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Abstract
We consider mixed-norm Bergman spaces on homogeneous Siegel domains. In the literature, two different approaches have
been considered and several results seem difficult to be compared. In this paper, we compare the results available in the
literature and complete the existing ones in one of the two settings. The results we present are as follows: natural inclusions,
density, completeness, reproducing properties, sampling, atomic decomposition, duality, continuity of Bergman projectors,
boundary values, and transference.
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1 Introduction

This paper deals with some spaces of holomorphic functions
on a homogeneous Siegel domain. In order to illustrate the
kind of spaces and problems we are going to consider, we
begin with the simplest case.

Let C+:={z ∈ C : Im z > 0} be the upper half-plane. We
can think ofC+ asR+i(0,∞), where (0,∞) is (essentially)
the unique open (convex) cone inR. In several variables, the
upper half-plane can be generalized to tube domains over
convex cones. Let Ω be an open convex cone in Rm . Then,
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the domain D = Rm + iΩ in Cm is called the tube domain
over the cone Ω . If the group of linear transformations of
Rm that preserve Ω acts transitively on Ω itself, then Ω is
a homogeneous cone and the domain becomes itself homo-
geneous, that is, the group of biholomorphic self-maps of D
(the automorphisms of D) acts transitively on D.

Another classical domain in several variables that extends
the definition and some of the main features of C+ is the
so-called Siegel upper half-space. Consider again the cone
(0,∞) ⊆ R and the hermitian quadratic map on Cn ζ �→
ζ · ζ = |ζ |2. Then, the Siegel upper half-space is the domain
U in Cn × C

U :={(ζ, z) ∈ Cn × C : Im z − |ζ |2 ∈ (0,∞)}.

The homogeneous Siegel domains are then introduced as
follows—we refer to Sect. 2 for complete definitions. Let
a homogeneous cone Ω ⊂ Rm and a suitable hermitian
quadratic map Φ : Cn → Cm be given. Then, the homo-
geneous Siegel domain D ⊆ Cn × Cm is

D = {(ζ, z) ∈ Cn × Cm : Im z −Φ(ζ) ∈ Ω}.

(again, cf. Sect. 2 for definitions). Notice that if n = 0, then
D is the tube domain over the given cone Ω .

On a homogeneous Siegel domain D as above, various
(mixed norm) weighted Bergman spaces have been consid-
ered in the literature. On the one hand, in [33] (for the upper
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half-plane) and [16] (for the general case), the following
mixed norm weighted Bergman spaces are considered:

Ap,q
s :={ f ∈ Hol (D) : ‖h �→ Δs

Ω(h)‖ fh‖L p(N )‖Lq (νΩ) <∞},

whereΔs
Ω are ‘generalized power functions’ onΩ (s ∈ Rr ),

νΩ is ‘the’ invariant measure on Ω , N = Cn × Rm and
fh : (ζ, x) �→ f (ζ, x + iΦ(ζ) + ih). On the other hand,
e.g. in [1–4, 6, 7, 12, 23, 29], the following mixed-norm
weighted Bergman spaces are considered:

A
p,q
s :={ f ∈ Hol(D) : ‖h �→ ‖ fh‖L p,q (Rm ,Cn)‖Lq (Δ

s+b/2
Ω ·νΩ)

<∞},

where b is a suitable element of Rr and L p,q(Rm,Cn) =
{ f : ‖ζ �→ ‖ f (ζ, · )‖L p(Rm )‖Lq (Cn) <∞}.

Two parallel theories then arise, and different conventions
have been adopted. For example, the definition of the spaces
A

p,q
s suggests a natural comparison between the spacesAp,q

s
for a fixed s, which in turn highlights the role played by ‘the’
Bergman projectorPs, namely the Bergman projector of the
corresponding spaceA2,2

s . On the other hand, the comparison
of the spaces Ap,q

s for fixed s appears to be less natural, so that
more general Bergman projectors are naturally investigated.
Besides that, in the study of various properties of the spaces
A

p,q
s (such as, for instance, the continuity ofPs on the space

L
p,q
s , which is defined the same way as Ap,q

s replacing holo-
morphic functions with equivalence classes of measurable
functions), greater attention is placed on p and q, rather than
s, whereas in the study of the spaces Ap,q

s , greater attention is
placed on s, rather than p or q, so that even when describing
the same phenomena, the two parallel theories may appear
quite different from one another and hard to compare.

This is the main reason which motivated us to write this
work. Our goal is to describe various results for the spaces
Ap,q
s and prove the direct counterparts in the case of the

spacesAp,q
s for a direct comparison. Hence, in particular, we

deepen the study of the spaces A
p,q
s proving those results

which, to the best of our knowledge, do not appear in the
literature in the present generality. In order to tackle these
issues, we are naturally led to introduce a new family of
spacesAp,q

s , which is defined in the spirit of the spaces Ap,q
s

(and has, therefore, some technical advantages), but allows to
treat also the spaces Ap,q

s by means of suitable substitutions.
Function theory and analysis of function spaces on homo-

geneous Siegel domains are the classical areas of research
in which complex analysis, harmonic analysis, geometry of
convex cones, and representation theory all play a funda-
mental role, see e.g. [27, 28, 31, 32, 34] and also [24]. In
more recent times, it was shown in [5] and then general-
ized in [4], that in order to prove the L p-boundedness of the
Bergman projector on some homogeneous Siegel domain of
tube-type (see Subsection 2.6), it was necessary to exploit
the cancellations of the kernel, a phenomenon that had never
been observed before; in fact, these examples seem to remain

the only instances of such behaviour. We mention in passing
that, in order to exploit the cancellation of the Bergman ker-
nel, the mixed-norm spaces were considered, hence showing
their naturality in this context. It is alsoworthmentioning that
the question of the L p-boundedness of the Bergman projec-
tor on homogeneous Siegel domains is tightly connected to
the sharp �2-decoupling inequality of Bourgain and Demeter
[13], see [6]. We refer also to the Introduction in [19] for
a thorough discussion of this and related questions, and to
[6–8, 16–19, 29] for some very recent works on the subject
of the current paper.

The paper is organized as follows. In Sect. 2, we recall
some basic facts and introduce some notation to deal with
homogeneous Siegel domains. In order to help readers who
are accustomed to different conventions, we introduce our
notation axiomatically, allowing the reader to identify the
(hopefully minimal) modifications needed. In Sect. 3, we
briefly list several known results for the spaces Ap,q

s without
proofs. In Sect. 4, we deal with the spaces Ap,q

s for which
we prove results which are analogous to the ones which
are valid in the case of the spaces Ap,q

s . Section4 consti-
tutes the main part of this paper. In order to more easily
deal with the spaces A

p,q
s , we introduce another scale of

spaces, denoted byAp,q
s . In fact, the use of these latter spaces

allows to simplify the notation and to more easily compare
the scale of spaces Ap,q

s and A
p,q
s . In addition to that, deal-

ing with the spaces Ap,q
s allows for a more comprehensive

treatment of some topics (such as duality for q ≤ 1) that
would otherwise require the introduction of auxiliary spaces
(cf., e.g. [1], where a different—yet related—description of
the dual ofAp,p

s is determined for p ∈ (0, 1)). The topics we
shall present include the following: natural inclusions, den-
sity, completeness, reproducing properties, sampling, atomic
decomposition, duality, continuity of Bergman projectors,
boundary values, and transference.

We did our best to acknowledge the previously known
results before the statements of the most important results.
We apologize for any omission.

2 Homogeneous Siegel domains

We denote by E a complex Hilbert space of dimension n, by
F a real Hilbert space of dimensionm, byΩ an open convex
cone in F not containing affine lines, andbyΦ : E×E → FC
a non-degenerate hermitian map such thatΦ(ζ):=Φ(ζ, ζ ) ∈
Ω for every ζ ∈ E . Clearly, E and F may be replaced with
the standard Euclidean spaces Cn and Rm with their natural
inner products. We prefer the more abstract versions since E
and F are in general better described as spaces of (formal)
matrices, at least in most examples. Besides that, we believe
that this abstract notation better underlines the roles played
by the various objects under consideration. In any event, the
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reader may replace E with Cn and F withRm , if they find it
convenient, without any loss of generality.

We define

ρ : E × FC 
 (ζ, z) �→ Im z −Φ(ζ) ∈ F,

and denote by

D = {(ζ, z) ∈ E × FC : Im z −Φ(ζ) ∈ Ω} = ρ−1(Ω)

the Siegel domain associatedwithΩ andΦ.We shall assume
that D is homogeneous, that is, that the group of its biholo-
morphisms acts transitively on it. It is known (cf., e.g. [14,
Proposition 1]) that D is homogeneous if and only if there is
a triangular1 subgroup T+ of GL(F)which acts simply tran-
sitively onΩ , and for every t ∈ T+ there is g ∈ GL(E) such
that t ◦ Φ = Φ ◦ (g × g). In this case, any other triangular
subgroup of GL(F) with the same properties is conjugate to
T+ by an element of GL(F)which preservesΩ . In addition,
T+ acts simply transitively on the right on the dual cone Ω ′,
by transposition (cf. [38, Theorem 1]). We shall denote this
latter action by λ · t , for λ ∈ Ω ′ and t ∈ T+; we shall conse-
quently write t · h instead of th for t ∈ T+ and h ∈ Ω . We
shall still denote by t · and · t the actions of t on FC and F ′C,
respectively, for every t ∈ T+.

2.1 Analysis onÄ

It is possible to describe the structure of T+ and of its action
on Ω using the theory of T -algebras, cf. [38], or the theory
of (normal) j-algebras, cf. [32, 34]. In order to keep the
exposition as simple as possible, we shall avoid a thorough
description of the structure of T+ and proceed axiomatically.
We refer the reader to [16] for a more detailed treatment of
the following considerations. We first observe that there are
r ∈ N (called the rank ofΩ) and a surjective homomorphism
of Lie groups

Δ : T+ → (R∗+)r ,

with kernel [T+, T+], such that, if we fix base-points eΩ ∈ Ω

and eΩ ′ ∈ Ω ′ and define

Δs
Ω(t · eΩ) = Δs

Ω ′(eΩ ′ · t) = Δs(t) =
r∏

j=1
Δ j (t)

s j (1)

for every s ∈ Cr and for every t ∈ T+, then Δs
Ω (and Δs

Ω ′)
is bounded on bounded subsets if and only if Re s ∈ Rr+ (cf.
[16, Lemma 2.34]). We shall further require that Δ(a · ) =

1 This means that all the eigenvalues of every element of T+ are real.
Equivalently, there is a basis of F with respect to which every element
of T+ is represented by an upper triangular matrix, cf. [37].

(a, . . . , a) for every a > 0, where a · denotes the homoth-
ety of ratio a (which necessarily belongs to T+). We remark
explicitly that these conditions determine Δ up to a permu-
tation of the coordinates (in (R∗+)r ).2 Consequently, we may
apply the results of [16, Chap. 2] without (essential) changes,
even if a different choice of T+ and Δ is made. Notice that
Δs

Ω andΔs
Ω ′ extend to holomorphic functions onΩ+i F and

Ω ′ + i F ′, respectively, for every s ∈ Cr (cf. [16, Corollary
2.25]).

WhenΩ is symmetric, that is, self-dual with respect to the
scalar product of F , then the functions Δs considered in [24]
coincide with the functions Δs

Ω defined in (1) for an appro-
priate choice of Δ (cf. [24, Chap. VI, § 3]); in particular,
the ‘determinant’ polynomial coincides with Δ

1r
Ω . Generally

speaking, the works which deal with the case in which Ω is
symmetric generally adhere to the conventions of [24], possi-
bly with slightly different notation, whereas the works which
dealwith general homogeneous cones generally adhere to the
conventions described above, possiblywith different notation
(for example, Δs

Ω = Qs and Δs
Ω ′ = (Q∗)s in the notation of

[6, 8, 29, 30]).
To simplify the notation, we state the following definition.

Definition 2.1 We define two order relations on Rr . On the
one hand, we write s ≤ s′ to mean s j ≤ s′j for every j =
1, . . . , r (equivalently, s′ − s ∈ Rr+). On the other hand, we
write s � s′ tomean s = s′ or s j < s′j for every j = 1, . . . , r .

Thus, s ≺ s′ (that is, s � s′ and s �= s′) if and only if
s′ − s ∈ (R∗+)r , that is, s j < s′j for every j = 1, . . . , r .

Definition 2.2 We denote by Hk the k-dimensional Haus-
dorff measure. There are d ≺ 0 and b ≤ 0 such that

νΩ :=Δd
Ω ·Hm, νΩ ′ :=Δd

Ω ′ ·Hm, and

νD:=(Δb+2d
Ω ◦ ρ) ·H2n+2m (2)

are the unique measures on Ω , Ω ′, and D (up to a mul-
tiplicative constant) which are invariant under all linear
automorphisms of Ω and Ω ′, and all biholomorphisms of
D, respectively (cf. [16, Propositions 2.19 and 2.44], and
[24, Proposition I.3.1]).

2 To see this fact, observe that, if Δ′ : T+ → (R∗+)r is another
homomorphism with the same properties, then there is A ∈ GL(Rn)

such that logΔ′ = A logΔ. In addition, given s ∈ Rr , both∑
j s j logΔ′j =

∑
j (
t As) j logΔ j and

∑
j s j logΔ j induce func-

tions which are bounded on the bounded subsets of Ω if and only if
s ∈ R

r+, so that t AR
r+ = R

r+ and therefore A must be the com-
position of a permutation of the coordinates and a diagonal dilation
(x1, . . . , xr ) �→ (λ1x1, . . . , λr xr ), λ1, . . . , λr > 0. Since Δ(a · ) =
Δ′(a · ) = (a, . . . , a) for every a > 0, we then see that A must induce
the identity on the line R1r , so that it must be a permutation of the
coordinates.
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Remark 2.3 Notice thatΔ−b(t) = |detC g|2 for every t ∈ T+
and for every g ∈ GL(E) such that t · Φ = Φ ◦ (g × g).
Further, Δ−d(a · ) = am , and Δ−b(a · ) = an for every a >

0.
We observe explicitly that d = d and b = −q in the

notation of [1, 9, 27], whereas d = −τ and b = −b in the
notation of [6, 8, 29, 30]. In particular, there is no general
agreement on the sign of d.

Definition 2.4 There are m,m′ ≥ 0 such that Δs
Ω · νΩ and

Δs
Ω ′ · νΩ ′ induce Radon measures on F and F ′, respectively,

if and only if Re s � 1
2m and Re s � 1

2m
′, respectively (cf.

[16, Proposition 2.19]).

Remark 2.5 Notice thatd = −(1r+ 1
2m+ 1

2m
′) (cf. [16,Defi-

nition 2.8] and the preceding remarks).We observe explicitly
that m = (m1, . . . ,mr ) and m′ = (n1, . . . , nr ) in the nota-
tion of [6–9, 29, 30].

Definition 2.6 For every s, s′ ∈ Cr such that Re s � 1
2m and

Re s′ � 1
2m
′, we define ΓΩ(s) and ΓΩ ′(s′) so that

L(Δs
Ω · νΩ) = ΓΩ(s)Δ−s

Ω ′ and

L(Δs′
Ω ′ · νΩ ′) = ΓΩ ′(s

′)Δ−s
′

Ω ,

respectively, where L denotes the Laplace transform.

Remark 2.7 Notice that ΓΩ(s) = L(Δs
Ω · νΩ)(eΩ ′) =

c
∏r

j=1 Γ
(
s j − 1

2m j
)
and ΓΩ ′(s′) = L(Δs′

Ω ′ · νΩ ′)(eΩ) =
c′

∏r
j=1 Γ

(
s′j − 1

2 m
′
j

)
for some constants c, c′ > 0 which

depend on the choice of eΩ and eΩ ′ .

Definition 2.8 There are two uniquely determined holomor-
phic families (I sΩ)s∈Cr and (I s

Ω ′)s∈Cr of tempered distribu-
tions on F and F ′, respectively, such that LI sΩ = Δ−s

Ω ′ and
LI s

Ω ′ = Δ−sΩ (cf. [16, Lemma 2.26 and Proposition 2.28]).

Remark 2.9 Notice that I sΩ = 1
ΓΩ(s)Δ

s
Ω · νΩ and I s

Ω ′ =
1

ΓΩ′ (s)
Δs

Ω ′ · νΩ ′ when Re s � 1
2m and Re s � 1

2m
′, respec-

tively. In addition, I sΩ and I s
Ω ′ are supported in Ω and Ω ′,

respectively, for every s ∈ Cr (cf. [16, Proposition 2.28]).

Definition 2.10 Wedenote byNΩ andNΩ ′ the sets of s ∈ Rr

such that Δs
Ω and Δs

Ω extend to polynomials on F and F ′,
respectively.

Remark 2.11 Notice that I sΩ and I s
Ω ′ are supported in {0} if

and only if s ∈ −NΩ ′ and s ∈ −NΩ , respectively. Then,
Φ∗(H2n) = cI−bΩ for a suitable constant c > 0 which
depends on the choice of eΩ ′ (cf. [16, Proposition 2.30]). We
observe explicitly that, when Ω is symmetric, then 1r ∈ NΩ

and the differential operator f �→ f ∗ I−1rΩ is simply the
differential operator associated with the determinant polyno-
mial Δ1r

Ω by means of the scalar product. This latter operator

is often denoted by �. In addition, if Ω is symmetric and
irreducible, then NΩ = {s ∈ Nr : s1 ≥ · · · ≥ sr }, for an
appropriate choice of Δ. This latter condition completely
determines Δ in this case.

2.2 Fourier analysis on the Šilov boundary

We now pass to the analysis of the Šilov boundary of D (cf.
[31] for a more general treatment of this topic). We endow
E × FC with the 2-step nilpotent Lie group structure whose
product is given by

(ζ, z) · (ζ ′, z′):=(ζ + ζ ′, z + z′ + 2iΦ(ζ ′, ζ )),

for every (ζ, z), (ζ ′, z′) ∈ E × FC. If we identify N :=E ×
F with the Šilov boundary ρ−1(0) of D by means of the
mapping (ζ, x) �→ (ζ, x+ iΦ(ζ)), thenN becomes a 2-step
nilpotent Lie group with product

(ζ, x)(ζ ′, x ′) = (ζ + ζ ′, x + x ′ + 2ImΦ(ζ, ζ ′))

for every (ζ, x), (ζ ′, x ′) ∈ N .
Define W :={λ ∈ F ′ : ∃v ∈ E\{0} 〈λ, ImΦ( · , v)〉 = 0},

so that W is a proper algebraic variety in F ′ since Φ is non-
degenerate and Ω-positive. Then, for every λ ∈ F ′\W , the
quotient of N modulo the central subgroup ker λ is isomor-
phic to a Heisenberg group (to R, if E = {0}), so that the
Stone–Von Neumann theorem (cf., e.g. [25, Theorem 1.50])
ensures the existence of a unique (up to unitary equivalence)
irreducible continuous unitary representation πλ of N in
some Hilbert space Hλ such that πλ(0, x) = e−i〈λ,x〉 for
every x ∈ F . One then has the Plancherel identity (cf. [16,
Corollary 1.17 and Proposition 2.30]):

‖ f ‖2L2(N )
= c

∫

F ′\W
‖πλ( f )‖2L 2(Hλ)

|Δ−b
Ω ′ (λ)| dλ

for every f ∈ L1(N ) ∩ L2(N ), where c > 0 is a suitable
constant (which depends on the choice of eΩ ′ ) andL 2(Hλ)

denotes the space of Hilbert–Schmidt endomorphisms of Hλ.
Note that Δ−b

Ω ′ is positive on Ω ′ and extends to a polyno-
mial on F ′, so that the above formula is meaningful (cf. [16,
Proposition 2.30]).

2.3 The CR structure ofN

For every v ∈ E , denote by Zv the left-invariant vector field
onN which induces the Wirtinger derivative 1

2 (∂v − i∂iv) at
(0, 0). Then, the Zv , for v ∈ E , induce a subbundle of the
complexified tangent bundle ofN which endowsN with the
structure of a CR manifold (cf. [11, Sect. 7.4]). In particular,
a distribution u on N is said to be CR if Zvu = 0 for every
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v ∈ E (cf. [11, Sects. 9.1 and 17.2]). Note that an element f
of L2(N ) is CR if and only if

πλ( f ) = χΛ+(λ)πλ( f )Pλ,0

for almost every λ ∈ F ′ \W , where Λ+ is the interior of the
polar of Φ(E), that is, the set

{λ ∈ F ′ : ∀ζ ∈ E \ {0} 〈λ,Φ(ζ )〉 > 0},

and Pλ,0 is an orthoprojector of rank one in Hλ, for every
λ ∈ F ′ \ W (cf., e.g. [31] or [16, Proposition 1.19] and [15,
Proposition 2.16]).

2.4 Metrics

We endow D with a complete Riemannian metric which is
invariant under the action of affine biholomorphisms (for
example, theBergmanmetric is complete and invariant under
all biholomorphisms of D, cf. [16, Proposition 2.44]), and
the associated distance d. Since the balls with respect to d
will only be used for bounded radii, it will not matter which
distance is chosen, as long as it satisfies the preceding con-
ditions.

We endow Ω with the Riemannian metric induced by
that on D by means of the submersion ρ (interpreted as
the projection of D onto its quotient modulo the action of
N ), and Ω ′ with the metric induced by the diffeomorphism
Ω 
 t · eΩ �→ eΩ ′ · t−1 ∈ Ω ′. We denote by dΩ and dΩ ′ the
corresponding distances, and by BΩ(h, R) and BΩ ′(λ, R)

the corresponding balls of centre h ∈ Ω and λ ∈ Ω ′, respec-
tively, and radius R > 0. Notice that also in this case one
may choose general complete T+-invariant Riemannian dis-
tances without (essentially) compromising the results which
follow. Nonetheless, the relationships between d and dΩ will
be useful in some places (such as in the definition of lattices
given below).

