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Abstract
Aim: The Mediterranean Basin is a global biodiversity hotspot and has one of 
the longest histories of human– biota interactions. Islands host a large fraction of 
Mediterranean diversity and endemism, but the relative importance of natural versus 
human- mediated colonisation processes in shaping the distribution and genetic struc-
ture of Mediterranean island fauna remains poorly understood. Here, we combine 
population genomics, demographic models and palaeoshoreline reconstructions to es-
tablish the island- colonisation dynamics of wall lizards in Mediterranean archipelagos.
Location: Four Mediterranean archipelagos in Italy and Croatia.
Taxon: The wall lizard Podarcis siculus.
Methods: We used ddRAD sequencing to genotype 140 lizards from 23 island and main-
land populations. Analyses of admixture and site frequency spectra were used to recon-
struct population structure, demographic history and variation of gene flow through 
time. Genomic results were integrated with palaeogeographical reconstructions and 
were compared to archaeological evidence of human presence on these islands.
Results: Although many island populations of this species are assumed to be non- 
native, we find that many islands were colonised long before any known human set-
tlements (230,000– 12,000 years ago). This natural colonisation most likely occurred 
through land bridges during glacial marine regression or by over- sea rafting. On the 
other hand, islands distant from the continent were often colonised recently, and 
some of the estimated island colonisation times match historical records of human 
arrival. We also determine that long- established island populations generally show 
lower genetic diversity compared to proximate mainland populations, contrary to re-
cently colonised islands that must have experienced higher rates of post- colonisation 
gene flow.
Main Conclusion: Our integrated approach provides us with the power to accurately 
quantify the origin, timing and mode of island colonisation. This framework helps to 
clarify the biogeographical and evolutionary history of island populations, with impor-
tant implications for conservation and management of island biodiversity.
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1  |  INTRODUC TION

Islands hold a disproportionate amount of the world's biodiversity, 
and the study of the factors driving the origin and maintenance of 
island diversity has fuelled the formation and testing of evolutionary, 
ecological and biogeographical theories (Losos & Ricklefs, 2009). 
During the last millennia, island biotas have been re- shaped by 
human- assisted movement of fauna and flora, leading to the estab-
lishment of non- native taxa and the extinction of island endemic spe-
cies. The interplay between long- term natural processes and more 
recent, less- predictable processes complicates our understanding 
of current evolutionary and biogeographical patterns (Capinha 
et al., 2015; Helmus et al., 2014; Losos & Ricklefs, 2009). This is also 
true at the regional scale within global biodiversity hotspots such as 
the Mediterranean Region (Ficetola & Padoa- Schioppa, 2009; Silva- 
Rocha et al., 2019).

The complex geological and climatic history of the Mediterranean 
Basin have promoted the diversification of island flora and fauna 
through multiple and complex colonisation, isolation and selection 
processes taking place across different time scales. Quaternary cli-
matic oscillations have played a key role in structuring the current 
distribution of island endemics and, consequently, their genetic di-
versity. Sea- level lowering during glacial periods exposed new areas 
of land with the formation of bridges that allowed mainland popula-
tions to colonise islands. These land bridges eventually disappeared 
during interglacial periods, limiting migration and promoting diver-
gence of island populations (i.e. vicariance). On the other hand, many 
islands separated by deep- sea channels have never been physically 
connected to the continent, yet may host dispersal- limited species, 
suggesting a role for overseas dispersal (Cowie & Holland, 2006; Salvi 
et al., 2021). Therefore, the genetic composition of island populations 
has been shaped by island- specific features and species traits, such 
as spatial isolation, time- since- isolation and dispersal capacity (Garg 
et al., 2022; Heaney et al., 2005; Roberts, 2006; Wang et al., 2014).

