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New formulas for the Laplacian of distance functions

and applications

Fabio Cavalletti ∗and Andrea Mondino†

Abstract

The goal of the paper is to prove an exact representation formula for the Laplacian of the distance (and
more generally for an arbitrary 1-Lipschitz function) in the framework of metric measure spaces satisfying
Ricci curvature lower bounds in a synthetic sense (more precisely in essentially non-branching MCP(K,N)-
spaces). Such a representation formula makes apparent the classical upper bounds together with lower bounds
and a precise description of the singular part. The exact representation formula for the Laplacian of a general
1-Lipschitz function holds also (and seems new) in a general complete Riemannian manifold.

We apply these results to prove the equivalence of CD(K,N) and a dimensional Bochner inequality on signed
distance functions. Moreover we obtain a measure-theoretic Splitting Theorem for infinitesimally Hilbertian,
essentially non-branching spaces verifying MCP(0, N).
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1 Introduction

The Laplacian comparison Theorem for the distance function from a point in a manifold with Ricci curvature
bounded from below is one of the most fundamental results in Riemannian geometry. The local version states
that if (M, g) is a smooth Riemannian manifold of dimension N ≥ 2 satisfying Ricg ≥ (N − 1)g then, calling
dp(·) := d(p, ·) the distance from a point p ∈ M , until the distance function is smooth the next upper bound
holds:

∆dp ≤ (N − 1) cotdp. (1.1)

Of course here ∆ denotes the Laplacian (also called Laplace-Beltrami operator) of the Riemannian manifold
(M, g) and cot is the cotangent (for a general lower bound Ricg ≥ Kg an analogous upper bound holds by
replacing the right hand side of (1.1) with the suitable (hyperbolic-)trigonometric function). The result is
very classical and can be proved either via Bochner inequality (see for instance [18, Section 2]) or by Jacobi
fields computations (see for instance [50, Chapter 7]).

It was Calabi [11] who, in 1958, first extended the upper bound (1.1) to the whole manifold in the weak
sense of barriers. Cheeger-Gromoll [23], in their celebrated proof of the Splitting Theorem in 1971, then
proved that the upper bound (1.1) also holds globally on M in distributional sense (see also [18, Section
4]). Since those classical works, the Laplacian comparison Theorem has become a fundamental technical
tool in the investigation of Riemannian manifolds satisfying Ricci curvature lower bounds (see for instance
[18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 41, 50]).
We finally mention that recently Mantegazza-Mascellani-Uraltsev [44] obtained an exact representation for-
mula for the distributional Hessian (and Laplacian) of the distance function from a point and that Gigli [30]
extended to the non-smooth setting the upper bound (1.1).

The goal of this paper is to sharpen the Laplacian comparison Theorem in several ways. First of all we
will give an exact representation formula for the Laplacian of a general distance function (and for a general
1-Lipschitz function on its transport set, see later for the details) which describes exactly also the singular
part concentrated on the cut locus. Such a representation formula will hold on every complete Riemannian
manifold, without any curvature assumption. When specialised to Riemannian manifolds with Ricci curvature
bounded below, such an exact representation formula will make apparent not only the celebrated global upper
bound (1.1) but also a lower bound on the regular part of the Laplacian. The results will be proved in the much
higher generality of (non-necessarily smooth) metric measure spaces satisfying Ricci curvature lower bounds
in a synthetic sense (more precisely, essentially non branching MCP(K,N)-spaces), see the final part of the
introduction.
In order to fix the ideas, we start the introduction discussing the smooth setting of Riemannian manifolds.

Let us introduce some notation in order to state the results. Given a point p ∈ M , denote by Cp the cut
locus of p. The negative gradient flow gt :M →M of the distance function dp induces a partition {Xα}α∈Q of
M \ ({p} ∪ Cp) into minimising geodesics; each Xα is called (transport) ray and Q is a suitable set of indices.
We will denote the initial (resp. final) point of the ray Xα as a(Xα) (resp. b(Xα)); it is not hard to see
that a(Xα) ∈ Cp and b(Xα) = p, for every α ∈ Q. Let us stress that in this case the endpoints a(Xα), b(Xα)
are not elements of the ray Xα (in general, end points may or may not be elements of the ray, depending
on the specific case, see also Remark 3.1). Such a partition induces a disintegration (the non-expert reader
can think of a kind of “non-straight Fubini Theorem”) of the Riemannian volume measure m into measures
mα = hαH1

xXα concentrated on Xα:

m =

∫

Q

hαH1
xXα q(dα), (1.2)

where q is a suitable probability measure on the set of indices Q. We refer to Section 3.1 for all the details on
disintegration formula. Here we only mention that once the probability q is fixed within a suitable family of
probability measures, then the functions hα are uniquely determined.

The fact that (M, g) satisfies Ricg ≥ (N − 1)g is inherited by the disintegration as concavity properties
of the densities hα, for the details see Section 3. For simplicity of notation, we will denote (log hα)

′(x) :=
d
dt |t=0 log hα(gt(x)); thanks to the disintegration (1.2) and the (semi-)concavity of hα along Xα, the quantity
(log hα)

′ is well defined m-a.e..
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The first main result of the paper is an exact representation formula for the Laplacian of the distance
function in non-smooth spaces satisfying synthetic lower bounds on the Ricci curvature (see later in the
introduction). In order to fix the ideas, we state it here for smooth Riemannian manifolds. We denote with
Cc(M) the space of real valued continuous functions with compact support in M endowed with the final
topology and with (Cc(M))′ its dual space made of real valued continuous linear functionals on Cc(M).

Theorem 1.1. Let (M, g) be a smooth complete 2 ≤ N -dimensional Riemannian manifold. Fix p ∈ M ,
consider dp := d(p, ·) and an associated disintegration m =

∫

Q
hαH1

xXα q(dα).

Then ∆dp is an element of (Cc(M))′ with the following representation formula:

∆dp = −(log hα)
′ m−

∫

Q

hαδa(Xα) q(dα). (1.3)

It can be written as sum of the following three Radon measures:

∆dp = [∆dp]
+
reg − [∆dp]

−
reg + [∆dp]sing ,

with

[∆dp]
±
reg = −[(log hα)

′]± m, [∆dp]sing = −
∫

Q

hα δa(Xα) q(dα) ≤ 0,

where ± stands for the positive and negative part. Here, [∆dp]reg := [∆dp]
+
reg − [∆dp]

−
reg is the regular part of

∆dp (i.e. absolutely continuous with respect to m), and [∆dp]sing is the singular part.

In particular, if (M, g) is compact ∆dp is a finite signed Borel (and in particular Radon) measure.
Moreover, if Ricg ≥ Kg for some K ∈ R, the next comparison results hold true (for simplicity here we

assume K = N − 1, for the bounds corresponding to a general K ∈ R see (4.15)):

∆dp ≤ (N − 1) cot dp m, (1.4)

[∆dp]reg = −(log hα)
′m ≥ −(N − 1) cotda(Xα) m. (1.5)

Remark 1.2 (On the lower bound (1.5)). Denote with Cp := {a(Xα)}α∈Q the cut locus of p and with gt the
negative gradient flow of dp at time t. More precisely, gt is defined ray by ray as the translation by t in the
direction of the negative gradient of dp, for t ∈ (0, |Xα|), where |Xα| denotes the length of the transport ray
Xα, i.e. |Xα| = d(a(Xα), b(Xα)) = d(a(Xα), p). Then for every ε > 0 there exists CK,N,ε > 0 so that:

[∆dp]reg ≥ −CK,N,εm on {x = gt(aα) : t ≥ ε} ⊃ {x ∈ X : d(x, Cp) ≥ ε}.

Let us stress that such a lower bound depends just on the dimension N , on the lower bound K ∈ R over the
Ricci tensor, and on the distance ε > 0 from the cut locus Cp, but is independent of the specific manifold
(M, g).

We will prove the next more general statement for any signed distance function. Let us first give some
definition: given a continuous function v :M → R so that {v = 0} 6= ∅, the function

dv :M → R, dv(x) := d(x, {v = 0}) sgn(v), (1.6)

is called the signed distance function (from the zero-level set of v). With a slight abuse of notation, we denote
with d both the distance between points and the induced distance between sets; more precisely

d(x, {v = 0}) := inf {d(x, y) : y ∈ {v = 0}} .

Analogously to dp, a signed distance function dv induces a partition of M (up to a set of measure zero) into
rays {Xα}α∈Q and a corresponding disintegration of the Riemannian volume measure m. The orientation of
the rays is analogous. More precisely, if Xα is a transport ray associated with dv and a(Xα), b(Xα) are its
starting and the final point, then dv(b(Xα)) ≤ 0, dv(a(Xα)) ≥ 0, so that transport rays are oriented from
{v ≥ 0} towards {v ≤ 0}.
Theorem 1.3. Let (M, g) be a smooth complete 2 ≤ N -dimensional Riemannian manifold.
Consider the signed distance function dv for some continuous function v : X → R and an associated disinte-
gration m =

∫

Q
hαH1

xXα q(dα).

3



Then ∆d2v is an element of (Cc(M))′ with the following representation formula:

∆d2v = 2(1− dv(log hα)
′)m− 2

∫

Q

(hαdv)[δa(Xα) − δb(Xα)] q(dα). (1.7)

It can be written as the sum of three Radon measures:

∆d2v =
[

∆d2v
]+

reg
−
[

∆d2v
]−

reg
+
[

∆d2v
]

sing
,

with
[

∆d2v
]±

reg
:= 2(1− dv(log hα)

′)± m,
[

∆d2v
]

sing
:= −2

∫

Q

(hαdv)[δa(Xα) − δb(Xα)] q(dα) ≤ 0 ,

where ± stands for the positive and negative part; in particular if, (M, g) is compact, ∆d2v is a finite signed
Borel (and in particular Radon) measure.
Moreover, if Ricg ≥ Kg for some K ∈ R, the next comparison results hold true (for simplicity here we assume
K = N − 1, for the bounds corresponding to a general K ∈ R see (4.23), (4.24)):

[

∆d2v
]+

reg
≤ 2m+ 2(N − 1)d({v = 0}, x)

(

cotdb(Xα) mx{v≥0}+cotda(Xα) mx{v<0}

)

, (1.8)
[

∆d2v
]−

reg
≤ 2m− 2(N − 1)d({v = 0}, ·)

(

cot da(Xα) mx{v≥0}+cotdb(Xα) mx{v<0}

)

. (1.9)

We will also present a general statement (Corollary 4.10) valid for any 1-Lipschitz function u : M → R,
provided the rays of the induced disintegration satisfy a suitable integrability condition (roughly, they should
not be too short), obtaining the same representation formula together with the two sided estimate we mentioned
before.

An interesting feature of Corollary 4.10 is that it will hold for every 1-Lipschitz function u : X → R. Let
us stress that the 1-Lipschitz assumption is clearly a first order condition, with no information on second
order derivatives. Nevertheless, Corollary 4.10 will imply that in a general complete Riemannian manifold it
is possible to deduce some information on the second derivatives once restricted to a suitable subset. More
precisely, if one considers only the set of points “saturating the 1-Lipschitz assumption” then the Laplacian
of u is a continuous linear functional on Cc. We stress that we will obtain an exact representation formula of
∆u (restricted to such a set) which, in case the Ricci curvature of the ambient N -manifold is bounded below
by K ∈ R, will give a two-sided bound on the regular part in terms of K,N . We refer to Corollary 4.10 for
the details.

Up to now we focused the introduction on the setting of complete Riemannian manifolds (satisfying Ricci
curvature lower bounds). However, everything will be proved in the much higher generality of (possibly
non-smooth) essentially non-branching, metric measure spaces (X, d,m) satisfying the measure contraction
property MCP(K,N), for some K ∈ R, N ∈ (1,∞). We refer to Subsection 2.1 for the detailed definitions;
here let us just recall that MCP(K,N), introduced independently by Ohta [47] and Sturm [57], is the weakest
among the synthetic conditions of Ricci curvature bounded below by K and dimension bounded above by N
for metric measure spaces. In particular it is strictly weaker than the celebrated curvature dimension condition
CD(K,N) pioneered by Lott-Sturm-Villani [42, 56, 57] and than the (weaker) reduced curvature dimension
condition CD

∗(K,N) [7]. The essential non-branching condition, introduced by T. Rajala-Sturm [52], roughly
amounts to ask that W2-geodesics are concentrated on non-branching geodesics.

Remark 1.4 (Notable examples of spaces fitting in the framework of the paper). The class of essentially
non-branching MCP(K,N) spaces include many remarkable families of spaces, among them:

• Smooth Finsler manifolds where the norm on the tangent spaces is strongly convex, and which satisfy
lower Ricci curvature bounds. More precisely we consider a C∞-manifold M , endowed with a function
F : TM → [0,∞] such that F |TM\{0} is C∞ and for each p ∈M it holds that Fp := TpM → [0,∞] is a
strongly-convex norm, i.e.

gpij(v) :=
∂2(F 2

p )

∂vi∂vj
(v) is a positive definite matrix at every v ∈ TpM \ {0}.

Under these conditions, it is known that one can write the geodesic equations and geodesics do not
branch; in other words these spaces are non-branching. We also assume (M,F ) to be geodesically
complete and endowed with a C∞ measure m in a such a way that the associated m.m.s. (X,F,m)
satisfies the MCP(K,N) condition, see [48, 49].
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• Sub-Riemannian manifolds. The following are all examples of essentially non-branching MCP(K,N)-
spaces: the (2n + 1)-dimensional Heisenberg group [40], any co-rank one Carnot group [55], any ideal
Carnot group [54], any generalized H-type Carnot group of rank k and dimension n [8].

• Strong CD
∗(K,N) spaces, and in particular RCD∗(K,N) spaces (see below). The class of RCD∗(K,N)

spaces includes the following remarkable subclasses:

– Measured Gromov Hausdorff limits of Riemannian N -dimensional manifolds satisfying Ricci ≥ K,
see [4, 34].

– Finite dimensional Alexandrov spaces with curvature bounded from below, see [51].

In the context of metric measure spaces verifying Ricci curvature lower bounds in a synthetic form, the
Laplacian comparison Theorem in its classical form (1.1) was established by Gigli [30]. More precisely, [30]
developed a notion of a possibly multivalued Laplacian holding on a general metric measure space (X, d,m); in
[30], a property of the space called infinitesimal strict convexity is also introduced, which grants, among other
things, uniqueness of the Laplacian. Finally in [30], assuming infinitesimal strict convexity and CD

∗(K,N), a
sharp upper bound for the Laplacian of a general Kantorovich potential for the W2 distance is obtained and,
in particular, for d

2
p. The comparison in [30] is stated for CD

∗(K,N) but the same proof, in the case of d2p,
works assuming the weaker MCP(K,N).

Our results therefore extend the ones in [30] removing the assumption of infinitesimal strict convexity (hence
including the possibility of a multivalued Laplacian, see Definition 2.12); moreover we precisely describe the
Laplacian of a general signed distance function or a 1-Lipschitz function with sufficiently long transport rays,
obtaining also a lower bound on the regular part and a representation formula for the singular part. We stress
the fundamental role of the exact representation formulas: it will be the key in our application to Bochner
inequality (signed distance functions) and for the Splitting Theorem (general 1-Lipschitz function), see the
discussions below.

We conclude this part on the related results in the literature mentioning that the Laplacian comparison
results [30, Theorem 5.14, Corollary 5.15] seem to claim the stronger conclusion that ∆d

2
p is a Radon measure

in the classical sense (see Definition 2.11 and comments shortly afterwards). This however seems to not follow
from the proof, when (X, d) is not compact: ∆d

2
p is proved to be an element of (Cc(X))′ so, by Riesz Theorem,

it is a difference of positive Radon measures but it may fail to be a Borel measure (see [30, Proposition 4.13]
and the application of Riesz Theorem in the last part of its proof). We will therefore adapt the definition of
Laplacian (see Definition 2.12), weakening [30, Definition 4.4]. With this new definition also [30, Proposition
4.13] together with its applications seem to work.

The second part of the paper is devoted to applications.
In Section 6 we will use the representation formula for the Laplacian to show that, under essential non
branching, the CD(K,N) condition is equivalent to a dimensional Bochner inequality on signed distance
functions. The Bochner inequality corresponds to an Eulerian formulation of Ricci curvature lower bounds
while the CD(K,N) condition, based on convexity of entropies along W2-geodesics of probability measures,
correspond to a Lagrangian approach.

It has been a long standing open problem, see for instance the celebrated book of Villani [58, Open Problem
17.38, Conclusions and Open Problems p. 923], to show that the Eulerian and the Lagrangian formulations of
Ricci curvature lower bounds are equivalent. Such an equivalence has already been proved to hold true under
the additional assumption that the heat flow Ht : L

2(X,m) → L2(X,m) is linear for every t ≥ 0 (or, equiva-
lently, the Cheeger energy Ch(f) :=

∫

X
|∇f |2wm satisfies the parallelogram identity). The class of CD(K,N)

spaces satisfying such a linearity condition is called RCD(K,N). After its birth in [4] (see also [2]) for N = ∞
and further developments for N < ∞ (see [6, 28, 30] and the subsequent [13]), the theory of metric measure
spaces satisfying RCD(K,N) (called RCD(K,N)-spaces for short) has been flourishing in the last years (for a
survey of results, see the Bourbaki seminar [59] and the recent ICM-Proceeding [1]).
The equivalence between RCD(K,N) and Bochner inequality (properly written in a weak form, called Bakry-
Émery condition BE(K,N)) was proved for N = ∞ by Ambrosio-Gigli-Savaré [4, 5], and in the finite dimen-
sional case by Erbar-Kuwada-Sturm [28] and Ambrosio-Mondino-Savaré [6].
Let us stress that the linearity of the heat flow was a crucial assumption in all of the aforementioned works.

The equivalence between Bochner inequality and CD(K,N) was proved also in smooth Finsler manifolds
by Ohta-Sturm [49]. In [49] no linearity of the heat flow is assumed, on the other hand the smoothness of the
Finsler structure is heavily used in the computations. In the present paper, in contrast to the aforementioned
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works, we assume neither that the heat flow is linear nor that the space is smooth thus showing that the
equivalence between Lagrangian and Eulerian approach to Ricci curvature lower bounds holds in the higher
generality of non-smooth “possibly Finslerian” spaces.

The proof of the equivalence seems also to follow rather easily once the representation formula for the
Laplacian of signed distance functions is at disposal. Here we also crucially use [13] where it is shown that a
control on the behaviour of signed distance functions is sufficient to control the geometry of the space (see the
statement: CD1(K,N) implies CD(K,N)). This also motivates our interest on the Laplacian of this family of
functions (Theorem 4.14).