Analogously, we endow E×Ω with the Riemannian met-
ric induced by the one on D by means of the submersion

ρ′ : D 
 (ζ, z) �→ (ζ, ρ(ζ, z)) ∈ E ×Ω,

interpreted as the projection of D onto its quotient modulo
the action of the centre F of N . We denote by dE×Ω the
corresponding distance and by BE×Ω((ζ, h), R) the corre-
sponding ball of centre (ζ, h) ∈ E ×Ω and radius R > 0.

We observe explicitly that bothN and its centre F are nor-
mal subgroups of the group GAff of affine automorphisms
of D (cf. [28, Proposition 2.1]). Hence, dΩ and dE×Ω are
(GAff/N )- and (GAff/F)-invariant, respectively. In partic-
ular, dΩ and dΩ ′ are T+-invariant, while dE×Ω is invariant

under the affine automorphisms of the form

(ζ, h) �→ (gζ + ζ ′, t · h),

with ζ ′ ∈ E , t ∈ T+, and g ∈ GL(E) such that t · Φ =
Φ ◦ (g× g). We define νE×Ω :=(Δ−b−dΩ ◦ prΩ) ·H2n+m , so
that νE×Ω is (GAff/F)-invariant.

2.5 Lattices

By a (δ, R)-lattice on Ω , with δ > 0 and R > 1, we
mean a family (hk)k∈K of elements of Ω such that the balls
BΩ(hk, δ) are pairwise disjoint while the balls BΩ(hk, Rδ)

cover Ω . We define lattices on Ω ′ and E ×Ω analogously.
Notice that every maximal family of elements of Ω whose
mutual distances are ≥ 2δ is necessarily a (δ, 2)-lattice (and
conversely), so that (δ, 2)-lattices on Ω , Ω ′, and E × Ω

always exist.
By an N -(δ, R)-lattice on D, with δ > 0 and R > 1,

we mean a family (ζ j,k, z j,k) j∈J ,k∈K of elements of D such
that the balls B((ζ j,k, z j,k), δ) are pairwise disjoint, the balls
B((ζ j,k, z j,k), Rδ) cover D, and there is a (δ, R)-lattice
(hk)k∈K on Ω such that ρ(ζ j,k, z j,k) = hk for every j ∈ J
and for every k ∈ K .

By an F-(δ, R)-lattice on D, with δ > 0 and R >

1, we mean a family (ζk, z j,k) j∈J ,k∈K of elements of D
such that the balls B((ζk, z j,k), δ) are pairwise disjoint, the
balls B((ζk, z j,k), Rδ) cover D, and there is a (δ, R)-lattice
(ζk, hk)k∈K on E ×Ω such that ρ(ζk, z j,k) = hk for every
j ∈ J and for every k ∈ K .
By a modification of the previous argument, one may

show that N - and F-(δ, 4)-lattices always exist on D (cf.
[16, Lemma 2.55]).

2.6 The associated tube domain

We denote by

TΩ = F + iΩ

the tube domain associated with Ω . Given a function f on
D, we define

fh : N 
 (ζ, x) �→ f (ζ, x + iΦ(ζ)+ ih)

for every h ∈ Ω , and

f (ζ ) : TΩ 
 z �→ f (ζ, z + iΦ(ζ))

for every ζ ∈ E . Thus,

f (ζ )
h : F 
 x �→ f (ζ, x + iΦ(ζ)+ ih)

for every ζ ∈ E and for every h ∈ Ω .
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2.7 Two families of mixed-normweighted bergman
spaces

We now introduce the different definitions of mixed-norm
Bergman spaces.

In [16, 33], mixed-norm weighted Bergman spaces are
defined as

Ap,q
s (D) = { f ∈ Hol(D) : ‖h �→ Δs

Ω(h)‖ fh‖L p(N )‖Lq (νΩ ) <∞}.

On the one hand, this definition highlights the role played by
the Šilov boundary of D and gives rise to the usual Hardy
spaces when q = ∞ and s = 0 (that is, Δs

Ω = 1). In particu-
lar, the non-commutative Fourier analysis on N comes into
play. On the other hand, the weight Δs

Ω ◦ ρ is considered as
a multiplier of the function, and not of the measure, and the
‘base measure’ is chosen in such a way that it induces the
invariant measures on N and Ω . When q = ∞, this allows
to treat a whole class of spaces which would not appear oth-
erwise, and which play a relevant role in the duality theory
of the spaces Ap,q

s (D) when q ≤ 1.
In [6, 29] (to cite only a few), mixed-norm weighted

Bergman spaces are defined as

A
p,q
s (D):={ f ∈ Hol(D) : ‖ζ �→‖ f (ζ )‖Ap,q

(s+b/2)/q (TΩ)‖Lq (E) <∞}.

On the one hand, this definition highlights the role played by
the centre F of the Šilov boundary of D, so that the usual
(commutative) Fourier analysis on F comes into play. In
addition, this definition also allows to view D as the union
of the translates (ζ, iΦ(ζ)) + TΩ of the tube domain TΩ

(identified with {0} × TΩ ⊆ D), so that some of the anal-
ysis on A

p,q
s (D) may be reduced to a simpler analysis on

A
p,q
s (TΩ). On the other hand, the weight Δs

Ω ◦ ρ is con-

sidered as a multiplier of the ‘base measure’ (Δ
b/2+d
Ω ◦ ρ) ·

H2n+2m = (Δ
−b/2−d
Ω ◦ ρ) · νD , and not of the function. In

this way, the self-adjoint projector of L2,2
s (D) (defined as

A2,2
s (D), but allowing f to be a measurable function mod-

ulo negligible functions) onto A2,2
s (D) is highlighted as the

‘canonical choice’ when looking for a projector of Lp,q
s (D)

onto A
p,q
s (D) for different p, q ∈ [1,∞].

We mention thatAp,∞
s (D) = A

p,∞
0 (D) for every s ∈ Rr .

Because of this fact, the case q = ∞ is somewhat patholog-
ical and seldom considered. For similar reasons, the duality
theory for the space Ap,q

s (D), when q ≤ 1, is treated sepa-
rately (cf., e.g. [1]).

We also observe that

A
p,q
s (D)={ f ∈ Hol (D) : ‖h �→ ‖ fh‖L p,q (F,E)‖Lq (Δ

s+b/2
Ω ·νΩ)

<∞},

where

‖g‖L p,q (F,E):=‖ζ �→ ‖g(ζ, · )‖L p(F)‖Lq (E)

for every measurable function g : N → C.

3 The spaces Ap,q
s

In this short section, we collect some of the main results
concerning the spaces Ap,q

s (D) the analogues of which we
wish to prove for the spacesAp,q

s (D) in the next section. We
recall that the spaces Ap,q

s (D), and A
p,q
s (D), are described

in Sect. 2. We refer the reader to [16, 19] for the proofs of the
statements of this section.

3.1 Elementary properties

The following result is a consequence of [16, Corollary 1.31
and Proposition 3.5].

Proposition 3.1 Take p, q ∈ (0,∞] and s ∈ Rr . Then,
Ap,q
s (D) �= {0} if and only if s � 1

2qm or q = ∞ and

s ≥ 0. In addition, Ap,q
s (D) is a quasi-Banach space.

Next, we deal with inclusions among the Ap,q
s (D) spaces.

The result is a consequence of [16, Proposition 3.2]. It
extends [33, Proposition 2.2], which corresponds to the case
in which D = C+.

Proposition 3.2 Take p1, p2, q1, q2 ∈ (0,∞] with p1 ≤
p2, q1 ≤ q2 and s1, s2 ∈ Rr with s2 = s1+

(
1
p2
− 1

p1

)
(b+

d). Then,

Ap1,q1
s1 (D) ⊆ Ap2,q2

s2 (D)

continuously.

3.2 Reproducing kernels

Define the auxiliary function

Bs
(ζ ′,z′)(ζ, z):=Δs

Ω

(
z − z′
2i
−Φ(ζ, ζ ′)

)

for every (ζ, z), (ζ ′, z′) ∈ (D × D) ∪ (D × D), where D
denotes the closure of D in E × FC (note that conjugation
on E is not defined).

Then, by [27, Theorem 5.4] and [9, Theorem II.6] (cf.,
also, [16, Proposition 3.11]), the following result holds.

Proposition 3.3 If s � 1
4m, then A2,2

s (D) is a reproducing
kernel Hilbert space with reproducing kernel

K s : ((ζ, z), (ζ ′, z′)) �→ csB
b+d−2s
(ζ ′,z′) (ζ, z)

for a suitable cs �= 0.
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In [16], for notational convenience, the corresponding
integral operators are based on Bs rather than K s, so that
the operators

Ps : f �→ c(b+d−s)/2
∫

D
f (ζ, z)Bs

(ζ,z)Δ
−s
Ω (ρ(ζ, z)) dνD(ζ, z)

are considered.
The following result is a consequence of [16, Proposition

3.13]. It extends [33, Theorem 3.1], which corresponds to the
case in which D = C+.

Proposition 3.4 Take p, q ∈ (0,∞] and s, s′ ∈ Rr . If:

• s � 1
p (b+ d)+ 1

2q ′m
′;

• s′ ≺ 1
p′ (b+ d)− 1

2p′m
′,b+ d− 1

2m;

• s+ s′ ≺ 1
min(1,p) (b+d)− 1

2q ′m
′ or q ′ = ∞ and s+ s′ ≤

1
min(1,p) (b+ d);

then Ps′ f = f for every f ∈ Ap,q
s (D).

3.3 Sampling

The following sampling theorem is a consequence of [16,
Theorem 3.22], where a more precise version of this result
is proved. We denote by �p,q(J , K ) the space of λ ∈ CJ×K
such that ‖‖λ j,k‖�p(J )‖�q (K ) <∞, with some abuse of nota-
tion.

Theorem 3.5 Take p, q ∈ (0,∞], s ∈ Rr and R0 > 1.
Then, there is δ0 > 0 such that, for every N -(δ, R)-lattice
(ζ j,k, z j,k) j∈J ,k∈K on D, with δ ∈ (0, δ0] and R ∈ (1, R0],
the mapping

f �→ Δ
s−(b+d)/p
Ω (ρ(ζ j,k, z j,k)) f (ζ j,k, z j,k)

induces an isomorphism of Ap,q
s (D) onto a closed subspace

of �p,q(J , K ).

Here we mention that the transpose of the sampling map
defined above is often considered an atomic decomposition
map, especiallywhen the duals of Ap,q

s (D) andAp,q
s (D)may

be identified with Ap′,q ′
s′ (D) and Ap′,q ′

s′ (D), respectively, for
some s′.

3.4 Atomic decomposition and duality

Definition 3.6 Take p, q ∈ (0,∞] and s, s′ ∈ Rr . Then,
we say that property (L)

p,q
s,s′ holds if for every δ0 > 0 there

is an N -(δ, 4)-lattice (ζ j,k, z j,k) j∈J ,k∈K , with δ ∈ (0, δ0],
such that, defining hk :=ρ(ζ j,k, z j,k) for every j ∈ J and for
every k ∈ K , the mapping

ΨA : λ �→
∑

j,k

λ j,k B
s′
(ζ j,k ,z j,k )Δ

(b+d)/p−s−s′
Ω (hk)

is well defined (with locally uniform convergence of the sum)
and maps �p,q(J , K ) into Ap,q

s (D) continuously.
If we may take (ζ j,k, z j,k) j∈J ,k∈K , for every δ0 > 0 as

above, in such a way that the corresponding mapping ΨA is
onto, then we say that property (L ′)p,qs,s′ holds.

The next result is a consequence of [16, Theorems 3.33
and 3.34]. This result was first proved in [22, Theorem 2]
when D is symmetric, p = q < ∞, and s, s′ ∈ R1r .3 See
also [33, Theorem 1.5], which corresponds to the case in
which D is the upper half-plane.

Theorem 3.7 Take p, q ∈]0,∞] and s, s′ ∈ Rr such that the
following hold:

• s � 1
2qm+

(
1

2min(1,p) − 1
2q

)

+m
′;

• s′ ≺ 1
min(1,p) (b+ d)− 1

2min(1,p)m
′;

• s+s′ ≺ 1
min(1,p) (b+d)− 1

2qm
′ −

(
1

2min(1,p) − 1
2q

)

+m;

Then, property (L ′)p,qs,s′ holds. More precisely, the mapping
ΨA of Definition 3.6 has a continuous linear section for δ

sufficiently small and R bounded.

By [19, Corollary 4.7], properties (L)
p,q
s,s′ and (L ′)p,qs,s′ are

actually equivalent when p, q ∈ [1,∞].
The following result is essentially a consequence of [19,

Corollary 4.14]. It extends [33, Theorem 8.2], which deals
with the case in which D is the upper half-plane.

Proposition 3.8 Take p, q ∈ (0,∞] and s, s′ ∈ Rr such
that property (L)

p,q
s,s′ holds. Denote by V the closed vector

subspace of Ap,q
s (D) generated by the Bs′

(ζ,z), (ζ, z) ∈ D.
Then, the sesquilinear form

Ap,q
s (D)× Ap′,q ′

(b+d)/min(1,p)−s−s′(D) 
 ( f , g)

�→
∫

D
f g(Δ−s′ ◦ ρ) dνD ∈ C

induces anantilinear isomorphismof Ap′,q ′
(b+d)/min(1,p)−s−s′(D)

onto the dual of V .

If property (L ′)p,qs,s′ holds and p, q < ∞, then V =
Ap,q
s (D).

3.5 Boundary values

We now consider the problem of determining the boundary
values of the spaces Ap,q

s (D).We recall some definitions and
results from [16], with some slight changesmotivated by [14,
15].

3 Notice that the statement of [22, Theorem 2] is incorrect because of
an erroneous computation of the Ap,p

s (D) norm of Bs′
(ζ,z) in [22, Lemma

2.2].
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Definition 3.9 We define S
Ω ′(N ) as the space of CR φ ∈

S(N ) such that FF (φ(ζ, · )) is supported in Ω ′ for every
ζ ∈ E , endowed with the topology induced by S(N ). We
define S ′

Ω ′(N ) as the dual of the conjugate of S
Ω ′(N ). In

addition, we define S̃
Ω ′(N ) as the space of φ ∈ S(N ) such

that πλ(φ) = χΩ ′(λ)Pλ,0πλ(φ)Pλ,0 for every λ ∈ F ′\W .
We define

FN : S̃Ω ′(N ) 
 φ �→ [λ �→ Tr(πλ(φ))].

Notice that S
Ω ′(N ) may be equivalently defined as the

set of φ ∈ S(N ) such that πλ(φ) = χΩ ′(λ)πλ(φ)Pλ,0 for
every λ ∈ F ′\W , thanks to [15, Proposition 2.17]. In addi-
tion, FN induces an isomorphism of S̃

Ω ′(N ) onto the space
of Schwartz functions on F ′ supported inΩ ′ (cf. [15, Propo-
sition 5.2]).

Definition 3.10 Take p, q ∈ (0,∞] and s ∈ Rr . We define
Bs
p,q(N ,Ω) as the space of u ∈ S ′

Ω ′(N ) such that

(Δs
Ω ′(λk)u ∗ ψk) ∈ �q(K ; L p(N )),

where (λk)k∈K is a (δ, R)-lattice onΩ ′ and (ψk) is a family of
elements of S̃

Ω ′(N ) such that ((FNψk)( · tk)) is a bounded
family of positive elements of C∞c (Ω ′),4 with λk = eΩ ′ · tk ,
and

∑

k

FNψk ≥ 1

on Ω ′.

The definition of B p,q
s (N ,Ω) does not depend on the

choice of δ, R, (λk), and (ψk) (cf. [16, Lemma 4.14]).
In addition, B p,q

s (N ,Ω) is a quasi-Banach space (cf. [16,
Proposition 4.16] and [14, Proposition 7.12]).

Observe that, by [16, the remarks following the statement
of Lemma 5.1], there is a constant c > 0 such that

f (ζ, z) = c
∫

N
f0(ζ, x)Bb+d

(ζ,x+iΦ(ζ))(ζ, z) d(ζ, x)

for every f ∈ H2(D) = A2,∞
0 (D) and for every (ζ, z) ∈ D,

where f0 is the limit of ( fh) in L2(N ) for h→ 0, h ∈ Ω . In
other words,

S(ζ,z):=c
(
Bb+d

(ζ,z)

)

0

is (the boundary values of) the Cauchy–Szegő kernel.
The following result is a consequence of [16, Proposition

4.20, Theorem 4.23, and Lemma 5.1].

4 Notice that this means that the (FNψk)( · tk) are supported in a fixed
compact subset ofΩ ′ and are uniformly bounded with every derivative.

Proposition 3.11 Take (λk) and (ψk) as in Definition 3.10,
in such a way that

∑
k(FNψk)

2 = 1 on Ω ′. Then, there is a
continuous sesquilinear form

〈 · | · 〉 : Bs
p,q(N ,Ω)×B−s−(1/p−1)+(b+d)

p′,q ′ (N ,Ω) 
 (u, u′)

�→
∑

k

〈u ∗ ψk |u′ ∗ ψk〉 ∈ C

which induces an antilinear isomorphism of
B−s−(1/p−1)+(b+d)

p′,q ′ (N ,Ω) onto the dual of the closure of
S

Ω ′(N ) in Bs
p,q(N ,Ω).

In addition, S(ζ,z) ∈ B−s−(1/p−1)+(b+d)

p′,q ′ (N ,Ω) for every

(ζ, z) ∈ D if s � 1
p (b+ d)+ 1

2q ′m
′.

Definition 3.12 Given s � 1
p (b + d) + 1

2q ′m
′, we define a

continuous linear operator

E : B−sp,q(N ,Ω) 
 u �→ [(ζ, z) �→ 〈u|S(ζ,z)〉]
∈ A∞,∞

s−(b+d)/p(D),

and denote by Ã p,q
s (D) its image, endowed with the corre-

sponding topology.

Notice that (Eu)h → u in S ′
Ω ′(N ) for h → 0, h ∈ Ω ′,

for every u ∈ B−sp,q(N ,Ω) (cf. [16, Theorem 5.2] and [14,
Proposition 7.13]), so that E is one-to-one and B−sp,q(N ,Ω)

is the space of boundary values of Ã p,q
s (D) (when defined).

The following result is a consequence of [16, Propo-
sition 5.4 and Corollary 5.11]. Notice that the inclusion
E(S

Ω ′(N )) ⊆ Ap,q
s (D) does not follow from [16, Propo-

sition 5.4], but may be obtained by means of standard
arguments, making use of [16, Corollaries 2.22 and 2.35].

Theorem 3.13 Take p, q ∈ (0,∞] and s ∈ Rr . If s � 1
p (b+

d)+ 1
2q ′m

′ and either s � 1
2qm or q = ∞ and s ≥ 0, then

E(S
Ω ′(N )) ⊆ Ap,q

s (D) ⊆ Ã p,q
s (D)

continuously, with equality in the second inclusion if

s � 1

2q
m+

(
1

2min(p, p′)
− 1

2q

)

+
m′.

We also have transference results (cf. [19, Theorems 6.1
and 6.3]).

Proposition 3.14 Take p, q ∈ (0,∞] and s ∈ Rr . Then the
following hold:

(1) if s � 1
pd + 1

2p′m
′ and Ap,p

s (TΩ) = Ã p,p
s (TΩ), then

Ap,p
s (D) = Ã p,p

s (D);
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(2) if s � 1
p (b+ d)+ 1

2q ′m
′ and Ap,q

s (D) = Ã p,q
s (D), then

Ap,q
s−b/p(TΩ) = Ã p,q

s−b/p(TΩ).

Notice that, in assertion (1) above, we consider only pure
norm spaces; an analogue for mixed-norm spaces holds for
the spacesAp,q

s , as we shall see below (cf. Proposition 4.26).

3.6 Bergman Projectors

Concerning the boundedness ofBergman projectors, we have
the following results (cf. [16, Proposition 5.20]).

Proposition 3.15 Take p, q ∈ [1,∞] and s, s′ ∈ Rr . If s′ ≺
b + d − 1

2m and Ps′ induces a continuous linear projector
of L p,q

s (D) onto Ap,q
s (D), then:

• s � 1
p (b + d) + 1

2q ′m
′, and s � 1

2qm or q = ∞ and
s ≥ 0;
• s′ ≺ 1

min(p,p′) (b+ d− 1
2m
′);

• s+ s′ ≺ 1
p (b+ d)− 1

2qm
′, and s+ s′ ≺ b+ d − 1

2q ′m
or q = 1 and s+ s′ ≤ b+ d.

There are also transference results (cf. [19, Corollary 4.7
and Theorems 6.1 and 6.3]).

Proposition 3.16 Take p, q ∈ [1,∞] and s, s′ ∈ Rr such
that s′ ≺ b+ d− 1

2m. Then, the following hold:

• if Ps′ induces a continuous linear projector of L p,q
s (D)

onto Ap,q
s (D), then Ps′ induces a continuous linear pro-

jector of L p,q
s−b/p(TΩ) onto Ap,q

s−b/p(TΩ);

• if Ps′−b induces a continuous linear projector of L p,p
s (TΩ)

onto Ap,p
s (TΩ), then Ps′ induces a continuous linear pro-

jector of L p,p
s (D) onto Ap,p

s (D).

Notice that, in the second assertion of the preceding result,
we consider only pure norm spaces; an analogue for mixed-
norm spaces holds for the spacesAp,q

s , as we shall see below
(cf. Corollary 4.33).

The following result is a consequence of [16, Corollary
5.27] (cf. also [19, Corollary 4.7]).

Theorem 3.17 Take p, q ∈ [1,∞] and s, s′ ∈ Rr . If:

• s � 1
2qm+

(
1

2min(p,p′) − 1
2q

)

+m
′;

• b+ d− s− s′ � 1
2q ′m+

(
1

2min(p,p′) − 1
2q ′

)

+m
′;

then Ps′ induces a continuous linear projector of L p,q
s (D)

onto Ap,q
s (D).

