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Abstract

We consider mixed-norm Bergman spaces on homogeneous Siegel domains. In the literature, two different approaches have
been considered and several results seem difficult to be compared. In this paper, we compare the results available in the
literature and complete the existing ones in one of the two settings. The results we present are as follows: natural inclusions,
density, completeness, reproducing properties, sampling, atomic decomposition, duality, continuity of Bergman projectors,

boundary values, and transference.
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1 Introduction

This paper deals with some spaces of holomorphic functions
on a homogeneous Siegel domain. In order to illustrate the
kind of spaces and problems we are going to consider, we
begin with the simplest case.

Let C4:={z € C: Imz > 0} be the upper half-plane. We
can think of C as R+i (0, o), where (0, 00) is (essentially)
the unique open (convex) cone in R. In several variables, the
upper half-plane can be generalized to tube domains over
convex cones. Let £2 be an open convex cone in R™. Then,
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the domain D = R™ + i£2 in C™ is called the tube domain
over the cone 2. If the group of linear transformations of
RR™ that preserve §2 acts transitively on £2 itself, then 2 is
a homogeneous cone and the domain becomes itself homo-
geneous, that is, the group of biholomorphic self-maps of D
(the automorphisms of D) acts transitively on D.

Another classical domain in several variables that extends
the definition and some of the main features of C is the
so-called Siegel upper half-space. Consider again the cone
(0, 00) € R and the hermitian quadratic map on C" ¢
¢ -¢ = |¢|?. Then, the Siegel upper half-space is the domain
UinC"x C

U:={(,z) € C" x C: Tmz — [¢|* € (0, 00)}.

The homogeneous Siegel domains are then introduced as
follows—we refer to Sect.2 for complete definitions. Let
a homogeneous cone 2 C R™ and a suitable hermitian
quadratic map @: C* — C™ be given. Then, the homo-
geneous Siegel domain D € C" x C™ is

D={((,2)eC"xC":Imz—®() € 2}.

(again, cf. Sect. 2 for definitions). Notice that if n = 0, then
D is the tube domain over the given cone £2.

On a homogeneous Siegel domain D as above, various
(mixed norm) weighted Bergman spaces have been consid-
ered in the literature. On the one hand, in [33] (for the upper
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half-plane) and [16] (for the general case), the following
mixed norm weighted Bergman spaces are considered:

AL T:={f € Hol (D) : |h > AL Wl fullLr ) | Lawg) < 00},

where A$, are ‘generalized power functions’ on £2 (s € R”),
Vo is ‘the’ invariant measure on 2, NV = C" x R™ and
fni @&, x) = f(&,x+iD()+ ih). On the other hand,
e.g. in [1-4, 6, 7, 12, 23, 29], the following mixed-norm
weighted Bergman spaces are considered:

AS":=(f € Hol(D): ||k > | fullLra e o < o0},

L9(AS00)

where b is a suitable element of R" and L?9(R"™, C") =
{f: g = 117 E& Iler@wmliLaen < oo}

Two parallel theories then arise, and different conventions

have been adopted. For example, the definition of the spaces

27 suggests a natural comparison between the spaces 27
for a fixed s, which in turn highlights the role played by ‘the’
Bergman projector ‘B3¢, namely the Bergman projector of the
corresponding space 9(3’2. On the other hand, the comparison
of the spaces AZ"? for fixed s appears to be less natural, so that
more general Bergman projectors are naturally investigated.
Besides that, in the study of various properties of the spaces
A27 (such as, for instance, the continuity of 3, on the space

2, which is defined the same way as "7 replacing holo-
morphic functions with equivalence classes of measurable
functions), greater attention is placed on p and g, rather than
s, whereas in the study of the spaces AZ"?, greater attention is
placed on s, rather than p or g, so that even when describing
the same phenomena, the two parallel theories may appear
quite different from one another and hard to compare.

This is the main reason which motivated us to write this
work. Our goal is to describe various results for the spaces
A7 and prove the direct counterparts in the case of the
spaces L7 for a direct comparison. Hence, in particular, we
deepen the study of the spaces L7 proving those results
which, to the best of our knowledge, do not appear in the
literature in the present generality. In order to tackle these
issues, we are naturally led to introduce a new family of
spaces A%, which is defined in the spirit of the spaces A}
(and has, therefore, some technical advantages), but allows to
treat also the spaces 2%*? by means of suitable substitutions.

Function theory and analysis of function spaces on homo-
geneous Siegel domains are the classical areas of research
in which complex analysis, harmonic analysis, geometry of
convex cones, and representation theory all play a funda-
mental role, see e.g. [27, 28, 31, 32, 34] and also [24]. In
more recent times, it was shown in [5] and then general-
ized in [4], that in order to prove the L”-boundedness of the
Bergman projector on some homogeneous Siegel domain of
tube-type (see Subsection 2.6), it was necessary to exploit
the cancellations of the kernel, a phenomenon that had never
been observed before; in fact, these examples seem to remain
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the only instances of such behaviour. We mention in passing
that, in order to exploit the cancellation of the Bergman ker-
nel, the mixed-norm spaces were considered, hence showing
their naturality in this context. Itis also worth mentioning that
the question of the L”-boundedness of the Bergman projec-
tor on homogeneous Siegel domains is tightly connected to
the sharp £2-decoupling inequality of Bourgain and Demeter
[13], see [6]. We refer also to the Introduction in [19] for
a thorough discussion of this and related questions, and to
[6-8, 16-19, 29] for some very recent works on the subject
of the current paper.

The paper is organized as follows. In Sect.2, we recall
some basic facts and introduce some notation to deal with
homogeneous Siegel domains. In order to help readers who
are accustomed to different conventions, we introduce our
notation axiomatically, allowing the reader to identify the
(hopefully minimal) modifications needed. In Sect.3, we
briefly list several known results for the spaces ALY without
proofs. In Sect.4, we deal with the spaces ¢ for which
we prove results which are analogous to the ones which
are valid in the case of the spaces A"?. Section4 consti-
tutes the main part of this paper. In order to more easily
deal with the spaces 2/, we introduce another scale of
spaces, denoted by A% In fact, the use of these latter spaces
allows to simplify the notation and to more easily compare
the scale of spaces AL and 7. In addition to that, deal-
ing with the spaces A%*Y allows for a more comprehensive
treatment of some topics (such as duality for ¢ < 1) that
would otherwise require the introduction of auxiliary spaces
(cf,, e.g. [1], where a different—yet related—description of
the dual of 2A£*” is determined for p € (0, 1)). The topics we
shall present include the following: natural inclusions, den-
sity, completeness, reproducing properties, sampling, atomic
decomposition, duality, continuity of Bergman projectors,
boundary values, and transference.

We did our best to acknowledge the previously known
results before the statements of the most important results.
We apologize for any omission.

2 Homogeneous Siegel domains

We denote by E a complex Hilbert space of dimension n, by
F areal Hilbert space of dimension m, by §2 an open convex
conein F notcontaining affinelines,andby @: ExXE — F¢
anon-degenerate hermitian map such that @ (¢):=®(¢, ¢) €
2 for every ¢ € E. Clearly, E and F may be replaced with
the standard Euclidean spaces C" and R with their natural
inner products. We prefer the more abstract versions since E
and F are in general better described as spaces of (formal)
matrices, at least in most examples. Besides that, we believe
that this abstract notation better underlines the roles played
by the various objects under consideration. In any event, the
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reader may replace E with C" and F with R"™, if they find it
convenient, without any loss of generality.
We define

p: ExFeca (¢, 2)—=1Imz—®() e F,

and denote by

D={(¢.2)€ExFg:Imz— @) e R} =p"'(2)

the Siegel domain associated with £2 and @. We shall assume
that D is homogeneous, that is, that the group of its biholo-
morphisms acts transitively on it. It is known (cf., e.g. [14,
Proposition 1]) that D is homogeneous if and only if there is
atriangular! subgroup T, of GL(F) which acts simply tran-
sitively on £2, and forevery ¢t € T thereis g € GL(E) such
that t o @ = @ o (g x g). In this case, any other triangular
subgroup of G L(F) with the same properties is conjugate to
T by an element of G L(F) which preserves £2. In addition,
T, acts simply transitively on the right on the dual cone £2’,
by transposition (cf. [38, Theorem 1]). We shall denote this
latter action by A - ¢, for A € £2’ and ¢ € T ; we shall conse-
quently write ¢ - h instead of th fort € Ty and h € 2. We
shall still denote by 7 - and - ¢ the actions of 7 on Fg and F.,
respectively, for every t € T

2.1 Analysis on Q

It is possible to describe the structure of 7 and of its action
on 2 using the theory of T'-algebras, cf. [38], or the theory
of (normal) j-algebras, cf. [32, 34]. In order to keep the
exposition as simple as possible, we shall avoid a thorough
description of the structure of 7.y and proceed axiomatically.
We refer the reader to [16] for a more detailed treatment of
the following considerations. We first observe that there are
r € IN (called the rank of §2) and a surjective homomorphism
of Lie groups

Az T+ —> (Ri)r,

with kernel [T, T ], such that, if we fix base-points e; € §2
and ey € 2’ and define

At -en) = Ayleq 1) = A1) = [[ 4,00 (D)
j=1

for every s € C" and for every ¢t € T, then A}, (and AS,)
is bounded on bounded subsets if and only if Re s € R/, (cf.
[16, Lemma 2.34]). We shall further require that A(a -) =

! This means that all the eigenvalues of every element of T, are real.
Equivalently, there is a basis of F with respect to which every element
of T, is represented by an upper triangular matrix, cf. [37].

(a,...,a) for every a > 0, where a - denotes the homoth-
ety of ratio a (which necessarily belongs to 7'y ). We remark
explicitly that these conditions determine A up to a permu-
tation of the coordinates (in (]Rj_)’ ).2 Consequently, we may
apply the results of [ 16, Chap. 2] without (essential) changes,
even if a different choice of 7y and A is made. Notice that
A%, and A%, extend to holomorphic functions on §2 +i F and
2" + i F', respectively, for every s € C" (cf. [16, Corollary
2.25]).

When 2 is symmetric, that is, self-dual with respect to the
scalar product of F, then the functions Ag considered in [24]
coincide with the functions A%, defined in (1) for an appro-
priate choice of A (cf. [24, Chap. VI, § 3]); in particular,
the ‘determinant’ polynomial coincides with A_l(’z". Generally
speaking, the works which deal with the case in which £2 is
symmetric generally adhere to the conventions of [24], possi-
bly with slightly different notation, whereas the works which
deal with general homogeneous cones generally adhere to the
conventions described above, possibly with different notation
(for example, A, = Q% and A%, = (Q™)*® in the notation of
[6, 8, 29, 30]).

To simplify the notation, we state the following definition.

Definition 2.1 We define two order relations on R”. On the
one hand, we write s < s’ to mean s; < s} for every j =
1,...,r (equivalently, s’ — s € R”.). On the other hand, we
writes < s'tomeans = s" ors; < sl;. forevery j =1,...,r.

Thus, s < s (that is, s < 8 and s # §') if and only if
s'—s e (RY)", thatis, s; < s} forevery j =1,...,r.

Definition 2.2 We denote by 7 the k-dimensional Haus-
dorff measure. There are d < 0 and b < 0 such that

vo:=AY  H™, U_Q/Z=A(Sl2/ -H™, and
vD:Z(A?;FZd o ,O) . H2n+2m (2)

are the unique measures on £2, £2/, and D (up to a mul-
tiplicative constant) which are invariant under all linear
automorphisms of 2 and §2’, and all biholomorphisms of
D, respectively (cf. [16, Propositions 2.19 and 2.44], and
[24, Proposition 1.3.1]).

2 To see this fact, observe that, if A’: Ty — (R%)" is another
homomorphism with the same properties, then there is A € GL(R")
such that logA” = AlogA. In addition, given s € R, both
> jsjlogA’ = 37:("As)jlogAj and 37, s;logA; induce func-
tions which are bounded on the bounded subsets of £2 if and only if
s € R, so that ! AR = R; and therefore A must be the com-
position of a permutation of the coordinates and a diagonal dilation
X1y .oy X)) B> (AMX1, .oy ApXp), A,y Ay > 0. Since A(a-) =
Aa-)=(a,..., a) for every a > 0, we then see that A must induce
the identity on the line R1,, so that it must be a permutation of the
coordinates.

@ Springer
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Remark 2.3 Notice that A~P(¢) = |detc g|?* forevery s € T,
and for every g € GL(E) suchthatt - @ = @ o (g X g).
Further, A™%(a-) = a”, and A™P(a-) = a" for every a >
0.

We observe explicitly that d = d and b = —q in the
notation of [1, 9, 27], whereas d = —7 and b = —b in the
notation of [6, 8, 29, 30]. In particular, there is no general
agreement on the sign of d.

Definition 2.4 There are m, m’ > 0 such that A%, - v and
A%, - ver induce Radon measures on F and F, respectively,
if and only if Res > %m and Res > %m/ , respectively (cf.

[16, Proposition 2.19]).

Remark 2.5 Notice thatd = —(1,+3m+3m’) (cf. [16, Defi-
nition 2.8] and the preceding remarks). We observe explicitly
that m = (my,...,m,) and m’ = (n, ..., n,) in the nota-
tion of [6-9, 29, 30].

Definition 2.6 Foreverys,s’ € C” such that Res > %m and
Res' > %m’, we define I'o (s) and I'o/(s') so that

LA vo) = Ta()AZ  and
L(AS, -vg)) = ToHAL,

respectively, where £ denotes the Laplace transform.

Remark 2.7 Notice that I'o(s) = L(A - ve)leg) =
c[Tj=y I'(sj — 4m;) and Toi(s)) = L(AS, - va)(e) =
¢ l—[;-zl F(s} — %m’j) for some constants ¢, ¢’ > 0 which
depend on the choice of e; and egy/.

Definition 2.8 There are two uniquely determined holomor-
phic families (/§))secr and (I3, )secr of tempered distribu-
tions on F and F’, respectively, such that LI}, = A_F; and
LI, = A_Fzs (cf. [16, Lemma 2.26 and Proposition 2.28]).

Remark 2.9 Notice that If, = 1

1 _aAs . 1 Iy -
FQ,(S)A_Q, v when Res > sm and Res > sm’, respec

tively. In addition, I§, and I%,, are supported in £2 and 2/,
respectively, for every s € C” (cf. [16, Proposition 2.28]).

A% -vg and I3, =

Definition 2.10 We denote by N, and N,/ the sets of s € R”
such that A%, and A$, extend to polynomials on F and F",
respectively.

Remark 2.11 Notice that I¢, and I3, are supported in {0} if
and only if s € —IN» and s € —INg,, respectively. Then,
@ (H™) = CIEb for a suitable constant ¢ > 0 which
depends on the choice of eg’ (cf. [16, Proposition 2.30]). We
observe explicitly that, when £2 is symmetric, then 1, € N
and the differential operator f +— f % 151’ is simply the
differential operator associated with the determinant polyno-
mial Alé by means of the scalar product. This latter operator
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is often denoted by [J. In addition, if £2 is symmetric and
irreducible, then N, = {s € IN": 51 > ... > 5,}, for an
appropriate choice of A. This latter condition completely
determines A in this case.

2.2 Fourier analysis on the Silov boundary

We now pass to the analysis of the Silov boundary of D (cf.
[31] for a more general treatment of this topic). We endow
E x F¢ with the 2-step nilpotent Lie group structure whose
product is given by

€, 2 )=@C+¢ 2+ +2i0¢', 7)),

for every (¢, z), (¢, 7)) € E x Fg. If we identify N:=E x
F with the Silov boundary p~!(0) of D by means of the
mapping (¢, x) — (£, x +i®(Z)), then N becomes a 2-step
nilpotent Lie group with product

€, 0 xXN=@C+ x+x" +2Imd¢, )

for every (¢, x), (¢',x") e N.

Define W:={A € F': Jv € E\{0} (A,Im ®(-,v)) =0},
so that W is a proper algebraic variety in F’ since @ is non-
degenerate and £2-positive. Then, for every A € F'\W, the
quotient of A/ modulo the central subgroup ker A is isomor-
phic to a Heisenberg group (to R, if E = {0}), so that the
Stone—Von Neumann theorem (cf., e.g. [25, Theorem 1.50])
ensures the existence of a unique (up to unitary equivalence)
irreducible continuous unitary representation m; of N in
some Hilbert space Hj such that 7;(0,x) = e~/ for
every x € F. One then has the Plancherel identity (cf. [16,
Corollary 1.17 and Proposition 2.30]):

1B = [ 1P 142001 0
FAW

for every f € L'(WN) N L?>(N), where ¢ > 0 is a suitable
constant (which depends on the choice of eg/) and % (H,)
denotes the space of Hilbert—Schmidt endomorphisms of H, .
Note that A;Z'f’ is positive on £2’ and extends to a polyno-
mial on F’, so that the above formula is meaningful (cf. [16,
Proposition 2.30]).