A second application is a measure-theoretic Splitting Theorem stating, roughly, that an infinitesimally
Hilbertian (i.e. the Cheeger energy satisfies the parallelogram identity), essentially non-branching MCP(0, N)
space containing a line is isomorphic as a measure space to a splitting (for the precise statement see Theorem
7.1).
For smooth Riemannian manifolds [23], as well as for Ricci-limits [19] and RCD(0, N) spaces [31], the Splitting
Theorem has a stronger statement giving an isometric splitting. However under the assumptions of Theorem
7.1 it is not conceivable to expect also a splitting of the metric. Indeed the Heisenberg group Hn is an example
of non-branching infinitesimally Hilbertian MCP(0, N) space [40] containing a line, which is homeomorphic
and isomorphic as measure space to a splitting (indeed it is homeomorphic to Rn and the measure is exactly
the n-dimensional Lebesgue measure) but it is not isometric to a splitting.
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802689. The authors wish to thank the anonymous reviewers for the careful reading and for their comments,
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2 Prerequisites

In this Section we review the basic material needed throughout the paper. The standing assumptions are that
(X, d) is a complete, proper and separable metric space endowed with a positive Radon measure m satisfying
supp(m) = X . The triple (X, d,m) is said to be a metric measure space, m.m.s. for short.

The properness assumption is motivated by the synthetic Ricci curvature lower bounds we will assume to
hold.

2.1 Essentially non branching, MCP(K,N) and CD(K,N) metric measure spaces

We denote by

Geo(X) := {γ ∈ C([0, 1], X) : d(γs, γt) = |s− t|d(γ0, γ1), for every s, t ∈ [0, 1]}

the space of constant speed geodesics. The metric space (X, d) is a geodesic space if and only if for each
x, y ∈ X there exists γ ∈ Geo(X) so that γ0 = x, γ1 = y.
Recall that, for complete geodesic spaces, local compactness is equivalent to properness (a metric space is
proper if every closed ball is compact).

We denote with P(X) the space of all Borel probability measures over X and with P2(X) the space of
probability measures with finite second moment. P2(X) can be endowed with the L2-Kantorovich-Wasserstein
distance W2 defined as follows: for µ0, µ1 ∈ P2(X), set

W 2
2 (µ0, µ1) := inf

π

∫

X×X

d
2(x, y)π(dxdy), (2.1)

where the infimum is taken over all π ∈ P(X ×X) with µ0 and µ1 as the first and the second marginal. The
space (X, d) is geodesic if and only if the space (P2(X),W2) is geodesic.

For any t ∈ [0, 1], let et denote the evaluation map:

et : Geo(X) → X, et(γ) := γt.
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Any geodesic (µt)t∈[0,1] in (P2(X),W2) can be lifted to a measure ν ∈ P(Geo(X)), so that (et)♯ ν = µt for all
t ∈ [0, 1].
Given µ0, µ1 ∈ P2(X), we denote by OptGeo(µ0, µ1) the space of all ν ∈ P(Geo(X)) for which (e0, e1)♯ ν
realizes the minimum in (2.1). Such a ν will be called dynamical optimal plan. If (X, d) is geodesic, then the
set OptGeo(µ0, µ1) is non-empty for any µ0, µ1 ∈ P2(X).
We will also consider the subspace P2(X, d,m) ⊂ P2(X) formed by all those measures absolutely continuous
with respect with m.

A set G ⊂ Geo(X) is a set of non-branching geodesics if and only if for any γ1, γ2 ∈ G, it holds:

∃ t̄ ∈ (0, 1) such that ∀t ∈ [0, t̄ ] γ1t = γ2t =⇒ γ1s = γ2s , ∀s ∈ [0, 1].

In the paper we will only consider essentially non-branching spaces, let us recall their definition (introduced
in [52]).

Definition 2.1. A metric measure space (X, d,m) is essentially non-branching (e.n.b. for short) if and only
if for any µ0, µ1 ∈ P2(X), with µ0, µ1 absolutely continuous with respect to m, any element of OptGeo(µ0, µ1)
is concentrated on a set of non-branching geodesics.

It is clear that if (X, d) is a smooth Riemannian manifold then any subset G ⊂ Geo(X) is a set of non
branching geodesics, in particular any smooth Riemannian manifold is essentially non-branching.

In order to formulate curvature properties for (X, d,m) we recall the definition of the distortion coefficients:
for K ∈ R, N ∈ [1,∞), θ ∈ (0,∞), t ∈ [0, 1], set

τ
(t)
K,N (θ) := t1/Nσ

(t)
K,N−1(θ)

(N−1)/N , (2.2)

where the σ-coefficients are defined as follows: given two numbers K,N ∈ R with N ≥ 0, we set for (t, θ) ∈
[0, 1]× R+,

σ
(t)
K,N (θ) :=







































∞, if Kθ2 ≥ Nπ2,

sin(tθ
√

K/N)

sin(θ
√

K/N)
if 0 < Kθ2 < Nπ2,

t if Kθ2 < 0 and N = 0, or if Kθ2 = 0,

sinh(tθ
√

−K/N)

sinh(θ
√

−K/N)
if Kθ2 ≤ 0 and N > 0.

(2.3)

Let us also recall the definition of the Rényi Entropy functional EN : P(X) → [0,∞],

EN(µ) :=

∫

X

ρ1−1/N (x)m(dx), (2.4)

where µ = ρm+ µs with µs ⊥ m.
Next we recall the definition of MCP(K,N) given independently by Ohta [47] and Sturm [57]. On general
metric measure spaces the two definitions slightly differ, but on essentially non-branching spaces they coincide.
We report the one given in [47].

Definition 2.2 (MCP condition). Let K ∈ R and N ∈ [1,∞). A metric measure space (X, d,m) verifies
MCP(K,N) if for any µ0 ∈ P2(X) of the form µ0 = 1

m(a)mxA for some Borel set A ⊂ X with m(A) ∈ (0,∞),

and any o ∈ X there exists ν ∈ OptGeo(µ0, δo) such that

1

m(A)
m ≥ (et)♯

(

τ
(1−t)
K,N (d(γ0, γ1))ν(dγ)

)

, ∀ t ∈ [0, 1]. (2.5)

From [13, Proposition 9.1], in the setting of essentially non-branching spaces Definition 2.2 is equivalent to
the following condition: for all µ0, µ1 ∈ P2(X) with µ0 ≪ m and supp(µ1) ⊂ supp(m), there exists a unique
ν ∈ OptGeo(µ0, µ1), ν is induced by a map (i.e. ν = S♯(µ0) for some map S : X → Geo(X)), µt := (et)#ν ≪ m

for all t ∈ [0, 1), and writing µt = ρtm, we have for all t ∈ [0, 1):

ρ
− 1

N
t (γt) ≥ τ

(1−t)
K,N (d(γ0, γ1))ρ

− 1
N

0 (γ0) for ν-a.e. γ ∈ Geo(X). (2.6)

The curvature-dimension condition was introduced independently by Lott-Villani [42] and Sturm [56, 57],
let us recall its definition.
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Definition 2.3 (CD condition). Let K ∈ R and N ∈ [1,∞). A metric measure space (X, d,m) verifies
CD(K,N) if for any two µ0, µ1 ∈ P2(X, d,m) with bounded support there exist ν ∈ OptGeo(µ0, µ1) and
π ∈ P(X ×X) W2-optimal plan, such that µt := (et)♯ν ≪ m and for any N ′ ≥ N, t ∈ [0, 1]:

EN ′(µt) ≥
∫

τ
(1−t)
K,N ′ (d(x, y))ρ

−1/N ′

0 + τ
(t)
K,N ′(d(x, y))ρ

−1/N ′

1 π(dxdy). (2.7)

Throughout this paper, we will always assume the proper metric measure space (X, d,m) to satisfy
MCP(K,N), for some K,N ∈ R, and to be essentially non-branching. This will imply in particular that
(X, d) is geodesic.
It is not difficult to see that if (X, d,m) verifies CD(K,N) then it also verifies MCP(K,N), but the converse
implication is false in general (for example the sub-Riemannian Heisenberg group satisfies MCP(K,N) for
some suitable K,N , but does not satisfy CD(K ′, N ′) for any choice of K ′, N ′).

It is worth recalling that if (M, g) is a Riemannian manifold of dimension n and h ∈ C2(M) with h > 0,
then the m.m.s. (M, dg, hVolg) (where dg and Volg denote the Riemannian distance and volume induced by
g) verifies CD(K,N) with N ≥ n if and only if (see [57, Theorem 1.7])

Ricg,h,N ≥ Kg, Ricg,h,N := Ricg − (N − n)
∇2

gh
1

N−n

h
1

N−n

.

In particular if N = n the generalized Ricci tensor Ricg,h,N = Ricg makes sense only if h is constant.
A variant of the CD condition, called reduced curvature dimension condition and denoted by CD

∗(K,N)

[7], asks for the same inequality (2.7) of CD(K,N) but the coefficients τ
(t)
K,N (d(γ0, γ1)) and τ

(1−t)
K,N (d(γ0, γ1)) are

replaced by σ
(t)
K,N (d(γ0, γ1)) and σ

(1−t)
K,N (d(γ0, γ1)), respectively. For both definitions there is a local version and

it was recently proved in [13] that on an essentially non branching m.m.s. with m(X) <∞, the CD
∗
loc(K,N),

CD
∗(K,N), CDloc(K,N), CD(K,N) conditions are all equivalent, for allK ∈ R, N ∈ (1,∞), via the CD1(K,N)

condition defined in terms of L1-Optimal Transport problem. For more details we refer to [13].

2.2 Lipschitz functions and Laplacians in metric measure spaces

We recall some facts about calculus in metric measure spaces following the approach of [3, 4, 30] with the
slight difference that here we confine the presentation to the (easier) setting of Lipschitz functions (instead of
Sobolev), as in the paper we will work in such a framework. For this subsection it is enough to assume the
metric space (X, d) to be complete and separable and m to be a non-negative locally finite measure.

A function f : X → R is Lipschitz (or more precisely L-Lipschitz) if there exists a constant L ≥ 0 such
that

|f(x) − f(y)| ≤ L d(x, y), ∀x, y ∈ X.

The minimal constant L ≥ 0 satisfying the last inequality is called global Lipschitz constant of f and is denoted
with Lip(f).
We denote by LIP(X) the space of real valued Lipschitz functions on (X, d) and with LIPc(Ω) ⊂ LIP(X) the
sub-space of Lipschitz functions of X with compact support contained in the open subset Ω ⊂ X .
Given f ∈ LIP(X), the local Lipschitz constant |Df |(x0) of f at x0 ∈ X is defined as

|Df |(x0) := lim sup
x→x0

|f(x)− f(x0)|
d(x, x0)

if x0 is not isolated, |Df |(x0) = 0 otherwise.

It is clear that |Df | ≤ Lip(f) on all X .

Definition 2.4. Let f, u ∈ LIP(X). Define the functions D±f(∇u) : X → R by

D+f(∇u) := inf
ε>0

|D(u+ εf)|2 − |Du|2
2ε

,

while D−f(∇u) is obtained replacing infε>0 with supε<0.
In case D+f(∇u) = D−f(∇u) m-a.e. for all f, u ∈ LIP(X), then (X, d,m) is said (Lipschitz-)infinitesimally
strictly convex and we set Df(∇u) := D+f(∇u); if moreoverDf(∇u) = Du(∇f) m-a.e. for all f, u ∈ LIP(X),
then (X, d,m) is said (Lipschitz)-infinitesimally Hilbertian.
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Remark 2.5. Given f, u ∈ LIP(X), it is easily seen the map ε 7→ |D(u + εf)|2 is convex and real valued.
Thus

inf
ε>0

|D(u + εf)|2 − |Du|2
2ε

= lim inf
ε↓0

|D(u+ εf)|2 − |Du|2
2ε

,

and

sup
ε<0

|D(u+ εf)|2 − |Du|2
2ε

= lim sup
ε↑0

|D(u+ εf)|2 − |Du|2
2ε

.

Remark 2.6. The local doubling & Poincaré condition will be satisfied throughout the paper as we will work
in essentially non-branching MCP(K,N)-spaces, with K ∈ R, N ∈ (1,∞) thanks to [53, Corollary p. 28]. The
standing assumptions in [53] are MCP(K,N) and that the set

Cx := {y ∈ X : ∃γ1 6= γ2 ∈ Geo(X), x = γ10 = γ20 , y = γ11 = γ21},

has m-measure zero for m-a.e. x ∈ X .
In an essentially non-branching MCP(K,N) space the previous property can be obtained as follows: for

any r > 0 invoke [15, Theorem 5.2] with µ0 := mxBr(x)/m(Br(x)) and µ1 := δx; existence of a map pushing
µ0 to the unique element of OptGeo(µ0, µ1) yields that m(Cx ∩Br(x)) = 0, actually for any x ∈ X .

Remark 2.7. The notions of infinitesimally strictly convex and infinitesimally Hilbertian have been introduced
in [4, 30] in the setting of Sobolev spaces, with the local Lipschitz constant replaced by the minimal weak
upper gradient. The corresponding Lipschitz counterparts that we defined above have been already considered
in [45] and coincide with the ones of [30] provided the space satisfies doubling & Poincaré locally, thanks to
a deep result of Cheeger [17]. Thanks to Remark 2.6 we will avoid therefore the prefix “Lipschitz” in the
corresponding notions, for simplicity of notation.

Definition 2.8 (Test plans, [3]). Let (X, d,m) be a metric measure space as above and π ∈ P(C([0, 1], X)).
We say that π is a test plan provided it has bounded compression, i.e. there exists C > 0 such that

(et)♯π = µt ≤ Cm, ∀ t ∈ [0, 1],

and
∫ ∫ 1

0

|γ̇t|2dt π(dγ) <∞.

Definition 2.9 (Plans representing gradients). Let (X, d,m) be a m.m.s., g ∈ LIP(X) and π a test plan. We
say that π represents the gradient of g provided it is a test plan and we have

lim inf
t→0

∫

g(γt)− g(γ0)

t
π(dγ) ≥ 1

2

∫

|Dg|2(γ0)π(dγ) +
1

2
lim sup

t→0

1

t

∫ ∫ t

0

|γ̇s|2ds π(dγ)

Theorem 2.10. [4, Lemma 4.5], [30, Theorem 3.10]. Let f, u ∈ LIP(X) and π be any plan representing the
gradient of u, then

∫

D+f(∇u) (e0)♯π ≥ lim sup
t→0

∫

f(γt)− f(γ0)

t
π(dγ)

≥ lim inf
t→0

∫

f(γt)− f(γ0)

t
π(dγ)

≥
∫

D−f(∇u) (e0)♯π.

In particular, if (X, d,m) is infinitesimally strictly convex then

∫

X

Df(∇u) (e0)♯π = lim
t→0

∫

f(γt)− f(γ0)

t
π(dγ).

In order to define the Laplacian, let us recall the definition of Radon functional. For simplicity, from now
on, we will assume (X, d) to be locally compact (this will be satisfied throughout the paper as we will work in
the setting of MCP(K,N) spaces which are, even more strongly, locally doubling).
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Definition 2.11. • A Radon functional over an open set Ω ⊂ X is a linear functional T : LIPc(Ω) → R
such that for every compact subset W ⊂ Ω there exists a constant CW ≥ 0 so that

|T (f)| ≤ CW max
W

|f |, for all f ∈ LIPc(Ω) with supp(f) ⊂W.

• A non-negative Radon measure over an open set Ω ⊂ X is a Borel, non-negative measure µ : B(Ω) →
[0,+∞] that is locally finite, i.e. for any x ∈ Ω there exists a neighbourhood Ux of finite µ-measure:
µ(Ux) < +∞. A non-negative Radon measure is said to be finite if µ(X) <∞.

• A signed Radon measure over an open set Ω ⊂ X is a Borel measure µ : B(Ω) → R ∪ {±∞} that can
be written as µ = µ+ − µ− with µ+, µ− non-negative Radon measures where at least one of the two is
finite.
A signed Radon measure is said to be finite if, denoting ‖µ‖ := µ+ + µ− the total variation measure, it
holds ‖µ‖(X) <∞.

Note that, by the classical Riesz-Markov-Kakutani Representation Theorem, for every non-negative Radon
functional T over X there exists a non-negative Radon measure µT representing T via integration, i.e.

T (f) =

∫

X

f(x)µT (dx), ∀f ∈ LIPc(X).

In particular, every Radon functional can be written as the sum of two Radon measures (i.e. the positive and
negative parts, respectively).
Let us stress that the non-negativity assumption is crucial. Indeed a general Radon functional may not be
representable by a measure, for example consider X = R,Ω = R \ {0} and T : LIPc(Ω) → R defined by

T : LIPc(Ω) → R, T (f) :=

∫

Ω

f(x)

x
dx.

It is straightforward to see that T is a real valued Radon functional over Ω but cannot be represented by a
signed Radon measure over Ω, the point being that (−∞, 0) would have “measure” −∞ and (0,+∞) would
have “measure” +∞ thus failing the additivity axiom. An expert reader may recognise that T (f) is (up to a
multiplicative constant) the Hilbert transform of f evaluated at 0.

Definition 2.12. Let Ω ⊂ X be an open subset and let u ∈ LIP(X). We say that u is in the domain of the
Laplacian of Ω, and write u ∈ D(∆,Ω), provided there exists a Radon functional T over Ω such that for any
f ∈ LIPc(Ω) it holds

∫

X

D−f(∇u)m ≤ −T (f) ≤
∫

X

D+f(∇u)m. (2.8)

In this case we write T ∈ ∆uxΩ. In case T can be represented by a signed measure µ over Ω, with a slight
abuse of notation we will identify T with µ and write µ ∈ ∆uxΩ.

Let us stress that in general, there is not a unique operator T satisfying (2.8); in other words the Laplacian
can be multivalued.

2.3 Synthetic Ricci lower bounds over the real line

Given K ∈ R and N ∈ (1,∞), a non-negative Borel function h defined on an interval I ⊂ R is called a
MCP(K,N) density on I if for all x0, x1 ∈ I and t ∈ [0, 1]:

h(tx1 + (1− t)x0) ≥ σ
(1−t)
K,N−1(|x1 − x0|)N−1h(x0). (2.9)

Even though it is a folklore result, we will include a proof of the following fact

Lemma 2.13. A one-dimensional metric measure space, that for simplicity we directly identify with (I, | ·
|, hL1), verifies MCP(K,N) if and only there exists h̃, MCP(K,N) density, such that h = h̃, L1-a.e. on I.
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Proof. Assume h is an MCP(K,N) density on I. From [13, Proposition 9.1], point iv), it will be enough to
prove (2.6) under the additional assumption that µ0 = 1

m(A)χAm for some A ⊂ I such that 0 < m(A) < ∞,

with m = hL1.
Without any loss in generality we assume o = 0 ∈ I. Given then any A ⊂ I as above, the unique W2

geodesic (µt)t∈[0,1] connecting µ0 to δ0 is

µt = (ft)♯µ0, ft(x) = (1− t)x.

Then using change of variable formula,

µt = ρtm, ρt(x) =
h(x/(1− t))

h(x)

χA(x/(1− t))

(1 − t)m(A)
,

implying that

(

ρt(ft(x))

ρ0(x)

)−1/N

=

(

(1− t)h((1− t)x)

h(x)

)1/N

≥ (1− t)1/Nσ
(1−t)
K,N−1(|x|)(N−1)/N = τ

(1−t)
K,N (|x|),

proving (2.6). In order to prove the converse implication, we fix x1 = 0 = o and take

µ0 :=
1

L1(A)
L1

xA, A ⊂ I, 0 < L1(A) <∞.