4 The SpacesAp,q
s

In this section, we consider the spaces

A
p,q
s (D) = { f ∈ Hol(D) : ‖ζ �→ ‖ f (ζ )‖Ap,q

(s+b/2)/q (TΩ)‖Lq (E) <∞},

and prove the appropriate analogues of the results of the pre-
vious section valid in the case of the spaces Ap,q

s (D).
In order to deal with the spaces Ap,q

s (D), we introduce
some auxiliary spaces, namely the spaces

Ap,q
s (D):={ f ∈ Hol(D) : ‖ζ �→ ‖ f (ζ )‖Ap,q

s (TΩ)
‖Lq (E) <∞}

and

Ap,q
s,0 (D):=Hol (D) ∩ Lp,q

s,0 (D),

where Lp,q
s,0 (D) denotes the closure of Cc(D) in Lp,q

s (D)

(defined as Ap,q
s (D) replacing Hol(D) with the space of

measurable functions modulo negligible functions).
The reason for the introduction of these spaces lies in the

fact that they are somewhat similar to the spaces Ap,q
s and

enjoy similar technical advantages, but may still be easily
related to the spaces Ap,q

s by means of the simple equality

A
p,q
s (D) = Ap,q

(s+b/2)/q(D),

which holds for every p, q and s, as onemay readily see from
the definitions.

We also observe that the treatment of the smaller spaces
Ap,q

s,0 (D) is necessary for a reasonably comprehensive treat-
ment of duality, since in general only the dual of Ap,q

s,0 (D)

may be reasonably described. Since duality cannot be com-
prehensively studied using only the spaces Ap,q

s , defining an
analogous spaceAp,q

s,0 seems superfluous (and would only be

of use when p = ∞ and q < ∞, since A
p,∞
s,0 (D) = {0}

for every p ∈ (0,∞], thanks to Proposition 4.5). Notice that
analogous spaces Ap,q

s,0 (D) have also been considered in [16,
19]. Since Sect. 3 is essentially a summary of [16, 19], for the
sake of simplicity we avoided the introduction of the spaces
Ap,q
s,0 (D). On the contrary, we believe that the proofs of this

section will benefit from the parallel treatment of the spaces
Ap,q

s (D) and Ap,q
s,0 (D).

4.1 Elementary Properties

We begin our treatment of the spaces Ap,q
s and Ap,q

s by a
direct comparison with the spaces Ap,q

s .

Lemma 4.1 Take p, q ∈ (0,∞] and s ∈ Rr . If either s �
1
2qm, or q = ∞ and s ≥ 0, then

Ap,q
s (D) = Ap,q

s (D)
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if and only if p = q or E = {0}. In particular, if s � 1
2 (m−b)

or q = ∞, then

A
p,q
s (D) = Ap,q

(s+b/2)/q(D)

if and only if p = q or E = {0}.
Note that, as the proof (combined with Proposition 4.5)

shows, if p �= q and E �= {0}, then Ap,q
s (D) � Ap,q

s (D)

and Ap,q
s (D) � Ap,q

s (D).

Proof It is clear that Ap,q
s (D) = Ap,q

s (D) if p = q (by
Fubini’s theorem) and if E = {0}. Conversely, assume that
p �= q and that E �= {0}, so that b �= 0. Observe that, given
t ∈ T+ and g ∈ GL(E) such that t · Φ = Φ ◦ (g × g) and
f ∈ Hol(D), one has

‖ f ◦ (g × t)‖Ap,q
s (D) = Δ(b+d)/p−s(t)‖ f ‖Ap,q

s (D)

and

‖ f ◦ (g × t)‖Ap,q
s (D) = Δb/q+d/p−s(t)‖ f ‖Ap,q

s (D)

so that, letting t →∞, we see that the norms on the quasi-
Banach spacesAp,q

s (D) and Ap,q
s (D) cannot be comparable.

The assertion follows from the open mapping and the closed
graph theorems, since both Ap,q

s (D) andAp,q
s (D) are quasi-

Banach spaces (cf. Remark 3.1 and Proposition 4.5). ��
The second assertion of the following result extends: [3,

Proposition 3.22], which corresponds to the case in which
p1, q1 ≥ 1, q2 = ∞, n = 0, s ∈ R1r , and Ω is symmetric;
[23, Proposition 2.3], which corresponds to the case in which
p1, q1 ≥ 1, q2 = ∞, n = 0, and Ω is symmetric; [30,
Lemma5.2],which corresponds to the case inwhich p1, q1 ≥
1, q2 = ∞, and n = 0.

Proposition 4.2 Take p1, p2, q1, q2 ∈ (0,∞] and s1, s2 ∈
Rr . If

p1 ≤ p2, q1 ≤ q2, and

s2 = s1 +
(

1
p2
− 1

p1

)
d+

(
1
q2
− 1

q1

)
b,

then Ap1,q1
s1 (D) ⊆ Ap2,q2

s2 (D) and Ap1,q1
s1,0

(D) ⊆ Ap2,q2
s2,0

(D).

In addition, the mappings Ap1,q1
s1 (D) 
 f �→ f (ζ ) ∈

Ap1,q1
s1−b/q1

(TΩ), as ζ runs through E, are equicontinuous and

map Ap1,q1
s1,0

(D) into Ap1,q1
s1−b/q1,0

(TΩ).

In particular, Ap1,q1
s1 (D) ⊆ A

p2,q2
s2 (D) continuously, pro-

vided that q2 < ∞ and s2 = q2
q1
s1 +

(
q2
p2
− q2

p1

)
d +

(
1
2 − q2

2q1

)
b. In addition, the mappings Ap1,q1

s1 (D) 
 f �→
f (ζ ) ∈ A

p1,q1
s1−b/2(TΩ), as ζ runs through E, are equicontinu-

ous.

Before we pass to the proof, we need an analogue of [16,
Lemma 3.26].

Lemma 4.3 There are R′0 > 0 and a constant C > 0 such
that, for every p, q ∈ (0,∞], for every R′ ∈ (0, R′0], for
every f ∈ Hol(D) and for every (ζ, h) ∈ E ×Ω ,

‖ f (ζ )
h ‖L p(F)

≤ C1/min(1,p,q)

(
−
∫

BE×Ω((ζ,h),R′)
‖ f (ζ ′)

h′ ‖qL p(F) dνE×Ω(ζ ′, h′)
)1/q

(modification if q = ∞).

Proof Set �:=min(1, p, q) to simplify the notation. By [16,
Lemma 3.24], there are R0 > 0 and C ′ > 0 such that

| f (ζ, z)|� ≤ C ′ −
∫

B((ζ,z),R)

| f |� dνD

for every f ∈ Hol(D), for every (ζ, z) ∈ D, and for every
R ∈ (0, R0]. Then, applyingMinkowski’s integral inequality
(with exponent p

�
) and Young’s inequality,

‖ f (ζ )
h ‖�L p(F)

≤ C ′C ′R −
∫

BE×Ω((ζ,h),R)

∥∥| f (ζ ′)
h′ |� ∗ [(χB((ζ,iΦ(ζ)+ih),R))

(ζ ′)
h′ ]ˇ

∥∥
L p/�(F)

×Δd
Ω(h′) dνE×Ω(ζ ′, h′)

≤ C ′′ −
∫

BE×Ω((ζ,h),R)

∥∥ f (ζ ′)
h′

∥∥�

L p(F)

Δd
Ω(h′)

Δd
Ω(h)

dνE×Ω(ζ ′, h′)

(3)

for every f ∈ Hol(D) and for every h ∈ Ω , where

C ′R :=
νE×Ω(BE×Ω((0, eΩ), R))

νD(B((0, ieΩ), R))

and

C ′′:=C ′ sup
0<R≤R0

sup
(ζ ′,h′)∈E×Ω

C ′R
∥∥(χB((0,ieΩ),R))

(ζ ′)
h′

∥∥
L1(F)

.

By [16, Corollary 2.49], there is a constant C > 0 such that,
for every f ∈ Hol(D) and for every h ∈ Ω ,

‖ f (ζ )
h ‖�L p(F)≤C −

∫

BE×Ω((ζ,h),R)

∥∥ f (ζ ′)
h′

∥∥�

L p(F)
dνE×Ω(ζ ′, h′),

if R ∈ (0, R0]. Then, Jensen’s inequality (with exponent q
�
)

leads to the first inequality. ��
First part of the proof of Proposition 4.2 Step I. Let us first
show that there are R,C1 > 0 such that

(Δ
s2
Ω(h)‖ fh‖L p2,q2 (F,E))

�

≤ C1 −
∫

BΩ(h,R)

(Δ
s1
Ω(h′)‖ fh′ ‖L p1,q1 (F,E))

� dνΩ(h′) (4)
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for every f ∈ Hol(D) and for every h ∈ Ω , where
�:=min(1, p1, q1). Byhomogeneity, itwill suffice toprove (4)
for h = eΩ . Observe that, by [16, Lemma 3.24], there are
R > 0 and C2 > 0 such that

| f (ζ, z)|� ≤ C2 −
∫

B((ζ,z),R)

| f |� dνD

for every f ∈ Hol(D) and for every (ζ, z) ∈ D. Then, apply-
ingMinkowski’s integral inequality andYoung’s inequality,5

‖ feΩ‖�L p2,q2 (F,E)

≤ C ′2 −
∫

BΩ(eΩ,R)

∥∥| fh |� ∗ [(χB((0,ieΩ),R))h]ˇ
∥∥
L p2/�,q2/�(F,E)

×Δb+d
Ω (h)dνΩ(h)

≤ C3 −
∫

BΩ(eΩ,R)

∥∥ fh
∥∥�

L p1,q1 (F,E)
dνΩ(h)

for every f ∈ Hol(D) and for every h ∈ Ω , where C ′2 =
νΩ(BΩ(eΩ, R))/νD(B((0, ieΩ), R)) and

C3:=C ′2 sup
h∈BΩ(eΩ,R)

Δb+d
Ω (h)‖(χB((0,ieΩ),R))h‖L p3,q3 (F,E)

and p3, q3 ∈ [1,∞] are defined so that 1 + �
p2
= �

p1
+ 1

p3

and 1+ �
q2
= �

q1
+ 1

q3
.

Step II. Applying the Lq2/�(νΩ) norm to (4) and using
Jensen’s inequality, we see that

‖ f ‖�Ap2,q2
s2 (D)

≤ C1‖ f ‖�Ap1,q1
s1 (D)

for every f ∈ Hol(D), whence the inclusion Ap1,q1
s1 (D) ⊆

Ap2,q2
s2 (D).
Step III.Forwhat concerns the equicontinuity of themap-

pings Ap1,q1
s1 (D) 
 f �→ f (ζ ) ∈ Ap1,q1

s1−b/q1
(TΩ), as ζ runs

through E , observe that this is obvious when q1 = ∞. Then,
assume that q1 <∞ and observe that, by Lemma 4.3, there
are R′,C4 > 0 such that

‖ f (ζ )
h ‖L p1 (F)

≤ C4

(∫

BE×Ω((ζ,h),R′)
‖ f (ζ ′)

h′ ‖q1L p1 (F)
dνE×Ω(ζ ′, h′)

)1/q1

for every f ∈ Hol(D) and for every (ζ, h) ∈ E×Ω . By [16,
Corollary 2.49], there is a constant C5 > 0 such that

Δ
s1−b/q1
Ω (h)‖ f (ζ )

h ‖L p1 (F)

≤ C5

(∫

BE×Ω((ζ,h),R′)
Δ

q1s1−b
Ω (h′)‖ f (ζ ′)

h′ ‖q1L p1 (F)
dνE×Ω(ζ ′, h′)

)1/q1

5 Notice that Young’s inequality may be applied to the spaces
L p,q (F, E) since F is a normal subgroup ofN and E may be identified
with N/F .

for every f ∈ Hol(D) and for every (ζ, h) ∈ E×Ω . Apply-
ing the Lq1(νΩ) norm, we then see that

‖ f (ζ )‖Ap1,q1
s1−b/q1

(TΩ)

≤ C5

( ∫

E

∫

Ω

∫

Ω

χBE×Ω((ζ ′,h′),R′)(ζ, h) dνΩ(h)

× (Δ
s1
Ω(h′)‖ f (ζ ′)

h′ ‖L p1 (F))
q1 dνΩ(h′) dζ ′

)1/q1

≤ C6‖ f ‖Ap1,q1
s1 (D)

for every f ∈ Hol(D) and for every ζ ∈ E , where
C6:=C5νΩ(BΩ(eΩ, R′))1/q1 . ��
Corollary 4.4 Take p, q ∈ (0,∞], s ∈ Rr , and f ∈
Ap,q

s (D). Then, the function h �→ ‖ f (ζ )
h ‖L p(F) is decreasing

(for the order induced by Ω) for every ζ ∈ E.

Proof This follows from Proposition 4.2 and [16, Corollary
3.3]. ��

The second assertion of the following result extends: [9,
Corollary II.3], which corresponds to the case in which
p = q; [3, Proposition 3.8], which corresponds to the case
in which p = q ∈ [1,∞), n = 0, s ∈ R1r , and Ω is sym-
metric; [23, Theorem 2.15], which corresponds to the case in
which p ∈ [1,∞], q ∈ [1,∞), n = 0, and Ω is symmetric.

Proposition 4.5 Take p, q ∈ (0,∞] and s ∈ Rr . Then,
Ap,q

s,0 (D) �= {0} (resp. Ap,q
s (D) �= {0}) if and only if s �

1
2qm (resp. s ≥ 0 if q = ∞). In particular, Ap,q

s (D) �= {0}
if and only if s � 1

2 (m− b) or q = ∞.
In addition, Ap,q

s (D), Ap,q
s,0 (D), and A

p,q
s (D) are quasi-

Banach spaces.

Proof Let (λ1, . . . , λm) be a basis of F ′ with elements inΩ ′.
Observe first that the function

g(ε) : D 
 (ζ, z) �→ exp

⎛

⎝−ε cos(απ)
∑

j

〈(λ j )C, z〉α
⎞

⎠ ∈ C

(5)

is well defined for every ε > 0 and α ∈ (0, 1/2) and satisfies
estimates of the form

|g(ε)(ζ, z)| ≤ e−Cε(|ζ |2α+|Re z|α+|ρ(ζ,z)|α) (6)

for every ε > 0 and for every (ζ, z) ∈ D and for a suitable C
(depending only on α), thanks to [16, Lemma 1.22] (cf., also,
[31, Lemma 8.1]). It is then readily verified that, for every
ε > 0, there is a constantCε > 0 such that ‖g(ε)

h ‖L p,q (F,E) ≤
Cεe−Cε|h|α for every h ∈ Ω , so that g(ε) belongs toAp,q

s,0 (D)

for s � 1
2qm and toAp,∞

s (D) for every s ≥ 0, thanks to [16,
Proposition 2.19 and Lemma 2.34].
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Conversely, if q < ∞ and f ∈ Ap,q
s (D), then the

mapping h �→ ‖ fh‖L p,q (F,E) is decreasing for the order-
ing induced by Ω , for every ζ ∈ E , by Corollary 4.4.
Since Δ

qs
Ω · νΩ does not induce a Radon measure on Ω

unless s � 1
2qm by [16, Proposition 2.19], this proves that

f = 0 unless s � 1
2qm. If, otherwise, f ∈ Ap,∞

s,0 (D) or

f ∈ Ap,∞
s (D), then it is clear that f (ζ ) ∈ Ap,∞

s,0 (TΩ) and

f ∈ Ap,∞
s (TΩ), respectively, for every ζ ∈ E , so that f = 0

unless s � 0 and s ≥ 0, respectively, by [16, Proposition 3.5].
In order to show that Ap,q

s (D) is a quasi-Banach space,
it suffices to observe that there are continuous inclusions
Ap,q

s (D) ⊆ A∞,∞
s−b/q−d/p(D) ⊆ Hol(D), by Proposition 4.2,

and that the quasi-norm of Ap,q
s (D) extends to a lower

semi-continuous function on Hol(D) which is finite only on
Ap,q

s (D). ��
The second assertion of the following result extends: [3,

Theorem 3.23], which corresponds to the case in which
p1, p2, q1, q2 ≥ 1, s1, s2 ∈ R1r , n = 0, and Ω is symmet-
ric; [23, Proposition 2.14], which corresponds to the case
in which p1, p2, q1, q2 ≥ 1, n = 0, and Ω is symmetric;
[6, Lemma 3.6], which corresponds to the case in which
p1, q1 ≥ 1 and p2 = q2 = 2; [29, Lemma 4.3], which
corresponds to the case in which p1, p2, q1, q2 ≥ 1.

Proposition 4.6 Take p1, p2, q1, q2 ∈ (0,∞], and s1, s2 ∈
Rr . If Ap2,q2

s2 (D) �= {0}, then Ap1,q1
s1,0

(D) ∩ Ap2,q2
s2 (D) is

dense in Ap1,q1
s1,0

(D) (resp. Ap1,q1
s1 (D) ∩ Ap2,q2

s2 (D) is dense

in Ap1,q1
s1 (D) for the weak topology σ(Ap1,q1

s1 (D),

Lp′1,q ′1
−s1+(1/q1−1)+b+(1/p1−1)+d(D))). Analogous assertions

hold with Ap2,q2
s2,0

(D) in place of Ap2,q2
s2 (D).

In particular, if Ap2,q2
s2 (D) �= {0} and p1, q1 < ∞, then

A
p1,q1
s1 (D) ∩ A

p2,q2
s2 (D) is dense in Ap1,q1

s1 (D).

Proof Define g(ε) as in the proof of Proposition 4.5, for some
α ∈ (0, 1/2). Take f ∈ Ap1,q1

s1,0
(D). Using the estimates (6),

Proposition 4.2, and Corollary 4.4, one may show that f ( · +
ih)g(ε) belongs to Ap1,q1

s1,0
(D) ∩ Ap2,q2

s2 (D) for every h ∈
Ω and for every ε > 0. By dominated convergence one
then shows that f ( · + ih)g(ε) converges to f ( · + ih) in
Ap1,q1

s1,0
(D) for ε → 0+, for every h ∈ Ω . Now, observe

that the mapping Ω 
 h �→ ( f g(ε))h ∈ L p1,q1(F, E) is
continuous by Corollary 4.4 and dominated convergence, so
that themappingΩ 
 h �→ fh ∈ L p1,q1(F, E) is continuous
by the arbitrariness of ε > 0 and the previous arguments
(combined with Corollary 4.4 again). Using this fact and
Corollary 4.4, we then see that f ( · + ih) converges to f in
Ap1,q1

s1,0
(D) for h → 0. In a similar way, one deals with the

other cases. ��
Endof theproof ofProposition4.2The inclusionAp1,q1

s1,0 (D)

⊆ Ap2,q2
s2,0 (D) follows from the continuity of the inclusion

Ap1,q1
s1 (D) ⊆ Ap2,q2

s2 (D) and the density of Ap1,q1
s1,0 (D) ∩

Ap2,q2
s2,0 (D) in Ap1,q1

s1,0 (D) (cf. Proposition 4.6).

The fact that the mappings f �→ f (ζ ), ζ ∈ E ,
map Ap1,q1

s1,0 (D) into Ap1,q1
s1−b/q1,0

(TΩ) is proved similarly,

using the density of Ap1,q1
s1,0 (D) ∩ Amin(1,p1),min(1,q1)

s1 (D) in

Ap1,q1
s1,0 (D) and observing that Amin(1,p1),min(1,q1)

s1−b/min(1,q1)
(TΩ) ⊆

Ap1,q1
s1−b/q1,0

(TΩ)by theprevious remarks (cf. Proposition4.6).
��

4.2 Reproducing kernels

Notice that A2,2
s (D) = A2,2

s (D), so that Pb+d−2s is the
orthogonal projector ofL2,2

s (D) ontoA2,2
s (D). Analogously,

if s � 1
2m, then A2,2

s (D) = A2,2
(s+b/2)/2(D) is a reproducing

kernel Hilbert space with reproducing kernel (cf. Proposi-
tion 3.3)

Ks : ((ζ, z), (ζ ′, z′)) �→ cs/2+b/4B
b/2+d−s
(ζ ′,z′) (ζ, z).

Then,

Ps = Pb/2+d−s : f �→ cs/2+b/4

×
∫

D
f (ζ, z)Ks

(ζ,z)Δ
s+b/2+d
Ω (ρ(ζ, z)) d(ζ, z)

is the orthoprojector of L2,2
s (D) onto A2,2

s (D).

Proposition 4.7 Take p, q ∈ (0,∞], s ∈ Rr , and s′ ∈ Cr .
Then, Bs′

(ζ,z) ∈ Ap,q
s,0 (D) (resp. Bs′

(ζ,z) ∈ Ap,q
s (D)) for

some/every (ζ, z) ∈ D if and only if the following condi-
tions hold:

• s � 1
2qm (resp. s ≥ 0 if q = ∞);

• Re s′ ≺ 1
pd− 1

2pm
′ (resp. s′ ≤ 0 if p = ∞);

• s + Re s′ ≺ 1
q b + 1

pd − 1
2qm

′ (resp. s + s′ ≤ 1
pd if

q = ∞).

In this case,

‖Bs′
(ζ,z)‖Ap,q

s (D)
= ‖Bs′

(0,ieΩ)‖Ap,q
s (D)

Δ
s+Re s′−b/q−d/p
Ω (ρ(ζ, z))

for every (ζ, z) ∈ D.

Proof Set f :=Bs′
(ζ,z) for some (ζ, z) ∈ D. Assume first that

the conditions in the statement are satisfied. Then, for every
ζ ′ ∈ E , [16, Proposition 2.41] shows that f (ζ ′) ∈ Ap,q

s,0 (TΩ)

(resp. f (ζ ′) ∈ Ap,q
s (TΩ)), and that

‖ f (ζ ′)‖Ap,q
s (TΩ) = C1Δ

s+Re s′−d/p
Ω (h +Φ(ζ − ζ ′)),

where h = ρ(ζ, z) and C1 is a suitable constant. In addition,
Lemma [16, Lemma 2.32] shows that f ∈ Ap,q

s,0 (D) (resp.
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f ∈ Ap,q
s,0 (D)), and that

‖ f ‖Ap,q
s (D) = C2Δ

Re s′−d/p−b/q
Ω (h),

where C2 is a suitable constant.6

Conversely, assume that f ∈ Ap,q
s,0 (D) (resp. f ∈

Ap,q
s (D)). Then, Proposition 4.2 shows that f (ζ ) ∈ Ap,q

s−b/q,0

(TΩ) (resp. f (ζ ) ∈ Ap,q
s−b/q(TΩ)) for every ζ ∈ E . Since

f (0) = Bs′
z (as a function on TΩ ), [16, Proposition 2.41]

leads to the conclusion. ��
The second part of the following result extends: [9, Theo-

rem II.6], which corresponds to the case in which p = q and

s � 1
2b+d+ q

2m
′ and s′ − 1

q s
′ � −

(
1
2 + 1

2q

)
b− 1

q d+ 1
2m

when q < 1; [4, Proposition 2.19], which corresponds to the
case in which p = q ≥ 1, s, s′ ∈ R1r , n = 0, and Ω is
symmetric; [6, Proposition 3.10 (ii)], which corresponds to
the case in which Ps′ is continuous on L

p,q
s (D).

