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Characterization of metrizable Esakia
spaces via some forbidden configurations
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Abstract. By Priestley duality, each bounded distributive lattice is repre-
sented as the lattice of clopen upsets of a Priestley space, and by Esakia
duality, each Heyting algebra is represented as the lattice of clopen up-
sets of an Esakia space. Esakia spaces are those Priestley spaces that sat-
isfy the additional condition that the downset of each clopen is clopen.
We show that in the metrizable case Esakia spaces can be singled out
by forbidding three simple configurations. Since metrizability yields that
the corresponding lattice of clopen upsets is countable, this provides a
characterization of countable Heyting algebras. We show that this char-
acterization no longer holds in the uncountable case. Our results have
analogues for co-Heyting algebras and bi-Heyting algebras, and they eas-
ily generalize to the setting of p-algebras.
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1. Introduction

Priestley duality [9,10] provides a dual equivalence between the category Dist
of bounded distributive lattices and the category Pries of Priestley spaces; and
Esakia duality [5] provides a dual equivalence between the category Heyt of
Heyting algebras and the category Esa of Esakia spaces. To make the paper
self-contained, we recall main definitions.

An ordered topological space is a triple (X, T ,≤) such that (X, T ) is a
topological space and ≤ is a partial order on X. When we say that an ordered
topological space is compact, metrizable, etc. we mean that the underlying
topological space is compact, metrizable, etc. As usual, for A ⊆ X we let
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http://crossmark.crossref.org/dialog/?doi=10.1007/s00012-019-0616-2&domain=pdf


42 Page 2 of 18 G. Bezhanishvili and L. Carai Algebra Univers.

↑A = {x ∈ X | a ≤ x for some a ∈ A}
and

↓A = {x ∈ X | x ≤ a for some a ∈ A}.

If A = {x}, then we write ↑x and ↓x, respectively. We call A an upset if
↑A = A and a downset if ↓A = A.

Definition 1.1. (1) An ordered topological space (X, T ,≤) satisfies the Priest-
ley separation axiom if x � y implies that there is a clopen upset U such
that x ∈ U and y /∈ U .

(2) A Priestley space is an ordered topological space that is compact and
satisfies the Priestley separation axiom.

Notation 1.2. To simplify notation, we will suppress T and ≤ and denote a
Priestley space simply by X.

Remark 1.3. The following facts about Priestley spaces are well known:
(1) Each Priestley space is a Stone space (compact, Hausdorff, zero-dimen-

sional space).
(2) If F is closed, then so are ↑F and ↓F .
(3) There exist Priestley spaces such that the downset or upset of an open

set may not be open.

The Priestley space of a bounded distributive lattice L is constructed by
taking the set X of prime filters of L, the order on X is the inclusion order,
and the topology on X is given by the basis

{α(a) \ α(b) | a, b ∈ L}
where

α(a) = {x ∈ X | a ∈ x}.

Then α is an isomorphism of L onto the lattice of clopen upsets of X.

Definition 1.4. A Priestley space is an Esakia space if the downset of each
open set is open (equivalently, the downset of each clopen set is clopen).

Remark 1.5. In an Esakia space, the upset of an open set may not be open.

Heyting algebras are the bounded distributive lattices L with an addi-
tional binary operation → of relative pseudo-complement which satisfies, for
all a, b, x ∈ L:

a ∧ x ≤ b iff x ≤ a → b.

It turns out that the lattice of clopen upsets of a Priestley space X is a Heyting
algebra iff it is an Esakia space, where the relative pseudo-complement of two
clopen upsets U, V is given by X \ ↓(U \ V ).

The three spaces Z1, Z2, and Z3 depicted in Figure 1 are probably the
simplest examples of Priestley spaces that are not Esakia spaces. Topologically
each of the three spaces is homeomorphic to the one-point compactification of
the countable discrete space {y} ∪ {zn | n ∈ ω}, with x being the limit point
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Figure 1. The three Priestley spaces Z1, Z2, and Z3

of {zn | n ∈ ω}. For each of the three spaces, it is straightforward to check
that with the partial order whose Hasse diagram is depicted in Figure 1, the
space is a Priestley space. On the other hand, neither of the three spaces is an
Esakia space because {y} is open, but ↓y = {x, y} is no longer open.