Then µt :=
1

L1((1−t)A)L1
x(1−t)A is the unique W2-geodesic connecting µ0 to δo. Hence (2.9) can be applied to

µt = ρtm, ρt(x) =
1

(1− t)L1(A)

χ(1−t)A(x)

h(x)

Then (2.9) along (µt) implies the claim.

The estimate (2.9) implies several known properties that we collect in what follows. To write them in a
unified way we define for κ ∈ R the function sκ : [0,+∞) → R (on [0, π/

√
κ) if κ > 0)

sκ(θ) :=











(1/
√
κ) sin(

√
κθ) if κ > 0,

θ if κ = 0,

(1/
√−κ) sinh(√−κθ) if κ < 0.

(2.10)

For the moment we confine ourselves to the case I = (a, b) with a, b ∈ R; hence (2.9) implies

(

sK/(N−1)(b− x1)

sK/(N−1)(b− x0)

)N−1

≤ h(x1)

h(x0)
≤
(

sK/(N−1)(x1 − a)

sK/(N−1)(x0 − a)

)N−1

, (2.11)

for x0 ≤ x1 (see the proof of Lemma 2.17 for the easier estimate in the case K = 0). Hence denoting with
D = b− a the length of I, for any ε > 0 it follows that

sup

{

h(x1)

h(x0)
: x0, x1 ∈ [a+ ε, b− ε]

}

≤ Cε, (2.12)

where Cε only depends on K,N , provided 2ε ≤ D ≤ 1
ε .

Moreover (2.11) implies that h is locally Lipschitz in the interior of I and an easy manipulation of it (cf.
[13, Lemma A.9]) yields the following bound on the derivative of h:

−(N − 1)
s′K/(N−1)(b − x)

sK/(N−1)(b − x)
≤ (log h)′(x) ≤ (N − 1)

s′K/(N−1)(x− a)

sK/(N−1)(x− a)
, (2.13)

if x ∈ (a, b) is a point of differentiability of h. Finally if k > 0, then b− a ≤ π
√

(N − 1)/K.
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Remark 2.14. The estimate (2.11) also implies that a MCP(K,N) density h : (a, b) → (0,∞), a, b ∈ R, can
always be extended to a continuous function on the closed interval [a, b]. Notice indeed that the map

(a, b) ∋ x 7→ h(x)

(sK/(N−1)(b− x))N−1
,

is non-decreasing and strictly positive. Hence the following limit exists and is a real number

lim
x→a

h(x)

(sK/(N−1)(b− x))N−1
.

Since b − a > 0, we obtain that also the limit limx→a h(x) exists, for every K ≤ 0 and for K > 0 provided
b − a 6= π

√

(N − 1)/K. The case K > 0 and b− a = π
√

(N − 1)/K follows by rigidity: (2.11) implies that

sin(π − x1
√

K/(N − 1))

sin(π − x0
√

K/(N − 1))
≤ h(x1)

h(x0)
≤ sin(x1

√

K/(N − 1))

sin(x0
√

K/(N − 1))
,

showing that h(x), up to a renormalisation constant, coincide with sin(x
√

K/(N − 1)). To show that h can
also be extended to a continuous function at b, one can argue as above starting from the non-increasing
property of the following function

(a, b) ∋ x 7→ h(x)

(sK/(N−1)(x− a))N−1
,

following again from (2.11).

The next lemma was stated and proved in [13, Lemma A.8] under the CD condition; as the proof only uses
MCP(K,N) we report it in this more general version.

Lemma 2.15. Let h denote a MCP(K,N) density on a finite interval (a, b), N ∈ (1,∞), which integrates to
1. Then:

sup
x∈(a,b)

h(x) ≤ 1

b− a

{

N K ≥ 0

(
∫ 1

0
(σ

(t)
K,N−1(b − a))N−1dt)−1 K < 0

. (2.14)

In particular, for fixed K and N , h is uniformly bounded from above as long as b − a is uniformly bounded
away from 0 (and from above if K < 0).

From the previous auxiliary results we obtain the following lemma that will be used throughout the paper.

Lemma 2.16. Let h denote a MCP(K,N) density on a finite interval (a, b), N ∈ (1,∞), which integrates to
1. Then:

∫

(a,b)

|h′(x)| dx ≤ 1

b− a
C

(K,N)
(b−a) , (2.15)

for some C
(K,N)
(b−a) > 0 with the property that, for fixed K ∈ R and N ∈ (1,∞), it holds

sup
r∈(0,R)

C(K,N)
r <∞, for every R > 0, lim

r↑∞
C(K,N)

r = ∞. (2.16)

Proof. Case K ≤ 0. The two inequalities in (2.13) give for each point x ∈ (a, b) of differentiability of h

w1 := h′(x) + (N − 1)
s′K/(N−1)(b− x)

sK/(N−1)(b− x)
h(x) ≥ 0, w2 := h′(x)− (N − 1)

s′K/(N−1)(x − a)

sK/(N−1)(x − a)
h(x) ≤ 0. (2.17)

Thus, we can write
∫

[a,b]

|h′| dx ≤
∫

[a,a+ b−a
2 ]

w1 dx+

∫

[a,a+ b−a
2 ]

|w1 − h′| dx

−
∫

[a+ b−a
2 ,b]

w2 dx+

∫

[a+ b−a
2 ,b]

|w2 − h′| dx. (2.18)
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First of all, observing that for K ≤ 0 one has
s′K/(N−1)(t)

sK/(N−1)(t)
≥ 0 for all t ≥ 0, we get

∫

[a,a+ b−a
2 ]

w1 dx ≤ h

(

a+
b− a

2

)

− h(a) + (N − 1)‖h‖L∞(a,b) log

(

sK/(N−1)(b− a)

sK/(N−1)((b − a)/2)

)

≤ C
(K,N)
(b−a) ‖h‖L∞(a,b),

∫

[a,a+ b−a
2 ]

|w1 − h′| dx =

∫

[a,a+ b−a
2 ]

(N − 1)
s′K/(N−1)(b− x)

sK/(N−1)(b− x)
h(x) ≤ C

(K,N)
(b−a) ‖h‖L∞(a,b),

where r 7→ C
(K,N)
r satisfies (2.16). The bounds for the second line of (2.18) are analogous. Thus we conclude

∫

[a,b]

|h′| dx ≤ C
(K,N)
(b−a) ‖h‖L∞(a,b)

which, recalling (2.14), gives the claim (2.15).

Case K > 0.
In order to simplify the notation, we assume K = N − 1 > 0 (so that b − a ≤ π), a = 0 and b − a = D ≤ π.
The discussion for general K > 0, a < b ∈ [0, π] is analogous.

We first consider the case D ≤ π/2. Using (2.11), notice that

h(x)

sin(D − x)
≤ h(D/2)

sin(D/2)
, ∀ x ∈ [0, D/2],

and
h(x)

sin(x)
≤ h(D/2)

sin(D/2)
, ∀ x ∈ [D/2, D].

For x ∈ [0, D/2] these yield (recall that cos(x) ≥ 0)

ω′
0(x) := h′(x) +

cos(D − x)

sin(D/2)
h(D/2) ≥ h′(x) +

cos(D − x)

sin(D − x)
h(x) ≥ 0,

and for x ∈ [D/2, D] (recall that cos(x) ≥ 0)

ω′
1(x) := h′(x)− cos(x)

sin(D/2)
h(D/2) ≤ h′(x)− cos(x)

sin(x)
h(x) ≤ 0.

Then we can collect all the estimates together:
∫

[0,D]

|h′(x)| ≤
∫

[0,D/2]

ω′
0(x) dx +

∫

[0,D/2]

|ω′
0(x)− h′(x)| dx

−
∫

[D/2,D]

ω′
1(x) dx +

∫

[D/2,D]

|ω′
1(x) − h′(x)| dx

≤ C‖h‖L∞(0,D). (2.19)

The claim (2.15) then follows applying Lemma 2.15.
If D > π/2, like in the case K ≤ 0, the two inequalities in (2.13) give for each point x ∈ (0, D) of

differentiability of h

h′(x) + (N − 1)
cos(D − x)

sin(D − x)
h(x) ≥ 0, h′(x) − (N − 1)

cos(x)

sin(x)
h(x) ≤ 0.

Hence for x ∈ (0, D − π/2) we have h′(x) ≥ 0 and for x ∈ [π/2, D] we have h′(x) ≤ 0. Then Lemma 2.15 and
the bound D ≤ π imply that

∫

[0,D−π/2]∪[π/2,D]

|h′(x)| dx =

∫

[0,D−π/2]

h′(x) dx −
∫

[π/2,D]

h′(x) dx

≤ 4 sup
[0,D]

|h| ≤ 4N

D
.
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In order to complete the proof it is then enough to bound
∫

[D−π/2,π/2]
|h′(x)| dx. Since (2.19) was obtained

for any h MCP-density on [0, D] with D ≤ π/2 without using the assumption of
∫

h = 1, it implies
∫

[0,π/2]

|h′(x)| dx ≤ C‖h‖L∞[0,π/2],

for any MCP-density on [0, D] with D ≥ π/2. Lemma 2.15 gives the claim.

In the proof of the Splitting Theorem for MCP(0, N) spaces we will use the next lemma.

Lemma 2.17. Let h be a MCP(0, N) measure on the whole real line R. Then h is identically equal to a real
constant.

Proof. We show that h(x0) = h(x1) for all x0, x1 ∈ R.
The MCP(0, N) condition reads as

h(tx1 + (1− t)x0) ≥ (1− t)N−1 h(x0).

For a < z < b apply the previous estimate for z = x0 and x1 = b, it implies

h(tb+ (1− t)z)

h(z)
≥ (1 − t)N−1;

if w ∈ (z, b) and w = tb+ (1− t)z for some t ∈ (0, 1), implies 1− t = (b−w)/(b− z). Plugging in the previous
inequality the explicit expression of (1 − t) and repeating the argument taking now x0 = a and x1 = z, we
obtain the next two sided estimate

(

b− x1
b− x0

)N−1

≤ h(x1)

h(x0)
≤
(

x1 − a

x0 − a

)N−1

, (2.20)

valid for all a ≤ x0 ≤ x1 ≤ b. Since

lim
b→+∞

(

b− x1
b− x0

)N−1

= 1 = lim
a→−∞

(

x1 − a

x0 − a

)N−1

,

and since (2.20) holds for all a ∈ (−∞, x0) and all b ∈ (x1,+∞), the thesis follows.

We now review few facts about CD(K,N) densities of the real line (see [13, Appendix]). Given K ∈ R and
N ∈ (1,∞), a non-negative Borel function h defined on an interval I ⊂ R is called a CD(K,N) density on I if
for all x0, x1 ∈ I and t ∈ [0, 1]

h
1

N−1 ((1− t)x0 + tx1) ≥ h
1

N−1 (x0)σ
(1−t)
K,N (|x1 − x0|) + h

1
N−1 (x1)σ

(t)
K,N−1(|x1 − x0|). (2.21)

A one-dimensional metric measure space, say (I, | · |, hL1), satisfies CD(K,N) if and only h has a continuous
representative h̃ that is a CD(K,N) density.

We will make use of the fact that a CD(K,N) density h : I → [0,∞) is locally semi-concave in the interior,
i.e. for all x0 in the interior of I, there exists Cx0 ∈ R so that h(x) − Cx0x

2 is concave in a neighborhood of
x0.

Recall moreover that if f : I → R denotes a convex function on an open interval I ⊂ R, it is well-known
that the left and right derivatives f ′,− and f ′,+ exist at every point in I and that f is locally Lipschitz; in
particular, f is differentiable at a given point if and only if the left and right derivatives coincide. Denoting
by D ⊂ I the differentiability points of f in I, it is also well-known that I \D is at most countable. Clearly,
all of these results extend to locally semi-convex and locally semi-concave functions as well. We finally recall
the next regularization property for CD(K,N) densities obtained in [13, Proposition A.10]

Proposition 2.18. Let h be a CD(K,N) density on an interval (a, b). Let ψε denote a non-negative C2

function supported on [−ε, ε] with
∫

ψε = 1. For any ε ∈ (0, b−a
2 ), define the function hε on (a+ ε, b− ε) by:

log hε := log h ∗ ψε :=

∫

log h(y)ψε(x − y) dy.

Then hε is a C2-smooth CD(K,N) density on (a+ ε, b− ε).

14



Part I

A representation formula for the Laplacian

3 Transport set and Disintegration

Throughout this section we assume (X, d,m) to be a metric measure space with supp(m) = X and (X, d)
geodesic and proper (and hence complete).

3.1 Disintegration of σ-finite measures

To any 1-Lipschitz function u : X → R there is a naturally associated d-cyclically monotone set:

Γu := {(x, y) ∈ X ×X : u(x)− u(y) = d(x, y)}. (3.1)

Its transpose is given by Γ−1
u = {(x, y) ∈ X ×X : (y, x) ∈ Γu}. We define the transport relation Ru and the

transport set Tu, as:
Ru := Γu ∪ Γ−1

u , Tu := P1(Ru \ {x = y}), (3.2)

where {x = y} denotes the diagonal {(x, y) ∈ X2 : x = y} and Pi is the projection onto the i-th component.
Recall that Γu(x) = {y ∈ X : (x, y) ∈ Γu} denotes the section of Γu through x in the first coordinate, and
similarly for Ru(x) (through either of the coordinates by symmetry). Since u is 1-Lipschitz, Γu,Γ

−1
u and Ru

are closed sets, and so are Γu(x) and Ru(x).
Also recall the following definitions, introduced in [12]:

A+ := {x ∈ Tu : ∃z, w ∈ Γu(x), (z, w) /∈ Ru},
A− := {x ∈ Tu : ∃z, w ∈ Γ−1

u (x), (z, w) /∈ Ru}.

A± are called the sets of forward and backward branching points, respectively. If x ∈ A+ and (y, x) ∈ Γu

necessarily also y ∈ A+ (as Γu(y) ⊃ Γu(x) by the triangle inequality); similarly, if x ∈ A− and (x, y) ∈ Γu

then necessarily y ∈ A−.
Consider the non-branched transport set

T nb
u := Tu \ (A+ ∪ A−), (3.3)

and define the non-branched transport relation:

Rnb
u := Ru ∩ (T nb

u × T nb
u ).

In was shown in [12] (cf. [9]) that Rnb
u is an equivalence relation over T nb

u and that for any x ∈ T nb
u ,

Ru(x) ⊂ (X, d) is isometric to a closed interval in (R, |·|).
Therefore, from the non-branched transport relation Rnb

u , one obtains a partition of the non-branched
transport set T nb

u into a disjoint family (of equivalence classes) {Xα}α∈Q each of them isometric to a closed
interval of R. Here Q is any set of indices. Concerning the measurability, as the space (X, d) is proper, Tu
and A± are σ-compact sets and, consequently, T nb

u and Rnb
u are Borel.

Remark 3.1 (Initial and final points). It will be useful to isolate two families of distinguished points of the
transport set: the set of initial and final points, respectively:

a := {x ∈ Tu : ∄y ∈ Tu, y 6= x, (y, x) ∈ Ru},

b := {x ∈ Tu : ∄y ∈ Tu, y 6= x, (x, y) ∈ Ru}.
Notice that no inclusion of the form a ⊂ A+, b ⊂ A− is valid. For instance consider X = {(x1, x2) ∈ R2 : x1 ≥
0} endowed with the Euclidean distance and u(x) := dist(x, {x1 = 0}); then a = {x1 = 0} and A± = ∅. In
particular, sets a and b may or may not be subset of T nb

u . See also the discussion right above (1.2). Curvature
assumptions will anyway imply that a and b have measure zero. We will also use the notations a(Xα), b(Xα)
to denote the starting and the final points, respectively, of the transport set Xα, whenever they exist.
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Once a partition of the non-branched transport set T nb
u is at disposal, a decomposition of the reference

measure mxT nb
u

can be obtained using the Disintegration Theorem. In the recent literature of Optimal Trans-
portation, disintegration formulas have always been obtained under the additional assumption of finiteness of
the measure m(X) <∞. We will therefore spend few words on how to use Disintegration Theorem to obtain
a disintegration associated to the family of transport rays without assuming m(X) <∞.

We first introduce the quotient map Q : T nb
u → Q induced by the partition:

α = Q(x) ⇐⇒ x ∈ Xα. (3.4)

The set of indices (or quotient set) Q can be endowed with the quotient σ-algebra Q (of the σ-algebra X over
X of m-measurable subsets):

C ∈ Q ⇐⇒ Q−1(C) ∈ X ,

i.e. the finest σ-algebra on Q such that Q is measurable.
The set of indices Q can be identified with any subset of Q̄ ⊂ X verifying the following two properties

- for all x ∈ T nb
u there exists a unique x̄ ∈ Q̄ such that (x, x̄) ∈ Rnb

u ;

- if x, y ∈ T nb
u and (x, y) ∈ Rnb

u , then x̄ = ȳ.

In particular Q̄ has to contain a single element for each equivalence class Xα.
Another way to obtain a quotient set is to look instead first for an explicit quotient map: in particular, any
map Q̄ : T nb

u → T nb
u verifying the following two properties

- (x, Q̄(x)) ∈ Rnb
u ;

- if (x, y) ∈ Rnb
u , then Q̄(x) = Q̄(y),

will be a quotient map for the equivalence relation Rnb
u over T nb

u ; then the quotient set associated to Q̄ will
be the set {x ∈ Rnb

u : x = Q̄(x)}.
Existence of Q̄ or of Q̄ can be always deduced by axiom of choice. Anyway in order to apply disintegration

theorem measurability properties are needed.
A rather explicit construction of the quotient map has been already obtained under the additional assump-

tion of m(X) < ∞ (cf. [14], [16, Lemma 3.8]); anyway m(X) < ∞ did not play any role in the proof and we
therefore simply report the next statement.
We will denote with A the σ-algebra generated by the analytic sets of X .

Lemma 3.2 (Q is locally contained in level sets of u). There exists an A-measurable quotient map Q : T nb
u → Q

such that the quotient set Q ⊂ X is A-measurable and can be written locally as a level set of u in the following
sense:

Q =
⋃

n∈N

Qn, Qn ⊂ u−1(ln),

where ln ∈ Q and Qi ∩Qj = ∅, for i 6= j.

Lemma 3.2 allows to apply Disintegration Theorem (cf. [13, Section 6.3]), provided the ambient measure
m is suitably modified into a finite measure. To this aim, it will be useful the next elementary lemma.

Lemma 3.3. Let m be a σ-finite measure over the proper metric space (X, d) with supp(m) = X. Then there
exists a Borel function f : X → (0,∞) satisfying

inf
K
f > 0, for any compact subset K ⊂ X,

∫

T nb
u

fm = 1. (3.5)

Proof. Since by assumption (X, d) is proper, then for every x0 ∈ X and R > 0 the closed metric ball B̄R(x0)
is compact. Thus, using that m is σ-finite and supp(m) = X , we get that

0 < m(Bn(x0) \Bn−1(x0)) <∞, for all n ∈ N≥1.