Proposition 4.8 Take p, q ∈ (0,∞] and s, s′ ∈ Rr such that
the following hold:

• s � 1
q b+ 1

pd+ 1
2q ′m

′;
• s′ ≺ 1

p′ d− 1
2p′m

′,b+ d− 1
2m;

• s+ s′ ≺ 1
min(1,q)

b+ 1
min(1,p)d− 1

2q ′m or s+ s′ ≤ 1
q b+

1
min(1,p)d if q ′ = ∞.

Then, Ps′ f = f for every f ∈ Ap,q
s (D).

In particular, if q <∞ and:

• s � 1
2b+ q

pd+ q
2q ′m

′;
• s′ � 1

2b+ 1
max(1,p)d+ 1

2p′m
′, 1

2 (m− b);

• s′ − 1
q s � − 1

2q ′ b−
(
1
p − 1

)

+ d+
1
2q ′m or q ′ = ∞ and

s′ − 1
q s ≥ −

(
1
2q − 1

2

)
b−

(
1
p − 1

)

+ d;

then Ps′ f = f for every f ∈ A
p,q
s (D).

Proof Observe that Proposition 4.8 shows that the mapping

Ap,q
s (D) 
 f �→ Ps′ f (ζ, z) = c(b+d−s′)/2

×
∫

D
f (ζ ′, z′)Bs′

(ζ ′,z′)(ζ, z)Δ−s
′

Ω (ρ(ζ ′, z′)) dνD(ζ ′, z′) ∈ C

is well defined and continuous for every (ζ, z) ∈ D and
obviously induces the mapping f �→ f (ζ, z) onAp,q

s (D)∩
A2,2

(b+d−s′)/2(D). The result follows by continuity, thanks to
Proposition 4.6. ��
6 Actually, the cited reference allows to deal with the case q <∞. The

remaining case, though, follows from the fact that Δs+Re s′−d/p
Ω (h+ · )

is decreasing on Ω thanks to [16, Corollary 2.36], and vanishes at the
point at infinity of Ω when s+Re s′ −d/p ≺ 0, thanks to [16, Lemma
2.35].

4.3 Sampling

The following sampling theorem is a consequence of the
more general Theorem 4.11 presented below. We single out
this result for comparison with the literature. It extends: [3,
Theorem 5.6], which corresponds to the case in which p =
q ≥ 1, s ∈ R1r , n = 0, and Ω is symmetric; [8, Theorem
5.2], which corresponds to the case in which p = q > 1;
[7, Theorem 3.3], which corresponds to the case in which
p, q ≥ 1, n = 0 and Ω is symmetric.

Recall that we denote by �p,q(J , K ) the space of λ ∈
CJ×K such that ‖‖λ j,k‖�p(J )‖�q (K ) < ∞, with some abuse
of notation.

Theorem 4.9 Take p, q ∈ (0,∞], s ∈ Rr and R0 > 1.
Then, there is δ0 > 0 such that, for every F-(δ, R)-lattice
(ζk, z j,k) j∈J ,k∈K on D, with δ ∈ (0, δ0] and R ∈ (1, R0],
the mapping

f �→ Δ
s/q−b/(2q)−d/p
Ω (ρ(ζk, z j,k)) f (ζk, z j,k)

induces an isomorphism of Ap,q
s (D) onto a closed subspace

of �p,q(J , K ).

In order to prove the more general version of this result,
we need the following definition.

Definition 4.10 For every s ∈ Rr , we define Ms as the
space of f ∈ Hol(D) such that the function (ζ, z) �→
Δs

Ω(ρ(ζ, z))e−|ζ |2α−|Re z|α−|ρ(ζ,z)|α f (ζ, z) is bounded on D
for some α ∈ [0, 1/2).

Observe thatMs ⊆Ms′ for s ≤ s′, and that

Ap,q
s (D) ⊆ A∞,∞

s−b/q−d/p(D) ⊆Ms−b/q−d/p

for every s ∈ Rr , thanks to Proposition 4.2.

Theorem 4.11 Take p, q ∈ (0,∞], s ∈ Rr , R0 > 1 and
δ+ > 0, and s′ ≥ s − 1

q b − 1
pd. Then, there are δ−,C > 0

such that, for every F-(δ, R)-lattice (ζk, z j,k) j∈J ,k∈K on D,
with R ∈ (1, R0], if we define
S+ : Hol(D) 
 f �→

(
Δ

s−b/q−d/p
Ω (hk) max

B((ζk ,z j,k ),Rδ)

| f |
)
∈ CJ×K

and

S− : Hol (D) 
 f �→
(

Δ
s−b/q−d/p
Ω (hk) min

B((ζk ,z j,k ),Rδ)

| f |
)
∈ C

J×K ,

where hk :=ρ(ζk, z j,k) for every j ∈ J and for every k ∈ K,
then

1

C
‖ f ‖Ap,q

s (D) ≤ δm/p+(2n+m)/q
∥∥Sε f

∥∥
�p,q (J ,K )

≤ C‖ f ‖Ap,q
s (D)
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for every f ∈ Hol(D) and for every δ ∈ (0, δ+] if ε = +,
and for every f ∈ Ms′ and for every δ ∈ (0, δ−] if ε = −.
In addition,

Ap,q
s,0 (D) = Hol (D) ∩ S−1+ (�

p,q
0 (J , K )) and

Ap,q
s,0 (D) =Ms′(D) ∩ S−1− (�

p,q
0 (J , K )),

where the second equality holds provided that δ ≤ δ−.

Proof For the sake of simplicity, we shall generally present
the computations as if p, q < ∞. We leave to the reader
the (purely formal) modifications which are necessary when
max(p, q) = ∞. Throughout the proof, for every t ∈ T+ we
shall denote by gt an element of GL(E) such that t · Φ =
Φ ◦ (gt × gt ).

Step I. Define, for every R′ > 0, for every ζ ∈ E , and
for every h ∈ Ω ,

MR′(ζ, h):=∥∥(
χB((0,ieΩ),R′)

)(ζ )

h

∥∥
L1(F)

≤ Hm(prF (B((0, ieΩ), R′))) <∞

Then, for every � ∈ (0,∞], for every t ′ ∈ T+, and for every
(ζ ′, x ′) ∈ N ,

∥∥(
χB((ζ ′,x ′+iΦ(ζ)+i t ′·eΩ),R′)

)(ζ )

h

∥∥
L�(F)

= Δ−d/�(t ′)MR′(g
−1
t ′ (ζ − ζ ′), t ′−1 · h)1/�,

with the convention 00 = 0. In particular,

∥∥∥
(
χB((ζk ,z j,k ),R′)

)(ζ )

h

∥∥∥
L�(F)

= χBE×Ω((ζk ,hk ),R′)(ζ, h)Δ
−d/�
Ω (hk)MR′ (g

−1
tk (ζ − ζk), t

−1
k · h)1/�

for every (ζ, h) ∈ E×Ω and for every k ∈ K , where tk ∈ T+
is such that hk = tk · eΩ . In addition,

‖MR′ ‖L∞(νE×Ω) � R′m for R′ → 0+.

For every (ζ, h) ∈ E ×Ω , define

Kζ,h :={k ∈ K : (ζ, h) ∈ BE×Ω((ζk, hk), Rδ)},

and observe that there is N ∈ N such that Card(Kζ,h) ≤ N
for every (ζ, h) ∈ E×Ω , provided that R ≤ R0 and δ ≤ δ+.
Wemay also assume that every (ζ, h) ∈ E×Ω is contained in
at most N balls BE×Ω((ζk, hk), 2Rδ), k ∈ K , and that every
(ζ, z) ∈ D is contained in atmost N balls B((ζk, z j,k), 2Rδ),
( j, k) ∈ J × K , provided that R ≤ R0 and δ ≤ δ+. Finally,
set �:=min(1, p, q).

Step II. Let us prove that S+ maps Ap,q
s (D) into

�p,q(J , K ). Take f ∈ Ap,q
s (D) and define

CD,R′ :=νD(B((0, ieΩ), R′)),
CE×Ω,R′ :=νE×Ω(BE×Ω((0, eΩ), R′)), and

CΩ,R′ :=νΩ(BΩ(eΩ, R′))

for every R′ > 0 to simplify the notation. Then, [16, Lemma
3.24] implies that there are R′0 ∈ (0, 1/2] and C1 > 0 such
that

max
B((ζk ,z j,k ),Rδ)

| f |p ≤ C1

CD,R′0δ

∫

B((ζk ,z j,k ),(R+R′0)δ)
| f |p dνD

for every ( j, k) ∈ J × K . Therefore, [16, Corollary 2.49]
implies that there is a constant C2 > 0 such that

(S+ f )pj,k ≤
C2

CD,R′0δ
Δ

ps−(p/q)b
Ω (hk)

×
∫

E×Ω

∫

F
|(χB((ζk ,z j,k ),(R+R′0)δ) f )

(ζ )
h (x)|p dx dνE×Ω(ζ, h)

for every ( j, k) ∈ J × K . Hence,

∑

j∈J
(S+ f )pj,k

≤ C2

CD,R′0δ
NΔ

ps−(p/q)b
Ω (hk)

×
∫

BE×Ω((ζk ,hk ),(R+R′0)δ)
‖ f (ζ )

h ‖pL p(F) dνE×Ω(ζ, h)

for every k ∈ K . Now, Lemma 4.3 shows that there is a
constant C3 > 0 such that

∫

BE×Ω((ζk ,hk ),(R+R′0)δ)
‖ f (ζ )

h ‖pL p(F) dνE×Ω(ζ, h)

≤ C3

∫

BE×Ω((ζk ,hk ),(R+R′0)δ)(
−
∫

BE×Ω((ζ ′,h′),R′0δ)
‖ f (ζ )

h ‖qL p(F) dνE×Ω(ζ, h)

)p/q

dνE×Ω(ζ ′, h′)

≤ C3
CE×Ω,(R+R′0)δ
C p/q
E×Ω,R′0δ

×
(∫

BE×Ω((ζk ,hk ),(R+2R′0)δ)
‖ f (ζ )

h ‖qL p(F) dνE×Ω(ζ, h)

)p/q

for every k ∈ K . Therefore, another application of [16,
Corollary 2.49] shows that there is a constant C ′2 > 0 such
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that

‖S+ f ‖�p,q (J ,K ) ≤
C ′2C

1/p
E×Ω,(R+R′0)δ

C1/p
D,R′0δ

C1/q
E×Ω,R′0δ

N 1/p+1/q‖ f ‖Ap,q
s (D).

Next, let us prove that S+(Ap,q
s,0 (D)) ⊆ �

p,q
0 (J , K ).

Observe that we may assume that s � 1
2qm. Then, take p̃ ∈

(0, p) and q̃ ∈ (0, q) so that s′′:=s−( 1
q − 1

q̃

)
b−( 1

p− 1
p̃

)
d �

1
2q̃m and observe that the preceding computations show that

S+(Ap,q
s,0 (D) ∩ A p̃,q̃

s′′ (D)) ⊆ � p̃,q̃(J , K ) ⊆ �
p,q
0 (J , K ), so

that the assertion follows by means of Proposition 4.6.
Step III. Now, take f ∈ Hol(D) and assume that S+ f ∈

�
p,q
0 (J , K ) (resp. S+ f ∈ �p,q(J , K )), and let us prove that
f ∈ Ap,q

s,0 (D) (resp. f ∈ Ap,q
s (D)). Observe first that

| f (ζ )
h |
≤

∑

( j,k)∈J×Kζ,h

Δ
b/q+d/p−s
Ω (hk)

(
χB((ζk ,z j,k ),Rδ)

)(ζ )

h
(S+ f ) j,k

on F , for every (ζ, h) ∈ E ×Ω , so that f (ζ )
h ∈ L p

0 (F) (resp.

f (ζ )
h ∈ L p(F)) for every (ζ, h) ∈ E ×Ω . In addition,

‖ f (ζ )
h ‖L p(F)

≤ N 1/p′
∥∥∥
(
Δ

b/q−s
Ω (hk)MRδ(g

−1
tk (ζ − ζk), t

−1
k · h)1/p

×(S+ f ) j,k
)

j,k

∥∥∥
�p(J×Kζ,h)

≤ N 1/p′+(1/p−1/q)+‖MRδ‖1/p∞
×

∥∥∥
(
Δ

b/q−s
Ω (hk)

∥∥((S+ f ) j,k) j
∥∥

�p(J )

)

k

∥∥∥
�q (Kζ,h)

for every (ζ, h) ∈ E ×Ω , so that (ζ, h) �→ ‖ f (ζ )
h ‖L p(F)

belongs to Lq
0(E × Ω) and there is a constant C ′′2 > 0 (cf.

[16, Corollary 2.49]) such that

‖ f ‖Ap,q
s (D)

≤ N 1/p′+max(1/p,1/q)‖MRδ‖1/p∞ C1/q
E×Ω,RδC

′′
2‖S+ f ‖�p,q (J ,K ).

Step IV. Observe that, if (ζ ′k′ , z
′
j ′,k′) j ′∈J ′,k′∈K ′ is an F-

(δ, R′)-lattice on D, then there are two mappings ι1 : K ′ →
K and ι2 : J ′ × K ′ → J such that, setting h′k′ :=ρ(ζ ′k′ , z

′
j ′,k′)

for every j ′ ∈ J ′ and for every k′ ∈ K ′,

(ζ ′k′ , h
′
k′) ∈ BE×Ω((ζι1(k′), hι1(k′)), Rδ)

and

(ζ ′k′ , z
′
j ′,k′) ∈ B((ζι1(k′), zι2( j ′,k′),ι1(k′)), Rδ)

for every j ′ ∈ J ′ and for every k′ ∈ K ′. Define

S′− : Hol(D) 
 f �→
(

Δ
s−b/q−d/p
Ω (h′k′ ) min

B((ζ ′
k′ ,z
′
j ′,k′ ),(R+R′)δ)

| f |
)

∈ CJ ′×K ′ ,

and observe that, by [16, Corollary 2.49] and the preceding
remarks, there is a constant C ′ > 0 such that

(S′− f ) j ′,k′ ≤ C ′(S− f )ι2( j ′,k′),ι1(k′)

for every f ∈ Hol(D), for every j ′ ∈ J ′ and for every
k′ ∈ K ′. In addition, there is N ′ ∈ N such that the fibres of ι1
and ( j ′, k′) �→ (ι2( j ′, k′), ι1(k′)) have at most N ′ elements.
Consequently,

‖S′− f ‖�p,q (J ′,K ′) ≤ C ′N ′1/p+1/q‖S− f ‖�p,q (J ,K )

for every f ∈ Hol(D). In addition, if S− f ∈ �
p,q
0 (J , K ),

then S′− f ∈ �
p,q
0 (J ′, K ′).

Observe, furthermore, that if R′ ≥ 8, then we may choose
(ζ ′k′ , z

′
j ′,k′) j ′∈J ′,k′∈K ′ such that K ′ = K ′1 × K ′2, such that

h′
(k′1,k′2)

= h′
(k′′1 ,k′2)

for every k′1, k′′1 ∈ K ′1 and for every k′2 ∈
K ′2, and such that (h′(k′1,k′2))k

′
2∈K ′2 is a (δ, R′)-lattice on Ω for

some/every k′1 ∈ K ′1 (argue as in the proof of [16, Lemma
2.55]).

Step V. Take f ∈Ms′(D) such that S− f ∈ �p,q(J , K )

and let us prove that

‖ f ‖Ap,q
s (D) ≤ Cδm/p+(2n+m)/q‖S− f ‖�p,q (J ,K )

for a suitable constant C > 0 (depending only on δ− and
R0), provided that δ− is sufficiently small. Observe first that,
by step IV, up to replacing R with R + 8, we may assume
that (ζk, z j,k) is an F-(δ, R)-lattice, that K = K ′ × K ′′, that
h(k′,k′′) only depends on k′′ (so that we also write hk′′ instead
of h(k′,k′′)), and that (hk′′) is a (δ, R)-lattice in Ω . Observe
that, for every ( j, k) ∈ J × K , we may find (ζ ′j,k, z′j,k) ∈
B((ζk, z j,k), Rδ) such that

| f (ζ ′j,k, z′j,k)| = min
B((ζk ,z j,k ),Rδ)

| f |.

Now, [16, Lemmas 3.24 and 3.25] imply that there are R′1 ∈
(0, R′0] and C3 > 0 such that, for every j ∈ J , for every
k ∈ K , for every (ζ, x) ∈ N , and for every h ∈ Ω such that
d((ζk, z j,k), (ζ, x + iΦ(ζ)+ ih)) < Rδ,

| f (ζ )
h (x)| ≤ | f (ζ ′j,k, z′j,k)|

+C3Rδ‖χB((ζ,x+iΦ(ζ)+ih),2Rδ+R′1) f ‖L p(νD),
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provided that Rδ ≤ R′1. Then,

‖ f (ζ )
h ‖pL p(F) ≤ 2(p−1)+‖MRδ‖L∞(E×Ω)

×
∑

( j,k)∈J×Kζ,h

Δ−dΩ (hk)| f (ζ ′j,k, z′j,k)|p

+ 2(p−1)+(C3Rδ)pΘ1(ζ, h),

where

Θ1(ζ, h):=
∑

( j,k)∈J×Kζ,h

∫

F
(χB((ζk ,z j,k ),Rδ))

(ζ )
h (x)

×
∫

D
χB((ζ,x+iΦ(ζ)+ih),2Rδ+R′1) | f |p dνD dx .

Now, set

K ′′h :={k′′ ∈ K ′′ : h ∈ BΩ(hk′′ , Rδ)}

for every h ∈ Ω and observe that we may assume that, for
every h ∈ Ω ,

Card K ′′h ≤ N ,

provided that δ ≤ δ+, as in step I. Then, [16, Corollary
2.49] implies that there is a constant C4 > 0 such that, if
Rδ ≤ R′1,

∫

E

⎛

⎝
∑

( j,k)∈J×Kζ,h

Δ−dΩ (hk)| f (ζ ′j,k, z′j,k)|p
⎞

⎠
q/p

dζ

≤ N (q/p−1)+ ∑

k′′∈K ′′h
Δ
−(q/p)d
Ω (hk)

×
∫

E

∑

k′:(k′,k′′)∈Kζ,h

⎛

⎝
∑

j∈J
| f (ζ ′j,(k′,k′′), z′j,(k′,k′′))|p

⎞

⎠
q/p

dζ

≤ CE,RδN
max(1,q/p)

∑

k′′∈K ′′h
Δ
−q(b/q+d/p)
Ω (hk′′)

×
∑

k′∈K ′

⎛

⎝
∑

j∈J
| f (ζ ′j,(k′,k′′), z′j,(k′,k′′))|p

⎞

⎠
q/p

≤ C4δ
2nNmax(1,q/p)Δ

−qs
Ω (h)

×
∑

k′′∈K ′′h

∑

k′∈K ′

⎛

⎝
∑

j∈J
|(S− f ) j,(k′,k′′)|p

⎞

⎠
q/p

where the first inequality follows from the convexity or
subadditivity of the mapping x �→ xq/p on R+, while
the second one follows from Tonelli’s theorem, setting
CE,Rδ:=H2n(prE (BE×Ω((0, eΩ), Rδ))).

Now, observe that

Θ1(ζ, h) =
∫

D
| f (ζ ′, z′)|pΘ2(ζ

′, z′, ζ, h) dνD(ζ ′, z′),

where

Θ2(ζ
′, z′, ζ, h):=∫

F

∑

( j,k)∈J×Kζ,h

(χB((ζk ,z j,k ),Rδ)∩B((ζ ′,z′),2Rδ+R′1))
(ζ )
h (x) dx .

In addition, for every (ζ ′, z′) ∈ D and for every (ζ, h) ∈
E ×Ω , setting h′:=ρ(ζ ′, z′), one has

Θ2(ζ
′, z′, ζ, h)

≤ N‖(χB((ζ ′,z′),2Rδ+R′1))
(ζ )
h ‖L1(F)

= NM2Rδ+R′1(g
−1
t ′ (ζ − ζ ′), t ′−1 · h)Δ−dΩ (h′),

provided that R ≤ R0 and δ ≤ δ+, where t ′ ∈ T+ is such
that h′ = t ′ · eΩ . Therefore, by step I, we see that

Θ1(ζ, h) ≤ N‖M2Rδ+R′1‖L∞(E×Ω)

×
∫

BE×Ω((ζ,h),2Rδ+R′1)
‖ f (ζ ′)

h′ ‖pL p(F) dνE×Ω(ζ ′, h′),

provided that R ≤ R0 and δ ≤ δ+. Then, applying
Lemma 4.3 as in step II, we see that there is a constant
C5 > 0 such that

∫

E
Θ1(ζ, h)q/p dζ

≤ C5

∫

BΩ(h,2Rδ+2R′1)
‖ fh′ ‖qL p,q (F,E) dνΩ(h′)

provided that R ≤ R0 and δ ≤ δ+.
Therefore, there is a constant C6 > 0 such that

‖ fh‖L p,q (F,E)

≤ C6Δ
−s
Ω (h)δm/p+2n/q‖S− f ‖�p,q (J ,K ′×K ′′h )

+δC6

(∫

BΩ(h,2Rδ+2R′1)
‖ fh′ ‖qL p,q (F,E) dνΩ(h′)

)1/q

,

provided that R ≤ R0 and δ ≤ min(R′1/R0, δ+).
Now, by assumption, there is α′ ∈ (0, 1/2) such that

sup
(ζ,z)∈D

Δs′
Ω(ρ(ζ, z))e−|ζ |2α

′−|Re z|α′−|ρ(ζ,z)|α′ | f (ζ, z)| <∞.