In this paper we show that a metrizable Priestley space is not an Esakia
space exactly when one of these three spaces can be embedded in it. The
embeddings we consider are special in that the point y plays a special role.
We show that this condition on the embeddings, as well as the metrizability
condition, cannot be dropped by presenting some counterexamples. In doing
so, we develop a way to combine two Priestley spaces which has proved to be
useful in building Priestley spaces that are not Esakia spaces. An advantage of
our characterization lies in the fact that when a metrizable Priestley space X
is presented by a Hasse diagram, it is easy to verify whether or not X contains
one of the three “forbidden configurations”.

The paper is organized as follows. In Section 2 we present the main result
by showing that a metrizable Priestley space is not an Esakia space iff a copy
of one of the three forbidden configurations sits inside X in a special way. In
Section 3 we translate our main result into the dual lattice-theoretic statement,
yielding a characterization of countable Heyting algebras. This characteriza-
tion easily generalizes to the setting of p-algebras, and also has analogues for
co-Heyting and bi-Heyting algebras. In Section 4 we present the “down-up
sum” of Priestley spaces, and its dual “ideal-filter product” of lattices. Fi-
nally, Section 5 is devoted to counterexamples. We use the down-up sum to
build non-metrizable Priestley spaces that are not Esakia spaces and yet do
not contain a copy of any of the three forbidden configurations. This shows
that there is no obvious generalization of our results to the non-metrizable
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setting. We finish by showing that the additional condition on the embeddings
cannot be dropped either.

2. The main theorem

Definition 2.1. Let X be a Priestley space. We say that Zi (i = 1, 2, 3) is a
forbidden configuration for X if there are a topological and order embedding
e : Zi → X and an open neighborhood U of e(y) such that e−1(↓U) = {x, y}.

The next result shows that whether a metrizable Priestley space is an
Esakia space is determined by these three forbidden configurations. The key
assumption of metrizability is used to show that if x is a limit point of a set,
then there is a sequence in the set converging to x. This can be done already for
the Priestley spaces that are sequential spaces (see Remark 2.3). The necessity
of the sequentiality assumption will be discussed in more detail in Section 5.

Theorem 2.2. A metrizable Priestley space X is not an Esakia space iff one
of Z1, Z2, Z3 is a forbidden configuration for X.

Proof. First suppose that one of the Zi is a forbidden configuration for X.
Since e : Zi → X is continuous and e−1(↓U) = {x, y} is not open in Zi, we
conclude that ↓U is not open in X. Thus, X is not an Esakia space.

Conversely, suppose that X is not an Esakia space. Then there is an open
subset U of X such that ↓U is not open. Therefore, (↓U)c is not closed. Since
X is metrizable, there is a sequence {xn} ⊆ (↓U)c such that lim xn = x ∈ ↓U .
As X is Hausdorff, {xn} has to be infinite, hence we may assume that xn 
= xm

for n 
= m. Because U is open, we have x ∈ ↓U \ U . Let y ∈ U be such that
x ≤ y. Then x < y.

Observe that xn � x and xn � y for any n because otherwise xn ∈ ↓U .
In addition, if there is M such that y ≤ xn for all n ≥ M , then xn ∈ ↑y
for all n ≥ M . Since ↑y is closed and x = lim xn, this would yield x ∈ ↑y,
a contradiction. Therefore, y � xn for some n ≥ M . Thus, we can select a
subsequence of {xn} each member of which is not above y. Hence, we may
assume without loss of generality that xn and y are incomparable for all n.
We now have two cases to consider.

Case 1 There is an infinite subsequence {yn} of {xn} that is totally ordered by
≤. Since {yn} is an infinite subsequence of {xn}, we have lim yn = x. Consider
the closure {yn}. As {yn} is totally ordered, by [2, Lem. 3.1], {yn} is also
totally ordered and has max and min. Since x ∈ {yn} which is totally ordered,
for each n we have x ≤ yn or yn ≤ x. But, as we already observed, yn � x.
Thus, x ≤ yn for each n. Since x /∈ (↓U)c, we have x < yn. We now define
recursively a subsequence {zn} of {yn} such that z0 > z1 > z2 > · · · .