It is then readily checked that f : X → (0,∞) defined by f := 1
2nm(Bn(x0)\Bn−1(x0))

on Bn+1(x0) \Bn(x0) for

all n ∈ N≥1 satisfies (3.5).
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Under the assumption that m is σ-finite, let f : X → (0,∞) be satisfying (3.5), set

µ := fmxT nb
u
, (3.6)

and define the normalized quotient measure
q := Q♯ µ. (3.7)

Notice that q is a Borel probability measure over X . It is straightforward to check that

Q♯(mxT nb
u

) ≪ q.

Take indeed E ⊂ Q with q(E) = 0; then by definition
∫

Q−1(E) f(x)m(dx) = 0, implying m(Q−1(E)) = 0, since

f > 0.
From the Disintegration Theorem [29, Section 452], we deduce the existence of a map

Q ∋ α 7−→ µα ∈ P(X)

verifying the following properties:

(1) for any µ-measurable set B ⊂ X , the map α 7→ µα(B) is q-measurable;

(2) for q-a.e. α ∈ Q, µα is concentrated on Q−1(α);

(3) for any µ-measurable set B ⊂ X and q-measurable set C ⊂ Q, the following disintegration formula holds:

µ(B ∩Q−1(C)) =

∫

C

µα(B) q(dα).

Finally the disintegration is q-essentially unique, i.e. if any other map Q ∋ α 7−→ µ̄α ∈ P(X) satisfies the
previous three points, then

µ̄α = µα, q-a.e. α ∈ Q.

Hence once q is given (recall that q depends on f from Lemma 3.3), the disintegration is unique up to a set
of q-measure zero. In the case m(X) < ∞, the natural choice, that we tacitly assume, is to take as f the
characteristic function of T nb

u divided by m(T nb
u ) so that q := Q♯(mxT nb

u
/m(T nb

u )).
All the previous properties will be summarized saying that Q ∋ α 7→ µα is a disintegration of µ strongly

consistent with respect to Q.
It follows from [29, Proposition 452F] that

∫

X

g(x)µ(dx) =

∫

Q

∫

g(x)µα(dx) q(dα),

for every g : X → R ∪ {±∞} such that
∫

gµ is well-defined in R ∪ {±∞}. Hence picking g = 1/f (where f is
the one used to define µ), we get that

mxT nb
u

=

∫

Q

µα

f
q(dα); (3.8)

previous identity has to be understood with test functions as the previous formula.
Defining mα := µα/f , we obtain that mα is a non-negative Radon measure over X verifying all the

measurability properties (with respect to α ∈ Q) of µα and giving a disintegration of mxT nb
u

strongly consistent
with respect to Q. Moreover, for every compact subset K ⊂ X , it holds

1

supK f
µα(K) ≤ mα(K) =

µα

f
(K) ≤ 1

infK f
, for q-a.e. α ∈ Q. (3.9)

In the next statement, we summarize what obtained so far concerning the disintegration of a σ-finite
reference measure m with respect to the non-branched transport relation induced by any 1-Lipschitz function
u : X → R.
We denote by M+(X) the space of non-negative Radon measures over X .
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Theorem 3.4. Let (X, d,m) be any geodesic and proper (hence complete) m.m.s. with supp(m) = X and m

σ-finite. Then for any 1-Lipschitz function u : X → R, the measure m restricted to the non-branched transport
set T nb

u admits the following disintegration formula:

mxT nb
u

=

∫

Q

mα q(dα),

where q is a Borel probability measure over Q ⊂ X such that Q♯(mxT nb
u

) ≪ q and the map Q ∋ α 7→ mα ∈
M+(X) satisfies the following properties:

(1) for any m-measurable set B, the map α 7→ mα(B) is q-measurable;

(2) for q-a.e. α ∈ Q, mα is concentrated on Q−1(α) = Rnb
u (α) (strong consistency);

(3) for any m-measurable set B and q-measurable set C, the following disintegration formula holds:

m(B ∩Q−1(C)) =

∫

C

mα(B) q(dα).

(4) For every compact subset K ⊂ X there exists a constant CK ∈ (0,∞) such that

mα(K) ≤ CK , for q-a.e. α ∈ Q.

Moreover, fixed any q as above such that Q♯(mxT nb
u

) ≪ q, the disintegration is q-essentially unique (see above).

3.2 Localization of Ricci bounds

Under the additional assumption of a synthetic lower bound on the Ricci curvature, one can obtain regularity
properties both on T nb

u and on the conditional measures mα. As some of these results where obtained assuming
m(X) <∞, in what follows we review how to obtain the same regularity with no finiteness assumption on m.
First of all recall that, for any K ∈ R and N ∈ (1,∞), CD(K,N) implies MCP(K,N), which in turn implies
that m is σ-finite. Thus Theorem 3.4 can be applied.

Lemma 3.5. Let (X, d,m) be an essentially non-branching m.m.s. with supp(m) = X and verifying MCP(K,N),
for some K ∈ R, N ∈ (1,∞). Then for any 1-Lipschitz function u : X → R, it holds m(Tu \ T nb

u ) = 0.

Lemma 3.5 has been proved in [12] for metric measure spaces (X, d,m) verifying RCD(K,N) with N <∞
and supp(m) = X . The RCD(K,N) assumption was used in that proof only to have at disposal the following
property: given µ0, µ1 ∈ P(X) with µ0 ≪ m, there exists a unique optimal dynamical plan for theW2-distance
and it is induced by a map. In [15, Theorem 1.1] this property is also verified for an e.n.b. metric measure
space verifying MCP(K,N) with supp(m) = X , without any finiteness assumption on m. Hence Lemma 3.5
can be proved following verbatim [12].

Building on top of [15], in [13, Theorem 7.10] an additional information on the transport rays was proved:
for q-a.e. α ∈ Q it holds:

Ru(α) = Rnb
u (α) ⊃ Rnb

u (α) ⊃ R̊u(α), (3.10)

with the latter to be interpreted as the relative interior. The additional assumption of m(X) < ∞ was used
in the proof only to obtain the existence of a disintegration of m strongly consistent with the non-branched
equivalence relation. Hence from Theorem 3.4 also (3.10) is valid in the present framework.

To conclude, we assert that the localization results for the synthetic Ricci curvature lower boundsMCP(K,N)
and CD(K,N), with K,N ∈ R and N > 1, are valid also in our framework.

• Localization of MCP(K,N). In [9, Theorem 9.5], assuming non-branching and the MCP(K,N) condition,
it is proved (adopting a slightly different notation) that for q-a.e. α ∈ Q it holds

mα = hα H1
xXα ,

where H1 denotes the one-dimensional Hausdorff measure. Moreover, the one-dimensional metric mea-
sure space (X̄α, d,mα), isomorphic to ([0, Dα], | · |, hαL1), is proved to verify MCP(K,N); here X̄α stands
for the closure of the transport ray Xα with respect to d. Note that X̄α might not be a subset of T nb

u

because of its endpoints but this will not affect any argument as mα(X̄α \ Xα) = 0. No finiteness as-
sumption was assumed in [9, Theorem 9.5] and, since here we restrict to the non-branched transport set,
the arguments can be carried over to give the same statement.
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• Localization of CD(K,N). The localization of CD(K,N) was proved in [15, Theorem 5.1] under the
assumption m(X) = 1. Nevertheless, in [15] the CD(K,N) condition was assumed to be valid only
locally, i.e. the space was assumed to satisfy CDloc(K,N). In particular the proof first shows that the
one-dimensional metric measure space (Xα, d,mα) verifies CDloc(K,N) for q-a.e. α ∈ Q and then, thanks
to the local-to-global property of one-dimensional CD(K,N) condition, concludes with the full claim.
Hence, if (X, d,m) is e.n.b. and verifies CD(K,N), since by Theorem 3.4 a disintegration formula is at
disposal and the reference measure m is locally finite, one can repeat the arguments in [15, Theorem 5.1]
and obtain that the one-dimensional metric measure space (X̄α, d,mα), isomorphic to ([0, Dα], | · |, hαL1),
verifies CD(K,N).

We summarize the above discussion in the next statement.

Theorem 3.6. Let (X, d,m) be an essentially non-branching m.m.s. with supp(m) = X and satisfying
MCP(K,N), for some K ∈ R, N ∈ (1,∞).
Then, for any 1-Lipschitz function u : X → R, there exists a disintegration of m strongly consistent with Rnb

u

verifying

mxT nb
u

=

∫

Q

mα q(dα), q(Q) = 1.

Moreover, for q-a.e. α, mα is a Radon measure with mα = hαH1
xXα≪ H1

xXα and (X̄α, d,mα) verifies
MCP(K,N).
If, additionally, (X, d,m) satisfies CDloc(K,N), then hα is a CD(K,N) density on Xα for q-a.e. α.

It is worth recalling that, once we know that (X̄α, d,mα) verifies MCP(K,N), it is straightforward to
get that mα = hαH1

xXα for some density hα. We refer to Section 2.3 for all the properties verified by one
dimensional metric measure spaces verifying lower Ricci curvature bounds.
We conclude the section by specialising the results to the smooth framework of Riemannian manifolds (cf.
[39]).

Corollary 3.7. Let (M, g) be a complete 2 ≤ N -dimensional Riemannian manifold, and let m denote its
Riemannian volume measure.
Then, for any 1-Lipschitz function u :M → R, there exists a disintegration of m strongly consistent with Rnb

u

verifying

mxT nb
u

=

∫

Q

mα q(dα), q(Q) = 1.

Moreover,

1. For q-a.e. α, mα is a Radon measure with mα = hαH1
xXα≪ H1

xXα ;

2. For every x ∈M there exist a (compact, geodesically convex) neighbourhood U of x and K̄ ∈ R such that
hαxU is a CD(K̄,N) density on Xα ∩ U , for q-a.e. α;

3. If, additionally, Ricg ≥ Kg, for some K ∈ R, then hα is a CD(K,N) density on Xα for q-a.e. α.

Proof. The corollary follows directly from Theorem 3.4 and Theorem 3.6 reasoning as follows. A complete
Riemannian manifold is geodesic and proper hence Theorem 3.4 implies the first part of the claim:

mxT nb
u

=

∫

Q

mα q(dα), q(Q) = 1,

and for q-a.e. α, mα is a Radon measure with mα = hαH1
xXα≪ H1

xXα .
Moreover every point x ∈ M admits a geodesically convex compact neighbourhood U where, by com-

pactness, the Ricci tensor is bounded below by some K̄ ∈ R. In particular (U, d,mxU) is an essentially
non-branching CD(K̄,N) space and thus we can apply Theorem 3.6 to (U, d,mxU ). Since the partition as-
sociated to u : U → R is given by the restriction of transport rays, the quotient measure of m restricted to
U ∩ T nb

u will be absolutely continuous with respect to q; hence by q-essential uniqueness of disintegration we
deduce that hαxU is a CD(K̄,N) density on Xα ∩U , for q-a.e. α. Last point is already contained in Theorem
3.6.
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4 Representation formula for the Laplacian

From now on we will assume (X, d,m) to be an e.n.b. metric measure space verifying MCP(K,N), for some
K ∈ R and N ∈ (1,∞). In particular (X, d,m) is locally doubling & Poincaré space (recall Remark 2.6).

We will obtain an explicit representation formula for the Laplacian for a general 1-Lipschitz function

u : X → R, |u(x)− u(y)| ≤ d(x, y),

assuming a mild regularity property on Tu, the associated transport set defined in Section 3.
A distinguished role will be played by a particular family of 1-Lipschitz functions, namely the so-called

signed distance functions. Such a class played a key role in the recent proof [13] of the local-to-global property
of CD(K,N) under the e.n.b. assumption.

Definition 4.1 (Signed Distance Function). Given a continuous function v : (X, d) → R so that {v = 0} 6= ∅,
the function:

dv : X → R, dv(x) := d(x, {v = 0}) sgn(v), (4.1)

is called the signed distance function (from the zero-level set of v).

With a slight abuse of notation, we denote with d both the distance between points and the induced
distance between sets; more precisely

d(x, {v = 0}) := inf {d(x, y) : y ∈ {v = 0}} .

Lemma 4.2. dv is 1-Lipschitz on {v ≥ 0} and {v ≤ 0}. If (X, d) is a length space, then dv is 1-Lipschitz on
the entire X.

For the proof we refer to [13, Lemma 8.4].

We now fix once and for all a 1-Lipschitz function u : X → R. In order not to have empty statements,
throughout the section we will assume that m(Tu) > 0.

4.1 Representing the gradient of −u

The translation along T nb
u is defined as:

g : R× T nb
u → T nb

u ⊂ X, graph(g) = {(t, x, y) ∈ R×Rnb
u : u(x)− u(y) = t}.

Since Rnb
u is Borel, the same applies to g, while Dom (g) = P12(graph(g)) is analytic. We will write gt for

g(t, ·). Notice that
graph(gt) = {(x, y) ∈ Rnb

u : u(x)− u(y) = t}
is Borel as well and thus for t ∈ R,

Dom (gt) = T nb
u (t) := {x ∈ T nb

u : ∃y ∈ Rnb
u (x) with u(x)− u(y) = t}

is an analytic set. The rough intuitive picture is of course that gt plays the role of negative gradient flow of
u, restricted to the points of maximal slope 1. In order to handle the case when m(T nb

u ) = +∞, it is useful to
introduce the following definition.

Definition 4.3. A measurable subset E ⊂ X is said Rnb
u -convex if for any x ∈ T nb

u the set E ∩ Rnb
u (x) is

isometric to an interval.

For every bounded Rnb
u -convex subset E ⊂ T nb

u (2ε) with m(E) > 0, consider the function Λ : E →
C([0, 1];X) defined by

[0, 1] ∋ τ 7→ Λ(x)τ :=

{

gτ (x), τ ∈ [0, ε],

gε(x), τ ∈ [ε, 1],

and set

πE :=
1

m(E)
Λ♯mxE. (4.2)
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Note that

m(E)(eτ )♯πE = (eτ ◦ Λ)♯mxE=

{

(gτ )♯mxE=: mτ
E τ ∈ [0, ε],

(gε)♯mxE=: mε
E τ ∈ [ε, 1].

(4.3)

The rough intuitive idea is of course that mτ
E is the push forward of mxE via the negative gradient flow of u

at time τ .

Proposition 4.4. Let (X, d,m) be an e.n.b. metric measure space verifying MCP(K,N) and u be as before.
For every bounded Rnb

u -convex subset E ⊂ T nb
u (2ε) with m(E) > 0, the measure πE defined in (4.2) is a test

plan representing the gradient of −u (see Definition 2.9).

Proof. Fix t ∈ [0, ε]. First of all write

m(E) (et)♯πE = mt
E =

∫

Q

(gt)♯mαxE q(dα). (4.4)

Since mαxE= hα H1
xXα∩E, we have

(gt)♯mαxE=
hα ◦ g−t

hα
mαxgt(E). (4.5)

Identifying Xα ∩ (∪t∈[0,ε]gt(E)) with an interval [aα, bα] ⊂ R (for the sake of the argument we assume the
interval to be closed, but all the other cases are completely analogous), from (2.11), for x ∈ [aα+ t, bα− 2ε+ t]
and t ≤ ε it holds

hα(x− t)

hα(x)
≤
[

sK/(N−1)(bα − x+ t)

sK/(N−1)(bα − x)

]N−1

≤ Cε, for all x ∈ [aα + t, bα − 2ε+ t] and t ≤ ε (4.6)

where the last inequality follows from the fact that bα − x ≥ 2ε − t ≥ ε > 0. We stress that Cε > 0 is
independent of α ∈ Q. The combination of (4.4), (4.5) and (4.6) gives that (et)♯π ≤ Cε

m(E)m for all t ∈ [0, 1],

i.e. πE has bounded compression. Moreover since m(E) <∞, and |γ̇| = 1 for π-a.e. γ, it follows that πE is a
test plan (Definition 2.8).

We now prove that πE represents the gradient of −u. Since by construction u(x) − u(gτ (x)) = τ for
mxE-a.e. x, we have that

lim inf
τ→0

∫

u(γ0)− u(γτ )

τ
πE(dγ) =

1

m(E)
lim inf
τ→0

∫

E

u(x)− u(gτ (x))

τ
m(dx) = 1.

Hence the claim (recall Definition 2.9) follows by the fact that the 1-Lipschitz regularity of u implies |Du| ≤ 1
m-a.e. and thus

1 ≥ 1

2m(E)

∫

T nb
u (2ε)

|Du|2(x)m(dx) +
1

2
πE(C([0, 1];X)).

In the next statement and in the rest of the paper, we will often consider the restriction of a Lipschitz
function f to some transport ray Rnb

u (α) giving a real variable Lipschitz function: [aα, bα] ∋ t 7→ f(g(t, aα)).
It will make sense then to compute the t-derivative of the previous map: whenever it exists, we will use the
following notation

f ′(x) := lim
t→0

f(g(t, x))− f(x)

t
. (4.7)

Note that f ′ is roughly the directional derivative of f “in the direction of −∇u”. Observe that, if (X, d,m) is
MCP(K,N) e.n.b., for every f ∈ LIP(X) the quantity f ′ is well defined m-a.e. on Tu.
Theorem 4.5. Let (X, d,m) be an e.n.b. metric measure space verifying MCP(K,N) and u be as before.
Then for any Lipschitz function f : X → R it holds

D−f(−∇u) ≤ f ′ ≤ D+f(−∇u), m-a.e. on Tu. (4.8)
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Proof. Given f ∈ LIP(X), fix ε > 0 and let E ⊂ T nb
u (2ε) be any bounded Rnb

u -convex subset with m(E) > 0.
Theorem 2.10 together with Proposition 4.4 and equation (4.3) implies that

∫

E

D−f(−∇u)m

≤ lim inf
τ→0

∫

E

f(gτ (x))− f(x)

τ
m(dx)

≤ lim sup
τ→0

∫

E

f(gτ (x))− f(x)

τ
m(dx)

≤
∫

E

D+f(−∇u)m.

To conclude it is enough to observe that

∫

E

f(gτ (x))− f(x)

τ
m(dx) =

∫

Q

∫

E∩Xα

f(gτ (x)) − f(x)

τ
mα(dx) q(dα),

and notice that for each α ∈ Q the incremental ratio (f(gτ (x))) − f(x))/τ converges to f ′(x) for mα-a.e.
x ∈ Xα and is dominated by the Lipschitz constant of f . Therefore, by Dominated Convergence Theorem, for
each E as above it holds

∫

E

D−f(−∇u)m ≤
∫

E

f ′m ≤
∫

E

D+f(−∇u)m.

The claim follows by the arbitrariness of ε > 0 and E ⊂ T nb
u (2ε).

Chain rule [30, Proposition 3.15] combined with Theorem 4.5 permits to obtain the next

Corollary 4.6. Let (X, d,m) be an e.n.b. metric measure space verifying MCP(K,N) and u as before. Then
for any Lipschitz function f : X → R

D−f(−∇u2) ≤ 2uf ′ ≤ D+f(−∇u2),

where the inequalities hold true m-a.e. over Tu.