2.3 The CR structure of \/

For every v € E, denote by Z, the left-invariant vector field
on N which induces the Wirtinger derivative %(81) —i0jy) at
(0, 0). Then, the Z,, for v € E, induce a subbundle of the
complexified tangent bundle of A" which endows N with the
structure of a CR manifold (cf. [11, Sect. 7.4]). In particular,
a distribution « on A is said to be CR if Z,u = 0 for every
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v € E (cf. [11, Sects. 9.1 and 17.2]). Note that an element f
of L?(N\) is CR if and only if

. () = xa, Q)T () Pro

for almost every A € F’\ W, where A is the interior of the
polar of @ (E), that is, the set

(Ae F':Ve e E\{0} (A, ®(0)) > 0},

and P, o is an orthoprojector of rank one in H,, for every
A€ F'\ W (cf., e.g. [31] or [16, Proposition 1.19] and [15,
Proposition 2.16]).

2.4 Metrics

We endow D with a complete Riemannian metric which is
invariant under the action of affine biholomorphisms (for
example, the Bergman metric is complete and invariant under
all biholomorphisms of D, cf. [16, Proposition 2.44]), and
the associated distance d. Since the balls with respect to d
will only be used for bounded radii, it will not matter which
distance is chosen, as long as it satisfies the preceding con-
ditions.

We endow £2 with the Riemannian metric induced by
that on D by means of the submersion p (interpreted as
the projection of D onto its quotient modulo the action of
N), and 2’ with the metric induced by the diffeomorphism
R5t-eq > eg -t € 2. We denote by dg; and dgr the
corresponding distances, and by Bg(h, R) and Bg/(X, R)
the corresponding balls of centre & € §2 and A € £2’, respec-
tively, and radius R > 0. Notice that also in this case one
may choose general complete 74 -invariant Riemannian dis-
tances without (essentially) compromising the results which
follow. Nonetheless, the relationships between d and dg; will
be useful in some places (such as in the definition of lattices
given below).

Analogously, we endow E x §2 with the Riemannian met-
ric induced by the one on D by means of the submersion

p':D> (2 (£ p.2) €E XL,

interpreted as the projection of D onto its quotient modulo
the action of the centre F of A/. We denote by dgxg the
corresponding distance and by B« ((¢, k), R) the corre-
sponding ball of centre (¢, #) € E x §2 and radius R > 0.
We observe explicitly that both A/ and its centre F are nor-
mal subgroups of the group Gagr of affine automorphisms
of D (cf. [28, Proposition 2.1]). Hence, d; and dg« are
(Gast/N)- and (G agr/ F)-invariant, respectively. In partic-
ular, d; and dg/ are T -invariant, while dg« o is invariant

under the affine automorphisms of the form

(& h) > (¢ +¢ 1 h),

with ¢’ € E,t € Ty,and g € GL(E) such that7 - @ =
@ o (g x g). We define vEX_q::(A;Zb_d opry) SHZHM 5o
that vE« o 1S (G afr/ F)-invariant.

2.5 Lattices

By a (6, R)-lattice on £2, with 6 > 0 and R > 1, we
mean a family (hy)rek of elements of §2 such that the balls
Bg (hy, 8) are pairwise disjoint while the balls Bg (hg, RS)
cover §2. We define lattices on £2’ and E x £2 analogously.
Notice that every maximal family of elements of £2 whose
mutual distances are > 2§ is necessarily a (8, 2)-lattice (and
conversely), so that (8, 2)-lattices on 2, £2/, and E x £2
always exist.

By an NV-(8, R)-lattice on D, with § > 0 and R > 1,
we mean a family (£ x, 2j k) jes kek Of elements of D such
that the balls B((¢; .k, zj,x), 6) are pairwise disjoint, the balls
B((¢jk.zjk), RS) cover D, and there is a (6, R)-lattice
(hi)rek on §2 such that (& x, zj,k) = h forevery j € J
and forevery k € K.

By an F-(8, R)-lattice on D, with § > 0 and R >
1, we mean a family ({k, zjx)jeskex of elements of D
such that the balls B((¢x, z;.x), 6) are pairwise disjoint, the
balls B((¢k, zjk), R8) cover D, and there is a (§, R)-lattice
(Ck, hidkek on E x §2 such that p(&k, zj k) = hy for every
j € J and for every k € K.

By a modification of the previous argument, one may
show that N- and F-(8, 4)-lattices always exist on D (cf.
[16, Lemma 2.55]).

2.6 The associated tube domain
We denote by
To=F+if2

the tube domain associated with §2. Given a function f on
D, we define

N x)— f&, x+iD&)+ih)
for every h € §2, and
O Te sz f(C.24i®Q)

for every ¢ € E. Thus,

O Fsxm f(6x+i®@) +ih)

for every ¢ € E and for every h € £2.

@ Springer
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2.7 Two families of mixed-norm weighted bergman
spaces

We now introduce the different definitions of mixed-norm

Bergman spaces.
In [16, 33], mixed-norm weighted Bergman spaces are
defined as

API(D) = {f € Hol(D): ||h > AL (W fulle v lLag) < 00}

On the one hand, this definition highlights the role played by
the Silov boundary of D and gives rise to the usual Hardy
spaces when ¢ = oo and s = 0 (thatis, A%, = 1). In particu-
lar, the non-commutative Fourier analysis on A comes into
play. On the other hand, the weight A%, o p is considered as
a multiplier of the function, and not of the measure, and the
‘base measure’ is chosen in such a way that it induces the
invariant measures on N and £2. When ¢ = oo, this allows
to treat a whole class of spaces which would not appear oth-
erwise, and which play a relevant role in the duality theory
of the spaces AL (D) when ¢ < 1.

In [6, 29] (to cite only a few), mixed-norm weighted
Bergman spaces are defined as

P.q o . ©)
A Dy=(f € Hl(D): g 1f P llgna, oy liacey < 00}

On the one hand, this definition highlights the role played by
the centre F of the Silov boundary of D, so that the usual
(commutative) Fourier analysis on F comes into play. In
addition, this definition also allows to view D as the union
of the translates (£, i®(¢)) + T of the tube domain T
(identified with {0} x T < D), so that some of the anal-
ysis on ALY (D) may be reduced to a simpler analysis on

{"4(Tg). On the other hand, the weight A%, o p is con-

sidered as a multiplier of the ‘base measure’ (A?;Hd 0p)-

HETIm = (A;;)/z*d o p) - vp, and not of the function. In
this way, the self-adjoint projector of 23’2(D) (defined as
Qtz’z(D), but allowing f to be a measurable function mod-
ulo negligible functions) onto ng’z(D) is highlighted as the
‘canonical choice’ when looking for a projector of £5*7(D)
onto ALY (D) for different p, g € [1, oo].

We mention that A" (D) = A}"°°(D) forevery s € R".
Because of this fact, the case ¢ = oo is somewhat patholog-
ical and seldom considered. For similar reasons, the duality
theory for the space A" (D), when ¢ < 1, is treated sepa-
rately (cf., e.g. [1]).

We also observe that

ALN(D)={f € Hol(D) : ||h = |l fullLracr k) Npqcasr2.yq)

where

lgllLrar ey:=I1¢ = 1€, IllLrF)llLaE)

for every measurable function g: N’ — C.
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< o0},

3 The spaces A?*7

In this short section, we collect some of the main results
concerning the spaces AL (D) the analogues of which we
wish to prove for the spaces A9 (D) in the next section. We
recall that the spaces AP (D), and ALY (D), are described
in Sect. 2. We refer the reader to [16, 19] for the proofs of the
statements of this section.

3.1 Elementary properties

The following result is a consequence of [16, Corollary 1.31
and Proposition 3.5].

Proposition 3.1 Take p,q € (0,00] and s € R’. Then,
APU(D) # {0} if and only if s > ﬁm or g = 0o and
s > 0. In addition, AL (D) is a quasi-Banach space.

Next, we deal with inclusions among the AL*? (D) spaces.
The result is a consequence of [16, Proposition 3.2]. It
extends [33, Proposition 2.2], which corresponds to the case
in which D = C;.

Proposition 3.2 Take p1, p2,q1,q2 € (0,00] with p; <
P2,q1 < qrandsy, sy € R withsy = s1+ (ﬁ — %) (b+
d). Then,

Ag]l g1 (D) g ASPZZ’(IZ (D)
continuously.
3.2 Reproducing kernels

Define the auxiliary function

BY (&, 2)=A% (Z - ;’))

for every (¢,z), (¢, 7)) € (D x D) U (D x D), where D
denotes the closure of D in E x F¢ (note that conjugation
on E is not defined).

Then, by [27, Theorem 5.4] and [9, Theorem I1.6] (cf.,
also, [16, Proposition 3.11]), the following result holds.

Proposition3.3 If's > }‘m, then AE’Z(D) is a reproducing
kernel Hilbert space with reproducing kernel

K*: ((£,2), (¢, 2)) = BRI (@, 2)

for a suitable cs # 0.
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In [16], for notational convenience, the corresponding
integral operators are based on BS rather than K, so that
the operators

Ps: f > C(b+d7s)/2/D F@ DB ) Ag (p(6,2))dvp (£, 2)

are considered.

The following result is a consequence of [16, Proposition
3.13]. Itextends [33, Theorem 3.1], which corresponds to the
case in which D = C;..

Proposition 3.4 Tuke p, q € (0, 00] and s, s’ € R". If:

o s> 1(b+d)+21q,m’-

o s < ,(b+d)— ,m b+d—§m
° s+s < mm(l p)(b+d) ,m orq' =ococands+s <
mln(l p)(b+d)

then Py f = f for every f € AL'Y(D).
3.3 Sampling

The following sampling theorem is a consequence of [16,
Theorem 3.22], where a more precise version of this result
is proved. We denote by £79(J, K) the space of » € C/*X
such that ||[|A; xller sy lleax) < oo, with some abuse of nota-
tion.

Theorem 3.5 Take p,q € (0,00], s € R" and Ry > 1.
Then, there is 8y > 0 such that, for every N'-(8, R)-lattice
(Cjk>2jk)jed kek on D, with § € (0,80] and R € (1, Ry,
the mapping

fi ATV N F &k 2 )

induces an isomorphism of AL*? (D) onto a closed subspace
of ¢P4(J, K).

Here we mention that the transpose of the sampling map
defined above is often considered an atomic decomposition
map, especially when the duals of AZ*? (D) and 27 (D) may
be identified with A%"¢ (D) and 2 (D), respectively, for
some §'.

3.4 Atomic decomposition and duality

Definition 3.6 Take p,q € (0,00] and 5,8’ € R”. Then,
we say that property (L)" holds if for every 9 > O there
is an N-(8, 4)-lattice (g‘j,k Zj k) jes ke, With § € (0, o],
such that, defining hx:=p (¢ k. z; &) forevery j € J and for
every k € K, the mapping

. / (b+d)/p—s—s'
Uy i h = Z)‘/’kB(SCj,k,Zj,k)AQ (i)
J.k

is well defined (with locally uniform convergence of the sum)
and maps £79(J, K) into ALY (D) continuously.

If we may take ({j k.2 k) jes kek» for every 6o > 0 as
above, in such a way that the corresponding mapping ¥4 is
onto, then we say that property (L' )i S‘,I holds.

The next result is a consequence of [16, Theorems 3.33
and 3.34]. This result was first proved in [22, Theorem 2]
when D is symmetric, p = g < 00, and s, 8’ € IRI,.3 See
also [33, Theorem 1.5], which corresponds to the case in
which D is the upper half-plane.

Theorem 3.7 Take p, q €10, 0] ands, s’ € R such that the
following hold:

1 1 1 /.
° s> 2—m+ (_zmin(l REE 3)+m’
) [
o ' < g ) (b+d) - 7Rl p) :
1 1 .
° S+S < m1n(1 p)(b+d) <2min(1,p) o 5>+m’

Then, property (L’)f S',] holds. More precisely, the mapping
W4 of Definition 3.6 has a continuous linear section for §
sufficiently small and R bounded.

By [19, Corollary 4.7], properties (L)} and (L") are
actually equivalent when p, g € [1, oo].

The following result is essentially a consequence of [19,
Corollary 4.14]. It extends [33, Theorem 8.2], which deals
with the case in which D is the upper half-plane.

Proposition 3.8 Tauke p,q € (0,00] and s,s' € R" such
that property (L)[7 ‘9 holds. Denote by V the closed vector

subspace of qu(D) generated by the B({ iy (¢,z) € D.
Then, the sesquilinear form

P P’
As (D) x A(b+d)/mm(1,p),s,s/(l)) >(f, 9

> / f3(A™% 0 p)dvp € C
D

induces an antilinear isomorphism of A fbfd)/ min(1, p)—s—s’ (D)
onto the dual of V.

If property (L')?:} holds and p,q < oo, then V =
AP1(D).

3.5 Boundary values

We now consider the problem of determining the boundary
values of the spaces AY*? (D). We recall some definitions and
results from [16], with some slight changes motivated by [14,
15].

3 Notice that the statement of [22, Theorem 2] is mcorrect because of
an erroneous computation of the AP (D) norm of B( ) in[22, Lemma
2.2].

@ Springer
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Definition 3.9 We define SW(J\/ ) as the space of CR ¢ €
S(N) such that Fr(¢(¢, -)) is supported in Q' for every
¢ € E, endowed with the topology induced by S(N). We
define S#(./\/ ) as the dual of the conjugate of S57(N). In
addition, we define §§(N ) as the space of ¢ € S(N) such
that 7, (@) = xo/(A) P07 () P o for every A € F\W.
We define

Fn: 85N 3 ¢ 1> [h > Tr(m ()]

Notice that SW(N ) may be equivalently defined as the
set of ¢ € S(N) such that 7; (¢) = xor (M) (P) Py o for
every A € F/\W, thanks to [15, Proposition 2.17]. In addi-
tion, F s induces an isomorphism of §§(./\/' ) onto the space
of Schwartz functions on F’ supported in £2’ (cf. [15, Propo-
sition 5.2]).

Definition 3.10 Take p, ¢ € (0, 00] and s € R". We define
By, (N, £2) as the space of u € Sﬁ(}\/) such that

(A% (uu * Yi) € L1(K; LP(N)),

where (Ax)kek isa (8, R)-lattice on 2" and (Yry) is a family of
elements of S@(/\/ ) such that ((Farvk) (- #)) is a bounded
family of positive elements of C2° (£2),* with Ay = e - 1,
and

D T = 1
k

on £2’.

The definition of BY*Y (N, £2) does not depend on the
choice of 8, R, (), and () (cf. [16, Lemma 4.14]).
In addition, B{"? (N, £2) is a quasi-Banach space (cf. [16,
Proposition 4.16] and [14, Proposition 7.12]).

Observe that, by [16, the remarks following the statement
of Lemma 5.1], there is a constant ¢ > 0 such that

fe=c [ 0B g0 @ 0

forevery f € H*(D) = A%’OO(D) and for every (¢, z) € D,
where fy is the limit of (f;) in L2(N) forh — 0,h € £2.In
other words,

— b+d
S(¢.2)i=c (B(C’Z))o
is (the boundary values of) the Cauchy—Szeg6 kernel.
The following result is a consequence of [16, Proposition

4.20, Theorem 4.23, and Lemma 5.1].

4 Notice that this means that the (Fxr Yk ) (- ) are supported in a fixed
compact subset of 2" and are uniformly bounded with every derivative.

@ Springer

Proposition 3.11 Take (Ax) and (Vrx) as in Definition 3.10,
in such a way thaty_, (Fny)? = 10n 2. Then, there is a
continuous sesquilinear form

(1) BS ;N 2% B P 9y 5wy

r.a
> Z(u * Yrlu' x yy) € C
k
which induces an antilinear isomorphism of

B}:,Sti_,(l/p_l)+(b+d) NV, 22) onto the dual of the closure of
Ser(N) in BS (N, 2).

In addition, S ;) € Bp,:,(l/p_l)“b—m) (N, 2) for every
(¢.2) € Difs> ;(b+d)+ 5m.

Definition 3.12 Given s > %(b +d) + %q,m’, we define a
continuous linear operator

E:BSN,2)3u [(£,2) = (ulS¢.)]

00,00
€ A bray/p (D)

and denote by AL (D) its image, endowed with the corre-
sponding topology.

Notice that (Eu);, — u in Sﬁ(./\/) forh — 0,h € 2,
for every u € B;’fl (N, £2) (cf. [16, Theorem 5.2] and [14,
Proposition 7.13]), so that £ is one-to-one and B;ji W, £2)
is the space of boundary values of A2*?(D) (when defined).

