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Abstract: We characterized the presence of plastics in different organs of the gilthead seabream
(Sparus aurata) and European seabass (Dicentrarchus labrax) from some off-shore aquaculture facilities
of the Mediterranean Sea. Plastics were detected in 38% of analyzed fish. Higher contamination
was observed in fish from Turkey and Greece with respect to Italy, without significant differences
between the geographical areas. Plastics accumulated mostly in the gastrointestinal tract and, to a
lower extent, in the muscle, which represents the edible part of fish. Based on the particle detected, a
maximum amount of 0.01 plastic/g wet weight (w.w.) can occur in muscles, suggesting a low input
for humans through consumption. A large portion of the particles identified was represented by
man-made cellulose-based fibers. The characterization of the polymeric composition suggests that
plastics taken up by fish can have land-based and pelagic origins, but plastics can be introduced also
from different aquaculture practices.
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1. Introduction

Plastic contamination is a widespread environmental problem, since extensive pro-
duction and especially incorrect disposal are leading to a dramatic release of plastics into
natural ecosystems [1]. Plastics have, over time, become an increasing problem for marine
ecosystems, accounting for around 60–80% of the total debris in such environments and
completely outnumbering natural debris [2].

To date, the adverse impacts of plastic and microplastic (MP) contamination have
been extensively investigated in marine organisms [3], while the effects on humans are still
to be defined [4]. In particular, a controversial aspect of plastic contamination concerns
the potential risks for humans from consuming contaminated fish species [5,6]. Indeed,
ingestion through seafood consumption is considered one of the major routes of human
exposure to MPs [7] based on the evidence of their widespread and huge presence in differ-
ent seafood such as fish, mussels, and crustaceans [8–10]. Nevertheless, data concerning
the accumulation of plastics in fish often refer to their presence in the gastrointestinal
tract, while the infiltration/accumulation in edible tissues—such as muscle—in commercial
species collected under natural conditions is not sufficiently documented. As well, the
ability of plastics to biomagnify through the food chain is still controversial [9]. Moreover,
there is mounting evidence that the number of MPs ingested via seafood consumption is
well below the intake through inhalation via dust and airborne [11–14]. Therefore, it is
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crucial to gather more evidence that can contribute to linking the consumption of seafood
containing plastics to actual risk for human health.

Fish, by virtue of its nutritional properties, is fundamental to the human diet. Several
studies have shown a relationship between fish consumption and reduced risk of heart
disease, cardiac arrhythmias, and diabetes due to their high percentage of n-3 polyunsat-
urated fatty acids (n3PUFAs) [15]. Among marine fish, gilthead seabream (Sparus aurata)
and European seabass (Dicentrarchus labrax) are two of the most consumed in the Mediter-
ranean area, and more than 20% of total EU aquaculture production is represented by
these two species [16]. The first three markets for seabass, Italy, Spain, and France, account
for more than 70% of total EU consumption, and the annual per capita consumption aver-
ages 190 g but exceeds 500 g in some Mediterranean countries (Italy, Spain, Portugal, and
Cyprus) [17]. As far as seabream is concerned, Italy is the world’s leading consumer, with
38,626 tonnes of consumption, while Egypt, Turkey, and Tunisia are in second, third, and
fourth place, respectively [18,19]. In Italy, seabream and seabass are the first and fourth
most consumed fresh fish, respectively, representing 14.8% of the total consumption vol-
ume, from young children to the elderly [20]. Seabass has demersal behavior and inhabits
coastal waters down to about 100 m depth, but is more common in shallow waters, on
various kinds of bottoms, often entering estuaries and sometimes ascending rivers. It is
a voracious predator, feeding on small shoaling fish and a wide range of invertebrates
including shrimps, prawns, crabs, squids, and mollusks [21]. Seabream is a demersal fish
found in a variety of bottoms, including seagrass beds and sandy bottoms, as well as the
surf zone. Specimens are common up to depths of about 30 m, but adults may occur at
150 tm depth. This sedentary fish occurs either solitary or in small aggregations and is
mainly carnivorous and accessorily herbivorous, feeding mostly on shellfish, including
mussels and oysters [22].

In the literature, there are few recent studies on the detection of plastics in the
two species (Table 1), but they focus only on limited geographical areas. Moreover, most
refer to the measurement of plastic content in the gastrointestinal tract (GIT), while the
accumulation in different organs, especially in muscle, which is the edible part, is cur-
rently overlooked.