Proof. We show that D−f(−∇u2) ≤ 2uf ′, the argument for proving 2uf ′ ≤ D+f(−∇u2) is completely
analogous.
By chain rule [30, Proposition 3.15], we know that

D−f(−∇u2) = 2uD−sgnuf(−∇u).

Combining the last identity with Theorem 4.5 yields

D−f(−∇u2) =
{

2uD+f(−∇u) ≤ 2uf ′ m-a.e. on {u ≤ 0}
2uD−f(−∇u) ≤ 2uf ′ m-a.e. on {u ≥ 0},

giving the claim.

4.2 A formula for the Laplacian of a general 1-Lipschitz function

The next proposition, which is key to show that ∆u is a Radon functional, follows from Lemma 2.15 and
Lemma 2.16. We use the notation that a(Xα) (respectively b(Xα)) denotes the initial (respectively the final)
point of the transport ray Xα. Recall also that hα is positive and differentiable a.e. on Xα, in particular
log hα is well defined and differentiable a.e. along Xα.

Proposition 4.7. Let (X, d,m) be an e.n.b. metric measure space verifying MCP(K,N), for some K ∈
R, N ∈ (1,∞). Let u : X → R be a 1-Lipschitz function with associated disintegration mxT nb

u
=
∫

Q mα q(dα),

with q(Q) = 1, mα = hαH1
xXα , hα ∈ L1(H1

xXα) for q-a.e. α ∈ Q. Assume that

∫

Q

1

d(a(Xα), b(Xα))
q(dα) <∞.
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Then Tu : LIPc(X) → R

Tu(f) :=

∫

Q

∫

Xα

(log hα)
′f mαq(dα) +

∫

Q

(hαf)(a(Xα))− (hαf)(b(Xα)) q(dα) (4.9)

is a Radon functional over X.

Proof. Fix any bounded open subset W ⊂ X and observe that we can find a bounded Rnb
u -convex measurable

subset E ⊂ T nb
u such that W ∩ T nb

u ⊂ E (take for instance on each Xα the convex-hull of W ∩Xα) and

d(a(Xα ∩ E), b(Xα ∩E)) ≥ min{1, d(a(Xα), b(Xα))}, for all α ∈ Q. (4.10)

Note that E depends just on W and the ray relation Rnb
u . For any f ∈ LIPc(X) with supp(f) ⊂W , it is clear

that
∫

Q

∫

Xα

(log hα)
′ f mαq(dα) +

∫

Q

(hαf)(a(Xα))− (hαf)(b(Xα)) q(dα)

=

∫

Q

∫

Xα∩E

(log hα)
′ f mαq(dα) +

∫

Q

(hαf)(a(Xα ∩ E))− (hαf)(b(Xα ∩ E)) q(dα).

Since E is bounded, we have supα∈Q d (a(Xα ∩ E), b(Xα ∩ E)) ≤ CW for some CW ∈ (0,∞) depending only
on W ⊂ X . Moreover, Theorem 3.4(4) implies supα∈Q

∫

Xα∩E hα dH1 ≤ CW . Therefore, applying Lemma 2.15

and Lemma 2.16 to the renormalized densities h̃α := 1∫
Xα∩E

hα dH1hα and rescaling back to get hα, recalling

also (4.10) we infer

sup
Xα∩E

hα(x) +

∫

Xα∩E

|h′α| dH1 ≤ CW
1

d(a(Xα), b(Xα)
, for q-a.e. α ∈ Q(E) ⊂ Q.

We can thus estimate
∣

∣

∣

∫

Q

∫

Xα∩E

(log hα)
′ f mαq(dα) +

∫

Q

(hαf)(a(Xα ∩ E))− (hαf)(b(Xα ∩ E)) q(dα)
∣

∣

∣

≤
(

CW

∫

Q

1

d(a(Xα), b(Xα))
q(dα)

)

max |f |.

We can thus conclude that (4.9) defines a Radon functional.

The first main result follows by combining Theorem 4.5 and Proposition 4.7.

Theorem 4.8. Let (X, d,m) be an e.n.b. metric measure space with supp(m) = X and verifying MCP(K,N)
for some K ∈ R, N ∈ (1,∞). Let u : X → R be a 1-Lipschitz function with associated disintegration
mxT nb

u
=
∫

Q
mα q(dα), with q(Q) = 1, mα = hαH1

xXα , hα ∈ L1(H1
xXα) for q-a.e. α ∈ Q. Assume that

∫

Q

1

d(a(Xα), b(Xα))
q(dα) <∞.

Then, for any open subset U ⊂ X such that m(U \ Tu) = 0, it holds u ∈ D(∆, U). More precisely, TU :
LIPc(U) → R defined by

TU (f) := −
∫

Q

f h′αH1
xXα∩U q(dα) +

∫

Q

(f hα)(b(Xα))− (f hα)(a(Xα))q(dα),

is a Radon functional with TU ∈ ∆uxU . Moreover, writing TU = T reg
U + T sing

U with

T reg
U (f) := −

∫

Q

f h′αH1
xXα∩U q(dα), T sing

U (f) :=

∫

Q

(f hα)(b(Xα))− (f hα)(a(Xα))q(dα),

it holds that T reg
U can be represented by T reg

U = −(log hα)
′mxU and satisfies the bounds:

−(N − 1)
s′K/(N−1)(d(b(Xα), x))

sK/(N−1)(d(b(Xα), x))
≤ (log hα)

′(x) ≤ (N − 1)
s′K/(N−1)(d(x, a(Xα)))

sK/(N−1)(d(x, a(Xα)))
. (4.11)
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Remark 4.9 (Interpretation in case Xα is unbounded). Let us explicitly note that, in case the ray Xα is
isometric to (−∞, b) (respectively (a,+∞)), then by definition (fhα)(a(Xα)) = 0 (resp. (fhα)(b(Xα)) = 0).
Let us discuss the case K = −(N − 1), the other cases being analogous. In case the ray Xα is isometric to
(−∞, b) (respectively (a,+∞)), then the upper bound (resp. the lower bound) in (4.11) should be interpreted
as (log hα)

′ ≤ N − 1 (resp. (log hα)
′ ≥ −(N − 1)). In particular, if for q-a.e. α ∈ Q the ray Xα is isometric to

(−∞,+∞), then for any open subset U ⊂ X with m(U \ Tu) = 0 the singular part T sing
U vanishes and it holds

−(N − 1)mxU≤ T reg
U ≤ (N − 1)mxU .

Proof of Theorem 4.8. Fix an arbitrary open subset U ⊂ X such that m(U \ Tu) = 0. Let f : X → R be any
Lipschitz function compactly supported in U and let f ′ be defined m-a.e. by (4.7). Recall that the closure
of the transport ray (X̄α, d,mα) is isomorphic to a (possibly unbounded, possibly not open) real interval
[a(Xα), b(Xα)] endowed with the weighted measure hαL1, so we can integrate by parts Lipschitz functions on
Xα analogously as on a weighted real interval.
Via an integration by parts, we thus obtain

∫

Xα

hα(x) f
′(x)H1(dx)

= −
∫

Xα

h′α(x) f(x)H1(dx) + (hαf)(b(Xα))− (hαf)(a(Xα)), q-a.e. α,

which, together with Theorem 3.6, gives
∫

U

f ′(x)m(dx)

= −
∫

Q

∫

Xα

h′α(x) f(x)H1(dx) + (hαf)(b(Xα))− (hαf)(a(Xα)) q(dα). (4.12)

Proposition 4.7 ensures that, under the assumptions of Theorem 4.8, the expression

T∆u(f) := −
∫

Q

f h′αH1
xXα q(dα) +

∫

Q

(hαf)(b(Xα))− (hαf)(a(Xα)) q(dα)

defines a Radon functional on U .
The combination of (4.12) with Theorem 4.5 gives that

∫

U

D−f(−∇u)m ≤ T∆u(f) ≤
∫

U

D+f(−∇u)m.

Noting that (see [30, Proposition 3.15])

D−f(−∇u) = −D+f(∇u), D+f(−∇u) = −D−f(∇u), m-a.e.,

the previous inequalities imply
∫

U

D−f(∇u)m ≤ −T∆u(f) ≤ −
∫

U

D+f(∇u)m.

Recalling (2.13), the proof of all the claims is complete.

The next result, dealing with smooth Riemannian manifolds, can be proved using Corollary 3.7 in the proof
of Theorem 4.8 and following verbatim the arguments. Let us just mention that the Laplacian here is single
valued, i.e. {TU} = ∆uxU , since on a smooth Riemannian manifold (M, g) it holds D+f(∇u) = D−f(∇u) =
g(∇f,∇u).
Corollary 4.10. Let (M, g) be a 2 ≤ N -dimensional complete Riemannian manifold. Let u : M → R be
a 1-Lipschitz function with associated disintegration mxTu=

∫

Q
mα q(dα), with q(Q) = 1, mα = hαH1

xXα ,

hα ∈ L1(H1
xXα) for q-a.e. α ∈ Q. Assume that

∫

Q

1

d(a(Xα), b(Xα))
q(dα) <∞.
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Then, for any open subset U ⊂ M such that m(U \ Tu) = 0, it holds u ∈ D(∆, U). More precisely, TU :
LIPc(U) → R defined by

TU (f) := −
∫

Q

f h′αH1
xXα∩U q(dα) +

∫

Q

(f hα)(b(Xα))− (f hα)(a(Xα))q(dα),

is a Radon functional with {TU} = ∆uxU . Moreover, writing TU = T reg
U + T sing

U with

T reg
U (f) := −

∫

Q

f h′αH1
xXα∩U q(dα), T sing

U (f) :=

∫

Q

(f hα)(b(Xα))− (f hα)(a(Xα))q(dα),

it holds that T reg
U can be represented by T reg

U = −(log hα)
′mxU .

In addition, if Ricg ≥ Kg for some K ∈ R, then the following bounds hold:

−(N − 1)
s′K/(N−1)(d(b(Xα), x))

sK/(N−1)(d(b(Xα), x))
≤ (log hα)

′(x) ≤ (N − 1)
s′K/(N−1)(d(x, a(Xα)))

sK/(N−1)(d(x, a(Xα)))
. (4.13)

Specialising Corollary 4.10 to the distance function gives Theorem 1.1, we briefly discuss the details below.

Proof of Theorem 1.1. Fix p ∈M .
Step 1. u := dp := d(p, ·) satisfies the assumptions of Corollary 4.10.

Since by hypothesis (M, g) is complete, any point x ∈M can be joined to p with a length minimising geodesic.
Thus Tdp = M , b(Xα) = p and a(Xα) ∈ Cp for every α ∈ Q. Moreover, there exists ǫ = ǫ(p) > 0 such that
all the minimising geodesics Xα emanating from p have length d(a(Xα), b(Xα)) = d(a(Xα), p) ≥ ǫ. Since by
construction q(Q) = 1, we conclude that the assumptions of Corollary 4.10 are verified.

Step 2. The representation formula (1.7) holds. We are left to show that
∫

Q

hα δb(Xα) q(dα) = 0.

Clearly, it is enough to show that
hα(p) = 0, for q-a.e. α ∈ Q. (4.14)

Suppose by contradiction that there exists Q̄ ⊂ Q where hα(p) ≥ c > 0, with q(Q̄) > 0. For simplicity of
notation, we identify the minimising geodesic Xα with the real interval [aα, bα], where p corresponds to bα.
Then by Fatou’s Lemma it holds:

∞ > ωN = lim inf
r↓0

m(Br(p))

rN
≥ lim inf

r↓0

∫

Q̄

1

rN

∫

[bα−r,bα]

hα(t)dt q(dα)

≥
∫

Q̄

lim inf
r↓0

1

r

∫

[bα−r,bα]

hα(t)

rN−1
dt q(dα) = ∞,

giving a contradiction and thus proving the claim (4.14).

Step 3. [∆dp]
±
reg := −[(log hα)

′]± m, [∆dp]sing := −
∫

Q
hα δa(Xα) q(dα) define three non-negative Radon

measures, and ∆dp = [∆dp]
+
reg − [∆dp]

−
reg + [∆dp]sing.

Combining “2.” of Corollary 3.7 with (2.13), it follows that [∆dp]reg := −(log hα)
′ m defines a Radon func-

tional; by Riesz Theorem, its positive and negative parts are thus Radon measures. Also [∆dp]sing :=

−
∫

Q
hα δa(Xα) q(dα) = ∆dp − [∆dp]reg is a non-positive Radon functional (as difference of Radon functionals)

and thus, by Riesz Theorem, it defines a Radon measure.

Step 4. Upper and lower bounds in case Ricg ≥ Kg, for some K ∈ R.
If Ricg ≥ Kg, by “3.” of Corollary 3.7 we know that hα is a CD(K,N) (and in particular MCP(K,N)) density
over Xα for q-a.e. α. Thus (2.13) gives the bounds:

−(N − 1)
s′K/(N−1)(da(Xα))

sK/(N−1)(da(Xα))
m ≤ [∆dp]reg ≤ (N − 1)

s′K/(N−1)(dp)

sK/(N−1)(dp)
m. (4.15)
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Remark 4.11 (On the bounds under the assumption Ricg ≥ Kg). Few comments are in order.

• The upper bound in (4.15) is the celebrated Laplacian comparison Theorem. Note that, a similar upper
bound is proved above to hold more generally for the (regular part of the) Laplacian of a (rather) general
1-Lipschitz function (4.13) in the high generality of e.n.b. MCP(K,N)-spaces (4.11).

• The case of the round sphere. Let p, q ∈ SN be a couple of antipodal points; clearly the cut locus of p
coincides with q. In this case, choosing u = dp in the construction above gives the partition of SN \{p, q}
into meridians, and each ray is a meridian without its endpoints p, q, oriented from q to p. Theorem 1.1
thus yields

−(N − 1) cotdq ≤ ∆dp ≤ (N − 1) cotdp, on SN .

Note that (for the round sphere) the same conclusion could be achieved by applying the Laplacian
comparison Theorem to dp and to dq, and using that dp = π − dq.

• The lower bound for a smooth Riemannian manifold. Arguing analogously to the spherical case, one
can achieve the lower bound along a (minimising) geodesic γ : [0, 1] → M with (M, g) satisfying Ricg ≥
(N − 1)g (cf. [27, Lemma 3.2]). In this case, the function x 7→ dγ0(x) + dγ1(x) achieves its minimum
d(γ0, γ1) along γ([0, 1]); thus ∆(dγ0 + dγ1) ≥ 0 along γ((0, 1)) and, applying the upper bound (1.1) to
dγ0 , dγ1 and exploiting the linearity of the Laplacian we get

−(N − 1) cotdγ1 ≤ ∆dγ0 ≤ (N − 1) cotdγ0 , along γ((0, 1)). (4.16)

By “glueing” all the inequalities (4.16) corresponding to all the (minimising) geodesics emanating from p,
gives (4.15). Clearly this argument holds for smooth Riemannian manifolds, but in situations where the
space is a-priori not smooth and the Laplacian is a-priori not linear (as for e.n.b. MCP(K,N)-spaces),
one has to argue differently. As the reader could already appreciate (see e.g. the proof of Theorem 1.1),
we attacked the problem by using techniques from L1-optimal transport.

A crucial fact in order to apply Theorem 4.8 to the distance function in the smooth case was that the cut
locus of a point p is at strictly positive distance from p. This fact is clearly not at disposal in the general
setting of an e.n.b. MCP(K,N) space (e.g. the boundary of a convex body in R3 whose cut locus is dense).
In the next Subsection 4.3 we will thus argue differently, showing first the result for the distance squared, and
then getting the claim for the distance via chain rule.

4.3 A formula for the Laplacian of a signed distance function

The goal of the subsection is to prove the existence of the Laplacian of dv and d2v as Radon measures and to
show upper and lower bounds; let us stress that, contrary to the previous subsection, here there will be no
integrability assumption on the reciprocal of the length of the transport rays.

Recall that given a continuous function v : (X, d) → R so that {v = 0} 6= ∅, the signed distance function

dv : X → R, dv(x) := d(x, {v = 0}) sgn(v),

is 1-Lipschitz.
Notice also that since (X, d) is proper, Tdv ⊃ X \{v = 0}. Indeed, given x ∈ X \{v = 0}, consider the distance
minimising z ∈ {v = 0} (whose existence is guaranteed by the compactness of closed bounded sets). Then
(x, z) ∈ Rdv and thus x ∈ Tdv , as x 6= z. The next remark follows.

Remark 4.12. Let Xα be any transport ray associated with dv and let a(Xα), b(Xα) be its starting and the
final point, respectively. Then

dv(b(Xα)) ≤ 0, dv(a(Xα)) ≥ 0,

whenever b(Xα) and a(Xα) exist.

The next Lemma will be key to show the existence of the Laplacian of d2v as a Radon measure.

Lemma 4.13. Let (X, d,m) be an e.n.b. metric measure space verifying MCP(K,N), for some K ∈ R, N ∈
(1,∞).
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The expression

ν :=2

(

1 + d({v = 0}, x)(N − 1)
s′K/(N−1)(db(Xα)(x))

sK/(N−1)(db(Xα)(x))

)

mx{v≥0}

+ 2

(

1 + d({v = 0}, x)(N − 1)
s′K/(N−1)(da(Xα)(x))

sK/(N−1)(da(Xα)(x))

)

mx{v<0} (4.17)

defines a signed Radon measure over X. More precisely:

• Case K > 0: ν is a signed finite measure on X satisfying ν ≤ CK,N m.
Moreover:

– If
sup

x∈{v≥0}

d(x, b(Xα)) < π
√

(N − 1)/K, sup
x∈{v<0}

d(x, a(Xα)) < π
√

(N − 1)/K

then ν has density bounded in L∞(X,m);

– If
sup

x∈{v≥0}

d(x, b(Xα)) = π
√

(N − 1)/K or sup
x∈{v<0}

d(x, a(Xα)) = π
√

(N − 1)/K

then there exist exactly two points ā, b̄ ∈ X with d(ā, b̄) = π
√

(N − 1)/K such that for q-a.e. α

a(Xα) = ā, b(Xα) = b̄,

ν has density bounded in

L∞
loc({v ≥ 0} \ {ā},m) ∩ L∞

loc({v ≤ 0} \ {b̄},m) ∩ L1(X,m).

Moreover, in this case (X,m) is isomorphic to a spherical suspension as a measure space. If in
addition (X, d,m) is an RCD(K,N) space, then (X, d,m) is isomorphic to a spherical suspension as
a metric measure space.

• Case K = 0: ν = 2m is a non-negative Radon measure; if b(Xα) or a(Xα) do not exists, the two ratios
in (4.17) are posed by definition equal to 0, respectively

• Case K ≤ 0: ν is a non-negative Radon measure. if b(Xα) or a(Xα) do not exists, the two ratios in
(4.17) are posed by definition equal to 1, respectively.