The following result is a consequence of [16, Propo-
sition 5.4 and Corollary 5.11]. Notice that the inclusion
E(SgN)) < ALY (D) does not follow from [16, Propo-
sition 5.4], but may be obtained by means of standard
arguments, making use of [16, Corollaries 2.22 and 2.35].

Theorem 3.13 Tuake p,q € (0,00] ands € R". If's > %(b+

d) + %q,m’ and either s > im orq =00 ands > 0, then

£S5 (N)) € AP (D) < AL(D)

continuously, with equality in the second inclusion if

1 1 1 ,
S>—m+|\————— | m.
2q 2min(p, p') 29/,

We also have transference results (cf. [19, Theorems 6.1
and 6.3]).

Proposition 3.14 Take p,q € (0,00] ands € R". Then the
following hold:

(1) ifs > %d + ZLp,m’ and AP (To) = APP(Tg), then
ALP(D) = APP(D);
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2) ifs - Lb+d) + Z}I/m’ and AP(D) = AP (D), then

s b/p(T.Q) s b/p(T.Q)-

Notice that, in assertion (1) above, we consider only pure
norm spaces; an analogue for mixed-norm spaces holds for
the spaces AL as we shall see below (cf. Proposition 4.26).

3.6 Bergman Projectors

Concerning the boundedness of Bergman projectors, we have
the following results (cf. [16, Proposition 5.20]).

Proposition 3.15 Take p,q € [1,00] and s,s' € R". If s’ <
b+d- %m and Py induces a continuous linear projector
of LY (D) onto AL (D), then:

e s > %(b—l—d)—i-%q,m/, and s > ﬁmorq = o0 and
s>0;

o s’ < mm(pp)(b—i-d m/)’.

o s+s < })(b+d)—zm’,ands+s’<b+d—%m

org=1lands+s <b-+d.

There are also transference results (cf. [19, Corollary 4.7
and Theorems 6.1 and 6.3]).

Proposition 3.16 Take p.q € [1,00] and s,s' € R" such
thats’ <b+d — m Then, the following hold:

e if Py induces a continuous linear projector of LY (D)
onto AL (D), then Py induces a continuous linear pro-
Jector ofLs b/p(TQ) onto AP b/p(TQ),'

e if Py_y, induces a continuous linear projector of LYY (Tg)
onto ALY (To), then Py induces a continuous linear pro-
Jector ofo’P(D) onto AP (D).

Notice that, in the second assertion of the preceding result,
we consider only pure norm spaces; an analogue for mixed-
norm spaces holds for the spaces %7, as we shall see below
(cf. Corollary 4.33).

The following result is a consequence of [16, Corollary
5.27] (cf. also [19, Corollary 4.7]).

Theorem 3.17 Take p,q € [1,00] ands,s € R". If:

1 1 1 /.
® 5> 5;m+ <—2min(p,[?') - Z>+m’

/ 1 1 1 /.
eb+d—s—s >2—q,m+(m—2—q,)+m,

then Py induces a continuous linear projector of LY (D)
onto AP (D).

4 The Spaces 259

In this section, we consider the spaces

A (D) = {f € Hol(D): |5 = [11 Ol 4

< 00},
Bz T 1198 I

and prove the appropriate analogues of the results of the pre-
vious section valid in the case of the spaces AL (D).

In order to deal with the spaces ¢ (D), we introduce
some auxiliary spaces, namely the spaces

ALUDY:=(f € Hol(D): 115 = 1f Ol yra 1)l La () < 00}
and
AL J(D):=Hol (D) N L (D),

where Li’oq(D) denotes the closure of C.(D) in £{(D)
(defined as A9 (D) replacing Hol(D) with the space of
measurable functions modulo negligible functions).

The reason for the introduction of these spaces lies in the
fact that they are somewhat similar to the spaces AL*? and
enjoy similar technical advantages, but may still be easily
related to the spaces 2" by means of the simple equality

A (D) = AL

(s+h/2)/4 (D)

which holds for every p, g and s, as one may readily see from
the definitions.

We also observe that the treatment of the smaller spaces
Ag ’Oq (D) is necessary for a reasonably comprehensive treat-
ment of duality, since in general only the dual of Af ’Oq(D)
may be reasonably described. Since duality cannot be com-
prehensively studied using only the spaces 2", defining an
analogous space Qtp ! seems superfluous (and would only be
of use when p = oo and ¢ < o0, since Ql (D) = {0}
for every p € (0, oo], thanks to Proposition 4 5) Notice that
analogous spaces Aﬁ ’5’ (D) have also been considered in [16,
19]. Since Sect. 3 is essentially a summary of [16, 19], for the
sake of simplicity we avoided the introduction of the spaces
Ap q(D) On the contrary, we believe that the proofs of this
section will benefit from the parallel treatment of the spaces

A{ (D) and AL (D).
4.1 Elementary Properties

We begin our treatment of the spaces "¢ and AL by a
direct comparison with the spaces AY*Y.

Lemma 4.1 Take p,q € (0,00] and s € R". If either s >

1 _
2gM, 07 q = 0 and s > 0, then

ADY(D) = ADY(D)

@ Springer
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ifandonly if p = q or E = {0}. In particular, ifs > %(m—b)
or q = oo, then

P-q _ AP
s (D)—A(s+b/2)/q(D)

ifand only if p = q or E = {0}.

Note that, as the proof (combined with Proposition 4.5)
shows, if p # g and E # {0}, then ALY (D) ¢ AL(D)
and AL(D) 2 AD(D).

Proof 1t is clear that AJ"Y(D) = ALY (D) if p = g (by
Fubini’s theorem) and if £ = {0}. Conversely, assume that
p # q and that E # {0}, so that b # 0. Observe that, given
teTyand g € GL(E) suchthatt - @ = @ o (g x g) and
f € Hol(D), one has

ILf o (g xDllgrapy = Aaﬂrd)/p*s(l)||f||AsP~4(D>

and

Il fol(gx t)”.Aé"q(D) = Ab/q+d/‘”_s(f)||f||A§”‘1(D)

so that, letting + — oo, we see that the norms on the quasi-
Banach spaces ALY (D) and A{"? (D) cannot be comparable.
The assertion follows from the open mapping and the closed
graph theorems, since both AZ*? (D) and AL*? (D) are quasi-
Banach spaces (cf. Remark 3.1 and Proposition 4.5). O

The second assertion of the following result extends: [3,
Proposition 3.22], which corresponds to the case in which
p1.q1 = 1,q2 =00,n =0,s € R1,, and §2 is symmetric;
[23, Proposition 2.3], which corresponds to the case in which
P1,q1 = 1, g2 = oo, n = 0, and £2 is symmetric; [30,
Lemma 5.2], which corresponds to the case in which p1, g1 >
1,g> = 00,and n = 0.

Proposition 4.2 Take pi, p2,q1,q2 € (0,00] and s1,s2 €

R If

PL<p2 q1=<q, and

_ 1 _ 1 1 _ 1
Sz—S1+(p2 pn)d+(qz q:)b’

then AL (D) € AG (D) and A" (D) € AL (D).
In addition, the mappings AL"1(D) > f = f© ¢

Afl'f{)l/ql (Te), as ¢ runs through E, are equicontinuous and

map Afl"’gl (D) into Aé)ltqbl/q],O(T-Q)'
In particular, A5 (D) € AL (D) continuously, pro-

vided that g < 00 and s = Z—fsl + (4_2 — 4_2)d +

P2 P

(% - 2%) b. In addition, the mappings AL (D) > f
f® e Qlfl]ﬁ)'/z(Tg), as ¢ runs through E, are equicontinu-
ous.

Before we pass to the proof, we need an analogue of [16,
Lemma 3.26].

@ Springer

Lemma4.3 There are R(’) > 0 and a constant C > 0 such
that, for every p,q € (0,00, for every R € (0, R()], for
every f € Hol(D) and for every (¢, h) € E X §2,

1A 2 ey

4 ) 1/q
< ¢!/ min(l.p.q) (][ ||f;f/€ )”%p(F) dvexa(Z, h/)>
Bexo((6,h),R")

(modification if ¢ = 00).

Proof Set £:=min(1, p, ¢q) to simplify the notation. By [16,
Lemma 3.24], there are Ry > 0 and C’ > 0 such that

1f&, 2" < C/][ |f1dvp

B((¢,2),R)

for every f € Hol(D), for every (¢, z) € D, and for every
R € (0, Ro]. Then, applying Minkowski’s integral inequality
(with exponent %) and Young’s inequality,

4
14N 0 )
b -
< C/C}g][ |||f;f/§)| * [(XB((;,ND(()Hh),R));fr)] ||Lp/z(p)
Bexo((&,h),R)
x AL (W) dvgye (' 1)
: AL (1)
< C”][ £, 229 gy o i
Brao(e.Ry " T AL ()

3
for every f € Hol(D) and for every h € §2, where

o VEx2(BEx2((0, e2), R))
vp(B((0,iep), R))

and

C":=C" sup sup  Ch| (XB((O,ieQ),R));f,) |L1(F)-

0<R<Ry (¢/,h)€ExS2
By [16, Corollary 2.49], there is a constant C > 0 such that,
for every f € Hol(D) and for every h € 2,

e

Bexo((¢,h),R)

if R € (0, Ro]. Then, Jensen’s inequality (with exponent %)
leads to the first inequality. O

First part of the proof of Proposition 4.2 STEP 1. Let us first
show that there are R, C; > 0 such that

AZMW | fullLrrar.g)*

<0 ][ A Sl ) dvo () (4)
Bgo(h,R)
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for every f € Hol(D) and for every h € £2, where
£:=min(l, p1, q1). By homogeneity, it will suffice to prove (4)
for h = eg. Observe that, by [16, Lemma 3.24], there are
R > 0 and C, > 0 such that

1@ )t < Cz][ f1 dvp

B((¢.2).R)

forevery f € Hol(D) and for every (¢, z) € D. Then, apply-
ing Minkowski’s integral inequality and Young’s inequality,

¢
I feo Iz rar E)
g v
< Cﬁ][ ILfl® * [ B(©.ie0), k)] ||Lp2/z,q2/e(F,E)
Bgo(ee,R)

x AMF(m)dvg (h)

scf il dat)
Bg(en.R)

for every f € Hol(D) and for every h € §2, where C} =
ve(Ba(ee, R)/vp(B((0,ieq), R)) and

C3:=C) sup  AY M) (xB(.ien).R)nllLra3(F.E)
heBg(en,R)
and p3, g3 € [1, oo] are defined so that 1 + % = % + %

Lt 1
and I+ =g +5
STEP II. Applying the L%2/¢(vg) norm to (4) and using
Jensen’s inequality, we see that

1A pran o < CLILFI .
f A (D) f A (D)

for every f € Hol(D), whence the inclusion AL (D) C
AL (D).
STEP III. For what concerns the equicontinuity of the map-
: P11 ©) P1:q1
pings As, "' (D) > f = f € Asl—b/q. (Te), as ¢ runs
through E, observe that this is obvious when g; = co. Then,
assume that g; < oo and observe that, by Lemma 4.3, there

are R’, C4 > 0 such that
L ey
1
o ropr fan
<Cy ”fh/ ||L1’1(F) dvegxe (&' h)
Bexo((&,h),R")

forevery f € Hol(D) and for every (¢, h) € E x £2. By [16,
Corollary 2.49], there is a constant C5 > 0 such that

—b,
AL W O o ey

lq
b ’
<GCs ([ A?ZIS] (h/)”fh(’z )“?‘llll (F) dUEX.Q(C/: h,))
Bexa((¢,h).R")

5 Notice that Young’s inequality may be applied to the spaces
LP4(F, E) since F is anormal subgroup of A" and E may be identified
with N/ F.

forevery f € Hol(D) and for every (¢, h) € E x £2. Apply-
ing the L' (v ) norm, we then see that

©)
”f ||Asp|l—1l/q| (To)

§C5</f / XBeyo (@ 1), R (&, h) dvg (h)
EJele

, L/q1
x (AL BN LS o1 ()T dvg () dc’)
< C6||f||Aé’ll*q1(D)

for every f € Hol(D) and for every { € E, where
Co:=Csva(Bo(eq, R")'/. O

Corollary 4.4 Take p,q € (0,00], s € R’, and f €
ALY (D). Then, the function h ||fh@) I r(F) is decreasing
(for the order induced by §2) for every ¢ € E.

Proof This follows from Proposition 4.2 and [16, Corollary
3.3]. O

The second assertion of the following result extends: [9,
Corollary I1.3], which corresponds to the case in which
p = q; [3, Proposition 3.8], which corresponds to the case
in which p = g € [1,00),n =0, s € R1,, and £ is sym-
metric; [23, Theorem 2.15], which corresponds to the case in
which p € [1, o0], g € [1,00),n = 0, and £2 is symmetric.

Proposition 4.5 Take p,q € (0,00] and s € R’. Then,
ALG (D) # {0} (resp. ALY (D) # {0}) if and only if s >~
ﬁm (resp. s > 0 if ¢ = o0). In particular, A1 (D) # {0}
if and only if s > %(m —b) orqg = oo.

In addition, ALY (D), Aﬁ’oq (D), and AL"? (D) are quasi-
Banach spaces.

Proof Let (A1, ..., Ay) be abasis of F’ with elements in £2”.
Observe first that the function

g(s); D > (¢, z) — exp (—s cos(arr) Z(O‘./‘)C’ Z)a) eC

J

&)

is well defined for every ¢ > O and @ € (0, 1/2) and satisfies
estimates of the form

_ 20 @ a
|g(8)(C,Z)| <e Ce(|g|7+Re z|*+1p(£,2)[%) (6)

for every ¢ > 0 and for every (¢, z) € D and for a suitable C

(depending only on «), thanks to [16, Lemma 1.22] (cf., also,

[31, Lemma 8.1]). It is then readily verified that, for every

& > 0, thereis a constant C; > 0 such that IIg;f) lLracr By <

CpeCeln® for every h € 2, so that g® belongs to Ag’g (D)
1

fors > 2gm and to Af’oo(D) for every s > 0, thanks to [16,

Proposition 2.19 and Lemma 2.34].
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Conversely, if ¢ < oo and f € ALY(D), then the
mapping h +— || fh|| Lra(F,E) 1s decreasing for the order-
ing induced by £2, for every ¢ € E, by Corollary 4.4.
Since Aq - v does not induce a Radon measure on 2
unless s > Lm by [16 Proposition 2.19], this proves that
f=0 unless s > 2 m. If, otherwise, f € .A 0 (D) or
f e AP*°(D), then it is clear that f©) € Ag (Te) and
f e AP"®°(Tq), respectively, forevery ¢ € E,sothat f =0
unlesss > 0 ands > 0, respectively, by [16, Proposition 3.5].

In order to show that A% (D) is a quasi-Banach space,
it suffices to observe that there are continuous inclusions
AL(D) € A2 74—d;p(D) S Hol(D), by Proposition 4.2,
and that the quasi-norm of AJ?(D) extends to a lower

semi-continuous function on Hol(D) which is finite only on
&1(D). o

The second assertion of the following result extends: [3,
Theorem 3.23], which corresponds to the case in which
P1. P2,q1,q2 > 1,81,8 € R1,,n =0, and £2 is symmet-
ric; [23, Proposition 2.14], which corresponds to the case
in which p1, p2,91,92 = 1, n = 0, and £ is symmetric;
[6, Lemma 3.6], which corresponds to the case in which
P1,q1 = 1 and po = ¢» = 2; [29, Lemma 4.3], which
corresponds to the case in which p1, p2, g1, 92 > 1.

Proposition 4.6 Take p1, p2,q1,q2 € (0,00], and s1,82 €
R™. If AG (D) # {0}, then AL (D) N AG (D) is
dense in .Ap] JUD) (resp. ALT(D) N AL (D) is dense
in .Afll’ql (D) for the weak topology 0(.,41511’(1l (D),
Lzls;q-il-(l/ql—1)+b+(1/p1—1)+d(D)))' Analogous assertions
hold with A’ {* (D) in place of AG " (D).

In particular, if AL (D) # {0} and py,q1 < oo, then
AL (D) N AL (D) is dense in AL (D).