Set z0 = y0. If zk = ynk
is already defined, then since lim yn = x and

x < ynk
, there is a clopen downset V of X such that x ∈ V , ynk

= zk /∈ V , and
V contains an infinite subset of {yn}. So there is ynk+1 ∈ V such that nk+1 >
nk. Therefore, ynk+1 < ynk

. Set zk+1 = ynk+1 . We thus obtain a sequence
z0 > z1 > z2 > · · · such that lim zn = x and each zn is incomparable with y.
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Let Z = {y, x} ∪ {zn} ⊆ X, and view Z as an ordered topological space
with the order and topology inherited from X. Since Z ∩ U = {y} and {y} is
closed in X, we have that {y} is clopen in Z. For each m, we show that the
singleton {zm} is clopen in Z. As x < zm, there is a clopen downset V of X
such that x ∈ V and zm /∈ V , so V c ∩ Z is finite and contains zm. Since X is
Hausdorff, so is V c∩Z. Because every finite Hausdorff space is discrete, {zm} is
clopen in V c∩Z, which is clopen in Z. Thus, the singleton {zm} is clopen in Z.

Opens in Z containing x are exactly the cofinite subsets of Z because
lim zn = x and all the singletons except {x} are clopen. Therefore, Z is order-
isomorphic and homeomorphic to the Priestley space Z1.

Case 2 There is no infinite totally ordered subsequence of {xn}. Since every
infinite poset contains either an infinite chain or an infinite antichain (see,
e.g., [13, Thm. 1.14]), there is an infinite subsequence {yn} of {xn} that is an
antichain. As {yn} is an infinite subsequence of {xn}, we have that lim yn = x.
Our goal is to select a subsequence {zn} of {yn} so that either Z2 or Z3 becomes
a forbidden configuration. Which of the two becomes a forbidden configuration
depends on whether or not ↑x ∩ {yn} is infinite.

Case 2a ↑x ∩ {yn} is infinite. Then {zn} := ↑x ∩ {yn} is an infinite subse-
quence of {yn} such that lim zn = x and each zn is incomparable with y. Let
Z = {y, x} ∪ {zn} ⊆ X, and view Z as an ordered topological space with the
order and topology inherited from X. Since x < zm for each m, by arguing
as in Case 1 we obtain that Z is order-isomorphic and homeomorphic to the
Priestley space Z2.

Case 2b ↑x ∩ {yn} is finite. Then {zn} := (↑x)c ∩ {yn} is an infinite subse-
quence of {yn} such that lim zn = x and each zn is incomparable with y. Let
Z = {y, x} ∪ {zn} ⊆ X, and view Z as an ordered topological space with the
order and topology inherited from X. Since x and zm are incomparable for
each m, by arguing as in Case 1 we obtain that Z is order-isomorphic and
homeomorphic to the Priestley space Z3. �

Remark 2.3. In the proof of Theorem 2.2 metrizability was used to find in a
set that is not closed a sequence converging outside of it. We recall (see, e.g.,
[4, p. 53]) that a topological space X is a sequential space provided a set A
is closed in X iff together with each sequence A contains all its limits. Thus,
Theorem 2.2 holds not only for metrizable Priestley spaces, but more generally,
for sequential Priestley spaces.

3. Algebraic meaning of the result

Let L1, L2, and L3 be the dual lattices of Z1, Z2, and Z3, respectively. Clopen
upsets of Z1 are the whole space, the empty set, ↑zn, and ↑zn ∪ {y} for n ∈ ω.
Thus, L1 can be depicted as in Figure 2. Note that L1 is not a Heyting algebra
since ¬c does not exist.

Clopen upsets of Z2 are the whole space, the empty set, and the finite
subsets of {y} ∪ {zn | n ∈ ω}. Therefore, L2 is isomorphic to the lattice of



42 Page 6 of 18 G. Bezhanishvili and L. Carai Algebra Univers.

{y} = c

∅

↑z0 ∪ {y}

↑z1 ∪ {y}

↑z2 ∪ {y}

↑z0

↑z1

↑z2

Z1

Figure 2. The lattice L1

Pfin(ω)

∅

F

Z2

Figure 3. The lattice L2

finite subsets of ω together with a top element; see Figure 3. Thus, L2 is not
a Heyting algebra because ¬F does not exist for any finite subset F of ω.