Therefore, this work aimed to quantify and characterize the presence of plastics
using the Fourier transform infrared microscope system (µFT-IR) in individuals of seabass
D. labrax and seabream S. aurata retrieved from off-shore aquaculture facilities located in
different sites of the Mediterranean Sea, namely Italy, Greece, and Turkey. Different organs
were analyzed: GIT, liver, and muscle, to clarify the potential translocation from the gut
to other districts, particularly the muscle, to assess the potential hazard to human health
related to fish consumption.
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Table 1. State of the art regarding detection of plastics in seabass and seabream.

Matrix Geographic Region Extraction Technique Instrumental Analysis Limits of the Method Range Concentration Ref.

GIT of D. labrax and S.
aurata (aquaculture)

Canary Islands
Spain

Digestion in 10% KOH (w/v)
at 60 ◦C for 24 h, filtration

(50 µm mesh
stainless-steel filters)

Visual sorting with
microscope. MP

characterization with FTIR
50 µm Items/ind. Range: 0–23

Items length range: 69 µm–12.4 mm [23]

Muscle of wild and
farmed S. aurata Tunisia

Mineralization with 65%
nitric acid, extraction with
dichloromethane (DCM),

and dispersion in aluminum
stubs for scanning electron

microscope: “SEM
Specimen Stubs”

Scanning electron
microscopy coupled to a X
energy dispersion detector

(SEM-EDX)

<10 µm

Smallest and biggest median (IQR)
diameter of MPs (1.8 and 2.5 µm). In

S. aurata farmed mean MPs ± SD (p/g)
9.50 × 104 ± 6.64 × 104. Min-Max (p/g)
4.97 × 104–21.20 × 104. Median (IQR)
7.38 × 104 (5.53–14.54 × 104). Mean

diameter ± SD (µm) 2.04 ± 0.30.
Min-Max (µm) 1.7–2.4. Median (IQR)

1.9 (1.8–2.35)

[24]

GIT of D. labrax
(aquaculture)

Canary Islands
Spain

Digestion with 10% KOH
(2 weeks, room temperature),

filtration (25 µm mesh
stainless-steel filters), stock

in 10% EDTA (1 day)

Visual sorting with
microscope. Larger
particles (>200 µm)

analyzed with FT-IR.
Smaller particles

(<200 µm) analyzed with
a µ-FTIR

10 µm 0.6 ± 0.8–2.7 ± 1.85 particles/ind [25]

GIT of D. labrax
(aquaculture)

Mondego estuary
Portugal

Digestion with 10% KOH
(5 days, 60 ◦C), filtration

(1.2 µm filter papers)
desiccation at 60 ◦C

Visual sorting with
stereomicroscope. MPs

characterization
with µ-FTIR

≤1 mm

38% of the fish ingested MP average of
1.67 ± 0.27 (SD) particles/ind.

Average 3.41 ± 2.91 (SD)
microplastics/ind of the individuals

that had ingested MPs

[26]

GIT of S. aurata and D.
labrax (aquaculture) Turkey

Digestion with 20 mL of 30%
H2O2 per gram under

heating, addition of 400 mL
NaCl solution (1.2 g/mL

NaCl), and filtration (50 µm
pore size filters)

Visual sorting with
microscope. MP

characterization with FTIR

50 µm
(mesh size)

50% of seabream and 52% of seabass
contaminated. Mean MP abundance in

the GIT 1 ± 1.6 particles/ind.
MP abundance in seabream
0.8 ± 1.1 particles/ind and

0.95 ± 1.1 particles/ind in seabass.
Mean length of MPs 1.4 ± 1.3 mm

[27]
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Table 1. Cont.

Matrix Geographic Region Extraction Technique Instrumental Analysis Limits of the Method Range Concentration Ref.

Flesh, gills and GIT of
D. labrax (aquaculture) Greece

Digestion with 30% H2O2
(24 h, 65 ◦C at 80 rpm,

followed by 24–48 h at room
temperature), filtration
(5 µm pore size, 47 mm

diameter cellulose
membrane filter)

Visual sorting with
stereomicroscope MP
characterization with

µ-FT-IR.

5 µm
(pore size) Incidence of contaminated fish 17% [28]

GIT of S. aurata
(aquaculture) Italy and Croatia

Digestion with 10% KOH
(48 h, 50 ◦C with oscillation),

addition of hypersaline
NaCl solution (15%), and

filtration (glass fiber
membrane with 1.5 mm and

0.7 mm pore size and
47 mm diameter).