Proof. • For K = 0 the bounds are straightforward consequence of the definition of the coefficients sK/(N−1)

given in (2.10).
• For K < 0 observe that, since (0,∞) ∋ t 7→ coth t ∈ (0,∞) is decreasing and d({v = 0}, x) ≤ db(Xα)(x)

for all x ∈ {v ≤ 0}, it holds

0 ≤ d({v = 0}, x)
s′K/(N−1)(db(Xα)(x))

sK/(N−1)(db(Xα)(x))
≤ d({v = 0}, x)

s′K/(N−1)(d({v = 0}, x))
sK/(N−1)(d({v = 0}, x))

= d({v = 0}, x)
√

−K
N − 1

coth

(

√

−K
N − 1

d({v = 0}, x)
)

, for all x ∈ {v ≤ 0}.

Since the function [0,∞) ∋ t 7→ t coth
(√

−K
N−1 t

)

is locally bounded and the discussion for the second line of

(4.17) is completely analogous, the claim follows.
• For K > 0, recall that a MCP(K,N)-space has diameter at most π

√

(N − 1)/K. Since (0, π) ∋ t 7→ cot t
is decreasing and d({v = 0}, x) ≤ db(Xα)(x) for all x ∈ {v ≤ 0}, it holds

d({v = 0}, x)
s′K/(N−1)(db(Xα)(x))

sK/(N−1)(db(Xα)(x))
≤ d({v = 0}, x)

s′K/(N−1)(d({v = 0}, x))
sK/(N−1)(d({v = 0}, x))

= d({v = 0}, x)
√

K

N − 1
cot

(

√

K

N − 1
d({v = 0}, x)

)

, for all x ∈ {v ≤ 0}.
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It is easily checked that sup
t∈[0,π

√
(N−1)/K]

(

1 + t
√

K(N − 1) cot
(

t
√

K/(N − 1)
))

≤ C′
K,N , thus the bound

ν ≤ CK,Nm follows.

Since inf
t∈[0,π

√
(N−1)/K−ε]

cot
(

t
√

K/(N − 1)
)

> −∞ for every ε ∈ (0, π
√

(N − 1)/K], we have that ν is a

measure with L∞-bounded density unless we are in the second case.
To discuss the latter case we assume K = N − 1 in order to simplify the notation, the case for general

K > 0 being completely analogous.
Using the maximal diameter Theorem (proved by Ohta [48] in the non-branched MCP(N − 1, N)-setting and
easily extendable to the present e.n.b situation) one can show that all the rays Xα are of length π, for the
reader’s convenience let us give a self-contained argument. Let Xᾱ be a ray of length π and Xα be any other
ray, then

d(a(Xα), b(Xα)) + π = d(a(Xα), b(Xα)) + d(a(Xᾱ), b(Xα)) + d(b(Xα), b(Xᾱ))

≥ d(a(Xᾱ), b(Xα)) + d(a(Xα), b(Xᾱ)), (4.18)

where the first equality follows from [48, Lemma 5.2] (since |Xᾱ| = π, then for each x ∈ X , d(x, a(Xᾱ)) +
d(x, b(Xᾱ)) = π). By d-cyclical monotonicity also the reverse inequality is valid giving

d(a(Xα), b(Xα)) + π = d(a(Xᾱ), b(Xα)) + d(a(Xα), b(Xᾱ)). (4.19)

In particular, a(Xᾱ) 6= b(Xα): indeed otherwise (4.19) would give d(a(Xα), b(Xα)) + π = d(a(Xα), b(Xᾱ))
which, in virtue of Myers diameter’s bound, would imply a(Xα) = b(Xα). Contradicting the fact that the rays
have strictly positive length.
Summing d(b(Xα), b(Xᾱ))−π (resp. d(a(Xα), a(Xᾱ))−π) to both sides of (4.19) and using again [48, Lemma
5.2], we get

d(a(Xα), b(Xα)) + d(b(Xα), b(Xᾱ)) = d(a(Xα), b(Xᾱ)),

d(a(Xα), b(Xα)) + d(a(Xα), a(Xᾱ)) = d(a(Xᾱ), b(Xα)).

Summing up the last two identities, together with (4.19), yields

d(a(Xα), b(Xα)) + d(a(Xα), a(Xᾱ)) + d(b(Xᾱ), b(Xα)) = π.

Since d(a(Xᾱ), b(Xᾱ)) = π, the last identity forces the four points a(Xᾱ), a(Xα), b(Xα), b(Xᾱ) to lie on the
same geodesic γ. If a(Xα) 6= a(Xᾱ) (or resp. b(Xα) 6= b(Xᾱ) ) then a(Xα) (resp. b(Xα)) would be an internal
point of γ, contradicting that a(Xα) is the initial point (resp. b(Xα) is the final point) of the non-extendible
ray Xα.

Moreover (X,m) is isomorphic as a measure space to a spherical suspension over any transport ray of
length π, [48, Page 235].
We are left to show that the density of ν is in L1(X,m). By symmetry it is enough to show that

∫

{v≥0}

∣

∣1 + (N − 1) d({v = 0}, x) cot(d(b̄, x))
∣

∣ m(dx) <∞. (4.20)

Notice that, for every fixed ε ∈ [0, π/2], the integrand is bounded for d(b̄, x) ∈ [ε, π − ε].
Since b̄ ∈ {v ≤ 0}, if b̄ is accumulation point for {v ≥ 0}, then v(b̄) = 0. As v is strictly decreasing on the
rays, which cover a dense subset, it follows that {v = 0} =

{

b̄
}

. Thus, in this case, the integrand becomes
1 + d(b̄, x) cot(d(b̄, x)) which is bounded for d(b̄, x) ∈ [0, ε].
We now show that the integral is finite also on

{

x : d(b̄, x) ∈ [π − ε, π]
}

∩{v ≥ 0}. Since d({v = 0}, x) ≤ d(b̄, x),
it is enough to show that

∫

{v≥0}∩d(b̄,x)∈[π−ε,π]

∣

∣1 + (N − 1) d(b̄, x) cot(d(b̄, x))
∣

∣ m(dx) <∞. (4.21)

Recalling that (X,m) is isomorphic as a measure space to a spherical suspension over any transport ray of
length π, the integral in (4.21) is bounded by

∫

[π−ε,π]

|1 + (N − 1) t cot t| sinN−1(t) dt =

∫

[0,ε]

[(N − 1)(π − s) cot s− 1] sinN−1(s) ds

= (N − 1)π

∫

[0,ε]

sN−2 ds+O(ε) <∞,
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since N > 1. This concludes the proof that the density of ν is in L1(X,m). The stronger rigidity statement
under the stronger RCD(K,N) assumption is a direct consequence of the Maximal Diameter Theorem proved
by Ketterer [37] in the RCD(K,N)-setting.

Corollary 4.6 and Lemma 4.13 have far reaching consequences.

Theorem 4.14. Let (X, d,m) be an e.n.b. metric measure space verifying MCP(K,N), for some K ∈ R, N ∈
(1,∞).

Consider the signed distance function dv for some continuous function v : X → R and the associated
disintegration mxX\{v=0}=

∫

Q
hαH1

xXα q(dα).

Then d2v ∈ D(∆) and one element of ∆(d2v), that we denote with ∆d2v, has the following representation
formula:

∆d2v = 2(1− dv(log hα)
′)m− 2

∫

Q

(hαdv)[δa(Xα) − δb(Xα)] q(dα). (4.22)

Moreover ∆d2v is a sum of two signed Radon measures and the next comparison results hold true:

∆d2v ≤ ν := 2m+ 2(N − 1) d({v = 0}, x)
s′K/(N−1)(db(Xα)(x))

sK/(N−1)(db(Xα)(x))
mx{v≥0}

+ 2(N − 1) d({v = 0}, x)
s′K/(N−1)(da(Xα)(x))

sK/(N−1)(da(Xα)(x))
mx{v<0}, (4.23)

[

∆d2v
]reg

:= 2 (1− dv(log hα)
′)m

≥ 2m− 2(N − 1) d({v = 0}, x)
s′K/(N−1)(da(Xα)(x))

sK/(N−1)(da(Xα)(x))
mx{v≥0}

− 2(N − 1) d({v = 0}, x)
s′K/(N−1)(db(Xα)(x))

sK/(N−1)(db(Xα)(x))
mx{v<0}, (4.24)

where
[

∆d2v
]reg

is the regular part of ∆d2v (i.e. absolutely continuous with respect to m).

Proof. Fix any compactly supported Lipschitz function f : X → R and integrate by parts on each ray Xα to
obtain

∫

Xα

dv(x)f
′(x)hα(x)H1(dx)

= −
∫

Xα

f(x)d′v(x)hα(x)H1(dx)−
∫

Xα

f(x)dv(x)h
′
α(x)H1(dx)

+ (fdvhα)(b(Xα))− (fdvhα)(a(Xα))

=

∫

Xα

f(x)hα(x)H1(dx) −
∫

Xα

f(x)dv(x)h
′
α(x)H1(dx)

+ (fdvhα)(b(Xα))− (fdvhα)(a(Xα))

=

∫

Xα

f(x)
(

1− dv(x)(log hα)
′(x)

)

hα(x)H1(dx)

+ (fdvhα)(b(Xα))− (fdvhα)(a(Xα)). (4.25)

Then considering along each ray Xα the two regions {v ≥ 0} and {v < 0}, we notice that (2.13) gives

−dv(x)(log hα)′(x) ≤ d({v = 0}, x) (N − 1)
s′K/(N−1)(db(Xα)(x))

sK/(N−1)(db(Xα)(x))
χ{v≥0}(x)

+ d({v = 0}, x) (N − 1)
s′K/(N−1)(da(Xα)(x))

sK/(N−1)(da(Xα)(x))
χ{v<0}(x) =: Vα(x).

Hence we can collect the estimates, using Remark 4.12, and obtain
∫

Xα

dv(x)f
′(x)hα(x)H1(dx) ≤

∫

Xα

(1 + Vα(x)) f(x)hα(x)H1(dx),
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provided f is non-negative. Thanks to Lemma 4.13,

ν = 2

∫

Q

(1 + Vα(x))mαq(dα) = 2 (1 + V ) m,

is a well defined Radon (possibly signed) measure.
Hence, continuing from (4.25), the expression

∆d2v := 2

∫

Q

(hα − dvh
′
α)H1

xXα q(dα) + 2

∫

Q

(hαdv)[δb(Xα) − δa(Xα)] q(dα), (4.26)

once restricted to bounded subsets, defines a Borel measure with values in R∪{−∞} which satisfies ∆d2v ≤ ν.
Now, combining Theorem 3.6 with (4.25) and (4.26), we get

∫

X

f ∆d2v(dx) = 2

∫

Q

∫

Xα

dv(x)f
′(x)hα(x)H1(dx)q(dα) = 2

∫

Tdv

dv(x)f
′(x)m(dx),

for any compactly supported Lipschitz function f : X → R. Therefore, Corollary 4.6 yields

∫

Tdv

D−f(−∇d2v)m ≤
∫

X

f ∆d2v(dx) ≤
∫

Tdv

D+f(−∇d2v)m,

for any compactly supported Lipschitz function f : X → R. Since X \ Tdv ⊂ {v = 0} = {dv = 0}, from the
locality properties of differentials (see [30, equation (3.7)]) we can turn the previous inequalities in the next
ones

∫

X

D−f(−∇d2v)m ≤
∫

X

f ∆d2v(dx) ≤
∫

X

D+f(−∇d2v)m, (4.27)

valid for any compactly supported Lipschitz function f : X → R. In order to show that d2v ∈ D(∆) with
∆d2v ∈ ∆(d2v), we are thus left to prove that ∆d2v is a signed Radon measure.

We now claim that ∆d2v is a sum of two Radon measures over X . Since ∆d2v ≤ ν with ν signed Radon
measure, thanks to the Riesz-Markov-Kakutani Representation Theorem it is enough to show that ∆d2v defines
a Radon functional.
To this aim, fix a compact subset W ⊂ X and fix a compactly supported Lipschitz cutoff function χW : X →
[0, 1] satisfying χW ≡ 1 on W . At first observe that, using (4.27), for any Lipschitz function f : X → R with
supp(f) ⊂W we have

∣

∣

∣

∣

∫

X

χW ∆d2v(dx)

∣

∣

∣

∣

≤ 2

(

max
x∈supp(χW )

dv(x)

)

Lip(χW ) m(supp(χW )) ∈ (0,∞)

∣

∣

∣

∣

∫

X

(fχW )∆d2v(dx)

∣

∣

∣

∣

≤ 2

(

max
x∈supp(χW )

dv(x)

)

Lip(fχW ) m(supp(χW )) ∈ (0,∞).

Thus for any Lipschitz function f : X → R with supp(f) ⊂ W , using that ∆d2v ≤ ν ≤ ν+, on one hand we
have

∫

X

f ∆d2v = −
∫

X

(max f − f)χW ∆d2v +

∫

X

(max f)χW ∆d2v

≥ −
∫

X

(max f − f)χW ν+ − CW (max f), (4.28)

where CW := 2(LipχW ) maxx∈supp(χW ) dp(x)m(supp(χW )) ∈ (0,∞) depends only on χW .
On the other hand,

∫

X

f ∆d2v =

∫

X

f+ ∆d2v −
∫

X

f−∆d2v

≤
∫

X

f+ ν+ +

∫

X

(max f− − f−)χW ν+ + CW (max f−)

≤ max |f | (ν+(W ) + ν+(supp(χW )) + CW ). (4.29)
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The combination of (4.28) and (4.29) gives that, for every compact subset W ⊂ X there exists a constant
C′

W = 2(ν+(supp(χW )) + LipχW maxx∈supp(χW ) dv(x)m(supp(χW )) ∈ (0,∞) such that

∣

∣

∣

∣

∫

X

f ∆d2v

∣

∣

∣

∣

≤ C′
W max |f |

for every Lipschitz function f : X → R with supp(f) ⊂W , showing that ∆d2v is a Radon functional and thus
d2v ∈ D(∆) with ∆d2v ∈ ∆(d2v).
In order to complete the proof we are left with showing (4.24): again from (2.13)

−dv(x)(log hα)′(x) ≥ − (N − 1)d({v = 0}, x)
s′K/(N−1)(da(Xα)(x))

sK/(N−1)(da(Xα)(x))
χ{v≥0}(x)

− (N − 1)d({v = 0}, x)
s′K/(N−1)(db(Xα)(x))

sK/(N−1)(db(Xα)(x))
χ{v<0}(x),

and the claim is proved.

Remark 4.15. • In case X is bounded, then in the proof of Theorem 4.14 one can pick W = X and
χW ≡ 1, giving that the total variation of ∆d2v is bounded by ‖∆d2v‖ ≤ 2ν+(X).

• Theorem 1.3 can be proved using Corollary 3.7 in the proof of Theorem 4.14 and following verbatim the
arguments. Uniqueness of the representation of the Laplacian, follows then from infinitesimal Hilber-
tianity of smooth manifolds.

The representation formula for the Laplacian of the signed distance function on X \ {v = 0} follows from
Theorem 4.14 by chain rule [30, Proposition 4.11].

Corollary 4.16. Let (X, d,m) be an e.n.b. metric measure space verifying MCP(K,N), for some K ∈ R, N ∈
(1,∞).

Consider the signed distance function dv for some continuous function v : X → R and the associated
disintegration mxX\{v=0}=

∫

Q
hαH1

xXα q(dα). Then

1. |dv| ∈ D(∆, X \ {v = 0}) and one element of ∆(|dv|)xX\{v=0}, that we denote with ∆|dv|xX\{v=0} is the
Radon functional on X \ {v = 0} with the following representation formula:

∆|dv|xX\{v=0}= −sgn(v) (log hα)
′mxX\{v=0}−

∫

Q

(hα[δa(Xα)∩{v>0} + δb(Xα)∩{v<0}] q(dα). (4.30)

Moreover the next comparison results hold true:

∆|dv|xX\{v=0} ≤ (N − 1)
s′K/(N−1)(db(Xα)(x))

sK/(N−1)(db(Xα)(x))
mx{v>0}

+ (N − 1)
s′K/(N−1)(da(Xα)(x))

sK/(N−1)(da(Xα)(x))
mx{v<0}, (4.31)

[

∆|dv|xX\{v=0}

]reg
:= −sgn(v)(log hα)

′mxX\{v=0}

≥ −(N − 1)
s′K/(N−1)(da(Xα)(x))

sK/(N−1)(da(Xα)(x))
mx{v>0}

− (N − 1)
s′K/(N−1)(db(Xα)(x))

sK/(N−1)(db(Xα)(x))
mx{v<0}, (4.32)

where
[

∆|dv|xX\{v=0}

]reg
is the regular part of ∆|dv|xX\{v=0} (i.e. absolutely continuous with respect to

m).

2. dv ∈ D(∆, X \ {v = 0}) and one element of ∆(dv)xX\{v=0}, that we denote with ∆dvxX\{v=0}, is the
Radon functional on X \ {v = 0} with the following representation formula:

∆dvxX\{v=0}= −(log hα)
′mxX\{v=0}−

∫

Q

(hα[δa(Xα)∩{v>0} − δb(Xα)∩{v<0}] q(dα). (4.33)
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Moreover the next comparison results hold true:

∆dvxX\{v=0} ≤ (N − 1)
s′K/(N−1)(db(Xα)(x))

sK/(N−1)(db(Xα)(x))
mxX\{v=0}+

∫

Q

hαδb(Xα)∩{v<0} q(dα), (4.34)

∆dvxX\{v=0} ≥ −(N − 1)
s′K/(N−1)(da(Xα)(x))

sK/(N−1)(da(Xα)(x))
mxX\{v=0}−

∫

Q

(hα[δa(Xα)∩{v>0}] q(dα). (4.35)

Proof. Writing sgn(v)dv =
√

d2v, a direct application of chain rule [30, Proposition 4.11] combined with Theo-
rem 4.14 gives that |dv| ∈ D(∆, X \ {v = 0}) and that ∆|dv| defined in (4.30) is an element of ∆|dv|xX\{v=0}.
The comparison results (4.31), (4.32) follow from the definition (4.30) together with (2.13).
Since dv = sgn(v) |dv|, it is clear that dv ∈ D(∆, X \ {v = 0}) with ∆(dv)xX\{v=0}= sgn(v)∆(|dv|)xX\{v=0};
thus ∆dvxX\{v=0} defined in (4.33) is an element of ∆(dv)xX\{v=0} and the comparison results (4.34), (4.35)
follow again from (2.13).

We now specialise the above results to the distance function from a point p ∈ X , i.e. we pick v = dp so
that {v = 0} = p and v ≥ 0 everywhere. Note that, in this case, b(Xα) = p for q-a.e. α ∈ Q.

Corollary 4.17. Let (X, d,m) be an e.n.b. metric measure space verifying MCP(K,N), for some K ∈ R, N ∈
(1,∞). Fix p ∈ X, consider dp := d(p, ·) and the associated disintegration m =

∫

Q hαH1
xXα q(dα).