Then, take (g(ε))ε>0 as in [16, Lemma 1.22] (cf. the proof
of Proposition 4.5 and formulas (5) and (6)) for some
α ∈ (α′, 1/2), so that G(ε):= f g(ε) ∈ Ap,∞

s′ (D) and
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S−G(ε) ≤ S− f for every ε > 0. In particular, the map-
ping h �→ ‖G(ε)h‖L p,q (F,E) is (finite and) decreasing on
Ω , thanks to Corollary 4.4, for every ε > 0. In addition,
observe that we may take δ1 ∈ (0,min(R′1/R0, δ+)] and R′1
so small that BΩ(eΩ, 2R0δ1+ 2R′1) ⊆ eΩ/2+Ω . Then, by
homogeneity,

BΩ(h, 2R0δ1 + 2R′1) ⊆ h/2+Ω

for every h ∈ Ω . Then, the preceding estimates (applied to
G(ε)) show that there is a constant C ′6 > 0 such that

∥∥G(ε)h
∥∥
L p,q (F,E)

≤ C ′6Δ
−s
Ω (h)δm/p+2n/q‖S− f ‖�p,q (J ,K ′×K ′′h )

+ δC ′6
∥∥G(ε)h/2

∥∥
L p,q (F,E)

,

for every ε > 0, provided that δ ≤ δ1 and R ≤ R0. If we
define

χ� : D 
 (ζ, z) �→ χeΩ/2�+Ω(ρ(ζ, z)) ∈ R+

for every � ∈ N, then there is a constant C ′′6 > 0 such that

∥∥χ�G(ε)
∥∥Lp,q

s (D)
≤ C ′′6 δm/p+(2n+m)/q‖S− f ‖�p,q (J ,K )

+δC ′′6
∥∥χ�+1G(ε)

∥∥Lp,q
s (D)

for every ε > 0 and for every � ∈ N, provided that δ ≤ δ1
and R ≤ R0. Now, define

eα′ : D 
 (ζ, z) �→ e|ζ |2α
′+|Re z|α′+|Im z−Φ(ζ)|α′ ∈ R+,

and observe that

∥∥G(ε)χ�

∥∥Lp,q
s (D)

≤ ‖e−1
α′ f ‖L∞,∞

s′ (D)

∥∥eα′g
(ε)χ�

∥∥Lp,q
s−s′ (D)

≤ C7,ε‖e−1α′ f ‖L∞,∞
s′ (D)

∥∥χeΩ/2�+ΩΔs−s′
Ω e−C7,ε | · |α∥∥

Lq (νΩ)

≤ C ′7,ε‖e−1α′ f ‖L∞,∞
s′ (D)‖χeΩ/2�+ΩΔ

s−s′+d/q
Ω ‖L∞(Ω)

× ‖e−C7,ε | · |α‖Lq (Ω)

≤ C ′′7,ε2(s′−s−d/q)�‖e−1
α′ f ‖L∞,∞

s′ (D)

for suitable constants C7,ε,C ′7,ε,C ′′7,ε > 0, since s − s′ +
d/q ≤ 0 (cf. [16, Corollary 2.36]). Then, fix N ′ >∑r

j=1(s′j − s j ) + m/q and choose δ− ∈ (0, δ1] so that

C ′′6 δ− ≤ 2−N ′ . Observe that the preceding computations

show that, if δ ∈ (0, δ−], then
∥∥G(ε)χ�

∥∥Lp,q
s (D)

=
∑

�′∈N
2−�′N ′

(∥∥G(ε)χ�+�′
∥∥Lp,q

s (D)

− 1

2N ′
∥∥G(ε)χ�+�′+1

∥∥Lp,q
s (D)

)

≤ C ′′6
1− 2−N ′

δm/p+(2n+m)/q‖S− f ‖�p,q (J ,K )

for every ε > 0 and for every � ∈ N. Passing to the limit for
�→∞, we then infer that G(ε) ∈ Ap,q

s (D) and that

∥∥G(ε)
∥∥Ap,q

s (D)
≤ C ′′6

1− 2−N ′
δm/p+(2n+m)/q‖S− f ‖�p,q (J ,K )

for every ε > 0. Then, passing to the limit for ε → 0+, we
infer that f ∈ Ap,q

s (D) and that

‖ f ‖Ap,q
s (D) ≤

C ′′6
1− 2−N ′

δm/p+(2n+m)/q‖S− f ‖�p,q (J ,K ).

Step VI. It only remains to prove that f ∈ Ap,q
s,0 (D) for

every f ∈ Ap,q
s (D) such that S− f ∈ �

p,q
0 (J , K ), provided

that δ− is sufficiently small. Observe first that the preceding
computations show that

‖χ�( f − G(ε))‖Lp,q
s (D)

≤ C ′′6
1− 2−N ′

δm/p+(2n+m)/p‖S−( f − G(ε))‖�p,q (J ,K )

for every � ∈ N and for every ε > 0. Since S−( f −G(ε)) ≤
(S− f )S̃+(1− g(ε)), where

[
S̃+(1− g(ε))

]
j,k := max

B((ζk ,z j,k ),Rδ)

∣∣∣1− g(ε)
∣∣∣

for every ( j, k) ∈ J × K , and since 1 − g(ε) → 0 locally
uniformly, it is readily seen that χ�( f − G(ε)) → 0 in
Lp,q
s (D) for ε → 0+, for every � ∈ N. In particular,
fh ∈ L p,q

0 (F, E) for every h ∈ Ω , and the mapping
h �→ χeΩ/2�+Ω(h)Δs

Ω(h)‖ fh‖L p,q (F,E) belongs to Lq
0(νΩ)

for every � ∈ N. To conclude, it will essentially suffice to
show that, if q = ∞, then Δs

Ω(h)‖ fh‖L p,∞(F,E) → 0 as
h approaches the boundary of Ω . Observe that, by the pre-
ceding computations, there is a constant C8 > 0 (namely,
C ′6 max(1, δm/p

− )) such that

‖ fh‖L p,∞(F,E) ≤ C8Δ
−s
Ω (h)‖S− f ‖�p,∞(J ,K ′×K ′′h )

+ δC8‖ fh/2‖L p,∞(F,E)
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for every h ∈ Ω . Observe that

Δs
Ω(h)‖ fh/2‖L p,∞(F,E) = 2sΔs

Ω(h/2)‖ fh/2‖L p,∞(F,E)

≤ 2s‖ f ‖Ap,∞
s (D)

for every h ∈ Ω . Therefore, assuming that δ− is so small that
δ−C82s ≤ 1/2,

Δs
Ω(h)‖ fh‖L p,∞(F,E)

=
∑

�∈N
2−�

(
Δs

Ω(h/2�)‖ fh/2�‖L p,∞(F,E)

− 1

2 · 2sΔ
s
Ω(h/2�)‖ fh/2�+1‖L p,∞(F,E)

)

≤ C8

∑

�∈N
2−�‖S− f ‖�p,∞(J ,K ′×K ′′

h/2�
)

for every h ∈ Ω . Now, observe that η:=min�∈N dΩ(eΩ,

eΩ/2�+1) > 0, and that η = min�∈N dΩ(h, h/2�+1) for
every h ∈ Ω , by homogeneity. Therefore, if δ− is so small
that 2R0δ− < η, then the sets K ′′

h/2� , as � runs through N,
are pairwise disjoint for every h ∈ Ω . Hence,

Δs
Ω(h)‖ fh‖L p,∞(F,E) ≤ 2C8‖S− f ‖�p,∞(J ,K ′×K ′′′h )

for every h ∈ Ω , where K ′′′h :=
⋃

�∈N K ′′
h/2� . Since K ′′′h is

contained in the complement of every fixed finite subset of
K if h ∈ Ω\(eΩ/2� + Ω) and � is sufficiently large, this
and the preceding remarks prove that Δs

Ω(h)‖ fh‖L p(N ) →
0 as h → ∞ in Ω , provided that δ− is sufficiently small
(independently of f ). The proof is complete. ��

4.4 Atomic decomposition and duality

Definition 4.12 Take p, q ∈ (0,∞] and s, s′ ∈ Rr . Then,
we say that property (L)

p,q
s,s′,0 (resp. (L)

p,q
s,s′ ) holds if for every

δ0 > 0 there is an F-(δ, 4)-lattice (ζk, z j,k) j∈J ,k∈K , with
δ ∈ (0, δ0], such that, defining hk :=ρ(ζk, z j,k) for every
j ∈ J and for every k ∈ K , the mapping

Ψ : λ �→
∑

j,k

λ j,k B
s′
(ζk ,z j,k )Δ

b/q+d/p−s−s′
Ω (hk)

is well defined (with locally uniform convergence of the sum)
andmaps �

p,q
0 (J , K ) intoAp,q

s,0 (D) continuously (resp. maps
�p,q(J , K ) into Ap,q

s (D) continuously).
If we may take (ζk, z j,k) j∈J ,k∈K , for every δ0 > 0 as

above, in such a way that the corresponding mapping Ψ is
onto, thenwe say that property (L′)p,qs,s′,0 (resp. (L′)

p,q
s,s′ ) holds.

When s′ � 1
2 (m − b), we define also properties

(L)
p,q
s,s′ and (L′)p,qs,s′ as properties (L)

p,q
(s+b/2)/q,b/2+d−s′ and

(L′)p,q
(s+b/2)/q,b/2+d−s′ , respectively. These properties are

therefore related to the continuity (and surjectivity) of the
mapping

Ψ ′ : λ �→
∑

j,k

Ks′( · , (ζk, z j,k))

×Δ
b(1/(2q)−1/2)+d(1/p−1)−s/q+s′
Ω (hk)

from �p,q(J , K ) into Ap,q
s (D), where Ks′ denotes the repro-

ducing kernel of A2,2
s′ (D).

Aswe shall see inTheorem4.31 below, properties (L)
p,q
s,s′,0

(resp. (L)
p,q
s,s′ ) and (L′)p,qs,s′,0 (resp. (L′)

p,q
s,s′ ) are actually equiv-

alent when p, q ∈ [1,∞]. In addition, arguing as in the proof
of Theorem 4.31, one may show that properties (L)

p,q
s,s′,0 and

(L)
p,q
s,s′ are equivalent when s � 0 (which is a necessary con-

dition for property (L)
p,q
s,s′,0 to hold).

Lemma 4.13 Take p, q ∈ (0,∞] and s, s′ ∈ Rr such that
property (L)

p,q
s,s′,0 (resp. (L)

p,q
s,s′ ) holds. Then, the following

hold:

• s � 1
2qm (resp. s ≥ 0 if q = ∞) and s � 1

q b + 1
pd +

1
2q ′m

′;
• s′ ∈ 1

min(p,p′)d− 1
2min(p,p′)m

′;
• s+ s′ ≺ 1

min(1,q)
b+ 1

min(1,p)d− 1
2q ′m or s+ s′ ≤ 1

q b+
1

min(1,p)d if q ′ = ∞, and s+ s′ ≺ 1
q b+ 1

pd− 1
2qm

′.

In particular, if q < ∞, s′ � 1
2 (m − b) and property

(L)
p,q
s,s′ holds, then:

• s � 1
2 (m− b), 1

2b+ q
pd+ q

2q ′m
′;

• s′ � 1
2b+

(
1− 1

min(p,p′)

)
d+ 1

2min(p,p′)m
′;

• s′− 1
q s � −

∣∣∣ 12 − 1
2q

∣∣∣b−
(
1
p − 1

)

+ d+
1
2q ′m or s′− 1

q s ≥
−

∣∣∣ 12 − 1
2q

∣∣∣b −
(
1
p − 1

)

+ d if q ′ = ∞, and s′ − 1
q s �(

1
2 − 1

2q

)
b+

(
1− 1

p

)
d+ 1

2qm
′.

Proof By Proposition 4.7, it will suffice to observe that
Bs′

(0,ieΩ) ∈ Ap,q
s,0 (D) (resp. Bs′

(0,ieΩ) ∈ Ap,q
s (D)), and to show

that

Bs′
(0,ieΩ) ∈ Ap′,q ′

b/min(1,q)+d/min(1,p)−s−s′(D).

Take δ0 > 0. Then, there is an F-(δ, 4)-lattice (ζk,

z j,k) j∈J ,k∈K , with δ ≤ δ0, such that the mapping

�
p,q
0 (J , K ) 
 λ �→

∑

j,k

λ j,k B
s′
(ζk ,z j,k )Δ

b/q+d/p−s−s′
Ω (hk)

∈ Ap,q
s (D)
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is well defined and continuous, where hk :=ρ(ζk, z j,k) for
every j ∈ J and for every k ∈ K . Observe that the continuity
of the mapping f �→ f (0, ieΩ) on Ap,q

s (D) implies that
there is a constant C1 > 0 such that

∣∣∣
∑

j,k

λ j,k B
s′
(ζk ,z j,k )(0, ieΩ)Δ

b/q+d/p−s−s′
Ω (hk)

∣∣∣

≤ C1‖λ‖�p,q0 (J ,K )

for every λ ∈ �
p,q
0 (J , K ). Therefore,

(
Bs′

(0,ieΩ)(ζ j,k, z j,k)Δ
b/q+d/p−s−s′
Ω (hk)

)

=
(
Bs′

(ζ j,k ,z j,k )
(0, ieΩ)Δ

b/q+d/p−s−s′
Ω (hk)

)
∈ �p

′,q ′(J , K ),

so that the conclusion follows from Theorem 4.11 and [16,
Theorem 2.47]. ��

The second part of the following result extends: [10,
Theorem 2.2], which corresponds to the case in which

p = q >
2(n+m)

2(n+m)+1 , s
′ − 1

q s � −
(
1
2 + 1

2q

)
b − 1

q d +
1
2m,−

(
1
2 − 1

2q

)
b −

(
1− 1

q

)
d + 1

2qm
′, and s′ − s �

−d+ 1
2m
′; [8, Theorem 4.2], which deals with the extension

of [10, Theorem 2.2] to the case of general homogeneous
domains.7

Theorem 4.14 Take p, q ∈ (0,∞] and s, s′ ∈ Rr such that
the following hold:

• s � 1
2qm+

(
1

2min(1,p) − 1
2q

)

+m
′;

• s + s′ ≺ 1
min(1,p,q)

b + 1
min(1,p)d − 1

2qm
′

−
(

1
2min(1,p) − 1

2q

)

+m.

Then, properties (L′)p,qs,s′,0 and (L′)p,qs,s′ hold.
In particular, if q <∞ and:

• s � 1
2 (m− b)+

(
q

2min(1,p) − 1
2

)

+m
′;

• s′ − 1
q s �

(
1
2 + 1

2q − 1
min(1,p,q)

)
b −

(
1
p − 1

)

+ d

+ 1
2qm

′ +
(

1
2min(1,p) − 1

2q

)

+m;

then property (L′)p,qs,s′ holds.

7 We note that the statement of [8, Theorem 4.2] requires far more
restrictive (or even uncomparable) conditions than those of [10, The-
orem 2.2], despite the fact that its proof is omitted and stated to be
formally equal to that of [10, Theorem 2.2]. Concerning this fact,we
simply observe that the notation of [10] and [8] are quite different, and
that even the statement of [8, Proposition 4.3] does not match the one
in the cited reference [10, Theorem B].

More precisely, the proof shows that the mapping Ψ of
Definition 4.12 has a continuous linear section for δ suffi-
ciently small and R bounded.

Proof Take an F-(δ, R)-lattice (ζk, z j,k) j∈J ,k∈K on D for
some δ > 0 and some R > 1. We shall further assume, as
in the proof of Theorem 4.11, that K = K ′ × K ′′, and that
there is a (δ, R)-lattice (hk′′)k′′∈K ′′ on Ω such that hk′′ =
ρ(ζ(k′,k′′), z j,(k′,k′′)) for every j ∈ J and for every (k′, k′′) ∈
K ′ × K ′′. We shall also write h(k′,k′′) instead of hk′′ when it
simplifies the notation.

In addition, define

Bs′′
j,k :=Bs′′

(ζk ,z j,k )

for every s′′ ∈ Rr and for every ( j, k) ∈ J × K , in order to
simplify the notation. Further, for every λ ∈ CJ×K define

Ψ+(λ):=
∑

j,k

|λ j,k B
s′
j,k |Δb/q+d/p−s−s′

Ω (hk) ∈ [0,∞]D,

and, for every λ ∈ C(J×K ),

Ψ (λ):=
∑

j,k

λ j,k B
s′
j,kΔ

b/q+d/p−s−s′
Ω (hk) ∈ Hol(D).

We shall first prove that λ �→ ‖Ψ+(λ)‖Lp,q
s (D) is a continu-

ous quasi-normon �p,q(J , K ).Arguing as in [16, Proposition
3.32] andusingProposition 4.7, thiswill prove thatΨ induces
continuous linear mappings �

p,q
0 (J , K ) → Ap,q

s,0 (D) and
�p,q(J , K )→ Ap,q

s (D).We shall then prove that thesemap-
pings are onto and have continuous linear sections.

Step I. Assume first that q ≤ p ≤ 1. Then, for every
ζ ∈ E and for every h ∈ Ω ,

‖Ψ+(λ)
(ζ )
h ‖pL p(F)

≤
∑

j,k

|λ j,k |pΔ(p/q)b+d−p(s+s′)
Ω (hk)‖(Bs′

j,k)
(ζ )
h ‖pL p(F).

In addition, [16, Lemma 2.39] shows that there is a constant
C1 > 0 such that

‖(Bs′
j,k)

(ζ )
h ‖pL p(F) = C1Δ

ps′−d
Ω (h + hk +Φ(ζ − ζk))

for every ( j, k) ∈ J × K , for every ζ ∈ E , and for every
h ∈ Ω . Therefore, using the subadditivity of the mapping
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x �→ xq/p on R+,

‖Ψ+(λ)‖qLp,q
s (D)

≤ Cq/p
1

∑

k

⎛

⎝
∑

j

|λ j,k |p
⎞

⎠
q/p

Δ
b+(q/p)d−q(s+s′)
Ω (hk)

×
∫

Ω

∫

E
Δ

qs′−(q/p)d
Ω (h+hk+Φ(ζ − ζk))dζΔ

qs
Ω (h)dνΩ(h).

Now, [16, Corollary 2.22 and Lemma 2.32] imply that there
is a constant C2 > 0 such that

∫

Ω

∫

E
Δ

qs′−(q/p)d
Ω (h + hk +Φ(ζ − ζk)) dζ Δ

qs
Ω (h) dνΩ(h)

= C2Δ
q(s+s′−b/q−d/p)
Ω (hk)

for every k ∈ K . Hence,

‖Ψ+(λ)‖Lp,q
s (D) ≤ C1/p

1 C1/q
2 ‖λ‖�p,q (J ,K ),

whence our claim in this case.
Step II. Assume, now, that q ≥ p ≤ 1. For every k ∈ K ,

choose τk ∈ Cc(E ×Ω) such that

χBE×Ω((ζk ,hk ),δ/2) ≤ τk ≤ χBE×Ω((ζk ,hk ),δ).

Observe that by the computations of step I and [16, Corol-
lary 2.49], there is a constant C ′1 > 0 such that

‖Ψ+(λ)
(ζ )
h ‖pL p(F)

≤ C ′1
∫

E×Ω

∑

k

λ′kτk(ζ ′, h′)Δ
(p/q)b+d−p(s+s′)
Ω (h′)

×Δ
ps′−d
Ω (h + h′ +Φ(ζ − ζ ′)) dνE×Ω(ζ ′, h′),

where λ′ =
(∑

j |λ j,k |p
)

k
. Hence, by Minkowski’s integral

inequality and Young’s inequality, and by [16, Lemma 2.32],

‖Ψ+(λ)h‖pL p,q (F,E)

≤ C ′1
∥∥∥∥

∫

E×Ω

∑

k

λ′kτk(ζ ′, h′)Δ
(p/q)b+d−p(s+s′)
Ω (h′)

×Δ
ps′−d
Ω (h + h′ +Φ( · − ζ ′)) dνE×Ω(ζ ′, h′)

∥∥∥∥
Lq/p(E)

≤ C ′1
∫

Ω

∥∥∥
( ∑

k

λ′kτk( ·, h′)
)
∗Δ

ps′−d
Ω (h + h′

+Φ( · ))
∥∥∥
Lq/p(E)

Δ
[(p/q)+1]b+d−p(s+s′)
Ω (h′) dνΩ(h′)

≤ C ′1
∫

Ω

∑

k′′

∥∥∥
∑

k′
λ′(k′,k′′)τ(k′,k′′)( ·, h′)

∥∥∥
Lq/p(E)

×‖Δps′−d
Ω (h + h′ +Φ( · ))‖L1(E)

×Δ
[(p/q)+1]b+d−p(s+s′)
Ω (h′) dνΩ(h′)

≤ C ′′1
∫

Ω

∑

k′′
χBΩ(hk′′ ,δ)(h

′)
∥∥(

λ′(k′,k′′)
)
k′
∥∥
Lq/p(K ′)

×Δ
ps′−b−d
Ω (h + h′)Δb+d−p(s+s′)

Ω (h′) dνΩ(h′).

If we define f :=∑
k′′

∥∥(
λ′

(k′,k′′)
)
k′
∥∥
Lq/p(K ′)χBΩ(hk′′ ,δ), then

it is clear that

‖ f ‖Lq/p(νΩ) ≤ νΩ(BΩ(eΩ, δ))p/q‖λ′‖Lq/p(K )

= νΩ(BΩ(eΩ, δ))p/q‖λ‖pL p,q (J ,K ).