Visual sorting with
stereomicroscope. MP
characterization with

µ-FT-IR

240 µm
(smallest detected)

0.21 (Fry) and 1.3 (adult) items/ind.,
respectively. 0.48 items/ind (Fry and
adults). Fibers, ranging in size from

0.24 to 8.86 mm.

[29]

Flesh, gills, and GIT
D. labrax (wild) Portugal

Digestion with 10% KOH
(24 h, 60 ◦C for flesh and
GIT, 72 h, 40 ◦C for gills),

filtration (glass-microfiber
filter with 1.2 µm pore size).

Visual sorting with
stereomicroscope. MP
characterization with

µ-FT-IR

<100 µm

42% of fish contaminated; 1.3 ± 2.5 MP
items/ind. in the GIT 0.8 ± 1.4 MP
items/ind. in gills and 0.4 ± 0.7 MP

items/g in the dorsal muscle

[30]

GIT S. aurata (wild) Egypt

Digestion with 10%
potassium hydroxide (KOH),
incubation 40 ◦C; filtration

on 20 µm and
nitrocellulose filter.

Visual sorting with
stereomicroscope. MPs
characterization with
differential scanning

calorimetry (DSC) and
thermal gravimetric

analysis (TGA).

>20 µm 93.3% of fish contaminated
38.3 ± 28.4 items/ind [31]

IQR: interquartile range.
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2. Materials and Methods
2.1. Sample Collection

A total of 17 individuals of seabasses and 17 seabreams from Italy (N = 6), Greece
(N = 18), and Turkey (N = 10) were collected upon arrival to the Milan fish market. Fish
coming from Turkey were retrieved from Mediterranean aquaculture plants. This sample
is representative of the geographical origin of the fish arriving at the market. Two different
collections were performed: one in 2019 (N = 14 fish) and one in 2020 (N = 20 fish). Since
the GIT represents the first compartment of plastic accumulation, we analyzed plastics in
this tissue from all 34 individuals. A sub-sample was processed for plastic determination
also in muscle (N = 13) and liver (N = 7). Details about samples are reported in Table S1.

2.2. Sample Preparation

The sample processing included a gutting and filleting step for each fish. For each
specimen, the muscle, GIT, and liver were separated. The muscles were weighed, and the
average weight was 96 ± 21 g. Various compartments were homogenized with hypersaline
solution (1.2 g/cm3, filtered through glass fiber filters with a porosity of 1.2 µm of the
Whatman GF/C 47 mm type) using a blender and subsequently digested overnight. After
the digestion phase, a filtration phase took place using a membrane vacuum pump and the
use of nitrocellulose filters with 8 µm porosity (Sartorius 5 mm). Prior to analysis for the
quantification and characterization of plastics, the filters were partially digested with 15%
hydrogen peroxide (H2O2) to remove organic materials [32,33].

2.3. Quantification and Characterization of Particles Using µFT-IR

The cellulose nitrate filters obtained at the end of the processing were then observed
using a stereomicroscope in such a way as to carry out visual sorting and thus discern
potential plastic particles and fibers from substances of a different nature. The potential
plastic debris were then transferred to new cellulose nitrate filters, also with a porosity
of 8 µm. The filters were analyzed using a µFT-IR model Spotlight200i equipped with a
Spectrum Two optical microscope (PerkinElmer, Italy) through which it was possible to
discern the color, shape, size, and chemical composition of the particles. In the analysis,
infrared (IR) radiation was used to obtain the IR spectra of each particle under examination,
acquired in the attenuated total reflectance (ATR) mode (32 scans of spectra with wave-
lengths between 600 and 4000 cm−1 and a resolution of 4 cm−1) and then analyzed using
Spectrum 10 software, comparing them with standard spectra in the library (PerkinElmer).
The comparison took into account a matching score ≥ 0.70 as a reference score to define a
reliable degree of similarity between the spectra of the analyzed samples and the spectra
present in the database [34,35]. Each particle was also classified according to its shape
(fragment–fiber–pellet–film), color, and size. In order to analyze the size of the debris
under investigation, scans obtained from previous analyses using Spectrum 10 software
were used, which were appropriately measured using ImageJ software and characterized
as microplastics (from 1 µm to –<1000 µm), mesoplastics (from 1 mm to −<10 mm), and
macroplastics (≥1 cm) following the classification of Hartmann et al. [36]. To prevent any
bias due to external contamination by atmospheric particles, all analyses were carried out
under a flow cabinet, and, in addition, the operators always wore gloves and a cotton
smock during the process. Several filters were also processed in parallel to samples, and
any debris detected in this filter was subtracted from the final count (Table S2).