Clopen upsets of Z3 are the whole space, the empty set, finite subsets of
{y}∪{zn | n ∈ ω}, and {x, y}∪C where C is a cofinite subset of {zn | n ∈ ω}.
Therefore, if we denote by CF(ω) the Boolean algebra of finite and cofinite
subsets of ω and by 2 the two-element Boolean algebra, then L3 is isomorphic
to the sublattice of CF(ω) × 2 given by the elements of the form (A,n) where
A is finite or n = 1; see Figure 4. Thus, L3 is not a Heyting algebra because
¬(F, 1) does not exist for any finite F .

Definition 3.1. Let L ∈ Dist and let a, b ∈ L. Define

Ia→b := {c ∈ L | c ∧ a ≤ b}

It is easy to check that Ia→b is an ideal, and that Ia→b is principal iff
a → b exists in L, in which case Ia→b = ↓(a → b).

In order to give the dual description of Ia→b let X be the Priestley space
of L and let α be the isomorphism from L onto the lattice of clopen upsets of
X (see the introduction). It is well known that ideals of L correspond to open
upsets of X, and this correspondence is realized by sending an ideal I of L to
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Figure 4. The lattice L3

α[I] :=
⋃

{α(a) | a ∈ I}. On the other hand, filters of L correspond to closed
upsets of X, and this correspondence is realized by sending a filter F of L to
α[F ] :=

⋂
{α(a) | a ∈ F}.

Lemma 3.2. Let L ∈ Dist and let X be its dual Priestley space. If a, b ∈ L,
then α[Ia→b] = X \ ↓(α(a) \ α(b)).

Proof. For any c ∈ L we have
c ∈ Ia→b ⇔ c ∧ a ≤ b ⇔ α(c) ∩ α(a) ⊆ α(b)

⇔ α(c) ⊆ X \ ↓(α(a) \ α(b))

where the last equivalence follows from the fact that for any upsets
U, V,W we have W ∩ U ⊆ V iff W ⊆ X \ ↓(U \ V ). Thus, α[Ia→b] =
X \ ↓(α(a) \ α(b)). �

It is a well-known consequence of Stone duality for Boolean algebras that
a Boolean algebra is countable iff its Stone space is metrizable (see, e.g., [7,
Prop. 7.23]). This fact generalizes to bounded distributive lattices and Priestley
spaces (see, e.g., [12, p. 54]). To see this, let L be a bounded distributive lattice
and X its Priestley space. The Boolean algebra of clopens of X is isomorphic
to the free Boolean extension B(L) of L; see, e.g., [1, Sec. V.4]. Thus, the
following three conditions are equivalent:

• X is metrizable;
• L is countable;
• B(L) is countable.

Theorem 3.3. Let L be a countable bounded distributive lattice. Then L is not
a Heyting algebra iff one of Li (i = 1, 2, 3) is a homomorphic image of L such
that the homomorphism hi : L → Li satisfies the following property: There are
a, b ∈ L such that hi[Ia→b] = Ici→0, where c1 = c, c2 = {0}, or c3 = (∅, 1).
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Proof. (⇒) It is sufficient to translate Theorem 2.2 to its dual algebraic state-
ment. Let X be the Priestley space of L. Then X is a metrizable Priest-
ley space which is not an Esakia space. Thus, by Theorem 2.2, Zi is a for-
bidden configuration for X for some i = 1, 2, 3. Let e, U be as in Defini-
tion 2.1. Then there are a, b ∈ L such that e(y) ∈ α(a) \ α(b) ⊆ U . Therefore,
e−1↓(α(a) \ α(b)) ⊆ e−1↓U = {x, y}. On the other hand, since e is order-
preserving and e(y) ∈ α(a) \ α(b), we have {e(x), e(y)} ⊆ ↓(α(a) \ α(b)), so
{x, y} ⊆ e−1↓(α(a) \ α(b)). Thus, e−1↓(α(a) \ α(b)) = {x, y} = ↓y. We also
have that α(ci) = {y} ⊆ Zi. By Lemma 3.2, α[Ia→b] = X \ ↓(α(a) \ α(b))
and α[Ici→0] = Zi \ ↓y. Let hi : L → Li be the bounded lattice homomor-
phism corresponding to the embedding e : Zi → X, so hi = e−1. Since e is an
embedding, hi is onto [9]. Therefore, since

e−1(X \ ↓(α(a) \ α(b))) = Zi \ e−1↓(α(a) \ α(b)) = Zi \ ↓y,

we conclude that hi[Ia→b] = Ici→0.
(⇐) We show that a → b does not exist in L. If a → b exists, then we

have Ia→b = ↓(a → b). Since hi is an onto lattice homomorphism,

Ici→0 = hi[Ia→b] = hi[↓(a → b)] = ↓hi(a → b).

