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Abstract. Let CABA be the category of complete atomic boolean algebras and complete
boolean homomorphisms, and let CSL be the category of complete meet-semilattices and
complete meet-homomorphisms. We show that the forgetful functor from CABA to CSL has
a left adjoint. This allows us to describe an endofunctor H on CABA such that the category
Alg(H) of algebras for H is dually equivalent to the category Coalg(P) of coalgebras for
the powerset endofunctor P on Set. As a consequence, we derive Thomason duality from
Tarski duality, thus paralleling how Jónsson-Tarski duality was derived from Stone duality
in [Abr88, KKV04].

1. Introduction

It is a classic result in modal logic, known as Jónsson-Tarski duality, that the category MA
of modal algebras is dually equivalent to the category DFr of descriptive frames. This result
can be traced back to the work of Jónsson-Tarski [JT51], Halmos [Hal56], and Kripke [Kri63].
In the modern form it was proved by Esakia [Esa74] and Goldblatt [Gol76].1

Jónsson-Tarski duality is a generalization of the celebrated Stone duality between the
category BA of boolean algebras and the category Stone of Stone spaces. It was observed
by Abramsky [Abr88] and Kupke, Kurz, and Venema [KKV04] that Jónsson-Tarski duality
can be proved by lifting Stone duality using algebra/coalgebra methods. This can be
done by utilizing the classic Vietoris construction (see, e.g., [Joh82, Ch. III.4]). Indeed,
associating with each Stone space X its Vietoris space V(X) gives rise to an endofunctor
V : Stone→ Stone such that DFr is isomorphic to the category Coalg(V) of coalgebras for V .
Let SL be the category of meet-semilattices with top. Then the forgetful functor U : BA→ SL
has a left adjoint L : SL→ BA. Letting K = LU gives an endofunctor K : BA→ BA such
that MA is isomorphic to the category Alg(K) of algebras for K. Moreover, the following
diagram commutes up to natural isomorphism, yielding that Stone duality lifts to a dual

Key words and phrases: Modal logic, coalgebra, Jónsson-Tarski duality, Thomason duality.
1We point out that Esakia phrased it for the subcategory of descriptive frames where the relation R is

reflexive and transitive. Consequently, he worked with the subcategory of modal algebras consisting of closure
algebras of McKinsey and Tarski [MT44].
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equivalence between Alg(K) and Coalg(V). This provides an alternate proof of Jónsson-Tarski
duality.

BA Stone

BA Stone

Stone duality

K V

Stone duality

Descriptive frames can be thought of as Kripke frames (X,R) equipped with a Stone
topology compatible with the relation R. In [Tho75] Thomason proved a “discrete version”
of Jónsson-Tarski duality, establishing that the category KFr of Kripke frames is dually
equivalent to the category CAMA of complete atomic modal algebras whose modal operator
is completely multiplicative (see Sections 2 and 3 for all the undefined notions).

The same way Jónsson-Tarski duality generalizes Stone duality, Thomason duality
generalizes Tarski duality between the category CABA of complete atomic boolean algebras
and the category Set of sets. It is natural to try to obtain Thomason duality from Tarski
duality using algebra/coalgebra methods in the same vein Jónsson-Tarski duality was
obtained from Stone duality in [Abr88, KKV04]. Surprisingly, such an approach has not yet
been undertaken. Our aim is to fill in this gap.

For this purpose, it is natural to replace the Vietoris endofunctor V on Stone with the
powerset endofunctor P on Set. It is known (see, e.g., [Ven07, Sec. 9]) that KFr is isomorphic
to Coalg(P). Thus, the key is to construct an endofunctor H on CABA that is an analogue
of the endofunctor K : BA → BA. We recall that K = LU where L : SL → BA is left
adjoint to the forgetful functor U : BA → SL. A natural analogue of SL in the complete
case is the category CSL of complete meet-semilattices. Our main contribution is to show
that the forgetful functor U : CABA → CSL has a left adjoint L : CSL → CABA. We then
define H : CABA → CABA as the composition H = LU , and prove that Alg(H) is dually
equivalent to Coalg(P). Since CAMA is isomorphic to Alg(H) and Coalg(P) is isomorphic to
KFr, Thomason duality follows.

The paper is organized as follows. In Section 2 we recall Jónsson-Tarski duality and how
it can be obtained by lifting Stone duality. For this we need to work with the left adjoint
L : SL→ BA of the forgetful functor U : BA→ SL. The standard approach to constructing L
is to take the free boolean algebra over the underlying set of a meet-semilattice with top and
quotient it by the relations defining a modal operator � (see [KKV04, Prop. 3.12]). As we
will show in Theorem 2.5, L can alternatively be constructed by utilizing Pontryagin duality
for semilattices [HMS74]. Let StoneSL be the category of topological meet-semilattices,
where the topology is a Stone topology. Then SL is dually equivalent to StoneSL (see [HMS74,
Thm. 3.9] or [Joh82, p. 251]). We will show that L can be constructed by taking the boolean
algebra of clopen subsets of the Pontryagin dual M∗ := homSL(M, 2) of M ∈ SL. This shows
that L : SL→ BA can be constructed either purely algebraically, by utilizing the existence
of free algebras in BA, or using duality, as the boolean algebra of clopens of the Pontryagin
dual of a meet-semilattice with top.

In Section 3 we show that the same approach applies to the forgetful functor U : CABA→
CSL. Its left adjoint L : CSL→ CABA can be constructed by taking the free object in CABA
over the underlying set of a complete meet-semilattice and then taking the quotient of it by
the relations defining a completely multiplicative modal operator �. We point out that care
is needed in constructing the free object in CABA since it is well known that free objects do
not exist in the category of complete boolean algebras (see [Gai64, Hal64]). Nevertheless, free
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objects in CABA do exist. This can be seen by observing that the Eilenberg-Moore algebras
of the double contravariant powerset monad are exactly the objects of CABA [Tay02], and
that categories of algebras for monads have free objects [AHS06, Prop. 20.7(2)]. A more
concrete construction of free objects in CABA can be given by utilizing the theory of canonical
extensions of Jónsson and Tarski [JT51]. Indeed, in Theorem 3.4 we will prove that the
free object in CABA over a set X is the canonical extension F σ of the free boolean algebra
F over X. We then quotient F σ by the complete congruence generated by the relations
defining a completely multiplicative modal operator, yielding the desired L : CSL→ CABA
(see Theorem 3.7).

