters of B0, we conclude
that z ∩B0 = u ∩B0. Thus, there is u ∈ XB with xRBu and uEBz. a

Definition 6.14. Let B be an MS4.t-algebra. The Stone map β : B →
(B+)+ is defined by

β(a) = {x ∈ XB | a ∈ x}.
It is straightforward to see that β is a homomorphism of MS4.t-algebras, that

the ultrafilter lemma for boolean algebras yields that β is an embedding, and
that the embedding is an isomorphism in the finite case. Thus, we obtain the
following representation theorem for MS4.t-algebras.

Theorem 6.15 (Representation theorem). Let B be an MS4.t-algebra.

1. B is isomorphic to a subalgebra of (B+)+.
2. When B is finite, its embedding into (B+)+ is an isomorphism, and hence

the categories of finite MS4.t-algebras and finite MS4.t-frames are dually
equivalent.

Remark 6.16. As usual, to recover the image of the embedding of B into
(B+)+ we need to endow B+ with a Stone topology (see, e.g., [13, Def. 3.3.3]).
This leads to the notion of perfect MS4.t-frames and a duality between the
categories of MS4.t-algebras and perfect MS4.t-frames.

Thanks to the representation theorem, the fmp of MS4.t can be equivalently
stated as follows: if ϕ is not a theorem of MS4.t, then it is refuted in a finite
MS4.t-frame. We now obtain the fmp of TS4, MS4, and MIPC as a consequence
of the fmp of MS4.t.

Theorem 6.17.

1. TS4 has the fmp.
2. MS4 has the fmp.
3. MIPC has the fmp.

Proof. (1). Suppose that TS4 0 ϕ. By Theorem 4.13(3), MS4.t 0 ϕ†.
Since MS4.t has the fmp, there is a finite MS4.t-frame F such that F 2 ϕ†.
By Proposition 4.11(3), F† 2 ϕ. We have thus obtained a finite TS4-frame F†

refuting ϕ.
(2). Similar to the proof of (1) but uses the translation (−)# : MS4→ MS4.t

instead of (−)†.
(3). Similar to the proof of (1) but uses the composition (−)t# : MIPC →

MS4.t instead of (−)†. Alternatively, we can use the other translations (−)\†

and (−)[ of MIPC into MS4.t. a
Remark 6.18.

1. That MIPC has the fmp was first established by Bull [8] using algebraic
semantics. His proof contained a gap, which was corrected independently
by Fischer-Servi [15] and Ono [23]. A semantic proof is given in [16], which
is based on a technique developed by Grefe [19].
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2. The fmp for MS4 can be derived from the results in [17, Sec. 12] (see
also [16, Thms. 6.52, 9.12]). The proof given above is more direct.

3. The proof of the fmp for MS4.t contains the proof of the fmp for S4.t, but
the latter is known (see [29, pp. 313–314] or [18, p. 44]). In fact, MS4.t is
a conservative extension of S4.t.

§7. Connection with the full predicate case. In [4] we extended the
full and faithful translation of MIPC into MS4.t to the full predicate case. We
proved that this translation embeds IQC fully and faithfully into a weakening of
the tense predicate logic QS4.t. This weakening is necessary since QS4.t proves
the Barcan formula for both 2F and 2P , so Kripke frames of QS4.t have constant
domains, and hence they validate the translation of the constant domain axiom
∀x(A∨B)→ (A∨∀xB), where x is not free in A. Since this is not provable in IQC,
the translation cannot be full. Instead we considered the tense predicate logic
Q◦S4.t in which the universal instantiation axiom ∀xA→ A(y/x) is replaced by
its weakened version ∀y(∀xA→ A(y/x)). The main result of [4] proves that IQC
translates fully and faithfully into Q◦S4.t (provided the translation is restricted
to sentences).

It is natural to investigate the relationship between MS4.t and predicate ex-
tensions of S4.t. As we already pointed out in Remark 2.10, MS4.t is not the
monadic fragment of QS4.t. In addition, MS4.t cannot be the monadic fragment
of Q◦S4.t either since the formula ∀xA→ A is not in general provable in Q◦S4.t,
whereas ∀ϕ → ϕ is provable in MS4.t. On the other hand, call a formula ϕ (in
the language of MS4.t) bounded if each occurrence of a propositional letter in ϕ
is under the scope of ∀. Bounded formulas play the same role as sentences of
Q◦S4.t containing only one fixed variable. It is quite plausible that for a bounded
formula ϕ we have MS4.t ` ϕ iff Q◦S4.t proves the translation of ϕ where each
occurrence of a propositional letter p is replaced with the unary predicate P (x)
and ∀ is replaced with ∀x (for a similar translation of MIPC and its extensions
into IQC and its extensions, see [24]). If true, this would yield that the monadic
sentences provable in Q◦S4.t are exactly the bounded formulas ϕ provable in
MS4.t. It would also yield that restricting the translation IQC → Q◦S4.t of [4]
to the monadic setting gives the translation (−)[ : MIPC → MS4.t for bounded
formulas.

It is natural to seek an axiomatization of the full monadic fragment of Q◦S4.t.
Note that in this fragment ∀ does not behave like an S5-modality. For example,
∀ϕ→ ϕ is not in general a theorem of this fragment.

Finally, the translation (−)# : MS4 → MS4.t suggests a translation of QS4
into Q◦S4.t which replaces each occurrence of 2 with 2F . It is easy to see that
for sentences this translation is full and faithful. Composing it with the standard
Gödel translation of IQC into QS4 yields a translation IQC → Q◦S4.t which is
different from the translation of [4]. This translation restricts to the translation
(−)t# : MIPC → MS4.t for bounded formulas. Thus, the upper part of the
diagram of Section 4 extends to the predicate case.

On the other hand, we do not see a natural way to interpret the tense modal-
ities of TS4 as monadic quantifiers, and hence we cannot think of a natural
predicate logic which could take the role of TS4 in the diagram of Section 4.
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Thus, the lower part of the diagram does not seem to have a natural extension
to the predicate case. Nevertheless, we can consider the predicate analogue of
the translation (−)\† : MIPC → MS4.t. Arguing as in Theorems 5.2 and 5.4
yields a translation of IQC into Q◦S4.t that is full and faithful on sentences
and coincides, up to logical equivalence in Q◦S4.t, with the other two predicate
translations described in this section.

We thus obtain the following diagram in the predicate case which is commu-
tative up to logical equivalence in Q◦S4.t.

QS4

IQC Q◦S4.t

( )#( )t

( )\†

( )[
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