Proof Define g®) as in the proof of Proposition 4.5, for some
o € (0,1/2). Take f € A‘"l q'(D) Using the estimates (6),
Proposition 4.2, and Corollary 4.4, one may show that f(- +
ih)g® belongs to Al (D) N AL (D) for every h €
£2 and for every ¢ > 0. By dominated convergence one
then shows that f(- 4 ih)g® converges to f(- + ih) in

fl'(;“(D) for e — 0T, for every h € 2. Now, observe
that the mapping 2 > h — (fg®), € LPV9(F,E) is
continuous by Corollary 4.4 and dominated convergence, so
that the mapping 2 2 h — f;, € LPV9'(F, E) is continuous
by the arbitrariness of ¢ > 0 and the previous arguments
(combined with Corollary 4.4 again). Using this fact and
Corollary 4.4, we then see that f(- + ih) converges to f in
Agrg]r (D) for h — 0. In a similar way, one deals with the
other cases. O

End of the proof of Proposition 4.2 The inclusion .Afl 1!’6“ (D)
c .Afz zy’(;”(D) follows from the continuity of the inclusion

@ Springer

ALN(D)y € AZP"(D) and the density of A;’]l”g'(D) N
AP>2 (D) in Ap’ (D) (cf. Proposition 4.6).

Sz 0
The fact that the mappmgs f = f9O ¢ e E,
map .Ap] (D) into .Ap1 b/g.0(T2) is proved similarly,
using the density of .Aflloql (D) N A;lm(l pl)‘mm(l (D) in
A1 (D) and observing that A:lfg)l/’ﬁii’gngl(;’ql)(T ) C
AP b b/q1, o(T2) by the previous remarks (cf. Proposition 4.6).
O

4.2 Reproducing kernels

Notice that As (D) = AS (D) SO that Pprd—2s is the
orthogonal projector of L‘ (D) onto As (D). Analogously,
if s > %m, then %g’Z(D) = A%s’ib/z)ﬂ(D) is a reproducing
kernel Hilbert space with reproducing kernel (cf. Proposi-
tion 3.3)

R (60, @) = espmuBlPH T 2.

Then,

Bs = Pojotrd—s : [ +> Cs/21b/4

/f@@&uw”W“w@omoo

is the orthoprojector of £2:%(D) onto A2(D).

Proposition47 Take p,q € (0, 00, s € R", and s’ € C".
Then, B( o € AZJ(D) (resp. B( e APU(D)) for
some/every (¢,z) € D if and only zf the following condi-
tions hold:

os>%m(resp.s20ifq=oo);
e Res' < %d— ﬁm/ (resp.s' < 0if p=o00);
1 1 1 lq :
e s+ Res' < gb—l—;d—zm/(resp.sts/ < ,dif
q = 00).

In this case,

s+Res —b/q— d/p(p(C )

1B% ol 4240y = 1B jec) | a2 ) A

forevery (¢,z) € D.

Proof Set f: B(C 2) for some (¢, z) € D. Assume first that
the conditions in the statement are satisfied. Then, for every
¢’ € E, [16, Proposition 2.41] shows that f¢") € Al (Te)
(resp. f¢ € APY(Tg)), and that

’ Res'—d
LF N yraryy = C1a5 VP (h+ @ = 1)),

where h = p(¢, z) and C is a suitable constant. In addition,
Lemma [16, Lemma 2.32] shows that f € Ai’Oq(D) (resp.
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fe qu(D)) and that

Res'—d/p—b
£l gpa(py = CrAg > Y77,

where C is a suitable constant.®

Conversely, assume that f € .Ap ’q(D) (resp. f €
AP9(D)). Then, Pr0p051t10n4 2 shows that f® e As b/q.0
(To) (resp. f© e AP

f(o) = B; (as a function on Tg), [16, Proposition 2.41]
leads to the conclusion. ]

b/q (Te)) for every ¢ € E. Since

The second part of the following result extends: [9, Theo-
rem I1.6], which corresponds to the case in which p = ¢ and
S > 1b—i—d—i—"m ands’ — qs - — (2 + 2q)b—qld—i—%m
when g < 1; [4, Proposition 2.19], which corresponds to the
case in which p = ¢ > 1,5, € Rl,,n = 0, and £2 is
symmetric; [6, Proposition 3.10 (ii)], which corresponds to
the case in which By is continuous on £9(D).

Proposition 4.8 Tuke p, q € (0,00l ands, s’ € R such that
the following hold:

® S > lb—i— 1d+21q,m’-

o s < ld ,m b+d-—
1 / 1
e s+s < m1n(1q)b+m1n(1 p)d 2q,mors+s < §b+
1 _
min(1, p) difq" = oco.

Then, Py f = f for every f € ALY (D).
In particular, if g < oo and:
o s> %b—i— qd—l— z‘g,m’-
os’>%b+ d—l—zp,m (m—b);
/ 1 1 1 /
e s — s> —2—(1/b—<F—1)+d+2—q/m0rq = oo and

max(l p)
q

/ 1 1 1 .

S_as> (E—z)b—(5_1)+d,

then Py f = f for every f € AL (D).
Proof Observe that Proposition 4.8 shows that the mapping

API(D) 5 f > Py f(L,2) = Chrd—s)2

X/Df(é’, B (@ DA (0, ) dvp(,2) e C

—_

is well defined and continuous for every ({,z) € D and
0bv10usly induces the mapping f — f(¢, z) on ALY (D) N
A(b td—s) /2(D) The result follows by continuity, thanks to
Proposition 4.6. O

6 Actually, the cited reference allows to deal with the case g < co. The

remaining case, though, follows from the fact that AHR&S —4/p h++)

is decreasing on Qihanks to [16, Corollary 2.36], and vanishes at the
point at infinity of £2 whens +Res’ —d/p < 0, thanks to [16, Lemma
2.35].

4.3 Sampling

The following sampling theorem is a consequence of the
more general Theorem 4.11 presented below. We single out
this result for comparison with the literature. It extends: [3,
Theorem 5.6], which corresponds to the case in which p =
g >1,s € Rl,,n = 0, and £2 is symmetric; [8, Theorem
5.2], which corresponds to the case in which p = g > 1;
[7, Theorem 3.3], which corresponds to the case in which
p,q > 1,n =0and £2 is symmetric.

Recall that we denote by ¢7-9(J, K) the space of A €
C7*X such that || IXj xllersylleaxy < oo, with some abuse
of notation.

Theorem 4.9 Take p,q € (0,00], s € R" and Ry > 1.
Then, there is 69 > 0 such that, for every F-(8, R)-lattice
(Ck» 2j.k) jes . kek on D, with § € (0,80] and R € (1, Ro],
the mapping

fi AYIICO=AI (5 o ) F k20

induces an isomorphism of A" (D) onto a closed subspace
of ¢P9(J, K).

In order to prove the more general version of this result,
we need the following definition.

Definition 4.10 For every s € R’, we define .#; as the
space of f € Hol(D) such that the function (¢,z)
AL (p(¢, 2))e [P =Rez"=Ip(C.01" £ (£ 7 is bounded on D
for some o € [0, 1/2).

Observe that .#s C .#y fors < ¢/, and that
-qu(D) c As b/qg— d/p(D) c j/sfb/qfd/p

for every s € R", thanks to Proposition 4.2.

Theorem 4.11 Tuke p,q € (0,00], s € R, Ry > 1 and
8y >0,ands >s— %b - %d. Then, there are §_,C > 0

such that, for every F-(8, R)-lattice ({k, zj k) jes.kek on D,
with R € (1, Ro), if we define

Si: Hol(D) > f (A;"’/q‘d/” (hy)  max
B((%k,zj.k),R)

|f|> c CJXK

and

S_: Hol(D)> f (A?;b/"_d/p(hk)7 min
B((k»zj.k),RS)

|f|>€<CJXK,

where hy:=p (k. 2 ) for every j € J and for every k € K,
then

8m/p+(2n+m)/q ” S

M lapao) < Fleva x)

= C”f”Aé’*‘l(D)

@ Springer
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for every f € Hol(D) and for every 6 € (0,64]ife =
and for every [ € Mg and for every § € (0,8_]ife = —.
In addition,

|
+

ALJ(D) = Hol(D)N ST (€5 (J.K))  and
ALJ(D) = g (D) N SZNEL (U, K)).

where the second equality holds provided that § < §_.

Proof For the sake of simplicity, we shall generally present
the computations as if p, g < oco. We leave to the reader
the (purely formal) modifications which are necessary when
max(p, g) = oo. Throughout the proof, for every r € T we
shall denote by g; an element of GL(E) such thatt - @ =

D o (g X g).
STEP I. Define, for every R’ > 0, for every ¢ € E, and
for every h € £2,

Mg, h):=| (XB((OJEQ),R/))I(/[C) [ LI(F)
<H"(prp(B((0,ieq), R"))) < 00

Then, for every £ € (0, 0o], for every ¢’ € T4, and for every

(g/s x/) € N;

©)
H(XB((C’,x”ri@(§)+if’~erz),R’))h HLZ(F)
=AYV Mp(g (¢ - ¢, T e

with the convention 0° = 0. In particular,

©)
H (XB(({k,Z/,k),R'))h LUCF)

—d/¢ _ _
= XBiro (G R WA () Mg (g5, (€ — co) it - )Ye

forevery (¢, h) € E x $2 andforeveryk € K,wheret; € T+
is such that h; = t; - ee. In addition,

IMRllLg,q) < R™ for R — 0T
For every (¢, h) € E x §2, define

K p:={k € K: (¢, h) € Bpxo (G, hi), RO},

and observe that there is N € IN such that Card(K; ) < N
forevery (¢, h) € E x §2, provided that R < Rypand § < .
We may also assume thatevery (¢, #) € E x§2 iscontained in
atmost N balls Bgx o ((¢k, hi), 2R3), k € K, and that every
(¢, z) € Discontainedin atmost N balls B((¢k, zj k), 2R0),
(j,k) € J x K, provided that R < Ry and § < 4. Finally,
set £:=min(1, p, q).

@ Springer

STEP II. Let us prove that Sy maps AY7(D) into
£P9(J, K). Take f € AL?(D) and define

Cp.r:=vp(B((0,iep), R")),
Cexo r=VEx2(Bex2((0,e0), R)), and
Co r:=vo(Ba(eq. R")

for every R’ > 0 to simplify the notation. Then, [16, Lemma
3.24] implies that there are R6 € (0,1/2] and Cy > 0 such
that

Ci

|f17dvp

_max [f1 < /
B((k.2j.4),RS) Cp.Ris JB(Gk.2j. 0. (RHR)S)

for every (j, k) € J x K. Therefore, [16, Corollary 2.49]
implies that there is a constant C> > 0 such that

Cy _
(S+f)f,k < CiA?; LI
D, ’

R}

X/ / |(XB((;k,zj,k>,(R+Rg))5)f);,g)(X)\pdxdvExQ((»h)
Ex2 JF

for every (j, k) € J x K. Hence,

D oSN
jeJ
G APS=(p/@)b h
= C—/N Q (hi)
D,R)$

<[ 1Oy Vi € 1)
BEx2 ((Gk,hi), (R+R;)8)

for every k € K. Now, Lemma 4.3 shows that there is a
constant C3 > 0 such that

/ LANT oy dVEx2 (C. h)
BEx 2 ((Ck,hi), (R+R))S)

<GC3 /
Brxo (G hi), (R+R))S)

rlq
][ AN oy dVE2(C. )
BExg((¢',h), Ry8)

dvexe(C' 1)

Cexo,(R+R))s

rlq
CExQ,R(’)(S

r/q
<(/ LNy v, )
BEx 2 ((Gk i), (R+2R()8)

for every k € K. Therefore, another application of [16,
Corollary 2.49] shows that there is a constant C; > 0 such

<GCs
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that for every j' € J' and for every k¥’ € K'. Define
1/p
cic s—b/g—d/p ./ .
2V EXQ2.RERY)S 1/ p+1/q S” : Hol(D) > f > (AQ TP (b min ¥
IS+ flleracrxy = =775 4 N I F1l gz py- BUE) .2,y o) (RERS)

D,Rj8 ~Ex82,R}3
P9 Pq
Next, let us prove that S (A (D)) S £, (J, K).
Observe that we may assume that s > im. Then, take p €

~ o 11 11
(?, p)andg € (0, g) so thats”:=s— (5 — q=)b— (; - ;)d >

;M and observe that the preceding computations show that
S+ (ALY (D) N ALT(D)) € €71, K) €51, K), 50

s//
that the assertion follows by means of Proposition 4.6.
STEP III. Now, take f € Hol(D) and assume that S; f €
€9(J, K) (tesp. Sy f € €79(J, K)), and let us prove that

[ e Al (D) (resp. f € A§Y(D)). Observe first that

17

= 2

(J.K)e XK

b/g+d/p—
Ag/q P78 () (XB((;k,zj,k),RS))f) S+ )k

on F, forevery (¢, h) € E x £2, so that fh@) € Lg(F) (resp.
fhm € LP(F)) for every (¢, h) € E x 2. In addition,

1A Loy
< NV | (A o Mrs (g, ¢ = g0, 17t
X(S+f)j,k)
< NYPHAP=Y D+ ppsi P

x| (A% w0010 v,

JkWeP(JxKe p)

€4(Kg,p)

for every (¢, h) € E x £2, so that (¢, h) — ||fh(£)||LP(F)

belongs to Lg(E X §2) and there is a constant Cé’ > 0 (cf.
[16, Corollary 2.49]) such that

Hf“Aé’#(D)

< N /P +max(1/p.1/q) ||MR5||1/pCl/q

oo Cpna rsCollS+ flleracs k-
STEP IV. Observe that, if (¢}, Z;/’k/)j/ej/‘k/e[(/ is an F-
(8, R')-lattice on D, then there are two mappings t;: K’ —

Kandiy: J' x K" — J such that, setting /1;,:=p (¢, z;./ o)
for every j' € J' and for every k' € K’,

(&4rs hy) € BEx2 (S k) huy ), RO)

and

(Cprs z’j,’k,) € B((&,')s Zia(j' k)0 (k) » RS)

7 !
GCJXK,

and observe that, by [16, Corollary 2.49] and the preceding
remarks, there is a constant C’ > 0 such that

Sk < C(S— o iyn®)

for every f € Hol(D), for every j/ € J' and for every
k' € K'.In addition, there is N’ € IN such that the fibres of (;
and (j', k") — (12(j', k"), t1(k’)) have at most N’ elements.
Consequently,

IS_ flleracsr .y < C'NYPHPVAYS_ Fllopas k)

for every f € Hol(D). In addition, if S_f € ¢59(J, K),
then S f € ¢59(J', K').
Observe, furthermore, that if R’ > 8, then we may choose
(é‘]é/,z/j/’k/)j’e‘]/’k/el{/ such that K’ = K| x K}, such that
/ 7/
Mgk = Mg g
/ / : I :
K, and such that (h(ki,ké))kéel(é is a (8, R")-lattice on £2 for

, for every ki, k{ € K{ and for every k} €

some/every k| € K| (argue as in the proof of [16, Lemma
2.55)).

STEP V. Take f € .#y (D) such that S_ f € ¢£/9(J, K)
and let us prove that

If 1l gzt py < CE™PHEHMIAYS_ Fllgpas )

for a suitable constant C > 0 (depending only on §_ and
Ry), provided that §_ is sufficiently small. Observe first that,
by STEP IV, up to replacing R with R + 8, we may assume
that (¢, zj x) is an F-(8, R)-lattice, that K = K’ x K", that
h k) only depends on k” (so that we also write Ay~ instead
of h rry), and that (hgr) is a (8, R)-lattice in £2. Observe
that, for every (j, k) € J x K, we may find (;}’k, z’j,k) €
B((&, zj,k), RS) such that

f @il = min|f].
B((Sk,zj,k),R3)

Now, [16, Lemmas 3.24 and 3.25] imply that there are R| €
O, R6] and C3 > 0 such that, for every j € J, for every
k € K, for every (¢, x) € NV, and for every h € §2 such that
d((Ck, 2ji)s (§,x +1P(8) +ih)) < RS,

A< 1 20
FC3RSN X p (¢, x+io@)+im,2Rs+R) S IILP (vp)
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provided that RS < R|. Then,

||f({)||LP(F) < 2= )+||MR8||L°°(E><-Q)

x Y A& Dl

(keI xKe
+ 2P+ (C3R8)P O (C, h),

where

01z, hy:= / By .20 ()

(VR k)eJxK(;,

X /;)XB(((,x+i<D(§)+ih),2R8+R’l) | f17 dvp dx.
Now, set
K;:={k" € K": h € Bo(hyr, RS)}

for every h € £2 and observe that we may assume that, for
every h € £2,

Card K, <N,

provided that § < &4, as in STEP 1. Then, [16, Corollary
2.49] implies that there is a constant C4 > 0 such that, if
RS < Ry,

[l =

(j.k)yeJxK¢ p

< N@/P=D+ Z A;}(q/p)d(hk)
K"K
q/p

/ Z Z |f(fjl~’(k/,k//), Z,j,(k’,k”))|p dé'

Kk ke \Jjed

q/p
—d / / P
Ag (hk)|f(§,',k, Zj,k)| dg

ECE,RSNmaX(Lq/p) Z A;;I(b/Q“‘d/P)(hk“)

k”EK;/,/
a/p
/ /!
X Z Z|f(§j,(k/,k”)vZj,(k’,k”))|p
k'eK' \jeJ
< C452nNmax(1.,q/p)A;2‘15(h)
q/p

< > D IS jwanl?

k"ek) kek' \jeJ

where the first inequality follows from the convexity or
subadditivity of the mapping x + x9/? on R, while
the second one follows from Tonelli’s theorem, setting
Cre.rs:=H>"(prz(Bex2((0, e2). RS))).