An alternate construction of L : CSL→ CABA that parallels the alternate construction
of L : SL → BA can be given by taking the powerset of homCSL(M, 2) for each M ∈ CSL.
Since homCSL(M, 2) is isomorphic to the order-dual of M , this amounts to taking the
powerset of M .2 Therefore, we again obtain that the left adjoint can be constructed either
purely algebraically, utilizing that free objects exist in CABA, or else using the powerset
construction. Thus, we arrive at the following diagram, which parallels the constructions of
the left adjoints L : SL→ BA and L : CSL→ CABA:

Forgetful functor Left adjoint Location
U : BA→ SL L : SL→ BA

algebraic construction: FreeBA(M)/≡
dual construction: clop(homSL(M, 2))

[KKV04]
Theorem 2.5

U : CABA→ CSL L : CSL→ CABA
algebraic construction: FreeCABA(M)/≡
dual construction: ℘(homCSL(M, 2)) ∼= ℘(M)

Theorem 3.7
Theorem 3.9

In Section 4 we define the endofunctor H : CABA→ CABA as the composition H = LU .
In Theorem 4.3 we prove that the following diagram commutes (up to natural isomorphism).

CABA Set

CABA Set

Tarski duality

H P

Tarski duality

This paves the way towards proving that the category Alg(H) of algebras for H is dually
equivalent to the category Coalg(P) of coalgebras for P (see Theorem 4.10).

It is well known that Jónsson-Tarski and Thomason dualities are connected through the
canonical extension and forgetful functors (−)σ : MA→ CAMA and U : DFr→ KFr, making
the following diagram commutative.

MA DFr

CAMA KFr

Jónsson-Tarski duality

(−)σ U

Thomason duality

We conclude the paper by Remark 4.13 in which we show that there are analogous canonical
extension and forgetful functors (−)σ : Alg(K)→ Alg(H) and U : Coalg(V)→ Coalg(P) that
make a similar diagram commutative.

2We thank one of the referees for suggesting this approach.
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2. Coalgebraic approach to Jónsson-Tarski duality

In this section we give a brief account of Jónsson-Tarski duality, and provide a construction
of the left adjoint L : SL → BA of the forgetful functor U : BA → SL which is alternative
to [KKV04, Prop. 3.12]. This we do by utilizing Pontryagin duality for semilattices [HMS74].
We start by recalling the definition of a modal algebra.

Definition 2.1. A modal algebra is a pair (B,�) where B is a boolean algebra and � is
a unary function on B preserving finite meets. A modal algebra homomorphism between
modal algebras (B1,�1) and (B2,�2) is a boolean homomorphism α : B1 → B2 such that
α(�1a) = �2α(a) for each a ∈ B1. Let MA be the category of modal algebras and modal
algebra homomorphisms.

A subset of a topological space X is clopen if it is both closed and open, and X is
zero-dimensional if X has a basis of clopen sets. A Stone space is a zero-dimensional compact
Hausdorff space.

For a binary relation R on X, we write

R[x] := {y ∈ X | xRy} and R−1[U ] := {x ∈ X | ∃u ∈ U with xRu}

for the R-image of x ∈ X and R-inverse image of U ⊆ X.

Definition 2.2. A descriptive frame is a pair (X,R) where X is a Stone space and R is a
binary relation on X such that R[x] is closed for each x ∈ X and R−1[U ] is clopen for each
clopen U ⊆ X.

Such relations are often called continuous relations for the following reason. Let V(X)
be the Vietoris space of X. We recall (see, e.g., [Joh82, Sec. III.4]) that V(X) is the set of
closed subsets of X topologized by the subbasis {�U ,♦V | U, V open in X} where

�U = {F ∈ V(X) | F ⊆ U} and ♦V = {F ∈ V(X) | F ∩ V 6= ∅}.

Then R is continuous iff the associated map ρR : X → V(X), given by ρR(x) = R[x], is a
well-defined continuous map (that ρR is well defined follows from (i), and that it is continuous
from (ii)).

Let DFr be the category of descriptive frames and continuous p-morphisms, where a
p-morphism between (X1, R1) and (X2, R2) is a map f : X1 → X2 satisfying f [R1[x]] =
R2[f(x)] for each x ∈ X1.

Theorem 2.3 (Jónsson-Tarski duality). MA is dually equivalent to DFr.

Jónsson-Tarski duality generalizes Stone duality between the category BA of boolean
algebras and boolean homomorphisms and the category Stone of Stone spaces and continuous
maps. We recall that the contravariant functors uf : BA→op Stone and clop : Stone→op BA
yielding Stone duality are constructed as follows.3 The functor uf assigns to each boolean
algebra A the set uf(A) of ultrafilters of A topologized by the basis {βA(a) | a ∈ A} where

βA(a) = {x ∈ uf(A) | a ∈ x}.

To each boolean homomorphism α : A→ B, the functor uf assigns uf(α) := α−1 : uf(B)→
uf(A). The functor clop assigns to each Stone space X the boolean algebra clop(X) of

3To easily distinguish between covariant and contravariant functors, following the suggestion of one of the
referees, we write F : C →op D for a contravariant functor F .
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clopen subsets of X, and to each continuous map f : X → Y the boolean homomorphism
clop(f) := f−1 : clop(Y )→ clop(X).

One unit β : 1BA → clop ◦ uf of this dual equivalence is given by the Stone maps
βA : A → clop(uf(A)) for A ∈ BA, and the other unit η : 1Stone → uf ◦ clop by the
homeomorphisms ηX : X → uf(clop(X)) for X ∈ Stone, which are given by

ηX(x) = {U ∈ clop(X) | x ∈ U}.
These functors naturally generalize to yield Jónsson-Tarski duality. As we pointed

out in the introduction, an alternative approach to Jónsson-Tarski duality is by lifting
Stone duality using algebra/coalgebra methods. We recall that the Vietoris construction
extends to an endofunctor V : Stone→ Stone by sending a continuous map f : X → Y to
V(f) : V(X)→ V(Y ) given by V(f)(G) = f [G] for each G ∈ V(X). We next consider the
category Coalg(V) of coalgebras for V. For this we recall the notion of a coalgebra for an
endofunctor (see, e.g., [Ven07, Def. 9.1]).