Then d
2
p ∈ D(∆) and one element of ∆(d2p), that we denote with ∆d

2
p, is a sum of two signed Radon measures

and satisfies the following representation formula:

∆d
2
p = 2(1− dp(log hα)

′)m− 2

∫

Q

hαdp δa(Xα) q(dα). (4.36)

Moreover, the next comparison results hold true:

∆d
2
p ≤ ν := 2

(

1 + (N − 1) dp(x)
s′K/(N−1)(dp(x))

sK/(N−1)(dp(x))

)

m, (4.37)

[

∆d
2
p

]reg
:= 2 (1− dp(log hα)

′)m ≥ 2

(

1− (N − 1) dp
s′K/(N−1)(da(Xα)(x))

sK/(N−1)(da(Xα)(x))

)

m, (4.38)

where
[

∆d
2
p

]reg
is the regular part of ∆d

2
p (i.e. absolutely continuous with respect to m).

Remark 4.18 (On the lower bound (4.38)). Denote with Cp := {a(Xα)}α∈Q the cut locus of p. Then for
every ε > 0 there exists Cε > 0 so that for every bounded subset W ⊂ X it holds:

[

∆d
2
p

]reg

xW
≥ 2

(

1− (N − 1) dp
s′K/(N−1)(da(Xα)(x))

sK/(N−1)(da(Xα)(x))

)

mxW

≥ −Cε,WmxW on W ∩ {x = gt(aα) : t ≥ ε} ⊃W ∩ {x ∈ X : d(x, Cp) ≥ ε}.
The representation formula for the Laplacian of the distance function follows from Corollary 4.17 by chain

rule [30, Proposition 4.11], writing sgn(v)dv =
√

d2v.

Corollary 4.19. Let (X, d,m) be an e.n.b. metric measure space verifying MCP(K,N), for some K ∈ R, N ∈
(1,∞). Fix p ∈ X, consider dp := d(p, ·) and the associated disintegration m =

∫

Q hαH1
xXα q(dα).

Then dp ∈ D(∆, X\{p}) and one element of ∆dpxX\{p}, that we denote with ∆dpxX\{p}, is a Radon functional
with the following representation formula:

∆dpxX\{p}= −(log hα)
′ m−

∫

Q

hαδa(Xα) q(dα). (4.39)

Moreover, the next comparison results hold true:

∆dpxX\{p} ≤ (N − 1)
s′K/(N−1)(dp(x))

sK/(N−1)(dp(x))
m, (4.40)

[

∆dpxX\{p}

]reg
:= −(log hα)

′m ≥ −(N − 1)
s′K/(N−1)(da(Xα)(x))

sK/(N−1)(da(Xα)(x))
m, (4.41)

where
[

∆dpxX\{p}

]reg
is the regular part of ∆dpxX\{p} (i.e. absolutely continuous with respect to m).
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Remark 4.20. Corollary 4.19 should be compared with [30, Corollary 5.15, Remark 5.16], where it was
proved that dp ∈ D(∆, X \ {p}) together with the upper bound (4.40) under the assumption that (X, d,m) is
an infinitesimally strictly convex MCP(K,N)-space.
Let us stress that, by the very definition, the Laplacian in the infinitesimally strictly convex setting is single
valued, simplifying the treatment.
One novelty of Corollary 4.19 is that the infinitesimal strict convexity is replaced by the essentially non
branching property which, a priori, does not exclude a multi-valued Laplacian. In addition to that, the
geometrically new content of Corollary 4.19 when compared with [30] is that it contains an exact representation
formula (4.39) which also gives the new lower bound (4.41).

Part II

Applications

In Part II of the paper we collect all the main applications of the results obtained in Part I.

5 The singular part of the Laplacian

In order to state the next corollary recall that from essentially non-branching and MCP(K,N) it follows that
for every fixed p ∈ X and m-a.e. x ∈ X (precisely on T nb

dp
) there exists a unique geodesic γx starting from x

and arriving at p, i.e. γx0 = x and γx1 = p. For each t ∈ [0, 1], define the map

Tt : T nb
dp

→ T nb
dp
, Tt(x) := γxt . (5.1)

It is worth noting that Tt is also the W2-optimal transport map from the (renormalized) ambient measure m

to δp, provided m(X) <∞.
The goal of the next proposition is to get some refined information on the cut locus Cp of p; more precisely,

we infer an upper bound on an optimal transport type Minkowski content of Cp.
Proposition 5.1. Let (X, d,m) be an e.n.b. metric measure space verifying MCP(K,N), for some K ∈ R, N ∈
(1,∞). Fix any point p ∈ X and consider for each t ∈ [0, 1] the map Tt defined by (5.1).

Then, for every bounded open subset W ⊂ X it holds

lim sup
ε↓0

m((X \ Tε(X)) ∩W )

ε
≤ ‖[∆d

2
p]sing‖(W ) <∞. (5.2)

Remark 5.2 (Geometric meaning of Proposition 5.1). Fix p ∈ X , consider dp := d(p, ·) and the associated
disintegration m =

∫

Q
hαH1

xXα q(dα). Then the cut locus Cp of p coincides with the set of initial points

{a(Xα)}α∈Q of the transport rays. The set X\Tε(X) thus can be seen as an “optimal transport neighborhood”
of the cut locus Cp and therefore (5.2) gives an optimal transport type estimate on a weak version of the
codimension one Minkowski content of Cp.

Since the cut locus of a point in an e.n.b. MCP(K,N) space can be dense (this can be the case already
for the boundary of a convex body in R3), one cannot expect an upper bound on the classical codimension
one Minkowski content of Cp. The bound (5.2) looks interesting already in the classical setting of a smooth
Riemannian manifold. Indeed it is well known that Cp is rectifiable with locally finite codimension one Hausdorff
measure (see for instance [43]), but in the literature it seems not to be present any (local) bound on its
codimension one Minkowski content.

Proof. If X is bounded, one can choose W = X and the proof is easier (there is no need to introduce an
intermediate set U in the arguments below); we thus discuss directly the case when X is not bounded.
Let U ⊃W be a bounded open subset such thatW is compactly contained in U , in particular d(W,X \U) > 0.
With a slight abuse of notation, for ease of writing, in the next computations we identify the ray (Xα, d,mα)

with the real interval
(

(aα, bα), | · |, hαL1
)

isomorphic to it as a m.m.s..
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Recalling from Remark 2.14 that hα : Xα ≃ (aα, bα) → R+ is continuous up to the initial point aα, it is clear
that

hα(a(Xα))dp(a(Xα)) = lim
ε↓0

1

ε

∫

[aα,aα+ε|Xα|]

hα(s) ds,

where |Xα| denotes the length of the transport ray Xα, i.e. |Xα| = d(a(Xα), b(Xα)) = d(a(Xα), p). Hence, for
any bounded open subset U ⊂ X it holds

‖[∆d
2
p]

sing‖(U) =

∫

{α∈Q:a(Xα)∈U}

(hαdp)(a(Xα)) q(dα)

=

∫

{α∈Q:a(Xα)∈U}

lim
ε→0

1

ε

∫

[aα,aα+ε|Xα|]

hα(s) ds q(dα),

where ‖[∆d
2
p]

sing‖(U) denotes the total variation measure of U . Since by Corollary 4.17 we know that

‖[∆d
2
p]

sing‖(U) <∞, by Fatou’s Lemma we infer

lim sup
ε↓0

1

ε

∫

{α∈Q:a(Xα)∈U}

∫

[aα,aα+ε|Xα|]

hα(s) ds q(dα) ≤ ‖[∆d
2
p]

sing‖(U) <∞. (5.3)

We then look for a more convenient expression of the left-hand side of the previous inequality. First, note that

for ε sufficiently small such that ε/(1− ε) < d(W,X\U)
dp(W ) it holds

∫

Q

∫

[aα,aα+ε|Xα|]∩W

hα(s) ds q(dα) ≤
∫

{α∈Q:a(Xα)∈U}

∫

[aα,aα+ε|Xα|]

hα(s) ds q(dα). (5.4)

Recalling the definition of the map Tt given in (5.1), we now claim that

m((X \ Tε(X)) ∩W ) =

∫

Q

∫

[aα,aα+ε|Xα|]∩W

hα(s) ds q(dα). (5.5)

Indeed, on the one hand, by the Disintegration Theorem 3.6 we know that

m((X \ Tε(X)) ∩W ) =

∫

Q

∫

Xα∩(X\Tε(X))∩W

hα(s) ds q(dα).

On the other hand, since trivially

Xα ∩ (X \ Tt(X)) ∩W = Xα \ Tt(X) ∩W,

and since, as Tt is translating along T nb
dp

, one has Xα \ Tt(X) = Xα \ Tt(Xα), we obtain

Xα ∩ (X \ Tt(X)) ∩W = Xα \ Tt(Xα) ∩W.

The claim (5.5) follows. The combination of (5.3), (5.4) and (5.5) gives that

lim sup
ε↓0

m((X \ Tε(X)) ∩W )

ε
≤ ‖[∆d

2
p]

sing‖(U) <∞,

for every U bounded open subset compactly containing the open set W . Since from Theorem 4.14 we know
that ∆d

2
p is a Radon measure, the thesis (5.2) follows.

We next give some suffcient condition implying that the densities hα, given by the Disintegration Theorem
3.6, are null at the final points.

Lemma 5.3. Let (X, d,m) be an e.n.b. MCP(K,N) space, for some K ∈ R, N ∈ (1,∞).
Let u = dp = d(p, ·) for some p ∈ X and consider the disintegration associated to dp: m =

∫

Q
hαH1

xXα q(dα).
Assume there exists s > 1 such that

lim inf
r↓0

m(Br(p))

rs
<∞, (5.6)
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then hα(p) = 0, for q-a.e. α ∈ Q.
More generally, for any 1-Lipschitz function u, denoting mxT nb

u
=
∫

Q hαH1
xXα q(dα) the associated disintegra-

tion, it holds that

∥

∥

∥

∥

∫

Q

hα(a(Xα))δa(Xα)q(dα)

∥

∥

∥

∥

≤ lim inf
r↓0

m(∪α[a(Xα), a(Xα) + r])

r
= β ∈ [0,+∞], (5.7)

where the leftmost term is the total variation of the corresponding measure.

Proof. Suppose by contradiction the claim was false, i.e. there exists Q̄ ⊂ Q where hα(p) ≥ c > 0, with
q(Q̄) > 0. Observe that a.e. transport ray Xα ends in p, i.e. b(Xα) = p for q-a.e. α ∈ Q. As usual, we identify
the transport ray Xα with the real interval [aα, bα]. Then by Fatou’s Lemma it holds:

lim inf
r↓0

m(Br(p))

rs
≥ lim inf

r↓0

∫

Q̄

1

rs

∫

[bα−r,bα]

hα(t)dt q(dα)

≥
∫

Q̄

lim inf
r↓0

1

r

∫

[bα−r,bα]

hα(t)

rs−1
dt q(dα) = ∞,

giving a contradiction and proving the claim.
The second part of the lemma follows along analogous arguments.

Remark 5.4. If (X, d,m) is an RCD(K,N) space not isometric to a circle or to a (possibly unbounded) real
interval then (5.6) is satisfied for m-a.e. p ∈ X .
Indeed if (X, d,m) is an RCD(K,N) space, using the rectifiability result [46, Theorem 1.1] (see also [33] and
compare with [20, 21, 22]) together with the absolute continuity of the reference measure m with the respect to
the Hausdorff measure of the bi-Lipschitz charts obtained independently in [36, Theorem 1.2] and [35, Theorem

3.5], it follows that for m-a.e. p ∈ X there exists n = n(p) ∈ N ∩ [1,∞) such that lim infr↓0
m(Br(p))

rn < ∞. If
moreover we assume (X, d) not to be isometric to a circle or to a (possibly unbounded) real interval, then by
[38] it follows that n(p) > 1 for m-a.e. p ∈ X .

If (X, d,m) is an MCP(K,N) space then the validity (5.6) is not known.

6 CD(K,N) is equivalent to a (K,N)-Bochner-type inequality

The Bochner inequality is one of the most fundamental estimates in geometric analysis. For a smooth N -
dimensional Riemannian manifold (M, g) with Riccig ≥ Kg, for some K ∈ R, it states that for any smooth
function u ∈ C3(M) it holds

1

2
∆|∇u|2 − 〈∇u,∇∆u〉 ≥ K|∇u|2 + |∇2u|2 ≥ K|∇u|2 + 1

N
(∆u)2,

where |∇2u|2 is the Hilbert-Schmidt norm of the Hessian matrix ∇2u and the rightmost inequality follows
directly by Cauchy-Schwartz inequality. Note in particular that if u is a distance function, then on a open
dense set of full measure |∇u|2 = 1 and the Hessian is a block matrix with vanishing slot in the direction of
the “gradient of the distance” ; in particular, for a distance function the inequality can be improved to

−〈∇u,∇∆u〉 ≥ K +
1

N − 1
(∆u)2, a.e. . (6.1)

Finally, note that the term −〈∇u,∇∆u〉 corresponds to “the derivative of ∆u in the direction of −∇u”; thus,
if we consider the transport set associated to u, such a term would correspond to what we denoted (∆u)′.
Since in a general m.m.s. it is not clear there is enough regularity to write (∆u)′, it is natural to consider the
following version of (6.1) “integrated along transport rays”:

∆u(gt(x)) −∆u(x) ≥ Kt+
1

N − 1

∫

(0,t)

(∆u)2(gs(x)) ds., a.e. x, t. (6.2)

This is the (K,N)-Bochner inequality that will be proved to be equivalent to the CD(K,N) condition.
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In order to state the results, it is useful to recall that given a 1-Lipschitz function u on an e.n.b. CD(K,N)
space there is a natural disintegration of m restricted to the transport set T nb

u (see Theorem 3.6):

mxT nb
u

=

∫

Q

hα H1
xXαq(dα). (6.3)

We will denote int(T nb
u ) := ∪α∈QX̊α, where X̊α stands for the relative interior of Xα; it can also be identified

by isometry with the open interval (aα, bα).
The function hα in (6.3) is a CD(K,N) density on (aα, bα), so in particular it is semi-concave; thus if Dα is
the set of differentiability points of hα, then (aα, bα) \Dα is countable.

Our next result roughly states that the (K,N)-Bochner type inequality (6.2) holds for those 1-Lipschitz
functions for which we have found an explicit representation formula for the Laplacian, namely those 1-
Lipschitz functions verifying the hypothesis of Theorem 4.8 and for any distance function with sign dv. Recall
that, for any u belonging to these classes of functions, ∆u outside of the initial and final points of transport
rays forming T nb

u is absolutely continuous with respect to m.

Theorem 6.1 (CDloc(K,N)+e.n.b. ⇒ (K,N)-Bochner type inequality). Let (X, d,m) be an e.n.b. metric
measure space verifying CDloc(K,N). Then the following holds:

1. Let u : X → R be any 1-Lipschitz function such that
∫

Q
|Xα|−1 q(dα) < ∞. Then for q-a.e. α ∈ Q, for

each x ∈ Xα it holds

∆u(gt(x)) −∆u(x) ≥ Kt+
1

N − 1

∫

(0,t)

(∆u)2(gs(x)) ds, (6.4)

for all t ∈ R such that gt(x) ∈ Tu, up to a countable set depending only on α.

2. Let u = dv be a signed distance function. Then for q-a.e. α ∈ Q, for each x ∈ X̊α \ {v = 0} the
(K,N)-Bochner type inequality (6.4) holds for all t ∈ R such that gt(x) ∈ X̊α \{v = 0} and sgn(dv(x)) =
sgn(dv(gt(x))), provided the densities ∆dv(x) and ∆dv(gt(x)) exist.

Proof. We prove just 1., the proof of 2. being completely analogous (using Corollary 4.16 in place of Theorem
4.8).
Fix α ∈ Q and x ∈ int(Rnb

u (α)) = (aα, bα) for which the representation of ∆u given by Theorem 4.8 is valid:

∆u(x) = −(log hα)
′(x).

In particular hα is differentiable at x. As observed above, for each α, ∆u(x) is defined on Dα ⊂ (aα, bα), with
(aα, bα) \Dα countable. Therefore the claim reduces to show for q-a.e. α ∈ Q that

(log hα)
′(x) − (log hα)

′(gt(x)) ≥ Kt+
1

N − 1

∫

(0,t)

((log hα)
′(gs(x)))

2 ds, (6.5)

whenever x, gt(x) ∈ Dα. To prove (6.5), consider a non-negative C2 function ψ supported on [−1, 1] with
∫

ψ = 1. Let ψε(x) := ψ(x/ε); of course ψε is supported on [−ε, ε] with
∫

ψε = 1. Define the function hεα on
(aα + ε, bα − ε) by:

log hεα := log hα ∗ ψε. (6.6)

Since by Theorem 3.6 we know that hα is a CD(K,N) density, also hεα is a C2-smooth CD(K,N) density on
(aα + ε, bα − ε) by Proposition 2.18; in particular (6.5) is satisfied by hεα. Taking the limit as ε→ 0 we obtain
that (log hεα)

′ → (log hα)
′ pointwise on Dα and in L1((aα, bα)). Thus we can pass into the limit as ε → 0 in

(6.5) and get that it is also satisfied by hα.

Also the converse implication holds, giving a complete equivalence between the (K,N)-Bochner type in-
equality (6.4) on signed distance functions and the CD(K,N) condition.

Theorem 6.2 (MCP(K ′, N ′)+e.n.b.+ (K,N)-Bochner type inequality ⇒ CD(K,N)). Let (X, d,m) be an
e.n.b. metric measure space verifying MCP(K ′, N ′) for some K ′ ∈ R, N ′ ∈ (1,∞), with m(X) < ∞. Assume
that, for every signed distance function dv : X → R, for q-a.e. α ∈ Q, for each x ∈ X̊α \ {v = 0} it holds

∆dv(gt(x)) −∆dv(x) ≥ Kt+
1

N − 1

∫

(0,t)

(∆dv)
2(gs(x)) ds, (6.7)
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for all t ∈ R such that gt(x) ∈ X̊α \ {v = 0} and sgn(dv(x)) = sgn(dv(gt(x))), provided the densities ∆dv(x)
and ∆dv(gt(x)) exist.

Then (X, d,m) satisfies CD(K,N).

Remark 6.3. We briefly comment on the statement of Theorem 6.2. Using the assumption of e.n.b. and of
MCP(K ′, N ′), we deduce from Corollary 4.16 that any dv ∈ D(∆, X \ {v = 0}). Therefore, in the assumption
(6.7), we consider ∆dv(gt(x)) only for those gt(x) belonging to {v > 0} or to {v < 0}, provided x ∈ {v > 0}
or x ∈ {v < 0} respectively.

Let us also comment on the assumptions CDloc(K,N) Vs CD(K,N) and m(X) <∞ in the last two results.
It was proved in [13] that, under the assumption m(X) <∞, an e.n.b. CDloc(K,N) space satisfies CD(K,N)
globally; on the other hand the implication is open without the assumption m(X) < ∞. We thus assumed
CDloc(K,N) in Theorem 6.1 as, a priori, it is more general and still gives that all the conditional densities hα
are CD(K,N) densities (see Theorem 3.6).

Proof. We show that, given any 1-Lipschitz function ϕ : X → R, the conditional probabilities associated to
the transport set T nb

ϕ of ϕ satisfy CD(K,N). From [13] it will then follow that (X, d,m) satisfy CD(K,N).

Step 1. Let us fix ϕ : X → R a 1-Lipschitz function and the associated non-branched transport set T nb
ϕ .