Therefore, ci → 0 = hi(a → b), and hence ci → 0 exists in Li. The obtained
contradiction proves that a → b does not exist in L, and hence L is not a
Heyting algebra. �

Theorem 3.3 yields a characterization of countable Heyting algebras. We
conclude this section by showing that this characterization easily generalizes to
countable p-algebras. We recall (see, e.g., [8]) that a p-algebra is a pseudocom-
plemented distributive lattice. Priestley duality for p-algebras was developed
in [11]. We call a Priestley space X a p-space provided the downset of each
open upset is open. Then a bounded distributive lattice L is a p-algebra iff its
dual Priestley space X is a p-space.

Definition 3.4. Let X be a Priestley space. We say that Zi (i = 1, 2, 3) is a
p-configuration for X if Zi is a forbidden configuration for X and in addition
the open neighborhood U of e(y) is an upset.

We point out that neither of the bounded distributive lattices L1, L2,
L3 that are dual to Z1, Z2, Z3 is a p-algebra. The next result is a direct
generalization of Theorems 2.2 and 3.3, so we skip its proof.

Corollary 3.5. Let L be a countable bounded distributive lattice, and let X be
its Priestley space, which is then a metrizable space.

(1) X is not a p-space iff one of Z1, Z2, Z3 is a p-configuration for X.
(2) L is not a p-algebra iff one of Li (i = 1, 2, 3) is a homomorphic image of L

such that the homomorphism hi : L → Li satisfies the following property:
There is a ∈ L such that hi[Ia→0] = Ici→0, where c1 = c, c2 = {0}, or
c3 = (∅, 1).
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We recall that co-Heyting algebras are order-duals of Heyting algebras.
The Priestley spaces dual to co-Heyting algebras are the ones with the prop-
erty that the upset of each open is open [6]. Let Z∗

1 , Z∗
2 , Z∗

3 be the Priestley
spaces obtained by reversing the order in Z1, Z2, Z3, respectively. Then dual-
izing Theorem 2.2 yields:

Corollary 3.6. A metrizable Priestley space X is not the dual of a co-Heyting
algebra iff there are a topological and order embedding e from one of Z∗

1 , Z∗
2 , Z∗

3

into X and an open neighborhood U of e(y) such that e−1(↑U) = {x, y}.

We recall that bi-Heyting algebras are the lattices which are both Heyting
algebras and co-Heyting algebras. Priestley spaces dual to bi-Heyting algebras
are the ones in which the upset and downset of each open is open. Putting
together the results for Heyting algebras and co-Heyting algebras yields:

Corollary 3.7. A metrizable Priestley space X is not dual to a bi-Heyting al-
gebra iff one of Z1, Z2, Z3 is a forbidden configuration for X or there are a
topological and order embedding e from one of Z∗

1 , Z∗
2 , Z∗

3 into X and an open
neighborhood U of e(y) such that e−1(↑U) = {x, y}.

4. Ideal-filter product and down-up sum

Definition 4.1. Let L and M be bounded distributive lattices, I an ideal of L,
and F a filter of M . We define the ideal-filter product of L and M as

L ×F
I M := {(l,m) ∈ L × M | l ∈ I or m ∈ F}(see Figure 5).

Lemma 4.2. L ×F
I M is a bounded sublattice of L × M .

Proof. Clearly (0, 0) ∈ L×F
I M since 0 ∈ I, and (1, 1) ∈ L×F

I M because 1 ∈ F .
Let (l1,m1), (l2,m2) ∈ L ×F

I M . If m1 ∧ m2 /∈ F , then m1 /∈ F or m2 /∈ F , so
l1 ∈ I or l2 ∈ I, implying that l1∧l2 ∈ I. Therefore, (l1∧l2,m1∧m2) ∈ L×F

I M .
If l1 ∨ l2 /∈ I, then l1 /∈ I or l2 /∈ I, so m1 ∈ F or m2 ∈ F , which implies that
m1 ∨ m2 ∈ F . Thus, (l1 ∨ l2,m1 ∨ m2) ∈ L ×F

I M . �

In order to describe the Priestley space of L×F
I M , we recall (see, e.g., [3,

p. 17 and p. 269]) the definition of linear sum of two Priestley spaces. Let X,Y
be Priestley spaces. For simplicity, we assume for the rest of this section that
X and Y are disjoint. If they are not, then as usual, we can simply replace X
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Figure 6. The Priestley space X ⊕U
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with X ×{0} and Y with Y ×{1}. Define the linear sum X ⊕Y as the disjoint
union of X and Y with the topology of disjoint union and the order given by

x ≤ y iff (x, y ∈ X and x ≤ y) or

(x, y ∈ Y and x ≤ y) or

(x ∈ X and y ∈ Y ).