2.4. Statistical Analysis

To evaluate significant differences in the extent of particle accumulation among the
different tissues, and among fish collected in the different geographic regions, data were
statistically analyzed using the GraphPad Prism 8.0.2 software package. Since the accumula-
tion did not follow a Gaussian distribution and the sample size of fish and tissues analyzed
was not homogeneous, we applied the Kruskal–Wallis non-parametric test, considering
p ≤ 0.05 as the significant cut-off.
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3. Results

A total of 111 particles were found in fish tissues and analyzed. Among them, 18 were
made of plastics, while the remaining were of non-synthetic origin, mostly cellulose and
natural polyamide (Table 2 and Table S3).

Table 2. Shape, size, dimension, color, and chemical composition (PP = polypropylene, PEST = polyester,
EP = epoxy resin, PA = polyamide) of plastic particles found in fish.

Origin Species Organ Shape Dimension
(mm) Color Chemical

Composition

Turkey

S. aurata GIT Fragment 1.30 Green PP

D. labrax GIT Fiber 0.58 Black PEST

D. labrax GIT Fiber 0.28 Blue EP

S. aurata GIT Fiber 0.23 Black PA

D. labrax GIT Fiber 2.30 Black PA

S. aurata muscle Fiber 1.01 Black PEST

D. labrax GIT Fragment 0.27 Brown PA

D. labrax GIT Fragment 0.12 Black PP

Greece

S. aurata GIT Fiber 1.62 Transparent PEST

S. aurata GIT Fiber 0.85 Transparent PA

S. aurata GIT Fiber 1.88 Transparent PA

S. aurata liver Fiber 1.30 Blue PA

S. aurata GIT Fiber 2.08 Black PEST

S. aurata GIT Fiber 1.09 Red PA

S. aurata GIT Fiber 1.59 Black PEST

D. labrax muscle Fragment 0.53 Blue EP

D. labrax GIT Fiber 0.50 Black PEST

Italy D. labrax GIT Fiber 3.34 Transparent PEST

The results showed that 13 fish were contaminated by plastics, representing about 38%
of the total. Comparing the two species, 41% of the seabream and 35% of the seabass were
contaminated. An average of 0.51 ± 0.78 plastics/individual was measured. A mean of
1.39 ± 0.65 plastics/individual was measured among fish that ingested plastics.

Different levels of contamination can be observed depending on the geographical
region of the origin of the plants, albeit not statistically significant (p = 0.2953) (Figure 1). In
fish from Turkey and Greece, plastics were detected in 60% and 33% of the total, respectively.
Up to 3 items/individual were identified in fish from Greece, while 0–2 items were detected
in individuals from Turkey. A much lower incidence was observed in fish from Italy since
only one fish was contaminated with one plastic item (17% of the total).

Concerning the accumulation in the different tissues, 29.4% of the GIT analyzed
contained plastics, with up to 3 particles/individual (Figure 2). Only two muscles contained
one item of plastic each, and only one plastic particle was detected in one liver. The
accumulation in the three tissues was not significantly different (p = 0.4184).
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detected in the same tissue from the same fish (B).

The qualitative characterization of plastic particles detected showed the same oc-
currence of MPs and mesoplastics, while macroplastics were not detected (Figure 3A).
The most abundant shape was represented by fibers (68%), and the remaining 32% were
fragments (Figure 3B). As for the color, the highest percentage (41%) was made of black
particles, followed by transparent and red (18%) and blue (14%). A lower percentage of
green (5%) and brown (4%) plastics were found (Figure 3C). The polymeric composition of
the plastics was in line with the shape since 50% were made of polyester (PEST), followed
by 32% of polyamide (PA), while a lower percentage (9%) of polypropylene (PP) and epoxy
resin (ER) was found (Figure 3D). Comparing the typology of plastics identified in fish
from each country separately, we did not observe relevant differences. A fiber of PEST was
identified in the single fish contaminated from Italy, in the mesometric size. In fish from
both Turkey and Greece, the most abundant plastic shape was fiber, representing 63% and
89% of the total, respectively. In fish from Turkey, the highest percentage of plastics were
microplastics (63%), while in fish from Greece, mesoplastics were more often identified
(67%). As far as the polymeric composition is concerned, PEST and PA were the more
common polymers. Debris of EP were identified in fish from both countries, while plastic
items of PP were detected only in fish from Turkey.
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4. Discussion