Then, [16, Lemma 3.35] implies that there is a constantC3 >

0 such that

‖Ψ+(λ)‖Lp,q
s (D) ≤ C3‖λ‖L p,q (J ,K ),

which completes the proof of our claim in this case.
Step III. Assume, now, that p, q ≥ 1. For every ( j, k) ∈

J × K , choose τ j,k ∈ Cc(Ω) so that

χB((ζk ,z j,k ),δ/2) ≤ τ j,k ≤ χB((ζk ,z j,k ),δ),

and define

C4:= sup
(ζ,h)∈E×Ω

∫

F

(
χB((0,ieΩ),δ)

)(ζ )

h dHm .

Define

Ψ ′ : �p,q(J , K ) 
 λ �→
∑

j,k

λ j,kτ j,kΔ
b/q+d/p−s
Ω ◦ ρ∈C(D),

and let us prove that Ψ ′ maps continuously �p,q(J , K ) into
Lp,q
s (D). Indeed, take λ ∈ �p,q(J , K ) and observe that

‖(Ψ ′(λ))
(ζ )
h ‖L p(F)

≤ Δ
b/q+d/p−s
Ω (h)

∑

k∈K

∥∥∥
∑

j∈J
|λ j,k |

(
χB((ζk ,z j,k ),δ)

)(ζ )

h

∥∥∥
L p(F)

≤ C1/p
4

∑

k∈K

Δ
b/q+d/p−s
Ω (h)

Δ
d/p
Ω (hk)

χB((ζk ,hk ),δ)(ζ, h)
∥∥(λ j,k) j

∥∥
�p(J )

for every h ∈ Ω , so that by [16, Corollary 2.49], there is a
constant C ′4 > 0 such that

‖Ψ ′(λ)‖Lp,q
s (D)

≤ C ′4
∥∥
∑

k∈K
χB((ζk ,hk ),δ)

∥∥(λ j,k) j
∥∥

�p(J )

∥∥
Lq (νE×Ω)

= C ′4νE×Ω(BE×Ω((0, eΩ), δ))1/q‖λ‖�p,q (J ,K ).

Thus,Ψ ′ induces a continuous linearmapping �p,q (J , K )→
Lp,q
s (D).

123



Complex Analysis and its Synergies             (2023) 9:13 Page 21 of 31    13 

Now, observe that [16, Theorem 2.47 and Corollary 2.49]
imply that there is a constant C ′′4 > 0 such that

|Ψ+(λ)h(ζ, x)| ≤ C ′′4
∫

Ω

∫

N
Ψ ′(|λ|)h′(ζ ′, x ′)

×
∣∣∣
(
Bs′

(ζ ′,x ′+iΦ(ζ ′)+ih′)
)

h
(ζ, x)

∣∣∣ d(ζ ′, x ′)Δb+d−s′
Ω (h′) dνΩ(h′)

= C ′′4
∫

Ω

(
Ψ ′(|λ|)h′ ∗

∣∣∣
(
Bs′

(0,ih′)
)

h

∣∣∣
)

(ζ, x)Δb+d−s′
Ω (h′) dνΩ(h′)

for every λ ∈ �p,q(J , K ), for every h ∈ Ω , and for every
(ζ, x) ∈ N . Therefore, Minkowski’s integral inequality,
Young’s inequality (applied twice), and [16, Lemma 2.39]
show that there is a constant C5 > 0 such that

‖Ψ+(λ)h‖L p,q (F,E) ≤ C5

∫

Ω

‖Ψ ′(|λ|)h′‖L p,q (F,E)

×Δ
s′−(b+d)
Ω (h + h′)Δb+d−s′

Ω (h′) dνΩ(h′)

for every λ ∈ �p,q(J , K ), and for every h ∈ Ω .
Define

T ′ : f �→ Δs
Ω

∫

Ω

f (h′)Δs′−(b+d)
Ω ( · + h′)

×Δb+d−s−s′
Ω (h′) dνΩ(h′).

so that T ′ induces an endomorphism of Lq(νΩ) by [16,
Lemma 3.35]. Then,

‖Ψ+(λ)‖Lp,q
s (D) ≤ C5‖T ′‖L (Lq (νΩ))‖Ψ ′(|λ|)‖Lp,q

s (D)

≤ C5‖T ′‖L (Lq (νΩ))C
′
4νE×Ω(BE×Ω((0, eΩ), δ))1/q

× ‖λ‖�p,q (J ,K ).

Our claim then follows also in this case.
Step IV. Finally, assume that p ≥ 1 ≥ q. For every

( j, k) ∈ J × K , choose τ ′j,k ∈ Cc(F) so that

(χB((ζk ,z j,k ),δ/2))
(ζk)
hk
≤ τ ′j,k ≤ (χB((ζk ,z j,k ),δ))

(ζk )
hk

,

and define

Ψ ′′ : �p,q (J , K ) 
 λ �→
⎛

⎝
∑

j

λ j,kτ
′
j,kΔ

d/p
Ω (hk)

⎞

⎠

k

∈ Cc(F)K .

As in Step III, one may show that Ψ ′′ induces a continuous
linear mapping of �p,q(J , K ) into �q(K ; L p(F)). In addi-
tion, by means of [16, Theorem 2.47] we see that there is a

constant C6 > 0 such that

|Ψ+(λ)
(ζ )
h (x)| ≤ C6

∑

k∈K
Δ

b/q+d−s−s′
Ω (hk)

×
∫

F
Ψ ′′(|λ|)k(x ′)

∣∣∣
(
Bs′

(ζk ,x ′+iΦ(ζk )+ihk )
)(ζ )

h
(x)

∣∣∣ dx ′

= C6

∑

k∈K
Δ

b/q+d−s−s′
Ω (hk)

×
(

Ψ ′′(|λ|)k ∗
∣∣∣
(
Bs′

(ζk ,iΦ(ζk )+ihk )
)(ζ )

h

∣∣∣
)

(x)

for every λ ∈ �p,q(J , K ), for every (ζ, h) ∈ E × Ω , and
for every x ∈ F . Then, by Minkowski’s inequality, Young’s
inequality, and [16, Lemma 2.39], there is a constant C ′6 > 0
such that

‖Ψ+(λ)
(ζ )
h ‖L p(F)≤C ′6

∑

k∈K
‖Ψ ′′(|λ|)k‖L p(F)Δ

b/q+d−s−s′
Ω (hk)

×Δs′−d
Ω (h + hk +Φ(ζ − ζk))

for every λ ∈ �p,q(J , K ) and for every (ζ, h) ∈ E × Ω .
Then, by the subadditivity of the mapping x �→ xq on R+,

‖Ψ+(λ)‖qLp,q
s (D)

≤ C ′q6
∑

k

‖Ψ ′′(|λ|)k‖qL p(F)

×Δ
b+q(d−s−s′)
Ω (hk)

∫

E×Ω

Δ
qs−b
Ω (h)

×Δ
q(s′−d)
Ω (h + hk +Φ(ζ − ζk)) dνE×Ω(ζ, h).

Now, by homogeneity,

Δ
b+q(d−s−s′)
Ω (hk)

∫

E×Ω

Δ
q(s′−d)
Ω (h + hk +Φ(ζ − ζk))

×Δ
qs−b
Ω (h) dνE×Ω(ζ, h)

=
∫

E×Ω

Δ
qs−b
Ω (h)Δ

q(s′−d)
Ω (h + eΩ +Φ(ζ)) dνE×Ω(ζ, h)

for every k ∈ K , and the last integral is finite by [16, Corol-
lary 2.22 and Lemma 2.32]. Therefore, there is a constant
C7 > 0 such that

‖Ψ+(λ)‖Lp,q
s (D) ≤ C7‖Ψ ′′(|λ|)‖�q (K ;L p(F)),

whence our claim also in this case.
Step V. Put a well-ordering on J × K and define

Uj,k :=B((ζk, z j,k), Rδ) \
⎛

⎝
⋃

( j ′,k′)<( j,k)

B((ζk′ , z j ′,k′), Rδ)

⎞

⎠

for every ( j, k) ∈ J × K , so that (Uj,k)( j,k)∈J×K is
a Borel measurable partition of D (since J and K are
countable). In addition, define c j,k :=cνD(Uj,k) for every
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( j, k) ∈ J × K , where c > 0 is defined so that Ps′ f =
c
∫
D f (ζ, z)Bs

(ζ,z)Δ
−s′
Ω (ρ(ζ, z)) dνD(ζ, z) for every f ∈

Cc(D). Then,

c νD(B((0, ieΩ), δ)) ≤ c j,k ≤ c νD(B((0, ieΩ), Rδ))

for every ( j, k) ∈ J × K . Then, define

S : Ap,q
s (D) 
 f �→

(
c j,kΔ

s−b/q+d/p
Ω (hk) f (ζk, z j,k)

)

∈ �p,q(J , K ),

so that Theorem 4.11 shows that S is well defined and contin-
uous, and maps Ap,q

s,0 (D) into �
p,q
0 (J , K ). Define S′:=Ψ S.

Then, Proposition 4.8 implies that, for every f ∈ Ap,q
s (D),

f − S′ f = c
∑

j,k

∫

Uj,k

(
f (ζ ′, z′)Bs′

(ζ ′,z′)Δ
−s′
Ω (ρ(ζ ′, z′))

− f (ζk, z j,k)B
s′
(ζk ,z j,k )Δ

−s′
Ω (hk)

)
dνD(ζ ′, z′).

Hence, [16, Theorem 2.47, Corollary 2.49, and Lemma 3.25]
imply that there are R′0 > 0 and C8 > 0 such that

|( f − S′ f )(ζ, z)|
≤ C8Rδ

∑

j,k

c j,k sup
(ζ ′,z′)∈B((ζk ,z j,k ),Rδ+R′0)

| f (ζ ′, z′)|

× |Bs′
(ζk ,z j,k )(ζ, z)|Δ−s′Ω (hk)

for every (ζ, z) ∈ D. Fix an F-(1, 4)-lattice
(ζ ′k′ , z

′
j ′,k′) j ′∈J ′,k′∈K ′ on D and observe that the proof of

[16, Proposition 2.56], together with [16, Theorem 2.47 and
Corollary 2.49] again, implies that there is a constantC9 > 0
such that

|( f − S′ f )(ζ, z)|
≤ C9Rδ

∑

j ′,k′
sup

(ζ ′,z′)∈B
(
(ζ ′

k′ ,z
′
j ′,k′ ),Rδ+R′0+4

) | f (ζ ′, z′)|

× |Bs′
(ζ ′

k′ ,z
′
j ′,k′ )

(ζ, z)|Δ−s′Ω (h′k′)

for every (ζ, z) ∈ D, where h′k′ = ρ(ζ ′k′ , z
′
j ′,k′) for every

j ′ ∈ J ′ and for every k′ ∈ K ′. Hence, Theorem 4.11 and the
preceding steps show that there is a constant C10 > 0 such
that, if R ≤ R0 and δ ≤ 1, then

‖ f − S′ f ‖Ap,q
s (D) ≤ C10δ‖ f ‖Ap,q

s (D).

Take δ0 > 0 so that C10δ0 ≤ 1
2 , and assume that δ ≤ δ0.

Then,

∥∥∥
∑

j≥k
(I − S′) j f

∥∥∥
min(1,p,q)

Ap,q
s (D)

≤
∑

j≥k
2−min(1,p,q) j‖ f ‖min(1,p,q)

Ap,q
s (D)

for every k ∈ N, so that
∑

j∈N(I − S′) j induces well

defined endomorphisms of Ap,q
s,0 (D) and Ap,q

s (D), which
are inverses of S′. Hence,

Ψ ′′′:=S
∑

j∈N
(I − S′) j

induces well-defined and continuous linear mappings from
Ap,q

s,0 (D) into �
p,q
0 (J , K ) and fromAp,q

s (D) into �p,q(J , K ),

andΨ Ψ ′′′ = S′
∑

j∈N(I − S′) j = I . The proof is complete.
��

Proposition 4.15 Take p, q ∈ (0,∞] and s, s′ ∈ Rr such
that property (L′)p,qs,s′,0 holds. Then, the sesquilinear mapping

( f , g) �→
∫

D
f g(Δ−s

′
Ω ◦ ρ) dνD

induces an antilinear isomorphism of

Ap′,q ′
b/min(1,q)+d/min(1,p)−s−s′(D) onto Ap,q

s,0 (D)′.
In particular, if q ∈ (1,∞), p <∞, s′ � 1

2 (m − d) and
property (L′)p,qs,s′ holds, then the sesquilinear mapping

( f , g) �→
∫

D
f g(Δs′−b/2−d

Ω ◦ ρ) dνD

induces an antilinear isomorphism of

A
p′,q ′
q ′s′+(q ′/q)s+q ′(1−1/p)+d(D) onto A

p,q
s (D)′.

Proof By [16, Theorem 2.47], there is a constantC > 0 such
that

|Bs′
(ζ,z) − Bs′

(ζ ′,z′)| ≤ C |Bs′
(ζ,z)|d((ζ, z), (ζ ′, z′))

for every (ζ, z), (ζ ′, z′) ∈ D such that d((ζ, z), (ζ ′, z′)) ≤ 1.
Using Proposition 4.7, one then verifies that the mapping
(ζ, z) �→ Bs′

(ζ,z) ∈ Ap,q
s,0 (D) is antiholomorphic, so that the

mapping

G : Ap,q
s,0 (D)′ 
 L �→ [(ζ, z) �→ 〈L, Bs′

(ζ,z)〉] ∈ Hol(D)

is well defined. In addition, Proposition 4.7 shows that
G(L) ∈ A∞,∞

b/q+d/p−s−s′(D) for every L ∈ Ap,q
s,0 (D)′. In order

to prove that G(L) ∈ Ap′,q ′
s′′ (D), where s′′:=b/min(1, q)+

d/min(1, p)− s− s′, by Theorem 4.11 it will then suffice to

show that S(G(L)):=(Δ
s′′−b/q ′−d/p′
Ω (hk)G(L)(ζk, z j,k)) ∈

�p
′,q ′(J , K ) for some F-(δ, 4)-lattice (ζk, z j,k) j∈J ,k∈K on

D for some sufficiently small δ > 0. We may then choose
(ζk, z j,k) j∈J ,k∈K so that the corresponding map

Ψ : �p,q(J , K ) 
 λ �→
∑

j,k

λ j,k B
s′
(ζk ,z j,k )Δ

b/q+d/p−s−s′
Ω (hk)

∈ Ap,q
s,0 (D)
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is well defined, continuous, and onto. Since

∑

j,k

λ j,k S(G(L)) j,k = L(Ψ (λ))

for every λ ∈ �p,q(J , K ), our claim follows.
Further, observe that Proposition 4.8 shows that

∫

D
Bs′

(ζ,z)G(L)(Δ−s
′

Ω ◦ ρ) dνD = G(L)(ζ, z) = 〈L, Bs′
(ζ,z)〉

for every (ζ, z) ∈ D. Since the Bs′
(ζ,z), as (ζ, z) run through D,

form a total subset ofAp,q
s,0 (D) (forΨ is onto), by continuity,

we see that

∫

D
f G(L)(Δ−s

′
Ω ◦ ρ) dνD = 〈L, f 〉

for every f ∈ Ap,q
s,0 (D). To conclude, it suffices to show that

if g ∈ Ap′,q ′
s′′ (D) and

∫

D
f g(Δ−s

′
Ω ◦ ρ) dνD = 0

for every f ∈ Ap,q
s,0 (D), then g = 0. However, choosing f =

Bs′
(ζ,z) for every (ζ, z) ∈ D and using Proposition 4.8 again,

it is readily seen that this is the case, whence the conclusion.
��

4.5 Boundary values

In order to define the Besov spaces of analytic type which
are necessary to describe the boundary values of the spaces
A

p,q
s and Ap,q

s , we shall need some preliminary results.

Lemma 4.16 The continuous linear mappings S
Ω ′(N ) 


u �→ u(ζ, · ) ∈ S
Ω ′(F), ζ ∈ E, induce uniquely determined

continuous linear mappings S ′
Ω ′(N ) 
 u �→ u(ζ, · ) ∈

S ′
Ω ′(F) such that the following hold:

(1) for every u ∈ S ′
Ω ′(N ), for every ζ ∈ E, and for every

φ ∈ S(F ′) supported in Ω ′,

(u ∗ F−1N (φ))(ζ, · ) = u(ζ, · ) ∗ F−1F (φ);

(2) for every u ∈ S ′
Ω ′(N ), the mapping E 
 ζ �→ u(ζ, · ) ∈

S ′
Ω ′(F) is of class C∞.

As a consequence, we shall identify each u ∈ S ′
Ω ′(N )

with a map E 
 ζ �→ u(ζ, · ) ∈ S ′
Ω ′(F) of class C∞.

Proof Fixφ ∈ S(F ′) supported inΩ ′ anddefineψ :=F−1N (φ)

and ψ ′:=F−1F (φ). Then, πλ(ψ) = φ(λ)Pλ,0 and πλ(δ0 ⊗
ψ ′) = φ(λ)I for every λ ∈ Λ+, so that

u ∗ ψ = u ∗ (δ0 ⊗ ψ ′)

for every u ∈ S
Ω ′(N ), that is,

(u ∗ ψ)(ζ, · ) = u(ζ, · ) ∗ ψ ′

for every ζ ∈ E . In particular,

〈u(ζ, · )|ψ ′〉 = (u(ζ, · ) ∗ ψ ′∗)(0) = (u ∗ ψ∗)(ζ, 0)

= 〈u|ψ((ζ, 0)−1 · )〉,

so that, by the arbitrariness of φ, the mapping S
Ω ′(N ) 


u �→ u(ζ, · ) 
 S
Ω ′(F) is continuous for the topologies

induced by S ′
Ω ′(N ) and S ′

Ω ′(F) on S
Ω ′(N ) and S

Ω ′(F),

respectively. Since S
Ω ′(N ) is dense in S ′

Ω ′(N ) (because the
conjugate of S

Ω ′(N ) is reflexive and the polar of S
Ω ′(N )

in the conjugate of S
Ω ′(N ) is {0}), and since S ′

Ω ′(F) is
complete, the first assertion follows, as well as (1). Asser-
tion (2) is a consequence of the fact that the mapping
ζ �→ 〈u(ζ, · )|ψ ′〉 = (u ∗ ψ∗)(ζ, 0) is of class C∞ on E
for every φ (cf. [35, p. 59, Lemma II]). ��
Lemma 4.17 Take p, q, p2, q2 ∈ (0,∞] with p ≤ p2 and
q ≤ q2, and a bounded subset B ofS

Ω ′(N ) such thatFN B is
bounded in C∞c (Ω ′). For every ψ ∈ B and for every t ∈ T+,
define ψt :=F−1N ((FNψ)( · t−1)). Then, there is a constant
C > 0 such that

‖u ∗ ψt‖L p2,q2 (F,E)

≤ CΔ(1/q2−1/q)b+(1/p2−1/p)d(t)‖u ∗ ψt‖L p,q (F,E)

and

‖u ∗ ψt ∗ ψ ′t ′ ‖L p,q (F,E) ≤ C‖u ∗ ψt‖L p,q (F,E)

for every u ∈ S ′(N ), for every φ, φ′ ∈ B, and for every
t, t ′ ∈ T+.

Proof Step I. It will suffice to prove the first assertion when
p2 = q2 = ∞ and t is the identity of T+, by Hölder’s
interpolation and homogeneity. Arguing by approximation as
in the proof of [16,Corollary 4.7],wemay further assume that
u ∈ S(N ). Then, set �:=min(1, p, q) and take τ ∈ S

Ω ′(N )

so that ψ ∗ τ = ψ for every ψ ∈ B and observe that

|(u ∗ ψ)(ζ, x)| ≤ ‖u ∗ ψ‖1−�
L∞(N )

∫

N
|(u ∗ ψ)(ζ ′, x ′)|�

× |τ((ζ ′, x ′)−1(ζ, x))| d(ζ ′, x ′)
≤ ‖u ∗ ψ‖1−�

L∞(N )
‖u ∗ ψ‖�L p,q (F,E)‖τ‖L(p/�)′,(q/�)′ (F,E)
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for every (ζ, x) ∈ N , whence the first assertion.
Step II.The second assertion follows from [16, Corollary

4.10] and Lemma 4.16. ��
Definition 4.18 Take p, q ∈ (0,∞] and s ∈ Rr . Take a
(δ, R)-lattice (λk)k∈K in Ω ′ for some δ > 0 and some
R > 1 and fix a bounded family (φk)k∈K of positive ele-
ments of C∞c (Ω ′) such that

∑
k φk( · t−1k ) ≥ 1 on Ω ′, where

tk ∈ T+ and λk = eΩ ′ · tk for every k ∈ K . Define
ψk :=F−1N (φk( · t−1k )). Then, we define B̊s

p,q(N ,Ω) (resp.
Bs
p,q(N ,Ω)) as the space of the u ∈ S ′

Ω ′(N ) such that

(Δs
Ω ′(λk) u ∗ ψk) ∈ �

q
0(K ; L p,q

0 (F, E))

(resp. (Δs
Ω ′(λk) u ∗ ψk) ∈ �q(K ; L p,q(F, E))),

endowed with the corresponding topology.8 We also define
Bs

p,q(N ,Ω):=B(s−b/2)/q
p,q (N ,Ω).

In particular, Bs
p,p(N ,Ω) = Bs

p,p(N ,Ω) and B̊s
p,p(N ,

Ω) = B̊s
p,p(N ,Ω) for every p ∈ (0,∞] and for every s ∈

R. We now propose a different interpretation of Bs
p,q(N ,Ω)

which is particularly useful in certain situations.

Remark 4.19 By Lemma 4.16, Bs
p,q(N ,Ω) may be equiva-

lently defined as the space of u ∈ S ′
Ω ′(N ) such that

∥∥ζ �→ ‖u(ζ, · )‖Bs
p,q (F,Ω)

∥∥
Lq (E)

<∞,

where‖ · ‖Bs
p,q (F,Ω) denotes afixedquasi-normon Bs

p,q (F,Ω).

A similar description holds also for the space Bp,q
s (N ,Ω).