Intuitively, we place X “below” Y . We next modify the definition of the linear
sum of X and Y .

Definition 4.3. Let X,Y be Priestley spaces, D a closed downset of X, and U
a closed upset of Y . We define the down-up sum X ⊕U

D Y of X and Y as their
disjoint union with the topology of disjoint union and the order given by

x ≤ y iff (x, y ∈ X and x ≤ y) or

(x, y ∈ Y and x ≤ y) or

(x ∈ D and y ∈ U).

Intuitively, instead of placing X “below” Y , we are only placing D “below” U
(see Figure 6).

Lemma 4.4. X ⊕U
D Y is a Priestley space.

Proof. Clearly X ⊕U
D Y is compact. That ≤ is reflexive and antisymmetric is

obvious, and that ≤ is transitive follows from D being a downset of X and U
an upset of Y . Let x � y. First suppose that x, y ∈ X. Then there is a clopen
upset A of X containing x and missing y. Therefore, A ∪ Y is a clopen upset
of X ⊕U

D Y containing x and missing y.
Next suppose that x, y ∈ Y . Then there is a clopen upset B of Y contain-

ing x and missing y. But then B is also a clopen upset of X ⊕U
D Y containing

x and missing y.
If x ∈ Y and y ∈ X, then Y is a clopen upset of X ⊕U

D Y containing x
and missing y. Finally, suppose that x ∈ X and y ∈ Y . Since x � y, we have
x /∈ D or y /∈ U . If x /∈ D, then since D is a closed downset of X, there is a
clopen upset A of X containing x and disjoint from D. Thus, A is a clopen
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upset of X ⊕U
D Y containing x and missing y. If y /∈ U , then since U is a closed

upset of Y , there is a clopen upset A of Y containing U and missing y. Thus,
X ∪ A is a clopen upset of X ⊕U

D Y containing x and missing y. �

Theorem 4.5. Let L,M be bounded distributive lattices, I an ideal of L, and F
a filter of M . Let also X be the Priestley space of L, Y the Priestley space of
M , V an open upset of X corresponding to the ideal I, D := X \V , and U the
closed upset of Y corresponding to the filter F . Then X ⊕U

D Y is homeomorphic
and order-isomorphic to the Priestley space of L ×F

I M .

Proof. Let α be a lattice isomorphism from L onto the clopen upsets of X and
β a lattice isomorphism from M onto the clopen upsets of Y . Define γ from
L×F

I M to the clopen upsets of X ⊕U
D Y by γ(l,m) = α(l)∪β(m). Since l ∈ I,

we have α(l) ∩ D = ∅; and since m ∈ F , we have U ⊆ β(m). Thus, γ(l,m)
is a clopen upset of X ⊕U

D Y , and so γ is well defined. It is straightforward
to see that γ is a one-to-one bounded lattice homomorphism. To see that γ is
onto, let A be a clopen upset of X ⊕U

D Y . Let l ∈ L and m ∈ M be such that
α(l) = A ∩ X and β(m) = A ∩ Y . If l /∈ I, then α(l) ∩ D 
= ∅. So there is
d ∈ D ∩ A, and since A is an upset of X ⊕U

D Y , we have ↑d ⊆ A. But then, by
the definition of the order on X ⊕U

D Y , we have that U ⊆ ↑d ⊆ A. Therefore,
U ⊆ A∩Y = β(m), and so m ∈ F . Thus, (l,m) ∈ L×F

I M , and hence γ is onto.
Consequently, L×F

I M is isomorphic to the clopen upsets of X ⊕U
D Y , which by

Priestley duality yields that X ⊕U
D Y is homeomorphic and order-isomorphic

to the Priestley space of L ×F
I M . �

5. Counterexamples

In the definition of X ⊕U
D Y , when the closed upset U coincides with Y , we

denote X ⊕U
D Y by X ⊕D Y .