Definition 2.4.
(1) A coalgebra for an endofunctor T : C→ C is a pair (A, f) where A is an object of the

category C and f : A→ T (A) is a C-morphism.
(2) A morphism between two coalgebras (A1, f1) and (A2, f2) for T is a C-morphism

α : A1 → A2 such that the following square is commutative.

A1 A2

T (A1) T (A2)

f1

α

f2

T (α)

(3) Let Coalg(T ) be the category whose objects are coalgebras for T and whose morphisms
are morphisms of coalgebras.

The dual endofunctor K : BA → BA of the Vietoris endofunctor V : Stone → Stone
was described in [KKV04]. Let SL be the category of meet-semilattices with top and meet-
homomorphisms preserving top. Then K is the composition LU , where L : SL→ BA is the
left adjoint of the forgetful functor U : BA→ SL. In [KKV04, Prop. 3.12] the left adjoint
is constructed algebraically, by taking the free boolean algebra F over the underlying set
of M ∈ SL and then taking the quotient of F by the relations remembering that M is a
meet-semilattice with top. We give an alternative description of L, which utilizes Pontryagin
duality for semilattices [HMS74], which we briefly recall next.

Let StoneSL be the category whose objects are topological meet-semilattices, where the
topology is a Stone topology, and whose morphisms are continuous meet-homomorphisms.
Pontryagin duality for SL establishes a dual equivalence between SL and StoneSL. The
contravariant functor (−)∗ : SL →op StoneSL sends M to its dual M∗ := homSL(M, 2),
where 2 = {0, 1} is the two-element chain and meet on M∗ is pointwise meet. If 2 is given
the discrete topology and 2M the product topology, then M∗ is easily seen to be a closed
subspace of 2M , and so the subspace topology is a Stone topology. Moreover, pointwise meet
is continuous, and hence M∗ ∈ StoneSL. On morphisms, if σ : M → N is an SL-morphism,
then σ∗ : N∗ → M∗ is defined by σ∗(γ) = γ ◦ σ. The contravariant functor in the other
direction sends A ∈ StoneSL to A∗ := homStoneSL(A, 2) and σ : A → B to σ∗ : B∗ → A∗,
defined in the same way as the previous functor. Finally, one natural isomorphism sends
each M ∈ SL to its double dual M∗∗ by sending m to the map σ 7→ σ(m) for each m ∈M
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and σ ∈M∗. The other natural isomorphism sends each A ∈ StoneSL to its double dual A∗∗

and is given by the same formula.

Theorem 2.5. Associating with each M ∈ SL the boolean algebra clop(M∗) of clopen subsets
of its dual M∗ yields an alternative description of the functor L : SL → BA that is left
adjoint to the forgetful functor U : BA→ SL.

Proof. Let M ∈ SL. Define iM : M → clop(M∗) by iM (m) = {σ ∈ M∗ | σ(m) = 1}. It is
straightforward to see that iM is a well-defined SL-morphism. By [Mac71, p. 89] it is enough
to show that for each A ∈ BA and SL-morphism γ : M → A there is a unique BA-morphism
τ : clop(M∗)→ A such that τ ◦ iM = γ.

M clop(M∗)

A

iM

γ
τ

The map γ∗ : homSL(A, 2) → M∗ is continuous, so its restriction γ∗ : homBA(A, 2) → M∗

is continuous. Therefore, clop(γ∗) : clop(M∗) → clop(homBA(A, 2)) is a BA-morphism. If
m ∈M , then

clop(γ∗)(iM (m)) = (γ∗)−1(iM (m)) = {σ ∈M∗ | γ∗(σ) ∈ iM (m)}
= {σ ∈M∗ | σ(γ(m)) = 1}.

Let τ : clop(M∗) → A be the composition of clop(γ∗) with the inverse of the natu-
ral isomorphism βA : A → clop(homBA(A, 2)) of Stone duality which sends a ∈ A to
{σ ∈ homBA(A, 2) | σ(a) = 1}.4 Then

τ(iM (m)) = β−1
A clop(γ∗)(iM (m)) = β−1

A ({σ ∈M∗ | σ(γ(m)) = 1}) = γ(m),

so τ ◦ iM = γ. Finally, uniqueness of τ follows since iM [M ] generates clop(M∗) as a boolean
algebra.

Remark 2.6. To see how L acts on morphisms, if σ : M → N is an SL-morphism, then
σ∗ : N∗ →M∗ is a continuous SL-morphism between Stone spaces, so clop(σ∗) : clop(M∗)→
clop(N∗) is a BA-morphism by Stone duality. We then set L(σ) = clop(σ∗) : L(M)→ L(N).

Let K = LU . Then K is an endofunctor on BA.

BA SL BA

K

U L

Let Alg(K) be the category of algebras for K (see [AHS06, Def. 5.37]). We recall that for
an endofunctor T , algebras for T are defined by reversing the arrows in the definition
of coalgebras for T . Since K is dual to V, we have that Alg(K) is dually equivalent to
Coalg(V). Because Alg(K) is isomorphic to MA and Coalg(V) is isomorphic to DFr, this gives
an alternate proof of Jónsson-Tarski duality (see [KKV04]).

4Here we make the well-known identification of uf(A) with homBA(A, 2).
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3. Two constructions of the left adjoint L : CSL→ CABA

Let KFr be the category of Kripke frames and p-morphisms. Forgetting the topology of a
descriptive frame yields the forgetful functor U : DFr→ KFr. To describe the modal algebras
corresponding to Kripke frames, we recall the notion of a completely multiplicative modal
operator.

Definition 3.1. A modal operator � on a complete boolean algebra B is completely
multiplicative if � (

∧
S) =

∧
{�s | s ∈ S} for each S ⊆ B. Let CAMA be the category whose

objects are complete atomic modal algebras with completely multiplicative �, and whose
morphisms are complete modal algebra homomorphisms.

Theorem 3.2 (Thomason duality). CAMA is dually equivalent to KFr.

Thomason duality generalizes Tarski duality between CABA and Set the same way
Jónsson-Tarski duality generalizes Stone duality. We recall that CABA is the category of
complete atomic boolean algebras and complete boolean homomorphisms and Set is the
category of sets and functions. The contravariant functors of Tarski duality are ℘ : Set→op

CABA and at : CABA→op Set. The functor ℘ assigns to each set X the powerset ℘(X) and
to each function f : X → Y its inverse image f−1 : ℘(Y )→ ℘(X). The functor at assigns
to each A ∈ CABA its set of atoms. If α : A → B is a complete boolean homomorphism,
it has a left adjoint α∗ : B → A, which sends atoms to atoms, and the functor at assigns
to α the function α∗ : at(B) → at(A). One unit ε : 1Set → at ◦ ℘ of this dual equivalence
is given by εX(x) = {x} for each x ∈ X ∈ Set, and the other unit ϑ : 1CABA → ℘ ◦ at by
ϑA(a) = ↓a ∩ at(A) for each a ∈ A ∈ CABA.