Plastic contamination emerged as a critical issue for aquaculture [37–39]. The ad-
verse impacts of MPs, in particular, have been identified in terms of direct toxicity to
organisms [10,40–43], adsorption of environmental pollutants [44], and the spread of
pathogens [45]. In this view, the monitoring of plastic contamination in fish from aqua-
culture systems is important to understand potential point sources and to take actions
to mitigate the problem. Our results confirmed that both seabass and seabream from
off-shore aquaculture plants are subjected to contamination by plastics, even though the
amount of particles detected was low. Comparing our results with the scientific literature,
the number of items/individual detected is well below the study conducted by Sánchez-
Almeida et al. [23] and Kılıç [27] and lower also to the value obtained by Reinold et al. [25]
and Savoca et al. [29]. Our study showed a similar percentage of incidence but a lower
number of items/individual with respect to that of Bessa et al. [26]. Conversely, Akoueson
et al. [28] found a lower incidence of plastic contamination with respect to ours. This
comparison shows that there is a large variability in the extent of plastic contamination
in fish from aquaculture systems, not only likely due to the local conditions and to the
local level of plastic pollution but also potentially related to the plastic release from each
aquaculture facility.

Only two studies reported the occurrence of plastics in the two species collected from
the wild. Barboza et al. [30] showed a higher percentage of incidence as well as a higher
number of items/individual in seabass collected from the coast of Portugal compared with
our results. Also, the study from El-Sayed et al. [31] reported a higher contamination in
seabream collected from Alexandria City in Egypt. With the aim to broaden the comparison
of our data with those of organisms collected in the wild, we considered the plastic con-
tamination reported in species with similar feeding habits collected in the Mediterranean
Sea (Table 3).
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Table 3. State of the art regarding detection of plastics in fish from the Mediterranean Sea, with similar feeding habits of seabass and seabream.

Matrix Geographic Region Extraction Technique Instrumental Analysis Limits of the Method Range Concentration Ref.

GIT of Boops boops Spain, France, Italy,
and Greece

Digestion with hydrogen peroxide
(H2O2 15%), filtration under

vacuum on fiber glass filters (pore
size 1.2 µm)

Visual sorting with
stereomicroscope.

MP characterization with FTIR
1.2 µm

46.8% of positiveness,
1.17 ± 0.07 items/ind.

1–14 items per fish
[46]

GIT of 28 different
species Turkey

Digestion with 35% H2O2.
Filtration with 26 µm

zooplankton mesh

Visual sorting with
stereomicroscope.

MP characterization with FTIR
26 µm 58% of positiveness with

average 2.36 items/ind. [47]

GIT of 4 different
demersal fish Adriatic Sea

Digestion with 10% KOH, 48 h at
50 ◦C; separation with NaCl

hypersaline solution; filtration
under vacuum on GF/F fiber
glass filters (0.7 µm). Staining

with Nile red (9-diethylamino-5H-
benzo[α]phenoxazine-5-one)

Visual sorting with
stereomicroscope.

MP characterization with
µ-Raman spectroscopy

0.7 µm
57.5% of positiveness

and up to
2.47 ± 2.99 items/ind.

[48]

GIT and gills of
five demersal
fish species

Southern Tyrrhenian Sea
No extraction. The GIT and the

gills were inspected with the aid
of a dissecting stereomicroscope

Visual sorting with
stereomicroscope.

MP characterization with
ATR-FTIR and µ-Raman

spectroscopy.

1 µm (Raman
spatial resolution)

16.8% of positiveness
with average

0.24 items/ind.
[49]

GIT of Mullus barbatus
and Merluccius

merluccius

North Tyrrhenian Sea,
Adriatic Sea, and

Ionian Sea

Extraction with 10% of KOH
solution 1/3 v.v. incubated at

60 ◦C for 6 h after 15 min
sonication, filtration on glass fiber

filters (1.6 µm mesh)

Visual sorting with
stereomicroscope.

Test with hot needle technique.
MP characterization with FTIR

>100 µm

23.3% of positiveness,
range 8.3–48%
Average 1.38
plastics/ind.