Lemma 5.1. Let X,Y be Esakia spaces. Then X ⊕D Y is an Esakia space iff
D is clopen in X.

Proof. Without loss of generality we may assume that X and Y are disjoint.
First suppose that D is not clopen in X. We have that Y is a clopen upset of
X ⊕D Y and ↓Y = Y ∪ D. Since (Y ∪ D) ∩ X = D, we see that Y ∪ D cannot
be clopen in X ⊕D Y . Therefore, X ⊕D Y is not an Esakia space.

Next suppose that D is clopen in X. Any clopen in X ⊕D Y can be
written as A∪B where A is clopen in X and B is clopen in Y . If B = ∅, then
↓(A ∪ B) = ↓A is clopen in X, and hence clopen in X ⊕D Y . If B 
= ∅, then
↓(A ∪ B) = ↓A ∪ ↓B = ↓A ∪ (↓B ∩ Y ) ∪ D. Since ↓A,D are clopen in X and
↓B ∩ Y is clopen in Y , we conclude that ↓(A ∪ B) is clopen in X ⊕D Y . �

Remark 5.2. (1) There is an obvious analogue of Lemma 5.1 for p-spaces:
For p-spaces X and Y , X ⊕D Y is a p-space iff D is clopen in X.

(2) If Y = {y} is a singleton, then in the definition of X ⊕D Y we are adding
only one point on top of D.
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0 1 2 3

y

βω \ ω

Figure 7. The space X ⊕D Y of Example 5.3

Pfin(ω) × {0}

P(ω) × {1}

Figure 8. The dual lattice of the space X ⊕D Y of Exam-
ple 5.3

We are ready to give examples of non-metrizable (even non-sequential)
Priestley spaces such that they are not Esakia spaces and yet they do not
contain the three forbidden configurations.

Example 5.3. Let X = βω be the Stone-Čech compactification of the discrete
space ω. We view βω as an Esakia space with trivial order. Let D = βω \ ω,
Y = {y}, and consider X ⊕D Y ; see Figure 7.

Since D is not clopen, Lemma 5.1 implies that this is an example of a
Priestley space that is not an Esakia space. It is well known (see, e.g., [4,
Cor. 3.6.15]) that there are no non-trivial convergent sequences in βω. There-
fore, there is no sequence in (↓y)c converging to an element of ↓y. Thus, X⊕DY
does not contain the three forbidden configurations.

The closed downset D corresponds to the ideal I := Pfin(ω) of finite
subsets of P(ω), and the clopen upset Y = {y} corresponds to the filter F =
{1} of 2. Thus, the dual lattice of X ⊕D Y is P(ω) ×F

I 2; see Figure 8.
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ω1

y

X

Figure 9. The space X ⊕D Y of Example 5.4

ω1

Figure 10. The dual lattice of the space X ⊕D Y of Exam-
ple 5.4

Example 5.4. Let ω1 be the first uncountable ordinal, and let X be the poset
obtained by taking the dual order of ω1 +1. Endow X with the interval topol-
ogy. It is straightforward to check that X is an Esakia space. Let D = {ω1} ⊆
X, let Y = {y}, and consider X ⊕D Y ; see Figure 9.

Since D is not clopen, Lemma 5.1 implies that X ⊕D Y is not an Esakia
space. On the other hand, there is no sequence in X\{ω1} converging to ω1.
Thus, X ⊕D Y does not contain the three forbidden configurations.

The dual lattice of X is ω1 + 1, the closed downset D corresponds to the
ideal I := ω1 of ω1 +1, and the clopen upset Y = {y} corresponds to the filter
F = {1} of 2. Thus, the dual lattice of X ⊕D Y is (ω1 +1)×F

I 2; see Figure 10.

Remark 5.5. (1) The space X ⊕D Y of Example 5.4 can be thought of as a
generalization of the forbidden configuration Z1, obtained by “stretching”
the chain {zn | n ∈ ω}. As a result, the chain X\{ω1} is “too long” to
contain a sequence converging to ω1.

(2) We can generalize the forbidden configuration Z2 similarly by “stretch-
ing” the antichain {zn | n ∈ ω}.