To derive Thomason duality from Tarski duality the same way Jónsson-Tarski duality
was derived from Stone duality, we need to replace the Vietoris endofunctor V on Stone
with the powerset endofunctor P on Set. We recall that the endofunctor P : Set → Set
associates to each set X its powerset P(X) and to each function f : X → Y the function
P(f) : P(X)→ P(Y ) that maps each subset S ⊆ X to its direct image f [S]. We also need to
replace the endofunctor K : BA→ BA with an appropriate endofunctor H : CABA→ CABA.

To describe H, we need to construct the left adjoint to U : CABA → CSL, where CSL
is the category of complete meet-semilattices and complete meet-homomorphisms. As in
the previous section, this can be done purely algebraically or using duality. To construct
H algebraically, we need that free objects exist in CABA. Care is needed here since it is
a well-known result of Gaifman [Gai64] and Hales [Hal64] that free objects do not exist
in the category of complete boolean algebras and complete boolean homomorphisms. On
the other hand, free objects do exist in CABA, and this can be seen by observing that the
Eilenberg-Moore algebras of the double contravariant powerset monad are exactly the objects
of CABA [Tay02], and that categories of algebras for monads have free objects [AHS06,
Prop. 20.7(2)].

A more concrete construction of free objects in CABA can be given utilizing the theory
of canonical extensions. It is well known that free objects over any set exist in the category of
complete and completely distributive lattices (see Markowski [Mar79] and Dwinger [Dwi81,
Thm. 4.2]). By [BHJ21, Cor. 2.3], the free complete and completely distributive lattice
over a set X is the canonical extension of the free bounded distributive lattice over X. We
show that the same is true in CABA. For this we need to recall the definition of a canonical
extension of a boolean algebra.
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Definition 3.3. [JT51, GH01] A canonical extension of a boolean algebra A is a complete
boolean algebra Aσ together with a boolean embedding e : A→ Aσ satisfying:

(1) (Density) Each x ∈ Aσ is a join of meets (and hence also a meet of joins) of e[A].
(2) (Compactness) For S, T ⊆ A, from

∧
e[S] ≤

∨
e[T ] it follows that

∧
S0 ≤

∨
T0 for some

finite S0 ⊆ S and T0 ⊆ T .

It is well known that canonical extensions are unique up to isomorphism, and that
the correspondence A 7→ Aσ extends to a covariant functor (−)σ : BA → CABA. It can
conveniently be described as the composition ℘◦U ◦uf, where U : Stone→ Set is the forgetful
functor.

BA Stone Set CABA

(−)σ

uf U ℘

Thus, we can think of Aσ as ℘(uf(A)) and of e : A→ Aσ as the Stone map βA : A→ ℘(uf(A)).

Theorem 3.4. Let X be a set. The canonical extension of the free boolean algebra over X
is the free object in CABA over X.

Proof. Let F be the free boolean algebra over X, f : X → F the associated map, and
e : F → F σ the boolean embedding into the canonical extension. We show that (F σ, e ◦ f)
has the universal mapping property in CABA. Let A ∈ CABA and g : X → A be a function.
Since A is a boolean algebra, there is a unique boolean homomorphism ϕ : F → A with
ϕ ◦ f = g. This induces a map uf(ϕ) : uf(A)→ uf(F ) given by uf(ϕ)(y) = ϕ−1(y). Define
ϕ+ : at(A)→ uf(F ) by ϕ+(x) = ϕ−1(↑x). If we identify atoms with the principal ultrafilters,
we can think of ϕ+ as the restriction of uf(ϕ) to at(A).

We identify F σ with ℘(uf(F )). Then e : F → F σ becomes the Stone map βF . The map
ϕ+ : at(A)→ uf(F ) yields a CABA-morphism ℘(ϕ+) : F σ → ℘(at(A)). Since A ∈ CABA, the
map ϑA : A→ ℘(at(A)) is an isomorphism. We set ψ = ϑ−1

A ◦ ℘(ϕ+). Clearly ψ : F σ → A
is a CABA-morphism. We show that ϑA ◦ ϕ = ℘(ϕ+) ◦ e.

F F σ

X A ℘(at(A))

e

ϕ ℘(ϕ+)
ψ

f

g ϑA

Let a ∈ F . Since ϑAϕ(a) = {x ∈ at(A) | x ≤ ϕ(a)} and e(a) = βF (a) = {y ∈ uf(F ) | a ∈ y},
we have

(℘(ϕ+) ◦ e)(a) = ϕ−1
+ e(a) = {x ∈ at(A) | ϕ+(x) ∈ e(a)}

= {x ∈ at(A) | a ∈ ϕ+(x)} = {x ∈ at(A) | a ∈ ϕ−1(↑x)}
= {x ∈ at(A) | x ≤ ϕ(a)} = ϑAϕ(a).

This shows that ϑA ◦ ϕ = ℘(ϕ+) ◦ e, so

ψ ◦ (e ◦ f) = ϑ−1
A ◦ ℘(ϕ+) ◦ e ◦ f = ϑ−1

A ◦ ϑA ◦ ϕ ◦ f = ϕ ◦ f = g.

It is left to show uniqueness. Suppose that µ : F σ → A is a CABA-morphism satisfying
µ ◦ (e ◦ f) = g. Then (µ ◦ e) ◦ f = (ψ ◦ e) ◦ f = ϕ ◦ f . By uniqueness of ϕ, we have
µ ◦ e = ϕ = ψ ◦ e. Therefore, µ and ψ agree on e[F ]. Since e[F ] is dense in F σ and µ, ψ are
CABA-morphisms, we conclude that µ = ψ.
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We next show that the forgetful functor U : CABA→ CSL has a left adjoint L : CSL→
CABA. Let A ∈ CABA. We recall that a boolean congruence ≡ on A is a complete congruence
if ai ≡ bi for each i ∈ I imply

∧
{ai | i ∈ I} ≡

∧
{bi | i ∈ I}. It is well known that the

quotient algebra A/≡ is also an object in CABA. As usual, for a ∈ A we write [a] for
the equivalence class of a. Then the quotient map π : A → A/≡, given by a 7→ [a], is a
CABA-morphism.