@ Springer

Now, observe that

@l (;-’ h) = /D |f(é-/9 Z/)|p@2(é-/9 Z/v g-f h) dVD(§/7 Z/)s
where

(¢, 7, ¢, h)=

/ D Bz RONBE ) 2R3 R (V) .
kel xKe i

In addition, for every (¢’,z") € D and for every (¢, h) €
E x £2, setting h':=p(¢’, 7’), one has

(', 2, ¢, h)
< NII(XB((;’,Z'>,2R5+R;));(f)IIL'(F>
= NMapsip (8, (¢ = ¢ 07 - magta),

provided that R < Rp and § < 84, where ¢’ € T4 is such
that i’ = t’ - eg. Therefore, by STEP I, we see that

O1(L, h) < Nl[Mogsir, llL=Ex )

x / LAENE oy dvEw @ R,
BEx2((¢,h),2R8+R))

provided that R < Rp and § < §4,4. Then, applying

Lemma 4.3 as in STEP II, we see that there is a constant
Cs > 0 such that

[ ermira
E
o | L W) A2 ()
Bg(h,2R642R))

provided that R < Rp and § < 4.
Therefore, there is a constant Cg > 0 such that

| fullLra(r, E)
< C6A55(h)8m/p+2"/q||S—f||13M(J,K/xK,’l’)

1/q
+5Cs ( / LNy A <h’>> ,
Bo (h,2R5+2R))

provided that R < Rp and § < mm(R /Ro, 84).
Now, by assumption, there is &’ € (0, 1/2) such that

sup AS (,O(C z))e_m "—IRez|? —|0(, )" | £ (¢, 2)] < oo.
(¢,z2)eD

Then, take (g(e))g>0 as in [16, Lemma 1.22] (cf. the proof
of Proposition 4.5 and formulas (5) and (6)) for some
a € (a/,1/2), so that G(e):=fg® € AD(D) and



Complex Analysis and its Synergies (2023) 9:13

Page 17 of 31 13

S_G(e) < S_f for every ¢ > 0. In particular, the map-
ping i — |[|G(&)pllLra(r, k) is (finite and) decreasing on
£2, thanks to Corollary 4.4, for every ¢ > 0. In addition,
observe that we may take §; € (0, min(R/ /Ry, §+)] and R]
so small that B (e, 2Rpd1 + 2Ri) C ep/2+ 2. Then, by
homogeneity,

Bo(h,2Ro81 +2R}) Ch/2+ 2

for every h € £2. Then, the preceding estimates (applied to
G (¢)) show that there is a constant C; > 0 such that

| Gen| LP4(F.E)
< CeAF WS PFANS_ fllona s k05K

+8Cs[|G@nya

LP4(F,E)’

for every ¢ > 0, provided that § < §; and R < Ry. If we
define

xe: D3 (8,2) = Xepptyn(p(C,2) € Ry

for every £ € IN, then there is a constant Cg > ( such that

|G @] ppapy = CE8™PHE WIS Fllonas k)
+8Cq “ xe+1G () ||£s” (D)

for every ¢ > 0 and for every £ € IN, provided that § < §;
and R < Ry. Now, define

e D3 (5, 2) ol¢ P +Re 2| +Im z—d () R+,
and observe that

1
HG(g)X/é HE{“’(D) . ||ea/ f”LSOf’vOO(D) ”ea/g(s)xg ”E”’,(D)
-1 s —Cre| |
= Crelley fllcoep) | Xeqrptrds e ) )
—1 —s'+d
< Cylley f||£:fj'°°(D)||Xeg/2£+.QA_s(zs 1) Lo (2

_Co
x e ) e ()

' —s—d/q)t ) ,—1
< C;/’ez(s s—d/q) ||ea, f||£;>/o.oo(D)

for suitable constants C7 g, Céﬁg, Cé/,g > 0, since s — s’ +
d/q < 0 (cf. [16, Corollary 2.36]). Then, fix N’ >
Z;zl(s; — sj) + m/q and choose 5_ € (0, 81] so that

Cis_ < 2=V Observe that the preceding computations

show that, if § € (0, 6_], then

gora £ (D)

=y ZZ/N/<HG(8)XZ+E'

£'eN

L£{(D)

1
by G Xxere+1 ”Lé’*"(D))

_—6  em/p+Q2n+m)/q )
=7 ! IS fllerar,iy

for every ¢ > 0 and for every £ € IN. Passing to the limit for
£ — oo, we then infer that G(¢) € ALY (D) and that

C//
1G@ | apapy = 7= 8" NS flleracs.x)

ST v

for every & > 0. Then, passing to the limit for & — 0", we
infer that f € ALY (D) and that

4

C
TS fenaa gy

”f”_Ag‘q(D) =

STEP VL. It only remains to prove that f € Ag ’Oq(D) for
every f € ALY (D) such that S_ f € ¢0°7(J, K), provided
that 6_ is sufficiently small. Observe first that the preceding
computations show that

Ixe(f = GENlgrap)

"

C
< l—gwﬁm/p+(2n+m)/P||S_(f — GENllera, k)

for every £ € IN and for every ¢ > 0. Since S_(f — G (¢)) <
(S-S, (1 —g®), where

Sy(1—g®)], = max ©
[S+1=g™] ;0 B((Z.2).4).RS)

1-s

for every (j, k) € J x K, and since 1 — g(g) — 0 locally
uniformly, it is readily seen that x,(f — G(¢)) — O in
£l(D) for ¢ — 0%, for every £ € IN. In particular,
fu € LyU(F,E) for every h € 2, and the mapping
b= Xeg b+ AL W) fullLracr.E) belongs to L (ve)
for every £ € IN. To conclude, it will essentially suffice to
show that, if ¢ = oo, then Asg(h)”fh”Lp,oo(F’E) — 0 as
h approaches the boundary of §2. Observe that, by the pre-
ceding computations, there is a constant Cg > 0 (namely,
C} max(1, 8™/7)) such that

| fullLroor By < CSA;;(]’I)”S—f”/éPvOO(J,K’xK;,’)
+ 8Csll fuy2llLpoo(F B
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for every h € §2. Observe that

Ao W fup2llLroor ey = 25A% /2| fr2llLroF,E)
= 28 ”f”Aé’m(D)

forevery h € §2. Therefore, assuming that §_ is so small that
8_Cg2% < 1/2,

AW fallLrer,E)

~y o <A§Q<h/2‘>||fh/2z lroecr. i)

LeN

- ﬁqu(h/ze)Hfh/zHl ||LP~°°(F,E))
<Cs Y 27YS_ fllercos k' xk”
< 8%\:} 1S—fllepoo(r,x <K/ )

for every h € £2. Now, observe that n:=mingcN dg (e,
en/2) > 0, and that n = minge dg (h, h/2¢F") for
every h € £2, by homogeneity. Therefore, if 5_ is so small
that 2RypS_ < n, then the sets K;/z//zf’ as £ runs through IN,
are pairwise disjoint for every h € §2. Hence,

oM fillreor,ey < 2C8 IS fller.oo(s k15 k]

for every h € £2, where K;":=J,ciy K;/z//zl' Since K" is
contained in the complement of every fixed finite subset of
K if h € 2\(eg/2" + £2) and ¢ is sufficiently large, this
and the preceding remarks prove that A% (h) || fullLr vy —
0 as h — oo in £2, provided that §_ is sufficiently small

(independently of f). The proof is complete.
4.4 Atomic decomposition and duality

Definition 4.12 Take p,q € (0,00] and 5,8’ € R’". Then,
we say that property (E)g ’S‘,{O (resp. (E)g ’s(,l) holds if for every
8o > 0 there is an F-(8, 4)-lattice ({k, zj k) jeJ kek» With
d € (0,80], such that, defining hr:=p (¢, z;,k) for every
j € J and for every k € K, the mapping

. . ps b/q+d/p—s—s'
Wik ) hjuBY 0 Ag (i)
J.k

is well defined (with locally uniform convergence of the sum)
and maps ¢,"?(J, K) into AS o/ (D) continuously (resp. maps
£P4(J, K) into AL (D) continuously).

If we may take ({k,2jx)jeJ kek, for every 8o > 0O as
above, in such a way that the corresponding mapping v is
onto, then we say that property (£’ )p 5.0 (Tesp. Hr 5.8 7y holds.

When s > 2 Lm — b), we define also properties
(i))S s/ and (S’)S +/ as properties ([,)fs’jb 12)/q.bj2rdy Nd
o )(s b/2)/q.b/2+d—s"> respectively. These properties are

@ Springer

therefore related to the continuity (and surjectivity) of the
mapping

(1208 NS Zﬁs,(
ik

XA?}(I/(Zfi)—l/ZHd(1/P—1)—S/q+s'(hk)

5 Gk, 2j.k))

from £7+4(J, K) into 229 (D), where £ denotes the repro-
ducing kernel of le;z(D).

As we shall see in Theorem 4.31 below, properties (E)é7 s(,l 0
(resp. (L)p )and (LZ’)s o o (resp. (£’)£ /) are actually eqni\;—
alent when P, q € [1, oo]. In addition, arguing as in the proof
of Theorem 4.31, one may show that properties (L)p 4 /0 and
(E)p ; are equivalent when s > 0 (which is a necessary con-

dition for property (E)é7 ¥ o to hold).

Lemma 4.13 Take p,q € (O, oo] and s,s' € R” such that
property (E)s y.0 (resp. (AC)s ¥ 1) holds. Then, the following
hold:

. s>2im(resp.szoifq=oo)ands>Cllb+%d+
1

2q’m

os'e min(,,,,,)d Tty ™

e s+s' < mm(l q)b+m1n(l p)d 2(11,m0rs+s/ < %b—k
m ifq' =00, ands + s < lb—i- ld—zm

In particular, if ¢ < 0o, ' > %(m — b) and property
(E)g S[,I holds, then:

o s>%(m—b),%b+%d+2iq,m’;
/ 1 1 1
e ‘b+( - mm(pp))d+ Zmin(p.p) ™
1 1

° s—§s>—‘———‘b (——1)+d+2Lq/mors’—[—1sz
14 g (30,0
(5——)b+< )d—l—ﬁm’

Proof By Proposition 4.7, it will suffice to observe that

B(SO ieo) € (D) (resp. B(0 feo) € AP9 (D)), and to show

that

/.

if g = oo, ands/—és -

o

S/ P .q
B(O,ieﬂ) < ‘Ab/ min(1,q)+d/ min(l,p)—s—s’(D)'

Take 89 > 0. Then, there is an F-(8,4)-lattice (¢,
Zj.k)jed kek » With 8 < 8o, such that the mapping

BITK) S A Y A B, o AP ()

Jj.k

Zj, k)

e AP(D)
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is well defined and continuous, where h;:=p(lk, zj x) for
every j € J andforevery k € K. Observe that the continuity
of the mapping f + f(0,ieq) on AYY(D) implies that
there is a constant C; > 0 such that

’ . b 3/ pss’
)Z)Lj’kB(ka,zj,k)(O,leQ)AQ/q+ /p—s—s )
J.k
< Cilll s i

for every A € £5?(J, K). Therefore,

(B(O l(,_q)(;]k Zj, k)Ab/‘H'd/P s—s’ (e ))

. b d/p—s—s’ i
(B(Sz,k zj k)(o”ef?)A:z/ﬁ [pmss (hk)> e P9 (J, K),

so that the conclusion follows from Theorem 4.11 and [16,
Theorem 2.47]. O

The second part of the following result extends: [10,
Theorem 2.2], which corresponds to the case in which

_ 2(n+m) 1 1 1 1
p =9q9g > W,S/—as > —<§+Z)b—gd+

%m,—(%—ﬁ)b — <l—é)d+ ﬁm’, and ' — s >
—d+ %m’ ; [8, Theorem 4.2], which deals with the extension

of [10, Theorem 2.2] to the case of general homogeneous
domains.’

Theorem 4.14 Take p,q € (0, 00] and s,s’ € R such that
the following hold:

s

m
1 1 /
+ min(l,p)d - 24M

1 1
o s> sgm o+ (st - EL
/ 1
eS + S < mm(lpq)b
1 1
- <2min(1,p) “aq) ™
Then, properties (L' )p 10 and (L' )p S(,I hold.
In particular, if ¢ < oo and:

/

1 .

'S>2(m b)+(2mm(1p) §)+m’
1 1

- (z+z—m)b—

1 / 1 1 .
T oM+ (2mi_n<1,p‘> - E)J‘"

o s (%— )+d

then property (2’);7 SC,I holds.

7 We note that the statement of [8, Theorem 4.2] requires far more
restrictive (or even uncomparable) conditions than those of [10, The-
orem 2.2], despite the fact that its proof is omitted and stated to be
formally equal to that of [10, Theorem 2.2]. Concerning this fact,we
simply observe that the notation of [10] and [8] are quite different, and
that even the statement of [8, Proposition 4.3] does not match the one
in the cited reference [10, Theorem B].

More precisely, the proof shows that the mapping ¥ of
Definition 4.12 has a continuous linear section for § suffi-
ciently small and R bounded.

Proof Take an F-(8, R)-lattice (¢k, zj k) jeskex on D for
some 6§ > 0 and some R > 1. We shall further assume, as
in the proof of Theorem 4.11, that K = K’ x K”, and that
there is a (8, R)-lattice (hy»)yrcgr on §2 such that hyr =
p(&w k), 2w k) forevery j € J and for every (K, k") €
K’ x K". We shall also write h i instead of hx» when it
simplifies the notation.
In addition, define

S/ . S//
J.k _B(Ckvl_/‘k)

for every s” € R” and for every (j, k) € J x K, in order to
simplify the notation. Further, for every A € C’/*X define

WL )= Y 1haBL AP () € 10, 00
J.k

and, for every A € cUxK),

W=D AjuBY, AP gy € Hol(D).

J.k

We shall first prove that A +— ||& (L) || £y is a continu-
ous quasi-normon £7-9(J, K). Arguing as in [ 16, Proposition
3.32] and using Proposition 4.7, this will prove that ¥ induces
continuous linear mappings Eg YT, K) — .Ag ’Oq (D) and
eP4(J, K) — AP (D). We shall then prove that these map-
pings are onto and have continuous linear sections.

STEP I. Assume first that ¢ < p < 1. Then, for every
¢ € E and forevery h € £2,

) p
12 1L,
b+d—
< Z |)\'j’k|PA(/7/q) + [’(S"I‘S)(h )”(BS k)(g)”LP(F)

In addition, [16, Lemma 2.39] shows that there is a constant
Cq > 0 such that

BSOS Y ey = C1AD ~ 4+ by + P — G0)

for every (j, k) € J x K, for every ¢ € E, and for every
h € £2. Therefore, using the subadditivity of the mapping
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x — x9/7 on R4,

19D
. C?/”Z Zlml”

//Aqs (‘1/p)d(h+hk+q)(§—§k))d§A (h)dvg (h).

q/p
Al;2+(q/p)d—q<5+S’)(hk)

Now, [16, Corollary 2.22 and Lemma 2.32] imply that there
is a constant C» > 0 such that

/ / A4S —(q/p)d(h + I+ @ — &) dg AL () dvg (h)
= CL AL D

for every k € K. Hence,
14 Gl zra iy < €17 C M IMlleraca ko)

whence our claim in this case.
STEP II. Assume, now, thatg > p < 1. Forevery k € K,
choose 7, € C.(E x £2) such that

XBexo(€e.hi).8/2) = Tk = XBpyo((Gk.he).6)-

Observe that by the computations of STEP I and [16, Corol-
lary 2.49], there is a constant C { > 0 such that

[FZ2A0S Y T

< C;/ S e, W) AG/ P gy
Ex$2 P2
X AL 4 1+ D@ — ) dvpen(@ 1),

where A/ = (Zl A}k |1’)k. Hence, by Minkowski’s integral
inequality and Young’s inequality, and by [16, Lemma 2.32],

1% (M)n ”ZI’-‘I(F,E)

b+d— /
=i [ S rn myag e
Ex$ X

) AP 1+ D( — ) dvpen (@ )

= /.Q ”(Xk:)‘;{fk(', h/)) * Ags'—d(h Y

[(p/q)+l]b+d—p(S+S’)(h/) dvg (h')
L4/P(E)

= /Q Z HZ)‘/(k/,k”) T k(- )
k" ¥

)AL "+ + DDl

L4/P(E)

+@(-))

L4/P(E)
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A[(p/q)Jrl]b+dfp(s+s/)(h/) d\)_Q(h/)

= Ci// ZXBg(hkn 5 WO | (A o)) o

k//

La/P(K")
XAgs/,bfd(h + h/)Al;)+dfp(s+s/) (h/) dvo (h/).