[8]

GIT of Scyliorinus
canicula and Mullus

barbatus
Alboran Sea

Digestion with 10% KOH,
homogenization, filtration on

150 µm sieve

Visual sorting with
stereomicroscope (ultraviolet
light or through a scanning
electron microscope). MP

characterization with µFTIR

150 µm
9.8 and 32.7% of

positiveness (7 and
24 fibers/ind)

[50]
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Table 3. Cont.

Matrix Geographic Region Extraction Technique Instrumental Analysis Limits of the Method Range Concentration Ref.

GIT of two congener
species of seabreams:

Pagellus erythrinus and
P. bogarave

Tyrrhenian Sea Manual extraction

Visual sorting with
stereomicroscope.

MP characterization with FTIR
and Raman spectroscopy

Not reported 12.5% of positiveness [51]

GIT of Mullus barbatus
and Umbrina cirrosa Central Tyrrhenian Sea

Digestion with 5% HNO3 + 15%
H2O2, incubation 40 ◦C; filtration

on 2.7 µm glass
microfiber membrane

Visual sorting with
stereomicroscope.

MP characterization with FTIR
2.7 µm

90% of positiveness,
3.4 ± 1.9 items/ind. and

1–8 as range
[52]

GIT of commercial fish Egypt

Digestion with 10% potassium
hydroxide (KOH), incubation
40 ◦C; filtration on 20 µm and

nitrocellulose filter

Visual sorting with
stereomicroscope.

MP characterization with
differential scanning

calorimetry (DSC) and
thermal gravimetric

analysis (TGA)

>20 µm

91.8 ± 8.4% of
positiveness and an

average of
11.7 ± 9.5 items/ind.

[31]

GIT and gills of
demersal fish Turkey Digestion with 30% H2O2,

filtration on 50 µm pore size filter

Visual sorting with
microscope.

MP characterization with FTIR
>50 µm 85% of positiveness [53]

Different species Egypt

Digestion with 10% H2O2,
incubation 50 ◦C; second
digestion with 30% H2O2,

filtration on 1 mm and
300 µm sieve

Visual sorting with
microscope.

MP characterization with
ATR-FTIR.

>300 µm 58% of positiveness,
2.36 items/ind. [54]
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Comparing our results with the ones obtained from studies on different fish species
collected in the wild, we can see that, in our study, the percentage of plastic occurrence
is well below to the one observed in other studies [31,46–48,52–54]. Conversely, Giani
et al. [8] and López-Martínez et al. [50] found a lower occurrence of plastics with respect to
us but recorded a higher average number of particles/individuals. The only two studies
that reported a lower incidence of plastic were the ones by Capillo et al. [49] and Savoca
et al. [51]. Overall, this further comparison seems to suggest that fish from aquaculture are
less susceptible of plastic ingestion with respect to wild animals, maybe due to the fact that
they are fed and so less prone to take up plastics through active predation, which represent
one of the main routes of plastic accumulation in predator species [55].

Concerning the distribution in internal organs, the largest amount of plastics was in
the GIT, while a reduced number of debris were detected in liver and muscle, suggesting
low translocation from the GIT to these tissues. Among individuals in which we analyzed
multiple tissues, plastics were never detected in more than one organ. In general, the
highest amount of plastics is found in the GIT, since predatory fish can assume plastics
accidentally from the water column or actively through feeding, mistaking with prey, or
ingesting contaminated preys [56]. The mechanisms of translocation of plastics from the
GIT and their internalization in other organs remain largely unknown [57]. Particles up
to 130 µm might be internalized through phagocytosis and endocytosis [58], and passive
penetration can occur for nanoplastics [59]. Nevertheless, the presence of larger particles
in muscle has been documented, even though the mechanism of internalization is still
unknown [30,56]. Therefore, the plastics detected in the muscle tissues, having a size range
of 530–1010 µm, could have reached this tissue through adherence to the skin or through
skin lesions. This contamination can occur not only at sea but also during fish processing
stages such as handling, transport, and packaging, just to mention a few. Moreover, the
translocation to internal organs from lesions in the GIT cannot be excluded [30].