Remark 3.5. There is a well-known one-to-one correspondence between congruences and
ideals of a boolean algebra A, which associates to each boolean congruence ≡ on A the equiv-
alence class of 0. If A ∈ CABA, this correspondence restricts to a one-to-one correspondence
between complete congruences and principal ideals. In this case, the equivalence class of 0 is
generated by the element x =

∨
{a M b | a ≡ b}, where M denotes symmetric difference in A.

If M ∈ CSL, let F (M) be the free object in CABA over the underlying set of M , and let
fM : M → F (M) be the associated map. We let ≡ be the complete congruence on F (M)
generated by the relations:

fM

(∧
S
)
≡
∧
{fM (s) | s ∈ S}, where S ⊆M.

We then set L(M) to be the quotient algebra F (M)/≡. Since F (M) ∈ CABA and ≡
is a complete congruence, L(M) ∈ CABA. For a ∈ M , let �a = [fM (a)] ∈ L(M). Let
αM : M → L(M) be the composition of the quotient map π : F (M)→ L(M) and fM . Then
αM (a) = �a for each a ∈M .

M F (M)

L(M)

fM

αM π

By the definition of ≡ we see that �∧
S =

∧
{�s | s ∈ S} in L(M) for each S ⊆M . Thus,

αM is a CSL-morphism.

Remark 3.6. In view of Remark 3.5, the equivalence class [0] ∈ L(M) is the principal ideal
generated by the element∨{

fM

(∧
S
)
M
∧
{fM (s) | s ∈ S}

∣∣∣ S ⊆M} .
Theorem 3.7. The correspondence M 7→ L(M) defines a functor L : CSL→ CABA that is
left adjoint to the forgetful functor U : CABA→ CSL.

Proof. By [Mac71, p. 89] it is enough to show that for each M ∈ CSL, A ∈ CABA, and
CSL-morphism γ : M → A there is a unique CABA-morphism τ : L(M) → A such that
τ ◦ αM = γ. There is a unique CABA-morphism ϕ : F (M) → A with ϕ ◦ fM = γ. To see
that ϕ factors through ≡, let S ⊆M . Since γ is a CSL-morphism, γ(

∧
S) =

∧
{γ(s) | s ∈ S}.

Therefore,

ϕfM

(∧
S
)

= γ
(∧

S
)

=
∧
γ[S]

and

ϕ
(∧
{fM (s) | s ∈ S}

)
=
∧
{ϕfM (s) | s ∈ S} =

∧
{γ(s) | s ∈ S} =

∧
γ[S].
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M F (M) L(M)

A

fM

γ

αM

π

ϕ
τ

Thus, ϕfM (
∧
S) = ϕ (

∧
{fM (s) | s ∈ S}). This implies that ≡ is contained in ker(ϕ), and

hence ϕ induces a CABA-morphism τ : L(M) → A with τ ◦ αM = γ. Since L(M) is
generated by αM [M ] and τ is a CABA-morphism, τ is uniquely determined by the equation
τ ◦ αM = γ.

Remark 3.8. To describe how L acts on morphisms, let γ : M → N be a CSL-morphism.
Then αN ◦ γ : M → L(N) is a CSL-morphism, so there is a unique CABA-morphism
L(γ) : L(M)→ L(N) such that L(γ) ◦ αM = αN ◦ γ.

M N

L(M) L(N)

γ

αM αN

L(γ)

Therefore, if a ∈M , then L(γ)(�a) = L(γ)αM (a) = αNγ(a) = �γ(a).

We conclude this section by giving an alternative construction of the left adjoint of
the forgetful functor CABA→ CSL. In parallel to Theorem 2.5, we can replace SL by CSL
and Stone duality by Tarski duality. Then for M ∈ CSL we can consider L(M) to be
℘(homCSL(M, 2)). If σ ∈ homCSL(M, 2), then σ−1(1) is a filter of M . Since σ preserves
arbitrary meets, letting a =

∧
σ−1(1) yields σ−1(1) = ↑a. Conversely, if a ∈ M , then

defining σa by

σa(m) =

{
1 if a ≤ m
0 otherwise

yields σa ∈ homCSL(M, 2). Because this correspondence reverses the order, there is
an order-reversing bijection f : M → homCSL(M, 2) sending a to σa. Thus, ℘(f) :
℘(homCSL(M, 2)) → ℘(M) is a CABA-isomorphism. If iM : M → ℘(homCSL(M, 2))
is given by iM (m) = {σ ∈ homCSL(M, 2) | σ(m) = 1}, then we have the function
ιM = ℘(f) ◦ iM : M → ℘(M) given by

ιM (m) = ℘(f)(iM (m)) = {a ∈M | f(a) ∈ iM (m)} = {a ∈M | f(a)(m) = 1}
= {a ∈M | a ≤ m} = ↓m.

Thus, we may set L(M) = ℘(M) and define ιM : M → L(M) by ι(m) = ↓m.

Theorem 3.9. Associating with each M ∈ CSL its powerset yields an alternative description
of the functor L : CSL→ CABA that is left adjoint to the forgetful functor U : CABA→ CSL.

Proof. Let M ∈ CSL. Clearly the powerset of M is an object in CABA. Define ιM : M →
L(M) by ιM (a) = ↓a for each a ∈M . For each S ⊆M , we have∧

{ιM (s) | s ∈ S} =
⋂
{↓s | s ∈ S} =

y(∧S
)

= ιM

(∧
S
)
.

Therefore, ιM is a CSL-morphism. It is enough to show that for each A ∈ CABA and
CSL-morphism γ : M → A there is a unique CABA-morphism τ : L(M) → A such that
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τ ◦ ιM = γ.

M L(M)

A

ιM

γ
τ

Let γ∗ be the left adjoint of γ, and consider its restriction γ∗ : at(A)→M . Also recall
that ϑA : A→ ℘(at(A)) is a CABA-isomorphism, hence so is ϑ−1

A : ℘(at(A))→ A which is

given by ϑ−1
A (S) =

∨
S for S ⊆ at(A). We set τ = ϑ−1

A ◦ ℘(γ∗) : L(M)→ A.