If we define f:=3, |
it is clear that

()\'/(k/,k”))k’ L‘I/P(K’)XBQ(hk”"S)’ then

< ve(Bo (e, NP1 IN | Lar k)

= ve(Ba(eq, 5))p/q ||)\||ILjp,q(J,K)-

”f”L‘I/l’(yQ)

Then, [16, Lemma 3.35] implies that there is a constant C3 >
0 such that

1Y)l zpa py < C3llkllLra, k),
which completes the proof of our claim in this case.

STEP III. Assume, now, that p, g > 1. For every (j, k) €
J x K, choose 7 ; € Cc(§2) so that

XB(4k.2j,0).8/2) = Tjk = XB((¢k.2jk).8)>

and define
. ) ) m
Cq:=  sup (XB((O,zesz)ﬁ))h dH™.
(¢ EEXR JF
Define

WP K) 3 A Y Ajuticdgt TP o pec(D),
J.k

and let us prove that ¥’ maps continuously ¢7-9(J, K) into
L9 (D). Indeed, take A € £79(J, K) and observe that

16 0Dl Loy
b/g+d/p—s ©
=4g 0Dy HZ %)kl (XB«;k,z,-,m,rS))h ‘
keK jeJ
Ab/qud/p s(h

1/p 2
<q, Z
kek d/p(h )

LP(F)
XB (0.8 & M]G0 o)

for every h € £2, so that by [16, Corollary 2.49], there is a
constant Cj > 0 such that

||l1’/()\) ||£é’~‘1(D)

<cy Z XB (@05 | .0 ”ep(J) ”Lq(VEXQ)
keK

= Cyvex2(BeEx2((0, e0), )9 Allera (s x)-

Thus, ¥’ induces a continuous linear mapping £7-4(J, K) —
£r(D).
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Now, observe that [16, Theorem 2.47 and Corollary 2.49]
imply that there is a constant C; > 0 such that

1Py Wy (¢, 0 < c:(/ / (A (¢ x)
JN
< |(BS sianim ), € 0] d@ O AGE () dug )
= /Q (lp’(m)h, % ((Bfo’ih,))h‘) (¢, ) AP 1y dvg ()
for every A € £P4(J, K), for every h € §2, and for every
(¢,x) € N. Therefore, Minkowski’s integral inequality,

Young’s inequality (applied twice), and [16, Lemma 2.39]
show that there is a constant C5 > 0 such that

1Yy MnllLrar gy < Cs/ 19" (ADw lra(F, E)
Q

w A5 (g 1) APHS () dug ()

for every A € £79(J, K), and for every h € £2.
Define
T : f > AS /Q FA5 OOy
x ADFA=S=S' 3y dug (h).

so that T induces an endomorphism of L4 (vg) by [16,
Lemma 3.35]. Then,

194 zra oy < CsIT | z@awan ¥ (XD 29 )
< CsIIT | #(racwgy Cavexe (Bex2 (0, e0), §)'/4
X A lleracr.ky-

Our claim then follows also in this case.
STEP IV. Finally, assume that p > 1 > ¢q. For every
(j, k) € J x K, choose r]’.’k € C.(F) so that

) )
(XB(@zj 0.0/ hy = Tik = UBGz0.0)n, >

and define

W eP9(J,K) > A > (ij,kf;)kxgp(hk)) e c.(P)K.
J k

As in Step III, one may show that ¥" induces a continuous
linear mapping of £7°9(J, K) into £9(K; L?(F)). In addi-
tion, by means of [16, Theorem 2.47] we see that there is a

constant Cg > 0 such that

b d—s—s’
W0 @) < Co Y AT ()
kekK
©)

” / /
[ 9| (B, imo i),

b/g+d—s—s'
=Co Y AgTH (my)
keK

w (W + | (B “N o
k (G, i D (Ep)+ihg) h

()] ax

for every A € £79(J, K), for every ({,h) € E x §2, and
for every x € F. Then, by Minkowski’s inequality, Young’s
inequality, and [16, Lemma 2.39], there is a constant Cg >0
such that

b/g+d—s—s'
19 Gy ey <Co YW (MDkll Loy Ag 4757 ()
keK

XA+ by + D¢ — 1)

for every A € ¢P9(J, K) and for every (¢, h) € E x £2.
Then, by the subadditivity of the mapping x — x¢ on R,

194 O ) = DI UADNY
k

x AG 0wy | af
Ex§$2

X ALVt g+ D — 20) dvpxe (€. h).
Now, by homogeneity,

Al};_q(d_s_S/)(hk) A‘Ss/_d) (h+he +PC& — &)

Ex$2
x AT (hydvg .o (g, h)

= f AL WAL TV (h + g + () dvexo (@, h)
Ex$2
for every k € K, and the last integral is finite by [16, Corol-

lary 2.22 and Lemma 2.32]. Therefore, there is a constant
C7 > 0 such that

194Gl zpa ) < ol (AD llea kLo ).

whence our claim also in this case.
STEP V. Put a well-ordering on J x K and define

U

(" k) <(.K)

Uj =Bk, 2j.k), RS\ B((&kr, zjr 1)y RS)

for every (j,k) € J x K, so that (Ujx)(jkesxk 1S
a Borel measurable partition of D (since J and K are
countable). In addition, define c; x:=cvp(U; ) for every
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(j,k) € J x K, where ¢ > 0 is defined so that Py f =

cfp f(C,Z)B(S;,Z)AZQS/(p(C,z))dvD(C,z) for every f €
C.(D). Then,

cvp(B((0,ie),8)) <cjr <cvp(B((0,iee), R3))

for every (j, k) € J x K. Then, define

, —b/q+d
S ALND) 3 o (e ) £ G20
e tP9(J, K),
so that Theorem 4.11 shows that S is well defined and contin-

uous, and maps Aﬁg’(D) into 57 (J, K). Define §":=¥S.
Then, Proposition 4.8 implies that, for every f € ALY (D),

F=St=cy [ (r€ DB a5 0@ )
jok JUik

= @ 20 Bl 2y A5 () dvp (', 2),

Hence, [16, Theorem 2.47, Corollary 2.49, and Lemma 3.25]
imply that there are R(, > 0 and Cg > 0 such that
I(f = S" . 2l

< C3R5ZCJ',/< sup
.k (¢".2")€B((¢k.2j k) RS+R()

X |B(S§k,z,',k)(§’ Z)|A_Fzs (hr)

1F& 2l

for every (¢,2z2) € D. Fix an F-(1,4)-lattice
(g“,é,, Z/j/’k/)j/e‘]/’k/e[(/ on D and observe that the proof of
[16, Proposition 2.56], together with [16, Theorem 2.47 and
Corollary 2.49] again, implies that there is a constant C9 > 0
such that

I(f =S g 2l

< C9R$ Z sup
JK @ 20eB(€)7) 0 RO+ R +4)

(@ DIAF ()

£ (&' 2

S/
* 1By,
for every (¢,2) € D, where hy, = p(g],, Z/j’,k’) for every
Jj’ € J and for every k' € K’. Hence, Theorem 4.11 and the

preceding steps show that there is a constant C19 > 0 such
that, if R < Ry and § < 1, then

Take 6o > 0 so that Ci9dg < 1

< 3 and assume that § < §y.
Then,

P-q
= APY(D)
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. min(1, p,q) o . in(l
[>a -5y < Y2t pyinon
=k

for every k € I, so that ZjE]N(I — §)/ induces well
defined endomorphisms of Ag ’Oq (D) and AY? (D), which
are inverses of S’. Hence,

g =S 2(1 Y

jeN

induces well-defined and continuous linear mappings from
AL (D)into £ (J, K) and from A{* (D) into €74 (J, K),
and W@ = §' 3", (I = 8')/ = I. The proof is complete.

O

Proposition 4.15 Take p,q € (0, 0] and s,s' € R" such
that property (L) : S(/I o holds. Then, the sesquilinear mapping

(f.g) > fD FEAZ o p)dvp

induces an antilinear isomorphism of

r.a P.q
Ab/min(1.)+d/ min(1, p)—s—s (D) onto A5 (D).

In particular, if g € (1,00), p < 00, 8’ > %(m —d) and
property (£ )5 ’S? holds, then the sesquilinear mapping

— '—b/2—d
(f &)~ / £y " o pydvp
D

induces an antilinear isomorphism of

’o

p.q pP.q l
qu/s/+(q’/q)s+q’(lf1/p)+d(D) onto Q[S (D) .

Proof By [16, Theorem 2.47], there is a constant C > 0 such
that

IBS; o) — BYr | < CIBS ,1d((2.2). (. 2))

forevery (¢, z), (¢/,z) € Dsuchthatd((¢, z), (¢/,Z))) < 1.
Using Proposition 4.7, one then verifies that the mapping
¢, 2) — B(S;’Z) € Agbq (D) is antiholomorphic, so that the
mapping

G: ALJ(D) 5 L~ [(¢.2) — (L, B}, )] € Hol(D)

¢,2)
is well defined. In addition, Proposition 4.7 shows that

G(L) e Aﬁiﬁd/p_s_s,(D) forevery L € AJj (D). Inorder

to prove that G(L) € .Af,,/’q/(D), where s”:=b/ min(1, g) +
d/ min(1, p) —s —s’, by Theorem 4.11 it will then suffice to
show that S(G(L)):=(A%, ™7 Y7 (h)G(L) (&, 2j4)) €
EP/"/(J, K) for some F-(8,4)-lattice ({k, 2 k) jel kek ON
D for some sufficiently small § > 0. We may then choose
(Ck, 2j k) jes kek SO that the corresponding map

W P9 K) D A Z)‘j’kB(s;/“k,zJ-,k)Al;z/q+d/p_s_s/(hk)
J.k

€ Aﬁbq(D)
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is well defined, continuous, and onto. Since
D hjaS(GLY)jx = L¥ Q)
j.k

for every A € £79(J, K), our claim follows.
Further, observe that Proposition 4.8 shows that

/D Bf, ,G(L)(Ag o p)dvp = G(L)(Z.2) = (L. B, )

forevery (¢, z) € D.Sincethe B(s; )

form a total subset of Ag ’Oq (D) (for ¥ is onto), by continuity,
we see that

as (¢, z) runthrough D,

fD FGIIAG op)dvp = (L, f)

forevery f € .Ag ’Oq (D). To conclude, it suffices to show that
if g € A2 (D) and

f F8(AG 0 p)dvp =0
D

forevery f € .Ai ‘5’ (D), then g = 0. However, choosing f =
B(S; 2) for every (¢, z) € D and using Proposition 4.8 again,
it is readily seen that this is the case, whence the conclusion.

O

4.5 Boundary values

In order to define the Besov spaces of analytic type which
are necessary to describe the boundary values of the spaces
27 and AL"?, we shall need some preliminary results.

Lemma4.16 The continuous linear mappings Sg;(N) 3
urug, ) € Sqi(F), ¢ € E, induce uniquely determined
continuous linear mappings Sﬁ(J\f ) 2 u+— u, ) €
Sé(F) such that the following hold:

(1) for every u € Sﬁ(/\/), for every ¢ € E, and for every
¢ € S(F') supported in ',

ux F @N@, ) =u, ) Frl (@)

(2) foreveryu e Sﬁ(./\/), the mapping E 5 ¢ — u(¢, +) €
S_/rT/(F) is of class C°.

As a consequence, we shall identify each u € Sé(./\/ )
withamap E 3¢ — u(l, -) € S:(T/(F) of class C*°.

Proof Fix ¢ € S(F’)supportedin £2’ and define w::]-"/(/l ()
and ¥":=F, " (¢). Then, ;. (¥) = ¢(1)Py0 and 7, (8o ®
¥y = ¢(A)I for every A € AL, so that

uxy =ux S Y
for every u € S57(N), that is,

w*y)(¢, ) =u@, ) xy

for every ¢ € E. In particular,

W@, HY) = @@, ) *¢™)0) = u*y*),0)
= (uly (¢, 07" ),

so that, by the arbitrariness of ¢, the mapping S5;(N) >
u +— u(g, -) > Sgi(F) is continuous for the topologies
induced by Sﬁ(]\f ) and Sﬁ(F ) on S5 (N) and S5 (F),
respectively. Since S5 () is dense in Sﬁ(./\/ ) (because the
conjugate of Sg;(N) is reflexive and the polar of S57(N)
in the conjugate of S57(N) is {0}), and since Sé(F) is
complete, the first assertion follows, as well as (1). Asser-
tion (2) is a consequence of the fact that the mapping
e (e, DY) = (=), 0) is of class C® on E
for every ¢ (cf. [35, p. 59, Lemma II]). m]

Lemma 4.17 Take p, q, p2,q2 € (0,00] with p < p> and
q < q», and a bounded subset B ofS?(./\/) suchthat FnrB is
bounded in C2°(82'). For every W € B and for everyt € Ty,
define WtiZfX[I((fNW)( -t™Y)). Then, there is a constant
C > 0 such that

lue % Y|l Lr2a2(F, E)

< CAWRYOP+A/ 221D (1)) 1y sy || Lpa )

and

lw sy Y |l Lracr, gy < Cllu* YellLrar, )

for every u € S'(N), for every ¢, ¢’ € B, and for every
t,t' € Ty.

Proof STEP I. It will suffice to prove the first assertion when
p> = g2 = oo and t is the identity of 7, by Holder’s
interpolation and homogeneity. Arguing by approximation as
inthe proof of [16, Corollary 4.7], we may further assume that
u € S(N). Then, set £:=min(1, p, ¢) and take T € Sg7(N)
so that ¥ % T = i for every ¢ € B and observe that

s 0 < Tl [ 1@
x |e(@, ), ldE’ 1)

1—¢ ¢
< lux* w”Lw(N) flu w“LP#(F,E)”T”L(p/i)’,(q/Z)’(F,E)
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for every (¢, x) € N, whence the first assertion.
STEP II. The second assertion follows from [16, Corollary
4.10] and Lemma 4.16. O

Definition 4.18 Take p,q € (0,00] and s € R’. Take a

(8, R)-lattice (Ax)rex in £2' for some § > 0 and some

R > 1 and fix a bounded family (¢r)rex of positive ele-

ments of CZ°(£2') such that >, ¢ (- tk_l) > 1 on £2/, where

tr € T+ and Ak = eq - Iy for every k € K. Define

wk _]:/\/’ (Pr(-t )) Then, we define B 4N, 2) (resp.
P.q (N £2)) as the space of the u € 8/ (N ) such that

(A% () u* W) € 4 (K; LY (F, E))
(resp. (A%, (M) u* Y) € L4(K; LP4(F, E))),

endowed with the corresponding topology.® We also define

B (N, 2):=By "W, 2).

In particular, B}, ,(NV, 2) = Bj, ,(NV, £2) and éf,’p(./\/,
2) = é;’P(/\/, £2) for every p € (0, oo] and for every s €
RR. We now propose a different interpretation of B;’ q W, 2)
which is particularly useful in certain situations.

Remark 4.19 By Lemma 4.16, Bf,’q(./\/, £2) may be equiva-
lently defined as the space of u € S:(T/(N ) such that

l¢ = N, s, m.2)| o < 0

where || - || B ,(F.Q) denotes a fixed quasi-norm on B‘f,, q
A similar description holds also for the space BLUN, Q).

Proposition 4.20 Take pi, p2,q1,q> € (0, 00] and sy, sy €
R" so that

pr<p2 q1=<q2, and
1 1 1 1
ss=si+———)b+|(———]d.
q  q P12

Then, there are continuous inclusions é;‘l,ql(./\/' ,2) C
B (N, 2) and B3, 4y (N, 2) € B3 (N, 22). In addi-
tion, the mappings B (/\/ 2) > u — ul,-) €
Bs+b/q(F $2), ¢ € E, are equicontinuous for every p,q €
(0, oo] and for every s € R”.

Sl+<m—->b+
W.2) € B, (N, 2). In
JN.2) 5 u > ui, ) e

(F,$2),¢ € E, are eqmcontznuousfor every p,q €
(0, oo] and for every s € R’.