Proposition 4.20 Take p1, p2, q1, q2 ∈ (0,∞] and s1, s2 ∈
Rr so that

p1 ≤ p2, q1 ≤ q2, and

s2 = s1 +
(

1

q1
− 1

q2

)
b+

(
1

p1
− 1

p2

)
d.

Then, there are continuous inclusions B̊s1
p1,q1(N ,Ω) ⊆

B̊s2
p2,q2(N ,Ω) and Bs1

p1,q1(N ,Ω) ⊆ Bs2
p2,q2(N ,Ω). In addi-

tion, the mappings Bs
p,q(N ,Ω) 
 u �→ u(ζ, · ) ∈

Bs+b/q
p,q (F,Ω), ζ ∈ E, are equicontinuous for every p, q ∈

(0,∞] and for every s ∈ Rr .

In particular, if q2 <∞ and s3 = q2
q1
s1 +

(
q2
2q1
− 1

2

)
b+

(
q2
p1
− q2

p2

)
d, then Bs1

p1,q1(N ,Ω) ⊆ Bs3
p2,q2(N ,Ω). In

addition, the mappings Bs
p,q(N ,Ω) 
 u �→ u(ζ, · ) ∈

B
s+b/2
p,q (F,Ω), ζ ∈ E, are equicontinuous for every p, q ∈

(0,∞] and for every s ∈ Rr .

8 One may prove directly that this definition does not depend on the
choice of (λk) and (φk), arguing as in the proof of [16, Lemma 4.14]
and using Lemma 4.17. Nonetheless, this follows from Remark 4.19,
at least for Bs

p,q (N ,Ω).

Proof This is a consequence of Lemmas 4.16 and 4.17, and
of the continuous inclusion �q1(K ) ⊆ �q2(K ), which holds
for every set K . ��
Proposition 4.21 Take p, q ∈ (0,∞] and s ∈ Rr . Then,
B̊s
p,q(N ,Ω), Bs

p,q(N ,Ω), and Bs
p,q(N ,Ω) are complete

and embed continuously into S ′
Ω ′(N ). In addition, S

Ω ′(N )

is dense in B̊s
p,q(N ,Ω).

Proof Since Bs
p,q(N ,Ω) ⊆ Bs+b/q+d/p∞,∞ (N ,Ω) =

Bs+b/q+d/p∞,∞ (N ,Ω) continuously by Proposition 4.20, by
[14, Proposition 7.12], we see that Bs

p,q(N ,Ω) embeds
continuously into S ′

Ω ′(N ). Completeness follows from the

facts that S ′
Ω ′(N ) is complete, that B̊s

p,q(N ,Ω) is closed in
Bs
p,q(N ,Ω), and that the norm of Bs

p,q(N ,Ω) extends to a
lower semi-continuous function on S ′

Ω ′(N ) which is finite
only on Bs

p,q(N ,Ω).

Next, observe that S
Ω ′(N )⊆Bs′

l,l(N , Ω)⊆B̊s
p,q(N , Ω)

thanks to Theorem 3.13 and Proposition 4.20, where l:=min

(1, p, q) and s′ = s +
(
1
q − 1

l

)
b +

(
1
q − 1

l

)
d. For

what concerns the density of S
Ω ′(N ) in B̊s

p,q(N ,Ω), take

u ∈ B̊s
p,q(N ,Ω) and (ψk) as in Definition 4.18. It is not

difficult to prove that, if we assume that
∑

k FNψk = 1 on
Ω ′, then

∑
k u ∗ ψk converges to u in Bs

p,q(N ,Ω). In addi-
tion, clearly u ∗ ψk ∈ L p

0 (N ) for every k ∈ K . Then, take
ψ ′k ∈ S

Ω ′(N ) so that FNψ ′k is compactly supported in Ω ′
and equals 1 on the support of FNψk . If ( f j ) is a sequence
of elements of C∞c (N ) which converges locally uniformly
to u ∗ψk and satisfies | f j | ≤ |u ∗ ψk | for every j ∈ N, then
f j ∗ψ ′k belongs toSΩ ′(N ) and converges to u∗ψk in L

p
0 (N )

by dominated convergence, since |u ∗ ψk | ∗ |ψ ′k | ∈ L p
0 (N )

by [14, Corollary 3.6]. It is then readily verified that f j ∗ψ ′k
converges to u ∗ψk in Bs

p,q(N ,Ω) for every k ∈ N, whence
the conclusion. ��
Definition 4.22 Take (ψk) as in Definition 4.18, and assume
further that

∑
k(FNψk)

2 = 1 on Ω ′. Then, the mapping

(u, u′) �→
∑

k

〈u ∗ ψk |u ∗ ψk〉 =
∫

E
〈u(ζ, · )|u′(ζ, · )〉 dζ

induces a well-defined continuous sesquilinear form on
Bs
p,q(N ,Ω) × B−sp′,q ′(N ,Ω), for every p, q ∈ [1,∞] and

for every s ∈ Rr , which does not depend on the choice of
(ψk) (cf. [16, the proof of Proposition 4.20]).

In particular, if q > 1, then the same expression
defines a continuous sesquilinear form on Bs

p,q(N ,Ω) ×
B
−(q ′/q)s+(q ′/2)b
p′,q ′ (N ,Ω).

In particular, by Proposition 4.20, there is a canonical
sesquilinear form on

Bs
p,q(N ,Ω)× B−s−(1/q−1)+b−(1/p−1)+d

p′,q ′ (N ,Ω)
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for every p, q ∈ (0,∞] and for every s ∈ Rr . We denote by
σ s
p,q the weak topology

σ(Bs
p,q(N ,Ω), B̊−s−(1/q−1)+b−(1/p−1)+d

p′,q ′ (N ,Ω)).

Lemma 4.23 Take p, q ∈ [1,∞] and s � 1
q ′ b+ 1

p′ d+ 1
2qm

′.

For every (ζ, z) ∈ D, define S(ζ,z):=c
(
Bb+d

(ζ,z)

)

0
, where

c �= 0 is chosen so that f (ζ, z) = 〈 f0|S(ζ,z)〉 for every

f ∈ A2,∞
0 (D). Then, the following hold:

(1) theΔ
s−b/q ′−d/p′
Ω (ρ(ζ, z))S(ζ,z), as (ζ, z) runs through D,

stay in a bounded subset of B̊s
p,q(N ,Ω);

(2) for every u ∈ B−sp′,q ′(N ,Ω), the mapping (ζ, z) �→
〈u|S(ζ,z)〉 is holomorphic on D.

Proof By homogeneity, in order to prove (1), it suffices to
show that S(0,ieΩ) ∈ B̊s

p,q(N ,Ω). To this aim, take (λk) and
(ψk) as in Definition 4.18. By [16, The proof of Lemma
5.1 (2)], there is a constant C > 0 such that the fam-

ily (e〈λk ,eΩ 〉/CΔ
b/q ′+d/p′
Ω ′ (λk)S(0,ieΩ) ∗ ψk) is bounded in

L p,q
0 (F, E). Then, [16, Proposition 2.19, Lemmas 2.34 and

2.50, and Corollary 2.49] show that S(0,ieΩ) ∈ B̊s
p,q(N ,Ω).

For what concerns (2), take u ∈ B−sp′,q ′(N ,Ω) and assume
further that (ψk) satisfies the conditions of Definition 4.22,
so that

〈u|S(ζ,z)〉 =
∑

k

〈u ∗ ψk |S(ζ,z) ∗ ψk〉

for every (ζ, z) ∈ D. Since (1) shows that the S(ζ,z) are
uniformly bounded in Bs

p,q(N ,Ω) as long as (ζ, z) stays
in a bounded subset of D, by dominated convergence, it will
suffice to prove that the function (ζ, z) �→ 〈u∗ψk |S(ζ,z)∗ψk〉
is holomorphic on D for every k ∈ K . Since u∗ψk ∈ L∞(N )

byLemma4.17, and since themapping D 
 (ζ, z) �→ S(ζ,z)∗
ψk ∈ S(N ) is holomorphic by [16, (1) of Proposition 4.2 and
(1) of Lemma 5.1], the assertion follows. ��
Proposition 4.24 Take p, q ∈ (0,∞] and s � 1

q b + 1
pd +

1
2q ′m

′. Define a continuous linear mapping (cf. Lemma 4.23)

E : B−sp,q (N ,Ω) 
 u �→ [(ζ, z) �→ 〈u|S(ζ,z)〉] ∈ A∞,∞
s−b/q−d/p(D),

Then, the following hold:

(1) for every u ∈ B−sp,q(N ,Ω) and for every (ζ, z) ∈ D (so

that u(ζ, · ) ∈ B−s+b/q
p,q (F,Ω)with s− 1

q b � 1
pd+ 1

2q ′m
′

by Proposition 4.20)

(Eu)(ζ, z) = [E(u(ζ, · ))](z − iΦ(ζ));

(2) the linear mappings u �→ (Eu)h, as h runs through Ω ,
induce equicontinuous endomorphisms of B−sp,q(N ,Ω)

and B̊−sp,q(N ,Ω);
(3) the mapping

Ω ∪ {0} 
 h �→ (Eu)h ∈ B−sp,q(N ,Ω)

is continuous if u ∈ B̊−sp,q(N ,Ω), and is continuous in
the weak topology σ−sp,q if u ∈ B−sp,q(N ,Ω).

The preceding statement may be also translated in terms
of the spaces B−sp,q(N ,Ω) (except for the statements con-
cerning the weak topology σ−sp,q , which may not be properly
stated in terms of the spacesB−sp,q(N ,Ω) alone). This latter
result extends: [2, Proposition 3.43], which corresponds to
the case in which p = q ≥ 1, s, s′ ∈ R1r , n = 0, and Ω is
symmetric; [23, Proposition 4.1], which corresponds to the
case in which p = q ≥ 1, n = 0, and Ω is symmetric.

Proof (1) It will suffice to prove the assertion when u is
replaced by u ∗ ψ for some ψ ∈ S

Ω ′(N ) with FNψ ∈
C∞c (Ω ′). Then,

[E(u ∗ ψ)]h = (u ∗ ψ) ∗ (S(0,ih) ∗ ψ ′),

where ψ ′ ∈ S
Ω ′(N ) and ψ = ψ ∗ψ ′. It then suffices to

apply Lemma 4.16.
(2) The equicontinuity of the endomorphisms u �→ (Eu)h ,

h ∈ Ω , of B−sp,q(N ,Ω) follows from (1), Remark 4.19
and [16, (1) of Theorem 5.2]. The fact that these endo-
morphisms preserve B̊s

p,q(N ,Ω) follows from the fact
that they preserve S

Ω ′(N ), thanks to Proposition 4.21.
(3) If u ∈ S

Ω ′(N ), then the mapping Ω ∪ {0} 
 h �→
(Eu)h ∈ S

Ω ′(N ) is continuous by [16, (1) of Lemma
5.1] and [15, Proposition 5.2], so that (2) leads to the
conclusion for u ∈ B̊−sp,q(N ,Ω). The conclusion for
u ∈ B−sp,q(N ,Ω) follows by transposition, thanks to the
formula

〈(Eu)h |u′〉 = 〈u|(Eu′)h〉

whichholds for everyu′ ∈ B̊s−(1/q−1)+b−(1/p−1)+d
p′,q ′ (N ,Ω)

and for every h ∈ Ω and may be proved reducing to the
case E = {0} by means of (1), in which case it follows
from the proof of [16, (3) of Theorem 5.2].

��
Definition 4.25 Take s � 1

q b + 1
pd + 1

2q ′m
′. Then, we

define Ãp,q
s,0 (D) and Ãp,q

s (D) as the images of the spaces

B̊−sp,q(N ,Ω) and B−sp,q(N ,Ω) under E , endowed with the
corresponding topology.

If q <∞ and s′ � 1
2b+ q

pd+ q
2q ′m

′, then we shall define
Ã

p,q
s (D):=Ãp,q

(s+b/2)/q(D).
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Assertions (1), (2), and (5) of the following result extend:
[2, Proposition 3.31, Theorem 1.7, and Theorem 1.8], which
corresponds to the case in which p, q ≥ 1, s ∈ R1r , n = 0,
and Ω is symmetric; [23, Remark 3.21, Theorem 1.2, and
Theorem 4.8], which corresponds to the case inwhich p, q ≥
1, n = 0, and Ω is symmetric.

Proposition 4.26 Take p, q ∈ (0,∞] and s ∈ Rr . Then, the
following hold:

(1) for every s′ ∈ Cr , the mapping S
Ω ′(N ) 
 φ �→ φ ∗

I s
′

Ω ∈ S
Ω ′(N ) induces isomorphisms of B̊s

p,q(N ,Ω) and

Bs
p,q(N ,Ω) onto B̊s+Re s′

p,q (N ,Ω) and Bs+Re s′
p,q (N ,Ω),

respectively; in particular, if q < ∞, then it induces an

isomorphism ofBs
p,q(N ,Ω) onto B

s+qRe s′
p,q (N ,Ω);

(2) if s � 1
q b + 1

pd + 1
2q ′m

′ and s � 1
2qm (resp. s ≥ 0 if

q = ∞), then there are continuous inclusions

E(S
Ω ′(N )) ⊆ Ap,q

s,0 (D) ⊆ Ãp,q
s,0 (D)

(resp. E(S
Ω ′(N )) ⊆ Ap,q

s (D) ⊆ Ãp,q
s (D));

in particular, if q < ∞ and s � 1
2 (m − b), 1

2b + q
pd +

q
2q ′m

′, then there are continuous inclusionsE(S
Ω ′(N )) ⊆

A
p,q
s (D) ⊆ Ã

p,q
s (D);

(3) if s � 1
pd + 1

2q ′m
′ and Ap,q

s,0 (TΩ) = Ã p,q
s,0 (TΩ) (resp.

Ap,q
s (TΩ) = Ã p,q

s (TΩ)), then Ap,q
s,0 (D) = Ãp,q

s,0 (D)

(resp. Ap,q
s (D) = Ãp,q

s (D)); in particular, if q < ∞,
s � q

pd + q
2q ′m

′ and A
p,q
s (TΩ) = Ã

p,q
s (TΩ), then

A
p,q
s−b/2(D) = Ã

p,q
s−b/2,0(D);

(4) if s � 1
p (b + d) + 1

2p′m
′ and Ap,p

s,0 (D) = Ãp,p
s,0 (D)

(resp. Ap,p
s (D) = Ãp,p

s (D)), then Ap,p
s−b/p,0(TΩ) =

Ã p,p
s−b/p,0(TΩ) (resp. Ap,p

s−b/p(TΩ) = Ã p,p
s−b/p(TΩ)); in

particular, if p < ∞, s � 1
2b + d + p

2p′m
′ and

A
p,p
s (D) = Ã

p,p
s (D), then A

p,p
s−b/2(TΩ) = Ã

p,p
s−b/2(TΩ);

(5) if s � 1
2qm +

(
1

2min(p,p′) − 1
2q

)

+m
′, then Ap,q

s (D) =
Ãp,q

s (D) andAp,q
s,0 (D) = Ãp,q

s,0 (D). In particular, if q <

∞ and s � 1
2 (m − b) +

(
q

2min(p,p′) − 1
2

)

+m
′, then

A
p,q
s (D) = Ã

p,q
s (D).

We observe explicitly that in [16, Corollary 5.11] the
assumption s � 1

p (b + d) + 1
2q ′m

′ is redundant (as the

assumption s � 1
q b + 1

pd + 1
2q ′m

′ would be redundant in

(5) above), as it is implied by the condition s � 1
2qm +(

1
2min(p,p′) − 1

2q

)

+m
′. Indeed,

(
1

min(p,p′) − 1
q

)

+m
′ ≥

(
1
q ′ − 1

p

)
m′ ≥ 2

pd+ 1
q ′m

′ since 2d ≺ −m−m′.
We also mention that, if r = 2 (so that Ω is isomorphic

to either a quadrant or a Lorentz cone), then combining [6,

Theorems 6.6 and 6.8] (the latter being a consequence of [13,
Theorem 1.2]) with [16, Theorem 5.10] (cf. also [19, remarks
following Remark 2.6]), we see thatAp,q

s (TΩ) = Ãp,q
s (TΩ)

and Ap,q
s,0 (TΩ) = Ãp,q

s,0 (TΩ) if and only if

s � 1

2q
m+ 1

2

(
1

min(2, p)
− 1

q

)

+
m′, 1

p
d+ 1

2q ′
m′.

By transference, under the same condition, we also have
Ap,q

s (D) = Ãp,q
s (D) and Ap,q

s,0 (D) = Ãp,q
s,0 (D).

Proof (1) This follows from [16, Theorem 4.26] and
Remark 4.19.

(2) By [16, Proposition 5.4], there are continuous linearmap-
pingsB : Aq,q

s,0 (D)→ B̊−sq,q(N ,Ω) andB′ : Ap,q
s,0 (TΩ)→

B̊−sp,q(F,Ω) such that EB = I and EB′ = I . If u ∈
Ap,q

s,0 (D) ∩ Aq,q
s,0 (D), then Lemma 4.16, Remark 4.19,

(1) of Proposition 4.24, and Proposition 4.6 imply that
(Bu)(ζ, · ) = B′(u(ζ, · )) for every ζ ∈ E , and that B
induces a continuous linear mapping of Ap,q

s,0 (D) into

B̊−sp,q(N ,Ω). Thus, Ap,q
s,0 (D) ⊆ Ãp,q

s,0 (D) continuously.

The inclusion Ap,q
s (D) ⊆ Ãp,q

s (D) is proved similarly
(cf. the proof of Theorem4.31). The remaining inclusions
are consequences of Lemma 4.16 and Theorem 3.13.

(3) This follows from Remark 4.19 and (1) of Proposi-
tion 4.24.

(4) This follows from [19, Theorem 6.3].
(5) This follows from (3) and [16, Corollary 5.11].

��
Remark 4.27 We observe explicitly that s � 1

2 (m − b) +(
q

2min(p,p′) − 1
2

)

+m
′ if and only if s � 1

2 (m− b) and

q < qs(p):=min(p, p′) min
j=1,...,r

2s j + b j + m′j − m j

m′j
.

Proposition 4.28 Take p, q ∈ (0,∞], and s, s′ ∈ Rr such
that the following hold:

• s � 1
q b+ 1

pd+ 1
2q ′m

′;
• s′ ≺ b+ d− 1

2m;
• s+ s′ ≺ 1

q b+ 1
pd− 1

2max(1,q)
m′.

Then, there is a constant c �= 0 such that

〈u|u′〉 = c
∫

D
(Eu)Eu′ ∗ I s′−b−dΩ (Δ−s

′
Ω ◦ ρ) dνD (7)

for every u, u′ ∈ S
Ω ′(N ). In particular, the sesquilinear

form

( f , g) �→
∫

D
f g(Δ−s′ ◦ ρ) dνD
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induces a continuous sesquilinear form on Ãp,q
s (D) ×

Ãp′,q ′
b/min(1,q)+d/min(1,p)−s−s′(D).

As a consequence of Corollary 4.29, the above sesquilin-
ear form induces an antilinear isomorphism of

Ãp′,q ′
b/min(1,q)+d/min(1,p)−s−s′(D) onto Ãp,q

s,0 (D)′.

Proof Formula (7) follows from [16, Proposition 5.12].9 The
assertion then follows easily. ��

Corollary 4.29 Take p, q ∈ (0,∞] and s ∈ Rr . Then,
the continuous sesquilinear form 〈 · | · 〉 : Bs

p,q(N ,Ω) ×
B−s−(1/q−1)+b−(1/p−1)+d
p′,q ′ (N ,Ω) → C induces an antilin-

ear isomorphism of B−s−(1/q−1)+b−(1/p−1)+d
p′,q ′ (N ,Ω) onto

B̊s
p,q(N ,Ω)′.

Onemay also state an analogous result for the spacesBs
p,q

(necessarily restricting to p ∈ (0,∞) and q ∈ (1,∞)). This
latter result extends: [2, Theorem 1.4 (3)], which corresponds
to the case in which p, q ≥ 1, s ∈ R1r , n = 0, and Ω is
symmetric; [23, Theorem 1.1 (3)], which corresponds to the
case in which p, q ≥ 1, n = 0, and Ω is symmetric.

Proof By Proposition 4.26, we may assume that −s is
as large as we please, so that the assertion follows from
Proposition 4.28, combined with (5) of Proposition 4.26,
Theorem 4.14, and Proposition 4.15. ��

4.6 Bergman Projectors

The second part of the following result extends: [3, Theorem
4.24], which corresponds to the case in which s = s′ ∈ R1r ,
n = 0, and Ω is symmetric; [23, Corollary 1.4], which deals
with the case in which s = s′, n = 0 and Ω is symmetric;
[30, Theorem 3.2 (i)], which corresponds to the case inwhich
p = q, s = s′, and n = 0.

Proposition 4.30 Take p, q ∈ [1,∞], s ∈ Rr , and s′ ≺
b+d− 1

2m. If Ps′ induces an endomorphismofLp,q
s,0 (D) (resp.

a continuous linear mapping ofLp,q
s,0 (D) intoLp,q

s (D)), then
the following hold:

(1) s � 1
2qm (resp. s ≥ 0 if q = ∞) and s � 1

q b + 1
pd +

1
2q ′m

′;
(2) s′ ≺ 1

min(p,p′)d− 1
2min(p,p′)m

′;
(3) s+ s′ ≺ b+ d− 1

2q ′m or s+ s′ ≤ b+ d if q ′ = ∞, and

s+ s′ ≺ 1
q b+ 1

pd− 1
2qm

′;

9 We mention explicitly that the statement of the cited result contains

a typo: instead of Δs′′
Ω , there should be Δ

s′′−(b+d)
Ω in the first formula in

display, as well as in the first line of the formula in display in the proof.

(4) Ps′ induces continuous linear projectors of Lp,q
s (D) and

Lp′,q ′
b+d−s−s′(D)ontoAp,q

s (D)andAp′,q ′
b+d−s−s′(D), respec-

tively, such that

∫

D
f Ps′g(Δ

s′
Ω ◦ ρ) dνD =

∫

D
(Ps′ f )g(Δ

s′
Ω ◦ ρ) dνD (8)

for every f ∈ Lp,q
s (D) and for every g ∈ Lp′,q ′

b+d−s−s′(D).