L(M) = ℘(M) ℘(at(A)) A

τ

℘(γ∗) ϑ−1
A

Then τ is the composition of two CABA-morphisms, so is a CABA-morphism. Moreover, for
S ⊆M , we have

τ(S) = ϑ−1
A ℘(γ∗)(S) = ϑ−1

A ({x ∈ at(A) | γ∗(x) ∈ S}) =
∨
{x ∈ at(A) | γ∗(x) ∈ S}.

Thus, for a ∈M , we have

τ(ιM (a)) = τ(↓a) =
∨
{x ∈ at(A) | γ∗(x) ≤ a} =

∨
{x ∈ at(A) | x ≤ γ(a)} = γ(a)

since A is atomic. To show that τ is uniquely determined by the equation τ ◦ ιM = γ, it
is enough to show that L(M) is generated as a complete boolean algebra by ιM [M ]. Since
each S ⊆M is the union of singletons, this follows from the equation

{a} = ↓a \ {b | b < a} = ↓a \
⋃
{↓b | b < a} = ιM (a) ∧ ¬

∨
{ιM (b) | b < a}.

Remark 3.10. It is worth mentioning that the equation {a} = ιM (a) ∧ ¬
∨
{ιM (b) | b < a}

above allows an alternate description of τ : L(M)→ A that does not involve atoms. Indeed,
since τ is a CABA-morphism, we have

τ({a}) = τ
(
ιM (a) ∧ ¬

∨
{ιM (b) | b < a}

)
= τιM (a) ∧ ¬

∨
{τιM (b) | b < a}

= γ(a) ∧ ¬
∨
{γ(b) | b < a}.

Thus, for each S ⊆M , we have

τ(S) =
∨
{τ({a}) | a ∈ S} =

∨{
γ(a) ∧ ¬

∨
{γ(b) | b < a}

∣∣∣ a ∈ S} .
Remark 3.11. To describe how L acts on morphisms, let γ : M → N be a CSL-morphism.
Then ιN ◦ γ : M → L(N) is a CSL-morphism, so there is a unique CABA-morphism
L(γ) : L(M)→ L(N) such that L(γ) ◦ ιM = ιN ◦ γ.

M N

L(M) L(N)

γ

ιM ιN

L(γ)

Therefore, if a ∈M , then L(γ)(↓a) = L(γ)ιM (a) = ιNγ(a) = ↓γ(a).
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4. Coalgebraic approach to Thomason duality

Definition 4.1. Let H : CABA→ CABA be the composition H = LU .

CABA CSL CABA

H

U L

Remark 4.2. In Theorems 3.7 and 3.9 we have given two alternative constructions of
L : CSL→ CABA. Thus, we have two alternative descriptions of H : CABA→ CABA. For
A ∈ CABA we can think of H(A) as the powerset of A (Theorem 3.9) or as the quotient of
the free object in CABA over A (Theorem 3.7). The resulting two functors are naturally
isomorphic. In this section we will always assume that H(A) is the powerset of A, but will
indicate how the corresponding result can be proved if we think of H(A) as the quotient of
the free object in CABA over A.

We show that the diagram in Figure 1 is commutative up to natural isomorphism. The
horizontal arrows in the diagram represent the contravariant functors at : Set→op CABA and
℘ : Set→op CABA of Tarski duality, whereas the vertical arrows represent the endofunctors
H and P on CABA and Set, respectively. This together with standard algebra/coalgebra
machinery then allows us to prove that Alg(H) is dually equivalent to Coalg(P), thus yielding
an alternate proof of Thomason duality.

CABA Set

CABA Set

at

H P
℘

at

℘

Figure 1

Theorem 4.3.

(1) H ◦ ℘ = ℘ ◦ P.
(2) at ◦ H is naturally isomorphic to P ◦ at.
Proof. (1) If X ∈ Set, then ℘P(X) and H℘(X) are both objects in CABA obtained by taking
the double powerset of X ordered by inclusion. We show that the two compositions also agree
on morphisms. Let f : X → Y be a map. It is sufficient to show that ℘P(f)(↓S) = H℘(f)(↓S)
for each S ⊆ Y . By Remark 3.11, we have

H℘(f)(↓S) = ↓℘(f)(S) = ↓f−1(S).

On the other hand,

℘P(f)(↓S) = P(f)−1(↓S) = {T ∈ ℘(X) | P(f)(T ) ∈ ↓S}
= {T ∈ ℘(X) | f [T ] ⊆ S} = {T ∈ ℘(X) | T ⊆ f−1(S)} = ↓f−1(S).

Thus, ℘P(f)(↓S) = H℘(f)(↓S), completing the proof.
(2) follows from (1) since the horizontal arrows in the diagram in Figure 1 form a dual

equivalence.

Remark 4.4. If we use the alternative description of H, then Theorem 4.3(1) should be
phrased as H◦℘ is naturally isomorphic to ℘◦P . The natural isomorphism ξ : H◦℘→ ℘◦P
is given on the generators of H℘(X) by ξX(�S) = ↓S for each S ⊆ X ∈ Set.
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In the next remark we give an explicit description of the natural isomorphism ζ : at◦H →
P ◦ at. This will be used in Remark 4.11.

Remark 4.5. For A ∈ CABA define ζA : atH(A)→ Pat(A) by

ζA({a}) = {x ∈ at(A) | x ≤ a}
for each a ∈ A. Since H ◦ ℘ = ℘ ◦ P and ε, ϑ are natural isomorphisms of Tarski duality, we
have that the composition atH(ϑA) ◦ εPat(A) is a bijection.

Pat(A) at℘Pat(A) = atH℘at(A) atH(A)
εPat(A) atH(ϑA)

We show that for each a ∈ A we have

(atH(ϑA) ◦ εPat(A))({x ∈ at(A) | x ≤ a}) = {a}.

Since εPat(A)({x ∈ at(A) | x ≤ a}) = {{x ∈ at(A) | x ≤ a}}, it is sufficient to prove that

atH(ϑA)({{x ∈ at(A) | x ≤ a}}) = {a}.
It follows from Remark 3.10 that

H(ϑA)({a}) = ↓ϑA(a) ∧ ¬
∨
{↓ϑA(b) | b < a}

= ↓{x ∈ at(A) | x ≤ a} \
⋃
{↓{x ∈ at(A) | x ≤ b} | b < a}

= {{x ∈ at(A) | x ≤ a}}.