(3) The space X ⊕D Y of Example 5.3 can be thought of as a generalization
of the forbidden configuration Z3, obtained by “inflating” the point x.
As a result, we do not have sequences from ω converging inside βω\ω.
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Figure 11. The space X of Example 5.6. The white dots
represent the image of Z1 under the embedding of Z1 into X

We note that in the definition of the three forbidden configurations, the
condition on the open neighborhood U of e(y) cannot be dropped. This can
be seen from a general observation that every Priestley space embeds into an
Esakia space, and hence every bounded distributive lattice is a homomorphic
image of a Heyting algebra. To see this, let L be a bounded distributive lattice
and X its Priestley space. We let FL be the free bounded distributive lattice
generated by the underlying set of L. The identity on L induces an onto lattice
homomorphism h : FL → L. Dually, the onto homomorphism h corresponds to
an embedding e : X → 2L where 2 = {0, 1} is the two-element discrete Priest-
ley space with 0 < 1. Since 2 is an Esakia space and products of Esakia spaces
are Esakia spaces, 2L is an Esakia space. Thus, FL is a Heyting algebra. Con-
sequently, we cannot characterize Esakia spaces by forbidding embeddings of
some Priestley spaces. This yields that in the definition of the three forbidden
configurations, the condition on the open neighborhood U of e(y) cannot be
dropped.

In most cases, the space 2L is rather complex. We conclude the paper by
presenting much simpler examples of Esakia spaces into which the Priestley
spaces Z1, Z2 and Z3 embed.

Example 5.6. Let X be the disjoint union of two copies of the one-point com-
pactification of the discrete space ω, and let the order on X be defined as in
Figure 11. It is straightforward to check that X is a metrizable Esakia space,
and yet there is a topological and order embedding of Z1 into X, described by
the white dots in the figure.

An analogous space for Z3 can be constructed as follows.

Example 5.7. Let X be the disjoint union of two copies of the one-point com-
pactification of the discrete space ω, and let the order on X be defined as in
Figure 12. Then X is a metrizable Esakia space, and the white dots describe
a topological and order embedding of Z3 into X.
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Figure 12. The space X of Example 5.7. The white dots
represent the image of Z3 under the embedding of Z3 into X

α11 α12 α13 α1ω

α21 α22 α23 α2ω

α31 α32 α33 α3ω

αω1 αω2 αω3 αωω

Figure 13. The space X

We finish by constructing a metrizable Esakia space in which Z2 is em-
bedded, which is more complicated than Examples 5.6 and 5.7.

Example 5.8. Let X be a subspace of R2 as described in Figure 13 with each
αmn an isolated point, each sequence {αin | n ∈ ω} converging to αiω, and each
sequence {αni | n ∈ ω} converging to αωi. If i = ω, then both {αωn | n ∈ ω}
and {αnω | n ∈ ω} converge to αωω.

Let Y = {αmn | m,n ∈ ω}. Then Y is a discrete subspace of X and X is
a compactification of Y . Clearly X is a compact metrizable space. Each clopen
U of X is either a finite union of subsets of the form

• {αmn} for some m,n ∈ ω;
• {αmn | h ≤ m ≤ ω} for some h, n ∈ ω;
• {αmn | k ≤ n ≤ ω} for some k,m ∈ ω;

or the complement of one of these finite unions. From this it is easy to see that
X is a Stone space.

Define a partial order on X by

αhk ≤ αmn iff (h, k) = (m,n) or h, k ≥ m + n

where we set m + n = ω if at least one of m,n is ω.
Figure 14 shows how to calculate principal downsets of points of X. From

this and the description of clopens of X it is straightforward to check that the
downset of each clopen is clopen.

Figure 15 describes how to calculate principal upsets of points of X. From
this and the fact that αωω is the least element of X, it is easy to see that the
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α21

α33 α3ω

αω3 αωω

↓α21

αω3 αωω

↓αω3

αωω

↓αωω

Figure 14. The principal downsets ↓α21, ↓αω3, and ↓αωω

α11

α21

α12

α43

↑α43

α11

α21

α12

αω3

↑αω3

Figure 15. The principal upsets ↑α43 and ↑αω3

upset of each point of X is closed. Thus, X is an Esakia space (see [5]). We can
embed Z2 into X via the map defined by y �→ α1ω, zi �→ αω i+1, and x �→ αωω;
see Figure 16.
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z0 z1 z2 x

y

Figure 16. The embedding of Z2 into X
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