Based on the debris detected, we can calculate a mean concentration of 0.0015 parti-
cle/g w.w. and a maximum amount of 0.010 particle/g w.w. in muscles. This points out
a low intake of particles by humans through fish consumption, since considering about
20.5 kg per capita consumption of fish per year [60], a mean uptake of 30.75 particles/y/per
capita and in the worst-case scenario 250 particles/y/per capita were quantified. This range
is three times lower to what has been reported for edible fish species including D. labrax col-
lected in the Portuguese coast of the Northern Atlantic Ocean (0.054 ± 0.099 particle/g) [30].
On one hand, this result seems to indicate a limited input for humans through the diet; on
the other hand, plastics can be transferred to other animals through the production of fish
meals, for which all tissues and not just the muscle are used and which are intended not
only for feeding cultured fish but also in other types of farming.

Albeit not significantly different, we observed higher contamination in fish from
Greece and Turkey. This is in line with current observations concerning the presence of
surface plastics in the Mediterranean basin. The Mediterranean Sea, being a semi-closed
and shallow sea with high population density, is identified as one of the regions with
the greatest accumulation of floating marine litter [61,62]. Plastic contamination has been
documented in all the marine coastal areas considered in this study [47,63]. In particular,
the Cilician Sea is one of the most contaminated coastal areas; in addition, the Gulf of Izmir
in Turkey and the Bay of Thessaloniki in Greece can also be considered hot spots for the
release of plastics into the marine environment [64]. The huge contamination in these areas
is mainly attributed to an anthropogenic input linked to the high use of plastic by the local
population, coupled with incorrect disposal and limited recycling (around 20% in Greece
and 40% in Turkey) [65]. The different extent of plastic pollution observed in fish from the
different origins might be related to the different magnitude of local contamination, even
though other factors might significantly contribute to the plastic loads.

Plastics ingested by wild or farmed fish are closely related to their presence, dis-
tribution, and fate in the environment [66]. In aquaculture systems, in which location,
structures, diet, etc. can be controlled, knowing the origin of the contamination can be very
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important to promote the environmental safety of the supply chain. Different sources of
plastic pollution can be identified in aquaculture either from the external environment or
from aquaculture processes. Plastics reach the marine environment through land-based
sources and riverine systems collecting improper waste disposal, domestic and industrial
sewage treatment plants, and agricultural productions [61]. Albeit with a lower input, the
aquaculture environment can be contaminated also by plastics that originated from atmo-
spheric deposition (nanoplastics and MPs) as well as from pelagic pollution [67]. Moreover,
aquaculture practices generate a huge amount of plastic litter derived from several pieces
of equipment made of plastics commonly used such as fishing gears, ropes, nets, buoys,
and pipes [68]. In addition, processing (handling, transport, etc.) and packaging of fish
imply the use of plastic trays, boxes, and disposables for workers that can also contribute
to contamination [68]. A non-negligible amount of plastics is also introduced through
contaminated feed, as have already been mentioned [69].

The qualitative characterization of plastics taken up by fish showed a similar typology
of plastic polymers in fish from all the three countries. A prevalence of PEST and PA fibers
was observed. Both polymers are secondary plastics of textile origin, so likely associated
with land-based origin such as from the production of clothing and with the release from
washing machines [70–72]. In addition, both kinds of polymers can also be released from
different fishing and aquaculture tools, such as ropes and nets [73]. Also, PP is adopted
in aquaculture for ropes, nets, tubes, and trays [73]. However, given the wide range of
applications of PP, for instance in packaging, medical devices, and automotive, a land-based
origin is also plausible for this plastic. Unlike other polymers, EP is not used in aquaculture,
but EP particles might have a pelagic origin being released from ship painting [74].

As a final remark, a large portion of particles detected in fish was represented by
man-made cellulose-based fibers and regenerated fibers (e.g., azlon). Indeed, these particles
recently emerged as the most common anthropogenic debris found in aquatic ecosystems
also able to induce adverse effects in aquatic biota [75–80], highlighting the importance of
including this kind of particles in future monitoring studies.

5. Conclusions

The results of this study confirm the bioavailability of plastics to cultured marine
fish, highlighting the need to thoroughly monitor this kind of contamination. Our data
contribute to increasing the awareness of the fact that marine aquaculture systems are
susceptible to plastic pollution introduced through multiple sources, and effective solutions
to this problem are needed to promote the highest quality of cultured food, together with
the adoption of best practices and measures aimed to reduce the release of plastic litter from
aquaculture systems. It is also mandatory to sustain land-based and coastal management
actions aimed to minimize the input of plastics into the marine environment.
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