In particular, {{x ∈ at(A) | x ≤ a}} ≤ H(ϑA)({a}), and so

atH(ϑA)({{x ∈ at(A) | x ≤ a}}) ≤ {a}
because atH(ϑA) is left adjoint to H(ϑA). Therefore, atH(ϑA)({{x ∈ at(A) | x ≤ a}}) = {a}
since both sides of the last inequality are atoms. Thus, ζA = (atH(ϑA) ◦ εPat(A))

−1, and
hence ζ is a natural isomorphism.

We next utilize Theorem 4.3 and standard algebra/coalgebra machinery to show that
Tarski duality lifts to a dual equivalence between Alg(H) and Coalg(P). We start with the
following well-known result (see, e.g., [Ven07, Sec. 9]). Since we will be using the functors
establishing the isomorphism of Theorem 4.6 in Remark 4.13, we sketch the proof.

Theorem 4.6. KFr is isomorphic to Coalg(P).

Proof (Sketch). To each Kripke frame F = (X,R) we associate the coalgebra ρR : X → P(X)
defined by ρR(x) = R[x]. If f : X1 → X2 is a p-morphism between Kripke frames (X1, R1)
and (X2, R2), then f is also a morphism between the coalgebras (X1, ρR1) and (X2, ρR2). This
defines a covariant functor C : KFr→ Coalg(P). To each coalgebra (X, ρ) for P , we associate
the Kripke frame (X,Rρ) where xRρy iff y ∈ ρ(x). If f is a morphism between two coalgebras
(X1, ρ1) and (X2, ρ2), then f is also a p-morphism between the Kripke frames (X1, Rρ1) and
(X2, Rρ2). This defines a covariant functor F : Coalg(P)→ KFr. It is straightforward to see
that R = RρR for each (X,R) ∈ KFr and ρ = ρRρ for each (X, ρ) ∈ Coalg(P). Thus, the
functors C and F yield an isomorphism of KFr and Coalg(P).

We next show that CAMA is isomorphic to Alg(H). This is parallel to the well-known
fact that MA is isomorphic to Alg(K) (see, e.g., [KKV04, Cor. 3.11]).

Theorem 4.7. CAMA is isomorphic to Alg(H).
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Proof. Let (A,�) ∈ CAMA. Since � : A → A is a CSL-morphism, by Theorem 3.9, there
is a unique CABA-morphism τ� : H(A) → A such that τ�(↓a) = �a for each a ∈ A.
Therefore, (A, τ�) ∈ Alg(H). Let α : A1 → A2 be a CAMA-morphism and a ∈ A1. Since
α(�1a) = �2α(a), by Remark 3.11,

τ�2H(α)(↓a) = τ�2(↓α(a)) = �2α(a) = α(�1a) = ατ�1(↓a).

Because H(A) is generated by {↓a | a ∈ A}, we obtain that τ�2 ◦H(α) = α ◦ τ�1 . Therefore,
α is also a morphism in Alg(H). This defines a covariant functor A : CAMA→ Alg(H).

Conversely, let (A, τ) ∈ Alg(H) so A ∈ CABA and τ : H(A)→ A is a CABA-morphism.
If we define �τ on A by �τa = τ(↓a), it is easy to see that �τ is completely multiplicative, so
(A,�τ ) ∈ CAMA. Let α : A1 → A2 be a morphism in Alg(H) and a ∈ A1. By Remark 3.11,

�τ2α(a) = τ2(↓α(a)) = τ2H(α)(↓a) = ατ1(↓a) = α(�τ1a).

Therefore, α is also a CAMA-morphism. This defines a covariant functor M : Alg(H) →
CAMA.

Let (A,�) ∈ CAMA. For a ∈ A, we have �τ�a = τ�(↓a) = �a. Therefore, �τ� = �.
Next, let (A, τ) ∈ Alg(H). For a ∈ A, we have τ�τ (↓a) = �τa = τ(↓a). Since H(A) is
generated by {↓a | a ∈ A}, we obtain that τ�τ = τ . Thus, the functors A and M yield an
isomorphism of CAMA and Alg(H).

Remark 4.8. If we use the alternative description of H, then the previous theorem can be
proved using Theorem 3.7 and Remark 3.8. The advantage of using this description of H
lies in the suggestive definitions τ�(�a) = �a and �τa = τ(�a).

We are ready to lift Tarski duality to a dual equivalence between Alg(H) and Coalg(P).
For this we utilize [Jac17, Thm. 2.5.9] which states that, under certain conditions, adjunctions
lift to adjunctions between categories of algebras. For our purposes, we require the following
reformulation of [Jac17, Thm. 2.5.9] for dual equivalences.

Lemma 4.9. Let S : C→ C, T : D→ D be two endofunctors and Q : C→op D, R : D→op C
two contravariant functors forming a dual equivalence. Suppose that SR and RT are naturally
isomorphic (and hence so are TQ and QS). Then Q and R lift to contravariant functors

Q̂ : Alg(S)→op Coalg(T) and R̂ : Coalg(T)→op Alg(S) which yield a dual equivalence between
Alg(S) and Coalg(T).

C D

C D

Q

S T
R

Q

R

Theorem 4.3 and Lemma 4.9 then immediately give:

Theorem 4.10. Tarski duality between CABA and Set lifts to a dual equivalence between
Alg(H) and Coalg(P).

Remark 4.11. By adapting the proof of [Jac17, Thm. 2.5.9], the contravariant functors

ât : Alg(H) →op Coalg(P) and ℘̂ : Coalg(P) →op Alg(H) lifting at : CABA →op Set and
℘ : Set→op CABA can be defined as follows:

If (A, f) ∈ Alg(H), then (at(A), ζA◦at(f)) ∈ Coalg(P) where ζA is defined in Remark 4.5.
Moreover, if α : A1 → A2 is a morphism in Alg(H), then at(α) is a morphism of the
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corresponding coalgebras. This defines the functor ât : Alg(H)→op Coalg(P).

at(A2) Pat(A2)

at(A1) Pat(A1)

at(α)

ζA2
◦at(f2)

Pat(α)

ζA1
◦at(f1)

Let (X, g) ∈ Coalg(P). Then ℘(g) : ℘P(X) → ℘(X) is a CABA-morphism. Since
H ◦ ℘ = ℘ ◦ P (see Theorem 4.3(1)), we have that (℘(X), ℘(g)) ∈ Alg(H). Moreover, if
h : (X1, g1) → (X2, g2) is a Coalg(P)-morphism, then ℘(h) is an Alg(H)-morphism. This
defines the functor ℘̂ : Coalg(P)→op Alg(H).