Fix also c ∈ R, let ϕc := ϕ − c and consider the associated signed distance function dϕc from the level set
{ϕ = c}.

Note that the function dϕc coincides with ϕc along (Rnb
ϕ )−1({ϕ = c}), i.e. along each transport ray of ϕ

having non empty intersection with {ϕ = c}.
Indeed, fix any x ∈ T nb

ϕc
with ϕ(x) ≥ c (the argument for ϕ(x) ≤ c is analogous) such that there exists

y ∈ Rnb
ϕ (x) with ϕ(y) = c (i.e. x ∈ (Rnb

ϕ )−1({ϕ = c})), then for any other z ∈ {ϕ = c} it holds

d(x, y) = ϕ(x) − ϕ(y) = ϕ(x) − ϕ(z) ≤ d(x, z),

showing that d(x, y) = dϕc(x) and that dϕc(x) = ϕ(x)−ϕ(y) = ϕ(x)− c = ϕc(x). Hence if x ∈ (Rnb
ϕ )−1({ϕ =

c}), then
|dϕc(x)− dc(y)| = d(x, y),

for some (x, y) ∈ (Rnb
ϕ ) implying that (x, y) ∈ Rdϕc

. Since a branching structure for dϕc inside (Rnb
ϕ )−1({ϕ =

c}) will imply a branching structure for ϕc, this implies that on (Rnb
ϕ )−1({ϕ = c}) the equivalence relation

Rnb
ϕ implies Rnb

dϕc
. In particular it follows that T nb

ϕ ∩ (Rnb
ϕ )−1({ϕ = c}) ⊂ T nb

dϕc
. Since we have shown that

along

Step 2. Consider the disintegrations associated to T nb
ϕ and to T nb

dϕc
via Theorem 3.6:

mxT nb
ϕ

=

∫

Qϕ

mα,ϕ qϕ(dα), mxT nb
dϕc

=

∫

Qdϕc

mα,dϕc
qdϕc

(dα),

with mα,ϕ = hα,ϕH1
xXα,ϕ and mα,dϕc

= hα,dϕc
H1

xXα,dϕc
.

From Step 1 and the uniqueness of the disintegration, it follows that up to a constant factor

hα,ϕ = hα,dϕc
on Xα,ϕ,

for all those α such that Xα,ϕ ∩ {ϕ = c} 6= ∅. Moreover from Corollary 4.16 we deduce that

∆dϕcxX̊α,dϕc
∩{ϕ 6=c}= −(log hα,dϕc

)′.

The last two identities together with the assumption (6.7) applied to dϕc imply that for all those α such that

Xα,ϕ ∩ {ϕ = c} 6= ∅, for each x ∈ X̊α,ϕ ∩ {ϕ 6= c} it holds

−[(log hα,ϕ)
′(gt(x)) − (log hα,ϕ)

′(x)] ≥ Kt+
1

N − 1

∫

(0,t)

[(log hα,ϕ)
′]2(gs(x)) ds, (6.8)

for all those t such that ϕ(gt(x)) > c provided ϕ(x) > c (and appropriate modifications if ϕ(x) < c ).
Identifying X̊α with the isometric real interval (aα, bα) and denoting with cα the unique point corresponding
to X̊α ∩ {ϕ = c}, (6.8) becomes

−[(log hα,ϕ)
′(x+ t)− (log hα,ϕ)

′(x)] ≥ Kt+
1

N − 1

∫

(0,t)

[(log hα,ϕ)
′]2(x + s) ds, (6.9)
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for each x ∈ (aα, cα) and t such that x + t ≤ cα. We again regularise by logarithmic convolution, i.e. as in
(6.6). In order to simplify the notation, we will omit the subscript ϕ. We have:

(log hεα)
′(x) =

∫

(log hα)
′(y)ψε(x− y)dx

(log hεα)
′(y)− (log hεα)

′(y + t) =

∫

[(log hα)
′(x)− (log hα)

′(x + t)]ψε(x − y)dx.

Moreover
∫ ∫

(0,t)

((log hα)
′(x+ s))2ψε(x − y) dsdx

=

∫

(0,t)

∫

((log hα)
′(x+ s))2ψε(x− y) dxds

≥
∫

(0,t)

(
∫

(log hα)
′(x + s))ψε(x− y) dx

)2

ds

=

∫

(0,t)

log(hεα)
′(y + s)2ds.

Hence (6.9) is valid for log hεα,ϕ for each ε > 0 implying (just differentiate in t) that hεα,ϕ is a CD(K,N) density
on (aα, cα). Letting ε ↓ 0 we obtain that hα,ϕ is a CD(K,N) density on (aα, cα). From the arbitrariness of c,
we conclude that hα,ϕ is a CD(K,N) density. Hence (X, d,m) verifies CD1

Lip(K,N) (see [13] for the definition

of CD1
Lip(K,N)). Then we can conclude using [13] that (X, d,m) satisfies CD(K,N).

7 Splitting Theorem under MCP(0, N)

Before stating the main result of the section, let us introduce some notation.
Given a metric space (X, d), a curve γ̄ : R → X is called line if it is an isometric immersion i.e.

γ̄ : R → X, d(γ̄t, γ̄s) = |t− s|, for all s, t ∈ R.

To a line γ̄ : R → X we associate the Busemann functions

b
+(x) := lim

t→+∞
d(x, γ̄t)− t, b

−(x) := lim
t→+∞

d(x, γ̄−t)− t.

Straightforwardly from the triangle inequality, one can check that the Busemann functions are well-defined
maps b± : X → R and

|b±(x) − b
±(y)| ≤ d(x, y).

Since b
± are 1-Lipschitz functions, we can consider the associated non-branching transport set T nb

b±
defined in

(3.3).

Theorem 7.1 (Splitting Theorem). Let (X, d,m) be an e.n.b. infinitesimally Hilbertian MCP(0, N) space
containing a line. Then (X,m) is isomorphic as a measure space to a splitting Q× R.
More precisely the following holds. Denoting T nb

b+
= ∪α∈QXα the non-branching transport set induced by b

+

with the associated (disjoint) decomposition in transport rays, it holds that m(X \ T nb
b+

) = 0 and the map

Φ : T nb
b+

→ Q× R, x 7→ Φ(x) := (α(x), b+(x)) (7.1)

is an isomorphism of measures spaces, i.e.

• Φ is a bijection,

• Φ induces an isomorphism between the σ-algebra of m-measurable subsets of T nb
b+

and the σ-algebra of
q⊗L1-measurable subsets of Q×R, where q is quotient measure in the disintegration mxT nb

b+
=
∫

Q mαq(dα)

given by Theorem 3.6.
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• Φ♯mxT nb

b+
= q′ ⊗ L1. Here q′ is a non-negative measure over Q equivalent to q, i.e. q′ ≪ q and q ≪ q′.

Moreover, for every α ∈ Q, the map b
+ : Xα → R is an isometry.

If in addition (X, d) is non-branching, then X is homeomorphic to a splitting Q × R. More precisely,
X = Tb+ = T nb

b+
and the map Φ : X → Q×R defined in (7.1) is an homeomorphism. Here the set of rays Q is

induced with the compact-open topology as a subset of C(R, X), where each ray is parametrised by (b+)−1; i.e.

Given β ∈ Q, {αn}n∈N ⊂ Q, it holds β = lim
n→∞

αn if and only if

0 = lim
n→∞

sup
t∈I

d
(

Xαn((b
+)−1(t)), Xβ((b

+)−1(t))
)

, for every compact interval I ⊂ R. (7.2)

Remark 7.2. For smooth Riemannian manifolds [23], as well as for Ricci-limits [19] and RCD(0, N) spaces [31],
the Splitting Theorem has a stronger statement giving an isometric splitting. However under the assumptions
of Theorem 7.1 it is not conceivable to expect also a splitting of the metric. Indeed the Heisenberg group
Hn is an example of non-branching infinitesimally Hilbertian MCP(0, N) space [40] containing a line, which
is homeomorphic and isomorphic as measure space to a splitting (indeed it is homeomorphic to Rn and the
measure is exactly the n-dimensional Lebesgue measure) but it is not isometric to a splitting.

We start by establishing some preliminary lemmas on the properties of Busemann functions.

Lemma 7.3. For any proper geodesic space , Tb± = X.

Proof. Fix any x ∈ X and s > 0. For each t ∈ R, consider a unit speed geodesic

γt : [0, d(x, γ̄t)] → X, such that γt0 = x and γt
d(x,γ̄t)

= γ̄t.

From triangular inequality limt→±∞ d(x, γ̄t) = ∞. Hence any fixed s > 0, for |t| sufficiently large, belongs to
the domain of γt. Consider then the following trivial identities

d(x, γ̄t)− t− d(γts, γ̄t) + t = d(x, γts) = s > 0.

Taking the limit as t→ +∞ and using uniform convergence, gives

b
+(x)− b

+(y) = d(x, y) = s > 0

where y is any accumulation point of {γts}t≥0. In particular this shows that that each point x ∈ X can be
moved forwardly with respect to b

+ (into y) proving in particular that x ∈ Tb+ . The proof for b
− can be

achieved along the same lines.

The proof of Lemma 7.3 also proves the following Corollary.

Corollary 7.4. Let (X, d) be proper and geodesic. Then bb± = ∅, i.e. the set of final points associated to b
+

and to b
− are both empty.

Applying results from Part I we easily obtain the following result.

Proposition 7.5. Let (X, d,m) be an e.n.b. metric measure space verifying MCP(0, N) containing a line.
Then b

± ∈ D(∆, X) and there exists a Radon measure ∆b
± ∈ ∆b

± satisfying

∆b
± ≤ 0. (7.3)

Proof. We only prove the claim for b+, the proof for b
− being analogous. First of all from Theorem 3.6, we

have the disintegration

m =

∫

Q

hαH1
xXα q(dα).

Thanks to Corollary 7.4 we deduce that each ray Xα is isomorphic to a right half line (or to a full line), in
particular it has infinite length.
The combination of Theorem 4.8 with Lemma 7.3 thus gives that b+ ∈ D(∆, X) and that

∆b
+ := −

∫

Q

h′αH1
xXα q(dα) −

∫

Q

hαδa(Xα)∩U q(dα)
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defines a Radon measure ∆b
+ ∈ ∆b

+. We are left to show that ∆b
+ ≤ 0.

As above, we identify Xα with the right half line [aα,∞) endowed with the MCP(0, N) density hα. Using
(2.11), we deduce that for aα < x0 ≤ x1 < b <∞ it holds

(

b− x1
b− x0

)N−1

≤ hα(x1)

hα(x0)
.

Letting b→ ∞, it follows that hα(x0) ≤ hα(x1), showing that h′α ≥ 0 whenever h′α exists.
Thus ∆b

+ ≤ 0 and the proposition follows.

Observe also that, by triangle inequality, one has

d(x, γ̄t)− t+ d(x, γ̄−s)− s ≥ 0.

Setting b := b
+ + b

− and letting t, s→ ∞, it gives

b ≥ 0 on X, and b ≡ 0 on γ̄. (7.4)

From now on we assume (X, d,m) to be infinitesimally Hilbertian, which is equivalent to assume that the
Laplacian ∆ is single valued (on its domain) and linear. Proposition 7.5 then implies

b := b
+ + b

− ∈ D(∆, X), ∆b ≤ 0. (7.5)

It is worth noting that (7.5) will be the only implication of the paper where infinitesimal Hilbertianity
plays a role. We now want to combine (7.5) and (7.4) with strong maximum principle in order to infer that
b ≡ 0. The next statement was proved in [10, Theorem 9.13] (actually we report a slightly weaker statement
which will suffice to our scopes).

Theorem 7.6 (Strong Maximum Principle). Let (X, d,m) be a metric measure space supporting a local weak
(1, 2)-Poincaré inequality with m locally doubling. Let u ∈ LIP(X) and Ω ⊂ X be a connected bounded open
subset.
If u attains its maximum in an interior point of Ω and

∫

Ω

|∇u|2 m ≤
∫

Ω

|∇(u + f)|2 m, ∀f ∈ LIP(X), supp(f) ⊂ Ω, f ≤ 0, (7.6)

then u is constant on Ω.

Let us discuss the validity of the strong maximum principle in our setting. Clearly, from Bishop-Gromov
inequality it follows that a MCP(0, N) space is doubling. Moreover, essentially non-branching MCP(0, N)
spaces satisfy a local weak (1, 1)-Poincaré inequality [53] ([53] assumes negligibility of cut-locus from m-a.e.
point that is satisfied whenever the space is essentially non-branching, see Remark 2.6), which in turns implies
that the space supports a local weak (1, 2)-Poincaré inequality. In conclusion if (X, d,m) is an essentially
non-branching MCP(0, N) space, then the strong maximum principle holds. The simple link between (7.6)
and the measure-valued Laplacian was established in [32, Theorem 4.3]; for completeness, below we report the
argument together with the desired conclusion b ≡ 0.

Lemma 7.7. Let (X, d,m) be an infinitesimally Hilbertian, essentially non-branching, metric measure space
satisfying MCP(0, N). Assume (X, d) contains a line and let b := b

+ + b
−.

Then b ≡ 0 on X.

Proof. It is enough to prove that (7.5) implies (7.6) for u := −b, then the claim will follow by the combination
of (7.4) with Theorem 7.6.
Let Ω ⊂ X be a connected bounded open subset and f ∈ LIP(X) be non-positive with supp(f) ⊂ Ω. Since
the map ε 7→

∫

Ω
|∇(−b+ εf)|2m is convex and ∆b ≤ 0, we have

∫

Ω

|∇(−b+ f)|2m−
∫

Ω

|∇(−b)|2m ≥ lim
ε↓0

∫

Ω

|∇(−b+ εf)|2 − |∇(−b)|2
ε

m

= −2

∫

Ω

〈∇b,∇f〉m = 2

∫

Ω

f ∆b ≥ 0,

proving (7.6) for u := −b.
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Lemma 7.8. Let (X, d,m) be an infinitesimally Hilbertian, essentially non-branching, metric measure space
satisfying MCP(0, N). Assume (X, d) contains a line. Let T nb

b+
= ∪α∈QXα be the ray decomposition of the

non-branching transport set T nb
b+

associated to b
+.

Then for each α ∈ Q, the ray Xα is isometric to R; in other words a(Xα) = ∅ = b(Xα).

Proof. From Lemma 7.7 we know that b+ = −b
− on all X . It follows that

{(x, y) ∈ Rnb
b+
} = {(y, x) ∈ Rnb

b−
}.

Thus T nb
b+

= T nb
b−

with the same ray decomposition (from the support sense); clearly, on each ray, the orientation
induced by b

+ is the opposite from the one induced by b
−. In particular, the set of initial points for b+ coincides

with the set of final points for b−:

ab+ := {x ∈ T nb
b+

: (y, x) ∈ Rnb
b+

⇔ y = x} = {x ∈ T nb
b−

: (x, y) ∈ Rnb
b−

⇔ x = y} =: bb− .

Since from Corollary 7.4 the set of final points for b− is empty, i.e. bb− = ∅, it follows that the both the sets
of initial and final points for b+ are empty; in other words, each ray Xα is isometric to R.

Proof of the Splitting Theorem 7.1.

By combining the lemmas above we can quickly get the first part of Theorem 7.1. Indeed, from Lemma
7.3 we already know that X = Tb+ and, from Lemma 3.5 we know that m(Tb+ \ T nb

b+
) = 0; thus the claim

m(X \ T nb
b+

) = 0 is proved.
Moreover, Theorem 3.6 ensures that there exists a disintegration of m verifying

mxT nb
b+

=

∫

Q

mα q(dα), q(Q) = 1,

where, for q-a.e. α, mα is a Radon measure mα ≪ H1
xXα and (Xα, d,mα) verifies MCP(0, N).

From Lemma 7.8 we know that (Xα, d) is isometric to the real line (note that the isometry is simply b
+ :

Xα → R), and thus Lemma 2.17 implies that mα = cαH1
xXα for some constant cα > 0, for q-a.e. α ∈ Q.

Define the measure q′ on Q as

q′(B) =

∫

B

cαq(dα), for any q-measurable subset B ⊂ Q.

It is clear that q′ ≪ q and that q ≪ q′, i.e. they are equivalent measures, and that

mxT nb
b+

=

∫

Q

H1
xXα q′(dα).

The last disintegration formula is equivalent to claiming that the map

Φ : T nb
b+

→ Q× R, x 7→ Φ(x) := (α(x), b+(x))

is an isomorphism of measures spaces, i.e. Φ induces an isomorphism between the σ-algebra of m-measurable
subsets of T nb

b+
and the σ-algebra of q ⊗ L1-measurable subsets of Q × R, and Φ♯mxT nb

b+
= q′ ⊗ L1. It is also

clear that Φ : T nb
b+

→ Q×R is bijective, as T nb
b+

= ∪α∈QXα is a partition, and b
+ : Xα → R is an isometry for

every α ∈ Q.

Proof of the second part of Theorem 7.1.

From the very definition (3.3) of the non-branched transport set T nb
b+

, if (X, d) is non-branching then T nb
b+

= Tb+ .
Thus, Lemma 7.3 gives X = Tb+ = T nb

b+
.

From the first part, we already know that Φ : X → Q × R is bijective. Since convergence in Q (see (7.2)) is
equivalent to the local uniform convergence of the rays, it is clear that Φ−1 is continuous.
It is then enough to show that Φ is continuous. We argue by contradiction. Assume that there exist a sequence
{xn}n∈N ⊂ X with xn → x in X such that {(α(xn), b+(xn))}n∈N does not converge to (α(x), b+(x)). Since
b
+ : X → R is continuous (actually it is even 1-Lipschitz), it is clear that b+(xn) → b

+(x) and thus it must
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be that {α(xn)}n∈N does not converge to α(x). By the definition (7.2) of convergence in Q, it follows that, up
to subsequences, it holds

0 < ε = lim
n→∞

sup
t∈I

d
(

Xα(xn)((b
+)−1(t)), Xα(x)((b

+)−1(t))
)

, for some compact interval I ⊂ R. (7.7)

As already observed, b+ : Xβ → R is an isometry for every β ∈ Q and thus it can be used to parametrise each
ray; in the formula above as well as in the following we fix such a parametrisation.
Since by assumption xn → x, for every closed interval I ⊂ R containing b

+(x), it is clear that the union of the
images of the rays Xα(xn) restricted to I are all contained in a compact subset of X . Thus, by Arzelá-Ascoli
Theorem, such restrictions converge uniformly to a geodesic γ of X passing through x. By a standard diagonal
argument, γ can be extended to a geodesic defined on the whole R and

Xα(xn) → γ uniformly on compact intervals. (7.8)

Recalling that the relation Rb+ is closed (see (3.1) and (3.2)) we get that γ is a ray passing through x, i.e.
γ = Xβ for some β ∈ Q. Since the rays are pairwise disjoint, it follows that β = α(x).
Therefore (7.8) contradicts (7.7). ✷
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[5] : Bakry-Émery curvature-dimension condition and Riemannian Ricci curvature bounds, Ann. Probab., 43,

no. 1, (2015), 339–404.
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