In particular, if g» < 0o and s3 =
92 _ 92 s
(m pz) d. then B 4,
addition, the mappings ‘B
%s+b/2

8 One may prove directly that this definition does not depend on the
choice of (Ar) and (¢p), arguing as in the proof of [16, Lemma 4.14]
and using Lemma 4.17. Nonetheless, this follows from Remark 4.19,
at least for 55, , N, £2).
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(F, ).

Proof This is a consequence of Lemmas 4.16 and 4.17, and
of the continuous inclusion £9!(K) C ¢£92(K), which holds
for every set K. O

Proposition 4.21 Take p,q € (0,00] and s € R'". Then,
é;,q(./\/, ), B;’q(./\/', 2), and %;’q(./\/, £2) are complete
and embed continuously into Sﬁ(]\/ ). In addition, Sq;(N)

SN 2).

is dense in B;
Proof Since B3, (W.2) < BXXNMPwW. o) =

B;:; ‘;é"*“ P(N, £2) continuously by Proposition 4.20, by
[14, Proposition 7.12], we see that Bj, q(/\/' , £2) embeds
continuously into S’ _(N). Completeness follows from the

facts that S’ (N is complete that B g, £2) is closed in

(N .Q) and that the norm of BS (N £2) extends to a
lower semi-continuous function on S _(N) which is finite
only on 3}, , (N, £2).

Next, observe that S_Q/(N)CBISZ(J\/’ .Q)CB (J\/ )
thanks to Theorem 3.13 and Proposition 4.20, Where [:=min

s+<——-)b+(——-)d For

what concerns the density of S57(N) in B i q(./\/ , §2), take

u € l%;,q NV, £2) and () as in Definition 4.18. It is not
difficult to prove that, if we assume that _, Faryx = 1 on
£2', then ), u * Yy converges to u in B;’q(./\f, £2). In addi-
tion, clearly u * Y € Lg (W) for every k € K. Then, take
Y, € Sgr(N) so that Fary; is compactly supported in £2
and equals 1 on the support of Farv. If (f;) is a sequence
of elements of C2°(N) which converges locally uniformly
to u * vy and satisfies | f;| < |u * Y| for every j € N, then
fj* ¥ belongs to S57(N) and converges to u * y in Lg N)
by dominated convergence, since |u * Y| * |1ﬁ,€| € Lg N)
by [14, Corollary 3.6]. It is then readily verified that f; s 1,
converges to u * J in B;’ q (N, 2) for every k € IN, whence
the conclusion. O

(I, p.q) and § =

Definition 4.22 Take () as in Definition 4.18, and assume
further that Zk (.7-}\/'1//k)2 = 1 on £2’. Then, the mapping

Gy > Yo gl ) = [ (e, e, )
k

induces a well-defined continuous sesquilinear form on
N, 2) x B;,s (N, ), for every p,q € [1, o] and
for every s € R", which does not depend on the choice of
(Yx) (cf. [16, the proof of Proposition 4.20]).
In particular, if ¢ > 1, then the same expression
defines a continuous sesquilinear form on %;q(/\/ ,82) x

%;/(’t;//wﬁ(q /2)b(N7 2).
In particular, by Proposition 4.20, there is a canonical

sesquilinear form on

s (V.2 x B (1/q Deb=(1/p=D+d £ o)
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for every p, g € (0, oo] and for every s € R". We denote by
o}, 4 the weak topology

(Uq D4b—(1/p— 1)+d(N 2)).

o(B (N ), B

Lemma 4.23 Tuke p, g € [1, c0lands > b+ d+5.m’

. +d
For every (£,z) € D, define S ;):=c <B({ z)) , where

¢ # 0 is chosen so that f(£,z) = (folS«,2) for every
f € Ay (D). Then, the following hold:

(1) the A?;b/q/fd/p/ (p(&, 2))S,z), as (¢, z) runs through D,

N, 2);

(2) for every u € B;fq,(/\/’, ), the mapping ({,7)
(u]S(,7)) is holomorphic on D.

stay in a bounded subset of B; q

Proof By homogeneity, in order to prove (1), it suffices to
show that S je,,) € Z%;’q(J\f, £2). To this aim, take (A;) and
(Y¥x) as in Definition 4.18. By [16, The proof of Lemma
5.1 (2)], there is a constant C > 0 such that the fam-
ily (eW’eﬂ)/CAlgf’/"Ld/p/(Ak)S(o,im) % 1) is bounded in
Ly (F, E). Then, [16, Proposition 2.19, Lemmas 2.34 and
2.50, and Corollary 2.49] show that S je,) € é;’q(/\f, £2).

For what concerns (2), take u € B;,S’ q,(N , §£2) and assume
further that () satisfies the conditions of Definition 4.22,
so that

(U Se.o) = D {u* Yl Sz 2 * Vi)

k

for every (¢£,z) € D. Since (1) shows that the S ;) are
uniformly bounded in B;’ q (N, £2) as long as (¢, z) stays
in a bounded subset of D, by dominated convergence, it will
suffice to prove that the function (¢, z) = (u* Y |S(c o) * V)
is holomorphic on D forevery k € K. Since uxy;, € L2 (N)
by Lemma4.17, and since the mapping D > (¢, z) = S(¢,z)*
Y € S(N) is holomorphic by [16, (1) of Proposition 4.2 and
(1) of Lemma 5.1], the assertion follows. O

Proposition 4.24 Take p,q € (0, 00] and s > éb + %d +

%q,m/ . Define a continuous linear mapping (cf. Lemma 4.23)

E:ByyWN.2)3ur [(£.2) = (S )] eAs “b/g—d/p

Then, the following hold:

%W, ) and for every (¢, 2) € D (so

thatu(c, -) € B*”b/"(F, 2)withs—1b > Ld+;Lm
by Proposition 4.20)

(1) for everyu € B’

Eu)(&,2) =[E&, Nz —iP());

(D),

(2) the linear mappings u — (Eu)y, as h runs through 2,
induce equicontinuous endomorphisms of B;’Sq WN, £2)
and B s (N 2);

(3) the mappmg
2U{0} 3 h > (Eu)y € B, (N, £2)

is continuous if u € B;sq N, £2), and is continuous in

the weak topology o, if u € B,5 (N, £2).

The preceding statement may be also translated in terms
of the spaces ‘B*s WN, 2) (except for the statements con-
cerning the Weak topology o, q, which may not be properly
stated in terms of the spaces % y (N £2) alone). This latter
result extends: [2, Proposition 3 43] which corresponds to
the case in which p = ¢ > 1,s,8 € R1,,n =0, and £2 is
symmetric; [23, Proposition 4.1], which corresponds to the
case in which p = ¢ > 1, n = 0, and £2 is symmetric.

Proof (1) It will suffice to prove the assertion when u is
replaced by u x ¥ for some ¥ € Sgr(N) with Fary €
C2°(82"). Then,

[E@*Y)n = w*Y) * (So,in) * ¥,

where ¥ € S57(N) and = ¢ * ', It then suffices to
apply Lemma 4.16.

(2) The equicontinuity of the endomorphisms u — (Eu)y,
h € 2, of B, (N, £2) follows from (1), Remark 4.19
and [16, (1) of Theorem 5.2]. The fact that these endo-
morphisms preserve B; q(/\/ , £2) follows from the fact
that they preserve Sg7(V), thanks to Proposition 4.21.

(3) If u € S57(N), then the mapping 2 U {0} > h
(Eu)p € Sgr(N) is continuous by [16, (1) of Lemma
5.1] and [15, Proposition 5.2], so that (2) leads to the
conclusion for u € l%_ (J\f £2). The conclusion for
u€b, S (N £2) follows by transposition, thanks to the
formula

(Euplu) = (ul(Eu')n)

which holds forevery u’ GB; (/g=D+b=(1/p= l)ld(N 2)

and for every & € §2 and may be proved reducing to the
case £ = {0} by means of (1), in which case it follows
from the proof of [16, (3) of Theorem 5.2].

O

Definition 4.25 Take s > ;b + d + 5 ;m’. Then, we
define .Zf ’Oq (D) and ./Zf (D) as the images of the spaces
l%;z WV, £2) and B, (N, £2) under &, endowed with the
corresponding topology.

Ifg < coands’ > %b—l— %d + 2Lq,m/, then we shall define
A (DY:=ALy )0 (D).

@ Springer



13 Page 26 of 31

Complex Analysis and its Synergies (2023) 9:13

Assertions (1), (2), and (5) of the following result extend:
[2, Proposition 3.31, Theorem 1.7, and Theorem 1.8], which
corresponds to the case in which p,¢g > 1,s € R1,,n =0,
and £2 is symmetric; [23, Remark 3.21, Theorem 1.2, and
Theorem 4.8], which corresponds to the case in which p, g >
1,n =0, and £2 is symmetric.

Proposition 4.26 Take p,q € (0, 00] and s € R". Then, the
following hold:

(1) for every ' € C', the mapping S_Q,(./\f) 3¢ ¢x*
Is € So7(N) induces isomorphisms ofB W, 2) and

N, 2) onto BS+RCS W, 2) and BS+R“ W, 2),
respectlvely, in pamcular ifqg < o0, then lt induces an

isomorphism of 9B, (J\/ ) onto ‘Bs+qRes W, 2);
() ifs > %b—l— %d+ 2q,m and s > qm(resp. s> 0if
q = 00), then there are continuous inclusions

£S5\ € A (D) € ALd(D)
(resp. E(Sgr(N) € AL(D) € AL (D));

in particular, if g < oo and s > %(m —b), %b + %d +
ziq,m’ , then there are continuous inclusions £(Sg7(N)) €
AL (D) < AL (D),

(3) ifs > %d + qu,m and AL'{(T) = ALY (Ta) (resp.
APU(To) = AYU(Tg)), then ALJ(D) = AJ{(D)
(resp. AL(D) = AP9(D)); in particular, if ¢ < oo,
s > 4d + sLm' and AN (Tg) = AP (Tg), then
AL (D) = AL 5 (D),

@) ifs > L(b+d) + zl/m’ and ALT(D) = AV (D)
(resp. ASP(D) = ADP(D)), then ALY b/pO(TQ) =
AR b o(Ta) (resp. Ag’ ’;,/p<Tg) = Al b/,,(Tm) in
particular, if p < 00, § > ib—i—d—i—
AP (D) = ALY (D), then ALY, (Tg) = S,m(rg);

(5) if s > om + (W - ﬁ)er’, then A{(D) =
AP (D) and A‘;’q(D) = ~p’q(D) In particular, if g <
oo and s > 3(m —b) + (pr) %)er/
AL (D) = AL (D).

,m and

, then

We observe explicitly that in [16, Corollary 5.11] the

assumption s > —(b +d) + 2 --m’ is redundant (as the
assumption s > 1b + ld + 3 ,m would be redundant in

(5) above), as it is 1mphed by the condition s > Em +

1 1 / 1 1 /
—— — —_ 2 >
<2mm(p,p’) 2(1)Jr m’. Indeed, (mln(p,p’) q>+ m =
(% — %) m’ > %d+ %m/ since 2d < —m — m’.
We also mention that, if » = 2 (so that §2 is isomorphic

to either a quadrant or a Lorentz cone), then combining [6,

@ Springer

Theorems 6.6 and 6.8] (the latter being a consequence of [13,
Theorem 1.2]) with [16, Theorem 5.10] (cf. also [19, remarks
following Remark 2.6]), we see that AY (T) = AP (Tg)
and A’ (Tq) = AV (Tg) if and only if

1 1 1 1 1
s> —m+—-|[— — — d+—m

2q 2 (mln(2, p) q>+ P2
By transfererlge, under the same condition, we also have
AL1(D) = AS(D) and ALY (D) = AL (D).

Proof (1) This follows from [16, Theorem 4.26] and
Remark 4.19.

(2) By[16,Proposition 5.4], there are continuous linear map-
pings B: A (D) — Bq_ﬁl N, 2)and B': AS’O”(T_Q) —
B.S (F.$2) such that EB = [ and EB' = I.If u €
ALg (D) N ALY (D), then Lemma 4.16, Remark 4.19,
(1) of Proposition 4.24, and Proposition 4.6 imply that
(Bu)(¢, -) = B'(u(t, +)) for every ¢ € E, and that B
induces a continuous linear mapping of Af_ ’Oq(D) into
[;;sq (N, £2). Thus, Ag bq(Dl - Z;’ (D) continuously.
The inclusion AL"?(D) € ALY (D) is proved similarly
(cf. the proof of Theorem 4.31). The remaining inclusions
are consequences of Lemma 4.16 and Theorem 3.13.

(3) This follows from Remark 4.19 and (1) of Proposi-
tion 4.24.

(4) This follows from [19, Theorem 6.3].

(5) This follows from (3) and [16, Corollary 5.11].

O

Remark 4.27 We observe explicitly that s > %(m —b) +

(m — %)er’ if and only if s > %(m —b) and

2Sj+bj+m/j—mj
; .
J

q < gs(p):=min(p, p") j_rIllin )

m

Proposition 4.28 Take p,q € (0,00], and s,s' € R" such
that the following hold:

Ipt lge Lo
os>qb+pd+2q,m,
es' <b+d-—

1 1 1
OS+S/<§b+;d—mm/.

Then, there is a constant ¢ # 0 such that
(ulu'y = c/ Eweu x 157P74AZ o p)dup (7
D

for every u,u’ € S@(N ). In particular, the sesquilinear
form

(f.g) > /D FEA™ o p)dvp
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induces a continuous sesquilinear form on ./Zf (D) x
ar'.a
‘Ab/mm(l q)+d/ min(1, p)—s—s’ /(D).
As a consequence of Corollary 4.29, the above sesquilin-
ear form induces an antilinear isomorphism of

~ /’ ’ ~p’q

Ab/ min(1,q)+d/ min(l,p)fsfs’(D) onto Ag (D)".

Proof Formula (7) follows from [16, Proposition 5.12].° The
assertion then follows easily. O

Corollary 4.29 Tuke p,q € (0,00] and s € R’. Then,
the continuous sesquilinear form (-|-): B;,q(/\f, ) x

B;,S;,(l/q_1)+b_(1/p_1)+d(./\/, 2) — C induces an antilin-

ear isomorphism of B;,S;,(l/q_1)+b_(1/p_1)+d(./\/', ) onto

B (N, 2).

One may also state an analogous result for the spaces %; q
(necessarily restricting to p € (0, 00) and ¢ € (1, 00)). This
latter result extends: [2, Theorem 1.4 (3)], which corresponds
to the case in which p,g > 1,s € Rl,, n = 0, and £2 is
symmetric; [23, Theorem 1.1 (3)], which corresponds to the
case in which p, g > 1, n = 0, and £2 is symmetric.

Proof By Proposition 4.26, we may assume that —s is
as large as we please, so that the assertion follows from
Proposition 4.28, combined with (5) of Proposition 4.26,
Theorem 4.14, and Proposition 4.15. O

4.6 Bergman Projectors

The second part of the following result extends: [3, Theorem
4.24], which corresponds to the case in whichs = s’ € R1,,
n = 0, and £2 is symmetric; [23, Corollary 1.4], which deals
with the case in which s = §’, n = 0 and £2 is symmetric;
[30, Theorem 3.2 (i)], which corresponds to the case in which
p=gq,s=¢s,andn = 0.

Proposition 4.30 Take p,q € [1,0], s € R, and §' <
b+d— %m. If Py induces an endomorphism of Eﬁ ,Oq (D) (resp.

a continuous linear mapping of [,i ’Oq (D) into LY (D)), then

the following hold:
(1) s > ﬁm(resp.s >0ifqg =00)ands >~ %b—}—%d{—
1 /.
27
1 1 .
@ 8" < e ~ TEEG )™

(3) s+s <b+d— ;,mors+s <b+difq = oo, and

s+ < ]b~|— ]d—— m’;

9 We mention expllcltly that the statement of the cited result contains

a typo: instead of AS) there should be A ~®+4) i1 the first formula in
display, as well as in the first line of the formula in display in the proof.

4) Ps/ induces continuous linear projectors of LY (D) and
£€+3 g (D)onto AL (D) and Ay
tively, such that

b+d _s_g (D), respec-

/D FP8(A% 0 p)dvp = /D (Py fE(A% 0 p)dvp (8)

forevery f € LY (D) andforevery g € ['b+d s_g (D).

In particular, ifg < 00, s > %(m—b), and By induces a
continuous linear projector ofﬂf‘q (D) onto AL (D), then:

® S > %(m—b),
;o1 1 1
o s >3bt maX(p p/)d+ Tmin(p, )™
1

o s ke —b+ 1 d+—m ands’ —55 >

orqzlands —SZO

1 —1
sb+1d + 1=

/.