H℘(X2) = ℘P(X2) ℘(X2)

H℘(X1) = ℘P(X1) ℘(X1)

℘(g2)

℘P(h)H℘(h) ℘(h)

℘(g1)

Remark 4.12. Putting Theorems 4.6, 4.7, and 4.10 together yields an alternate proof of
Thomason duality. We recall that the contravariant functors establishing Thomason duality
extend the contravariant functors of Tarski duality. Namely, the functor ℘ : KFr→op CAMA
associates to each (X,R) ∈ KFr the algebra (℘(X),�R) ∈ CAMA where �R is defined by

�R(S) = {x ∈ X | R[x] ⊆ S}.5

Also, ℘ associates to each KFr-morphism f : X → Y the CAMA-morphism ℘(f) : ℘(Y )→
℘(X) given by ℘(f) = f−1. The functor at : CAMA →op KFr associates to each (A,�) ∈
CAMA the Kripke frame (at(A), R�) where

xR�y iff x ∧�¬y = 0 iff (∀a ∈ A)(x ≤ �a⇒ y ≤ a).

Also, at associates to each CAMA-morphism α : A → B the p-morphism at(α) : at(B) →
at(A) given by at(α) = α∗.

We show that ℘ : KFr→op CAMA is the composition

KFr Coalg(P) Alg(H) CAMAC ℘̂ M

and that at : CAMA→op KFr is the composition

CAMA Alg(H) Coalg(P) KFr.A ât F

Let (X,R) ∈ KFr. Then

M ℘̂ C(X,R) =M ℘̂ (X, ρR) =M(℘(X), ℘(ρR)) = (℘(X),�℘(ρR)).

For S ⊆ X, we have

�℘(ρR)S = ℘(ρR)(↓S) = ρ−1
R (↓S) = {x ∈ X | ρR(x) ⊆ S} = {x ∈ X | R[x] ⊆ S} = �RS.

Thus, �℘(ρR) = �R, so M ℘̂ C(X,R) = (℘(X),�R), and hence M ℘̂ C = ℘.
Let (A,�) ∈ CAMA . Then

F âtA(A,�) = F ât (A, τ�) = F(at(A), ζA ◦ at(τ�)) = (at(A), RζA◦at(τ�))

5Thus, �R is the predicate lifting for � composed with the coalgebra map ρR : X → P(X).
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For x, y ∈ at(A), we have

xRζA◦at(τ�)y iff y ∈ ζAat(τ�)(x) iff y ∈ ζA((τ�)∗(x)).

By Remark 3.10, for a ∈ A, we have τ�({a}) = �a ∧ ¬
∨
{�b | b < a}. Therefore, for each

x ∈ at(A), we have

x ≤ τ�({a}) iff x ≤ �a and x � �b for each b < a.

Since � is completely multiplicative, c :=
∧
{a ∈ A | x ≤ �a} is the least element satisfying

x ≤ �c. Thus, x ≤ τ�({c}). Consequently, (τ�)∗(x) = {c} since (τ�)∗ is left adjoint to τ�
and both (τ�)∗(x) and {c} are atoms of H(A). It follows that

y ∈ ζA((τ�)∗(x)) iff y ≤
∧
{a ∈ A | x ≤ �a} iff (∀a ∈ A)(x ≤ �a⇒ y ≤ a).

Thus, xRζA◦at(τ�)y iff xR�y, so F âtA(A,�) = at(A,�), and hence F âtA = at.

Remark 4.13. We conclude the paper by connecting the coalgebraic approaches to Jónsson-
Tarski and Thomason dualities. As follows from [KKV04], Alg(K) is dually equivalent to
Coalg(V), from which Jónsson-Tarski duality follows. By Theorem 4.10, Alg(H) is dually
equivalent to Coalg(P), from which Thomason duality follows.

Let U : Stone → Set be the forgetful functor. For each X ∈ Stone, viewing the
underlying set of the Vietoris space V(X) as a subset of P(X), we have an inclusion map
i : UV(X) → PU(X). We extend U to a forgetful functor on the level of coalgebras. Let
(X, g) ∈ Coalg(V), so g : X → V(X) is a continuous map. Set U(X, g) := (U(X), g′) where
g′ : U(X)→ PU(X) is given by g′ = i ◦ U(g).

U(X) UV(X) PU(X)

g′

U(g) i

Then (U(X), g′) ∈ Coalg(P). If α : (X1, g1) → (X2, g2) is a Coalg(V)-morphism, it is
straightforward to see that U(α) : (U(X1), g′1)→ (U(X2), g′2) is a Coalg(P)-morphism. This
yields a functor U : Coalg(V)→ Coalg(P). If we identify X with U(X) and g : X → V(X)
with g′ : U(X) → ℘U(X), then U(X, g) = (X, g). We have thus forgotten the topological
structure of X and the continuity of g. This justifies thinking about U : Coalg(V)→ Coalg(P)
as a forgetful functor.

We next define a functor (−)σ : Alg(K) → Alg(H) which can be thought of as the
canonical extension functor for algebras for K. Use Lemma 4.9 to lift the contravariant

functors of Stone duality to ûf, ĉlop and those of Tarski duality to ât, ℘̂ and set (−)σ = ℘̂◦U◦ûf.
Thus, (−)σ ◦ ĉlop and ℘̂ ◦ U are naturally isomorphic, and hence so are U ◦ ûf and ât ◦ (−)σ.

Alg(K) Coalg(V)

Alg(H) Coalg(P)

ûf
(−)σ U

ĉlop

ât

℘̂

The functor K satisfies ufK(A) ∼= Vuf(A) [KKV04, Cor. 3.11]. By identifying these
two Stone spaces, for (A,α) ∈ Alg(K) we describe (A,α)σ directly. Since α : K(A) → A
is a BA-morphism, uf(α) : uf(A) → ufK(A) = Vuf(A) is a continuous map. Therefore,
(uf(A), uf(α)) ∈ Coalg(V). The forgetful functor (after appropriate identifications) sends this
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to (uf(A), uf(α)) ∈ Coalg(P). Finally, ℘̂ sends (uf(A), uf(α)) to (℘uf(A), ℘uf(α)) = (Aσ, ασ).
Because of these calculations, we can view the functor Alg(K)→ Alg(H) as the canonical
extension functor for algebras for K.
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