In particular, if q <∞, s′ � 1
2 (m−b), andPs′ induces a

continuous linear projector of Lp,q
s (D) onto Ap,q

s (D), then:

• s � 1
2 (m− b), 1

2b+ q
pd+ q−1

2 m′;
• s′ � 1

2b+ 1
max(p,p′)d+ 1

2min(p,p′)m
′;

• s′− 1
q s � 1

2q ′ b+ 1
p′ d+ 1

2qm
′ and s′− 1

q s � − 1
2q ′ b+ 1

2q ′m
or q = 1 and s′ − s ≥ 0.

Notice that (4) uniquely determines Ps′ on Lp,q
s (D) and

Lp′,q ′
b+d−s−s′(D), since conditions (1)–(3) ensure that B−s

′
(ζ,z) ∈

Ap,q
s (D)∩Ap′,q ′

b+d−s−s′(D) for every (ζ, z) ∈ D (cf. Proposi-
tion 4.8).

In addition, if s � 1
2 (m − b), p, q ∈ (1,∞), and

Ps induces a continuous linear projector of Lp,q
s (D) onto

A
p,q
s (D), then:

p′s < p < ps and Q′s(p′) < q < Qs(p),

where

ps:= min
j=1,...,r

m′j − 2d j

(b j + m′j − 2s j )+
and

Qs(p):= min
j=1,...,r

s j − 1
2b j + 1

2m
′
j(

1
p d j + 1

2m
′
j

)

+
.

Proof In order to prove (1)–(3), observe first that Ps′(Cc(D))

⊆ Hol(D), so that Ps′ maps Lp,q
s,0 (D) into Ap,q

s,0 (D) (resp.
Ap,q
s (D)). Therefore, the linear mapping

Lp,q
s,0 (D) 
 f �→ (Ps′ f )(ζ, z)

= c(b+d−s)/2
∫

D
f Bs′

(ζ,z)(Δ
−s′
Ω ◦ ρ) dνD ∈ C

is continuous for every (ζ, z) ∈ D, so that Bs′
(ζ,z) ∈

Ap′,q ′
b+d−s−s′(D). By Proposition 4.7, in order to complete

the proof of (1)–(3), it will suffice to prove that Bs′
(0,ieΩ) ∈

Ap,q
s,0 (D) (resp. Bs′

(0,ieΩ) ∈ Ap,q
s (D)). This is a consequence

of the fact that there is f ∈ Cc(D) such that Ps′( f ) =
Bs′

(0,ieΩ) (cf. the proof of [16, Proposition 5.20]).

123



   13 Page 28 of 31 Complex Analysis and its Synergies             (2023) 9:13 

Concerning (4), one first shows that formula (8) holds
for every f ∈ Lp,q

s,0 (D) and for every g ∈ Cc(D). This,
in turn, allows to show that Ps′ induces a continuous linear
mapping of Lp′,q ′

b+d−s−s′,0(D) into Lp′,q ′
b+d−s−s′(D) and to show

that formula (8) holds for every f ∈ Lp,q
s,0 (D) and for every

g ∈ Lp′,q ′
b+d−s−s′,0(D). One then defines

(Ps′ f )(ζ, z) = c(b+d−s′)/2
∫

D
f Bs′

(ζ,z)(Δ
−s′
Ω ◦ ρ) dνD

for every f ∈ Lp,q
s (D) (resp. for every f ∈ Lp′,q ′

b+d−s−s′(D)),
and for every (ζ, z) ∈ D (as a consequence of the proof
of (1)–(3)). The arguments of the proof of Proposition 4.15
then allow to show that the so-defined Ps′ f is holomorphic
on D. In addition, if (τ j ) is an increasing sequence of pos-
itive elements of Cc(D) which converges locally uniformly
to 1, then Ps′(τ j f ) converges locally uniformly to Ps′ f and

has uniformly boundedLp,q
s (D) (resp.Lp′,q ′

b+d−s−s′(D)) norm.
This, combined with Proposition 4.8, allows to show that
Ps′ has been correctly extended to continuous linear map-

pings from Lp,q
s (D) and Lp′,q ′

b+d−s−s′(D) onto Ap,q
s (D) and

Ap′,q ′
b+d−s−s′(D), respectively. Formula (8) is then proved by

approximation in the general case. ��
Theorem 4.31 Take p, q ∈ [1,∞] and s, s′ ∈ Rr . Assume
that the following hold:

• s � 1
q b + 1

pd + 1
2q ′m

′ and s � 1
2qm (resp. s ≥ 0 if

q = ∞);
• s′ ≺ b+ d− 1

2m;
• s+ s′ ≺ 1

q b+ 1
pd− 1

2qm
′.

Then, the following conditions are equivalent:

(1) Ap,q
s,0 (D) = Ãp,q

s,0 (D) (resp. Ap,q
s (D) = Ãp,q

s (D)) and

Ap′,q ′
b+d−s−s′(D) = Ãp′,q ′

b+d−s−s′(D);

(2) Ps′ induces a continuous linear mapping ofLp,q
s,0 (D) into

Lp,q
s (D) and s � 0 (resp. s ≥ 0);

(3) Ps′ induces a continuous linear projector of Lp,q
s,0 (D)

onto Ap,q
s,0 (D) (resp. of Lp,q

s (D) onto Ap,q
s (D)) and of

Lp′,q ′
b+d−s−s′(D) onto Ap′,q ′

b+d−s−s′(D);

(4) s � 1
2qm (resp. s ≥ 0 if q = ∞) and the sesquilinear

mapping

( f , g) �→
∫

D
f g(Δ−s

′
Ω ◦ ρ) dνD (9)

induces an antilinear isomorphism of Ap′,q ′
b+d−s−s′(D)

onto Ap,q
s,0 (D)′ (resp. onto the dual of the closed vector

subspace of Ap,q
s (D) generated by the Bs′

(ζ,z), (ζ, z) ∈
D);

(5) properties (L′)p,qs,s′,0 (resp. (L′)p,qs,s′ ) and (L′)p′,q ′b+d−s−s′,s′
hold;

(6) property (L)
p,q
s,s′,0 (resp. (L)

p,q
s,s′ ) holds.

For analogous equivalences in the context of the spaces
Ap,q
s (D), see [19, Sect. 4].

Proof (1) �⇒ (2). Take f ∈ Lp,q
s,0 (D) ∩ L2,2

(b+d−s′)/2(D)

and φ ∈ S
Ω ′(N ). Then, Ps′ f ∈ A2,2

(b+d−s′)/2(D) =
Ã2,2

(b+d−s′)/2(D), so that Ps′ f = Eu for some u ∈
B(s′−b−d)/2(N ,Ω) by (5) of Proposition 4.26. Then, Propo-
sition 4.28 shows that there is c �= 0 such that

|〈u|φ〉| =
∣∣∣c

∫

D
EuE(φ ∗ I s′−b−dΩ )(Δ−s

′
Ω ◦ ρ) dνD

∣∣∣

=
∣∣∣c

∫

D
f E(φ ∗ I s′−b−dΩ )(Δ−s

′
Ω ◦ ρ) dνD

∣∣∣

≤ |c|‖ f ‖Lp,q
s (D)‖E(φ ∗ I s′−b−dΩ )‖Ap′,q′

b+d−s−s′ (D)

≤ ‖ f ‖Lp,q
s (D)‖φ‖Bs

p′,q′ (N ,Ω)

for a suitable choice of a norm on Bs
p′,q ′(N ,Ω), thanks to

(1) of Proposition 4.26. By Corollary 4.29, this shows that
u ∈ B−sp,q(N ,Ω), that is, Ps′ f ∈ Ãp,q

s (D) = Ap,q
s (D). The

preceding arguments then show that Ps′ induces a continuous
linear mapping of Lp,q

s,0 (D) into Ap,q
s (D).

(2) �⇒ (3). The only assertion which is not con-
tained in (4) of Proposition 4.30 is the following one: if
Ps′ induces a continuous linear mapping of Lp,q

s,0 (D) into
Lp,q
s (D) and s � 0, then it induces an endomorphism of

Lp,q
s,0 (D). However, using (1)–(3) of Proposition 4.30 and

Proposition 4.7 (and the assumption s � 0 when q = ∞), it
is clear that Bs′

(ζ,z) ∈ Ap,q
s,0 (D) for every (ζ, z) ∈ D, so that

Ps′(Cc(D)) ⊆ Ap,q
s′,0(D) and the assertion follows.

(3) �⇒ (1). Take f ∈ Cc(D) and φ ∈ S
Ω ′(N ). By

Propositions 4.26 and 4.28,
∣∣∣
∫

D
f Eφ(Δ−s′Ω ◦ ρ) dνD

∣∣∣ =
∣∣∣
∫

D
(Ps′ f )Eφ(Δ−s′Ω ◦ ρ) dνD

∣∣∣

≤ ‖Ps′ ‖‖ f ‖Lp,q
s (D)

‖Eφ‖Ãp′,q′
b+d−s−s′ (D)

for a suitable choice of a norm on Ãp′,q ′
b+d−s−s′(D). By the

arbitrariness of f , this implies that Ãp′,q ′
b+d−s−s′,0(D) ⊆

Ap′,q ′
b+d−s−s′(D) continuously. Observe that, in order to show

that Ãp′,q ′
b+d−s−s′(D) = Ap′,q ′

b+d−s−s′(D), it will suffice to prove

that, for every f ∈ Ãp′,q ′
b+d−s−s′(D), there is a bounded

sequence ( f j ) of elements of Ap′,q ′
b+d−s−s′,0(D) which con-

verges pointwise to f (so that f ∈ Ap′,q ′
b+d−s−s′(D) with

controlled norm). Then, take u ∈ Bs+s′−b−d
p′,q ′ (N ,Ω) such
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that Eu = f , and take (λk), (tk), (φk), and (ψk) as in Defini-
tion 4.18. Notice that wemay choose (ψk) so that

∑
k ψk = 1

on Ω ′. In addition, take φ′ ∈ C∞c (Ω ′) so that φ′ = 1 on the
support of each φk , and set ψ ′k :=F−1N (φ′( · t−1k )) for every
k ∈ K , so that ψk = ψk ∗ ψ ′k and u = ∑

k u ∗ ψk with

convergence in the weak topology σ s+s′−b−d
p′,q ′ . Then, fix τ ∈

C∞c (N ) with τ(0) = 1 and set τ j (ζ, x):=τ(2− jζ, 2−2 j x)
for every (ζ, x) ∈ N and for every j ∈ N. As in the proof of
Proposition 4.21, we then see that [(u∗ψk)τ j ]∗ψ ′k converges
to u ∗ ψk in Bs+s′−b−d

p′,q ′ (N ,Ω) for every k ∈ K . If (K j ) is
an increasing sequence of finite subsets of K whose union is
K , then one may set f j =∑

k∈K j
E([(u ∗ ψk)τ j ] ∗ ψ ′k) and

show that the f j are uniformly bounded in Ãp′,q ′
b+d−s−s′(D)

(using [14, Corollary 3.5]) and converge pointwise to f .
Analogously, one shows that Ãp,q

s,0 (D) ⊆ Ap,q
s (D).

Since E(S
Ω ′(N )) ⊆ Ap,q

s,0 (D) by (2) of Proposition 4.26
and (1) of Proposition 4.30, this is sufficient to prove
that Ãp,q

s,0 (D) = Ap,q
s,0 (D) (resp. as above one shows that

Ãp,q
s (D) = Ap,q

s (D)).
(1) �⇒ (4). This follows from Proposition 4.28, once

one shows that the closed vector subspace V of Ap,q
s (D) =

Ãp,q
s (D) generated by the Bs′

(ζ,z), (ζ, z) ∈ D, is precisely

Ãp,q
s,0 (D). To see this latter fact, observe first that Bs′

(ζ,z) ∈
Ãp,q

s,0 (D) for every (ζ, z) ∈ D, since B−s
′

(ζ,z) ∈ Ap,q
s (D)

by Proposition 4.7 and since Bs′
(ζ,z) ∗ I−s

′′
Ω = cBs′−s′′

(ζ,z) ∈
Ap,q

s+s′′,0(D) for some c �= 0 and some sufficiently large
s′′ ∈ NΩ ′ , thanks to [16, Proposition 2.29] and (1), (5) of

Proposition 4.26. Since the polar of V inAp′,q ′
b+d−s−s′(D)with

respect to the sesquilinear form (9) is {0} by Proposition 4.8,
this shows that V = Ãp,q

s,0 (D) by Proposition 4.28.
(4) �⇒ (5). It suffices to observe that the adjoints of

the sampling maps on Ap,q
s (D) and Ap′,q ′

b+d−s−s′(D) (which
are isomorphisms onto their images for sufficiently fine lat-
tices, thanks toTheorem4.11)with respect to the sesquilinear
form (9) are the atomic decomposition mappings for the

spaces Ap′,q ′
b+d−s−s′(D) and Ap,q

s,0 (D) (resp. Ap,q
s (D)) as one

verifies without difficulty.
(5) �⇒ (6). Obvious.
(6) �⇒ (1). The proof is similar to that of the impli-

cation (4) �⇒ (5). Indeed, one first observes that the
adjoint of the atomic decomposition mappingΨ correspond-
ing to property (L)

p,q
s,s′,0 (resp. (L)

p,q
s,s′

10), with respect to the
sesquilinear form of Proposition 4.28, is precisely the sam-

pling mapping on Ãp′,q ′
b+d−s−s′(D). Since Ãp′,q ′

b+d−s−s′(D) ⊆
A∞,∞

b/q ′+d/p′−s−s′(D) by Proposition 4.24, and since we may
consider lattices as fine as we please, Theorem 4.11 shows

10 In this case, one has to preliminarily observe that the range of this
lattermapping is contained in Ãp,q

s,0 (D) as in the proof of the implication
(1) �⇒ (4).

that Ãp′,q ′
b+d−s−s′(D) ⊆ Ap′,q ′

b+d−s−s′(D) continuously, that is,

Ãp′,q ′
b+d−s−s′(D) = Ap′,q ′

b+d−s−s′(D). Reversing the argument,
we then see that, for sufficiently fine lattices, the atomic
decomposition mapping Ψ maps �

p,q
0 (J , K ) onto Ãp,q

s,0 (D)

(since its adjoint is an isomorphism onto its image). Hence,
Ãp,q

s,0 (D) ⊆ Ap,q
s (D). Arguing as in the proof of the impli-

cation (3) �⇒ (1), this leads to the conclusion. ��
The following result, which is a simple consequence of

Theorem4.31, extends several results known in the literature:
the equivalence of (1) and (2) is [2, Theorem1.9]whenn = 0,
s = s′ ∈ R1r , and Ω is symmetric, and [23, Theorem 1.3]
when n = 0, s = s′, and Ω is symmetric; the implication
(2) �⇒ (4), in this context, is a simple consequence of the

duality betweenLp,q
s (D) andLp′,q ′

q ′(s′−s/q)
(D), cf. [3, Theorem

5.2] for the case in which s = s′ ∈ R1r , n = 0, and Ω is
symmetric; the implication (4) �⇒ (5) (first half) is [8,
Theorem 5.1] when p > 1 and s = s′; the implication (2)
�⇒ (5) (first half) is [3, Theorem 5.7] when p = q, s =
s′ ∈ R1r , n = 0, and Ω is symmetric, and [7, Theorem 3.4]
when s = s′, n = 0, and Ω is symmetric; the implication (2)
�⇒ (4) is [4, Theorem 1.6] when p = q and s = s′ ∈ R1r .

We also mention that [12] was devoted to a somewhat
informal description of this kind of equivalences.

Corollary 4.32 Take p ∈ [1,∞), q ∈ (1,∞), and s, s′ ∈ Rr

such that the following hold:

• s � 1
2 (m− b), 1

2b+ q
pd+ q

2q ′m
′;

• s′ � 1
2 (m− b);

• s′ − 1
q s � 1

2q ′ b+ 1
p′ d+ 1

2qm
′.

Then, the following conditions are equivalent:

(1) A
p,q
s (D) = Ã

p,q
s (D) and A

p′,q ′
q ′(s′−s/q)

(D) = Ã
p′,q ′
q ′(s′−s/q)

(D);
(2) Ps′ induces an endomorphism of Lp,q

s (D);
(3) Ps′ induces a continuous linearmappingofL

p,q
s (D)onto

A
p,q
s (D) and of Lp′,q ′

q ′(s′−s/q)
(D) onto A

p′,q ′
q ′(s′−s/q)

(D);

(4) s � 1
2 (m− b) and the sesquilinear mapping

( f , g) �→
∫

D
f g(Δs′−b/2−d

Ω ◦ ρ) dνD

induces an antilinear isomorphismofAp′,q ′
q ′(s′−s/q)

(D) onto

A
p,q
s (D)′;

(5) properties (L′)p,qs,s′ and (L′)p,qq ′(s′−s/q),s′ hold;

(6) property (L)
p,q
s,s′ holds.

Combining (3) and (4) of Proposition 4.26 with Theo-
rem 4.31, we get the following transference result.
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Corollary 4.33 Take p, q ∈ [1,∞] and s, s′ ∈ Rr . Then, the
following hold:

• if s′ ≺ d − 1
2m and Ps′ induces a continuous linear

projector ofLp,q
s,0 (TΩ) ontoAp,q

s,0 (TΩ) (resp. ofLp,q
s (TΩ)

onto Ap,q
s (TΩ)), then Ps′+b induces a continuous linear

projector of Lp,q
s,0 (D) onto Ap,q

s,0 (D) (resp. of Lp,q
s (D)

onto Ap,q
s (D));

• in particular, if s′ � 1
2m and Ps′ induces a con-

tinuous linear projector of Lp,q
s (TΩ) onto A

p,q
s (TΩ),

then Ps′−b/2 induces a continuous linear projector of
L
p,q
s−b/2(D) onto A

p,q
s−b/2(D);

• if s′ ≺ b+ d − 1
2m and Ps′ induces a continuous linear

projector of Lp,p
s,0 (D) onto Ap,p

s,0 (D) (resp. of Lp,p
s (D)

onto Ap,p
s (D)), then Ps′ induces a continuous linear

projector of Lp,p
s−b/p,0(TΩ) onto Ap,p

s−b/p,0(TΩ) (resp. of

Lp,p
s−b/p(TΩ) onto Ap,p

s−b/p(TΩ));

• in particular, if s′ ≺ 1
2 (m − b) and Ps′ induces a

continuous linear projector of Lp,p
s (D) onto A

p,p
s (D),

then Ps′−b/2 induces a continuous linear projector of
L
p,p
s−b/2(TΩ) onto A

p,p
s−b/2(TΩ).

Remark 4.34 Weobserve that the second assertion of the pre-
ceding result extends [6, Theorem 2.1], which corresponds
to the case in which s = s′ � 1

2 (m +m′ − b). In particular,
this solves in the affirmative the first of the final remarks of
[6].

Combining Theorem 4.31 with (5) of Proposition 4.26,
we obtain the following result. It extends: [2, Theorem 1.9],
which corresponds to the case in which s = s′, Ω is sym-
metric, n = 0, and s ∈ R1r ; [23, Corollary 1.4], which
corresponds to the case inwhich s = s′, n = 0, andΩ is sym-
metric; [30, Theorem 3.2 (ii)], which corresponds to the case
in which p = q, s = s′, and n = 0; [29, Theorem 2.3], which
corresponds to the case in which s = s′ � 1

2 (m+m′ −b).11

Corollary 4.35 Take p, q ∈ [1,∞] and s, s′ ∈ Rr . If:

• s � 1
2qm+

(
1

2min(p,p′) − 1
2q

)

+m
′;

• b+ d− s− s′ � 1
2q ′m+

(
1

2min(p,p′) − 1
2q ′

)

+m
′;

then Ps′ induces a continuous linear projector of Lp,q
s (D)

onto Ap,q
s (D).

In particular, if q <∞ and:

• s � 1
2 (m− b)+

(
q

2min(p,p′) − 1
2

)

+m
′;

11 We mention here that in [16, p. vii] we erroneously identified the
spaces described in [29] with the spaces Ap,q

s (D). We apologize for this
lack of precision.

• s′ − 1
q s � 1

2q ′ (m− b)+
(

1
2min(p,p′) − 1

2q ′
)

+m
′;

then Ps′ induces a continuous linear projector of Lp,q
s (D)

onto A
p,q
s (D).

In particular, if s = s′ � 1
2 (m− b) and

q ′s(p) < q < qs(p),

then Ps′ induces a continuous linear projector of Lp,q
s (D)

onto A
p,q
s (D) (cf. Remark 4.27).

Notice that this result is more precise than the one which
may be proved by means of Schur’s lemma, considering the
integral operator Ps′,+ whose kernel is the absolute value
of the kernel of Ps′ . Cf. [26] for a general treatment of the
boundedness of the operator Ps′,+ when n = 0; see also [36]
for the case in which s, s′ ∈ R1r and Ω is symmetric.

Let us also observe that, combining the characterization
of the equality Ap,q

s = Ãp,q
s (D) when r = 2 (cf. the

remarks following the statement of Proposition 4.26) with
Theorem 4.31 and Corollary 4.32, one may characterize the
continuity of the Bergman projectors for tube domains over
Lorentz cones (that is, for r = 2 and n = 0). The character-
ization of the continuity of Ps on L

p,q
s (D) in this case was

previously obtained in [6, Theorem 2.3].

Concluding remarks

On the one hand, we have compared two parallel theories
of mixed norm Bergman spaces on homogeneous Siegel
domains. On the other hand, we have extended part of the
theory for the spaces Ap,q

s to the spaces Ap,q
s . In doing this,

we hope we have shed some light on the technically demand-
ing subject of function theory on such domains. We believe
that this is a lively area of research that in recent times has
drawn the interest of many scholars. We mention that the
Šilov boundary of D naturally appears in the extension of
the Paley–Wiener and Bernstein spaces of entire functions to
higher complex dimensions, see in particular [15, 20, 21].
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