1 1
3Pt ym

Notice that (4) uniquely determines Py on £ ’q(D) and
o (D), since conditions (1)—(3) ensure that B,

b-+d—s—s (C 0 €
AP (DN A{:le s_g (D) forevery (¢, z) € D (cf. Proposi-
tion 4.8).

In addition, if s > %(m —b), p,g € (1,00), and
B induces a continuous linear projector of £5*?(D) onto
A29(D), then:

pi<p<ps and Qup) <q < Os(p),

where
m’< —2d;
ps:z mln and
N (b +m 2Sj)+
1 1.7
s;—5bj+sm’,
Os(p)i= min -1 2J

j=1,..., Ly 1)
<pd]+2mj)+

Proof In order to prove (1)—(3), observe first that Py (C.(D))
C Hol(D), so that Py maps Eﬁ’(;’(D) into Agbq(D) (resp.
AP (D)). Therefore, the linear mapping

LI(D) > fr (Py )&, 2)

= C(b+d—s)/2 /D fB(S;,Z)(A_(_; op)dvp € C

S
so that B(g 2)

,(D). By Proposition 4.7, in order to complete

is continuous for every (¢,z) € D, €

AP‘I

b+d—s—s
the proof of (1)—(3), it will suffice to prove that B(S(/) ieg) €

(D) (resp. B(0 jeq) € ALY (D)). This is a consequence
of the fact that there is f € C.(D) such that Py(f) =
(0 ieo) (cf. the proof of [16, Proposition 5.20]).
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Concerning (4), one first shows that formula (8) holds
for every f € L{J(D) and for every ¢ € C (D). This,
in turn, allows to show that Py induces a continuous linear

mapping of [,{)7;:(]1; s—s.0(D) into E{;;fllsfs, (D) and to show

that formula (8) holds for every f € L/ (D) and for every

ge Ll (D). One then defines

(Py )¢, 2) = C(b+d—s/)/2/ fB(S;,Z)(A_FzS, op)dvp
D

forevery f € £LL'?(D) (resp. forevery f € ££;Li’l/_s_s,(D)),
and for every (¢,z) € D (as a consequence of the proof
of (1)—(3)). The arguments of the proof of Proposition 4.15
then allow to show that the so-defined Py f is holomorphic
on D. In addition, if (t;) is an increasing sequence of pos-
itive elements of C.(D) which converges locally uniformly

to 1, then Py (t; f) converges locally uniformly to Py f and

has uniformly bounded £ (D) (resp. L{;;‘_?i/_ <y (D))norm.

This, combined with Proposition 4.8, allows to show that
Py has been correctly extended to continuous linear map-

pings from £{?(D) and Eﬁ;’r‘(’i/_s_s,(D) onto A9 (D) and

Aﬁ:’r‘é/_s_s,(D), respectively. Formula (8) is then proved by
approximation in the general case. O

Theorem 4.31 Take p,q € [1,00] and s,s' € R’. Assume
that the following hold:

1 1 1 1 .
os>3b+;d+2—q,m’ands>Em(resp.sZOzf
q = 00);
os/<b+d—%m;

/1 1g_- Ly
os+s<qb+pd gm-

Then, the following conditions are equivalent:

(1) ALJ (D) = AL (D) (resp. ALY(D) = ALY(D)) and
pa _ g .
'Ab+d—s—s’(D) - Ab+d—s—s’(D)’

(2) Py induces a continuous linear mapping of Cf, ’Oq (D) into
LY9(D) ands > 0 (resp. s > 0);

(3) Py induces a continuous linear projector of Eﬁ ’Oq(D)

onto Az’oq(D) (resp. of LY (D) onto AL?(D)) and of

P r.a .
Eb+dfsfs’(D) onto Ab+dfsfs/(D)’
“4) s >~ ﬁm (resp. s > 0 if ¢ = 00) and the sesquilinear

mapping

(frg) > /D F2AF 0 p)dvp ©)

/ ’
induces an antilinear isomorphism of Allj4:?i—s—s’(D)

onto Ag ’Oq(D)’ (resp. onto the dual of the closed vector

subspace of AL (D) generated by the B(S; o (2) €
D);
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(5) properties (.C’):i’;,{o (resp. (£’)£’S(,1) and (E/)S:é/_s_s,,s,
hold;

(6) property (ﬁ)g's(,]’o (resp. (E)g's(,{) holds.

For analogous equivalences in the context of the spaces
APU(D), see [19, Sect. 4].

Proof (1) = (2). Take f € L{(D)N ﬁ%f)idfs’)/z(D)
and ¢ (S SH(N) Then, Ps/f c A(zl’)idfs/)/2(D)
~’21.?1’)2+(175/)/2(D)3 so that Ps/f —

BE-b-d/2(\ ) by (5) of Proposition 4.26. Then, Propo-
sition 4.28 shows that there is ¢ # 0 such that

Eu for some u ¢

(ulg)] = |e fD Eus (@« 15"~ H(A7 o p)dup|

- ‘C/D FE@ 157D (A o p) dvD‘

< lell fllgpapylE@* IET 7D

b+d—s—s D)

< I flepap gl o2

for a suitable choice of a norm on B;,’q,(J\/ , £2), thanks to
(1) of Proposition 4.26. By Corollary 4.29, this shows that
u € B% (N, ), thatis, Py f € ALY (D) = AL (D). The
preceding arguments then show that Py induces a continuous
linear mapping of Efﬁ] (D) into ALY (D).

(2) = (3). The only assertion which is not con-
tained in (4) of Proposition 4.30 is the following one: if
Py induces a continuous linear mapping of £{ /(D) into
£Y9(D) and s > 0, then it induces an endomorphism of
ES (D). However, using (1)~(3) of Proposition 4.30 and
Proposition 4.7 (and the assumption s > (0 when g = 00), it

is clear that Bfé’z) € Agbq(D) for every (¢, z) € D, so that

Py(C.(D)) C Af,:g (D) and the assertion follows.
(3) = (1). Take f € Co(D) and ¢ € Sor(N). By
Propositions 4.26 and 4.28,

[ r8oag cmavn| = | [ rengaag e mavy

= 1Pyl gpapy ”5¢”Z1)/.t]’ D)
b+d—s—s’

. . Np/,q/
for a suitable choice of a norm on Ab+d7575,(D). By the
arbitrariness of f, this implies that A% =~ (D) C

b+d—s—s =
r'q’
'Ab—',-d—s—s’

that “lejﬁi—s—s’(D) = Agﬁi_/s_s,(D), it will suffice to prove
Af: ;%_S_S,(D), there is a bounded
sequence (f;) of elements of As 4’_3_5_5, o(D) which con-

(D) continuously. Observe that, in order to show
that, for every f €

verges pointwise to f (so that f € .A{: J:flisfs,(D) with

controlled norm). Then, take u € B;Ti,_b_d(./\/' , 2) such
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that Eu = f, and take (Ag), (fx), (¢), and (¥g) as in Defini-
tion 4.18. Notice that we may choose () sothat ) ", v = 1
on £2’. In addition, take ¢’ € C2°(£2’ ) so that ¢ = 1 on the
support of each ¢y, and set l/fk =F\ N (q’) (- )) for every
k € K, so that Y = Yy * ¥, and u = Zku*l//k with
convergence in the weak topology a;ff;/,_b_d. Then, fix 7 €
CX(N) with 7(0) = 1 and set 7;(¢, x):=t(277/¢,27%x)
for every (¢, x) € N and for every j € IN. As in the proof of
Proposition4.21, we then see that [ (u %) T;]* lp,é converges
to u * Yy in Bs+s “P=d(\, Q) for every k € K. If (K;) is
an increasing sequence of finite subsets of K whose union is

K, then one may set f; = ZkeK E([(u * wk)tj] * 1//,2) and

show that the f; are uniformly bounded in .Ab tdos_s (D)
(using [14, Corollary 3.5]) and converge pointwise to f.

Analogously, one shows that .Zg ’Oq (D) < APY(D).
Since £(S5(N)) < Ag (D) by (2) of Proposition 4.26
and (1) of Proposition 4.30, this is sufficient to prove
that Vzlvf ’Oq(D) = Aﬁ ’Oq (D) (resp. as above one shows that
AL(D) = AL1(D).

(1) = (4). This follows from Proposition 4.28, once
one shows that the closed vector subspace V of AL (D) =
.A” 9(D) generated by the B@ . (6,2) € D, is precisely

(D) To see this latter fact, observe ﬁrst that B(Z o €

(D) for every (¢,z) € D, since B(C ) € AP (D)
by Proposition 4.7 and since B(g o * g B(S; ZS)
As +s7.0(D) for some ¢ # 0 and some sufﬁmently large
s” € gy, thanks to [16, Proposition 2. 29] and (1), (5) of
Proposition 4.26. Since the polar of V in .As +?i s_g (D) with
respect to the sesquﬂlnear form (9) is {0} by Proposition 4.8,
this shows that V = (D) by Proposition 4.28.

@4 = ). It sufﬁces to observe that the adjoints of
the sampling maps on A{*? (D) and .Ab d_s_s (D) (which
are isomorphisms onto their images for sufficiently fine lat-
tices, thanks to Theorem 4.11) with respect to the sesquilinear
form (9) are the atomic decomposition mappings for the
spaces Ap 4 (D) and AL (D) (resp. A7 (D)) as one
verifies without difficulty.

(5) = (6). Obvious.

(6) = (1). The proof is similar to that of the impli-
cation (4) = (5). Indeed, one first observes that the
adjoint of the atomic decomposition mapping ¥ correspond-
ing to property (E)f 5.0 (resp. (E)g s(,l 10) with respect to the
sesquilinear form of Proposition 4.28, is precisely the sam-

b+d s_g (D). Since A +d «g(D) <
Ay qoid /p—s_g (D) by Proposition 4.24, and since we may
consider lattlces as fine as we please, Theorem 4.11 shows

pling mapping on .A”"

10 In this case, one has to preliminarily observe that the range of this
latter mapping is contained in .Ap (D) as in the proof of the implication
1 = @.

that Ag +(é . g(D) C .Ab L 4_s_g (D) continuously, that is,
Aﬁ;{, o g(D) = AP +'fi _s_g (D). Reversing the argument,

we then see that, for sufficiently fine lattices, the atomic
decomposition mapping ¥ maps E(I)’ “1(J, K) onto Ag ’6] (D)
(since its adjoint is an isomorphism onto its image). Hence,
Agbq (D) € A (D). Arguing as in the proof of the impli-
cation (3) = (1), this leads to the conclusion. ]

The following result, which is a simple consequence of
Theorem 4.31, extends several results known in the literature:
the equivalence of (1) and (2) is [2, Theorem 1.9] whenn = 0,
s = s € R1,, and £2 is symmetric, and [23, Theorem 1.3]
whenn = 0, s = ¢, and £2 is symmetric; the implication
(2) = (4), in this context, is a simple consequence of the
duality between ££°9 (D) and )Zq (S —s/q) (D), cf.[3, Theorem
5.2] for the case in whichs =8’ € R1,,n = 0, and £2 is
symmetric; the implication (4) = (5) (first half) is [8,
Theorem 5.1] when p > 1 and s = §'; the implication (2)

= (5) (first half) is [3, Theorem 5.7] when p = ¢, s =
s’ € R1,,n =0, and £2 is symmetric, and [7, Theorem 3.4]
whens = s/, n = 0, and £2 is symmetric; the implication (2)
= (4)is [4, Theorem 1.6] when p = g ands = s’ € R1,.

We also mention that [12] was devoted to a somewhat

informal description of this kind of equivalences.

Corollary 4.32 Take p € [1,00), g € (1,00), ands,s’ € R”
such that the following hold:

1 1 .
° S>§(m—b),§b+%d+2iq,m/,
o s > %(m—b);

/ 1 1 1 1.
e S —aS>2—q,b+Fd+2m

Then, the following conditions are equivalent:

(1) A(D) =
(D);
(2) By induces an endomorphism of £ (D);
(3) By inducesa continuous linear mapping of 29 (D) onto
l] .
(D) and ofﬂq s s/{])(D) onto qu s s/q)(D)’

4) s> j(m — b) and the sesquilinear mapping

A’ (D) and A (D) = A oo

s'—b/2—d

(f.g) > / FRASP G by dup

induces an antilinear isomorphism of le ,/ Eg,/_ s/0) (D) onto
Q[P 4 (D)/
(5) properties (,S/)S y and (2/)[7
(6) property (£)74 holds.

s,s’

(—=5/q).s' hold;

Combining (3) and (4) of Proposition 4.26 with Theo-
rem 4.31, we get the following transference result.

@ Springer
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Corollary 4.33 Take p,q € [1,00] and s, s’ € R". Then, the
following hold:

o ifs <d-— %m and Py induces a continuous linear
projector ofﬁg’oq (To) onto Ai’oq (To) (resp. of LE (Tq)
onto ALY (Tg)), then Py 1y, induces a continuous linear
projector of Egbq(D) onto Az’oq (D) (resp. of LY (D)
onto ALY (D));

o in particular, if s > %m and By induces a con-
tinuous linear projector of £ (Tq) onto ALY (Tg),
then Py _y, /> induces a continuous linear projector of
L7%2(D) onto AL (D);

o ifs <b+d-— %m and Py induces a continuous linear
projector of Libp (D) onto Ag’op(D) (resp. of LLP (D)
onto AL"P (D)), then Py induces a continuous linear
projector of Egilll)/p,o(Tﬂ) onto Afﬂy/p,o(n’?) (resp. of
£y, (Te) onto ALY, (Ta));

e in particular, if s’ < %(m — b) and By induces a
continuous linear projector of ££°P (D) onto AY*P (D),
then Py _y, > induces a continuous linear projector of
L042(Te) onto ALY ) (Te).

Remark 4.34 We observe that the second assertion of the pre-
ceding result extends [6, Theorem 2.1], which corresponds
to the case in whichs =§' > %(m -+ m’ — b). In particular,
this solves in the affirmative the first of the final remarks of

[6].

Combining Theorem 4.31 with (5) of Proposition 4.26,
we obtain the following result. It extends: [2, Theorem 1.9],
which corresponds to the case in which s = §/, §2 is sym-
metric, n = 0, and s € R1,; [23, Corollary 1.4], which
corresponds to the case in whichs = s, n = 0, and £2 is sym-
metric; [30, Theorem 3.2 (ii)], which corresponds to the case
inwhich p = ¢,s = ', and n = 0; [29, Theorem 2.3], which
corresponds to the case in whichs = §' >~ %(m +m’ —b)."!

Corollary 4.35 Take p,q € [1,00] and s, s’ € R". If:
1 1 _ 1 /.

L R 2qm+(2min(p,p’) 2q>+m’
1 1 1 .

° b+d—s—s/> 2—q,m+(m—2—q/)+m’,

then Py induces a continuous linear projector of LL?(D)
onto AL (D).
In particular, if g < oo and:

1 q 1 /.
[ S>§(m—b)+(m—§)+m,

T We mention here that in [16, p. vii] we erroneously identified the
spaces described in [29] with the spaces AL*? (D). We apologize for this
lack of precision.

@ Springer

/ | | 1 1 /.
o S —ts> om0+ (st - o), M

then By induces a continuous linear projector of £ (D)
onto A4 (D).

In particular, if s = §" > %(m —b) and

95(p) < q < qs(p),

then Py induces a continuous linear projector of £57(D)
onto A7 (D) (cf. Remark 4.27).

Notice that this result is more precise than the one which
may be proved by means of Schur’s lemma, considering the
integral operator Py 4 whose kernel is the absolute value
of the kernel of Py. Cf. [26] for a general treatment of the
boundedness of the operator Py  when n = 0; see also [36]
for the case in which s, s’ € R1, and §2 is symmetric.

Let us also observe that, combining the characterization
of the equality AY? = AP?(D) when r = 2 (cf. the
remarks following the statement of Proposition 4.26) with
Theorem 4.31 and Corollary 4.32, one may characterize the
continuity of the Bergman projectors for tube domains over
Lorentz cones (that is, for » = 2 and n = 0). The character-
ization of the continuity of 3¢ on £29(D) in this case was
previously obtained in [6, Theorem 2.3].

Concluding remarks

On the one hand, we have compared two parallel theories
of mixed norm Bergman spaces on homogeneous Siegel
domains. On the other hand, we have extended part of the
theory for the spaces AY*? to the spaces 2. In doing this,
we hope we have shed some light on the technically demand-
ing subject of function theory on such domains. We believe
that this is a lively area of research that in recent times has
drawn the interest of many scholars. We mention that the
Silov boundary of D naturally appears in the extension of
the Paley—Wiener and Bernstein spaces of entire functions to
higher complex dimensions, see in particular [15, 20, 21].
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