Islands have not only promoted the differentiation of endemic 
biotas but have also provided favourable areas for their long- term 
persistence. While many temperate species underwent range con-
tractions during glacial periods and expansions during intergla-
cial periods (Hewitt, 2000, 2004), there is increasing evidence for 
glaciation- induced expansions in coastal and island habitats (Bis-
conti et al., 2011; Canestrelli et al., 2007; Salvi et al., 2014; Senczuk 
et al., 2019). However, several endemic lineages that have formed 
and persisted on islands throughout the glacial cycles became ex-
tinct during the last millennia, due to the arrival of humans and of 
non- native species (Helmus et al., 2014; Hudson et al., 2016; Nogué 
et al., 2021; Silva- Rocha et al., 2019). Such human- assisted move-
ments have disrupted species distributions and patterns of genetic 
diversity on islands, particularly across the Mediterranean. Most 

introductions have occurred in the recent past, but some events ex-
tend well into prehistoric times (Crees & Turvey, 2015; Hofman & 
Rick, 2018; Seebens et al., 2017).

The respective roles of ancient natural colonisation and recent 
introduction events for explaining the genetic structure and geo-
graphical distribution of extant taxa remain poorly understood 
because reconstructing the evolutionary history of island popula-
tions is often challenging. Over the past few decades, mitochondrial 
DNA (mtDNA) has been routinely used to understand historical 
biogeography (e.g. Kornilios et al., 2010; Podnar et al., 2005; Salvi 
et al., 2010). Genetic studies have documented very diverse modali-
ties of island colonisation according to the species and the island, and 
human- assisted dispersal is often the prevailing hypothesis when in-
sular and mainland populations show weak genetic differentiation 
both in large isolated islands (e.g. Lebarbenchon et al., 2010; Sherpa 
et al., 2018) and in near- shore islands (e.g. Marchán et al., 2020; 
Salerno et al., 2023). However, the limited resolution of mtDNA 
markers means that we cannot discriminate between colonisation 
events that took place during Quaternary sea- level regression and 
more recent, human- mediated introductions. Approaches enabling 
a representative sampling of genome- wide genetic variability allow 
a more powerful and refined phylogeographical inference, over-
coming the limitations of mtDNA markers (Cutter & Payseur, 2013; 
Delsuc et al., 2005; McCormack et al., 2013). Such approaches have 
provided information on taxon diversification on islands (Charles 
et al., 2018; Jensen et al., 2021; Manthey et al., 2020; Papadopou-
lou & Knowles, 2017), and island population histories (Blumenfeld 
et al., 2021; Martin et al., 2021; Rosenthal et al., 2021; Sherpa 
et al., 2019), but very few studies have attempted to disentangle the 
role of natural versus human- aided dispersal (McDevitt et al., 2022).

Here, we use population genomics to address the role of sea- level 
oscillations and the effect of human activities on island- colonisation 
dynamics. Wall lizards are particularly well- suited models for this 
purpose. Wall lizards are widespread both in Mediterranean islands 
and in the adjacent mainland, and have a complex biogeographical 
pattern, with some insular populations assumed to have colonised 
islands naturally, and other considered to be introduced by humans 
(Bonardi et al., 2022; Silva- Rocha et al., 2019). However, the lack of 
genomic data on these populations results in high uncertainty for 
their status and complicates the identification of the biogeograph-
ical processes determining island biodiversity. Among them, Podar-
cis siculus is native to the Italian Peninsula, Sicily, and the Adriatic 
Coast, but has established invasive populations worldwide (Cap-
inha et al., 2017; Oliverio et al., 2001; Oskyrko, Sreelatha, Hanke, 
et al., 2022; Oskyrko, Sreelatha, Silva- Rocha, et al., 2022; Silva- Rocha 
et al., 2012, 2014), and is recorded from ~300 Mediterranean islands 
(Bonardi et al., 2022). In some of these islands, the lizard is pre-
sumably native, with ancient endemic lineages (Podnar et al., 2005; 
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    |  3SHERPA et al.

Senczuk et al., 2018). Yet in other nearby archipelagos, the species 
has most likely been introduced by humans and may therefore repre-
sent a threat to island endemics (Capula, 2002; Ficetola et al., 2021). 
Nevertheless, in most cases, its biogeographical status is unknown 
(Bonardi et al., 2022), which challenges management actions.

Based on a dataset of genome- wide single nucleotide poly-
morphisms (SNPs), we establish the migration dynamics and pop-
ulation demographic history of P. siculus in four Mediterranean 
archipelagos. First, we elucidate whether island populations origi-
nate from the proximate mainland, as previously suggested (Podnar 
et al., 2005; Senczuk et al., 2017), and infer the timescale and the 
dynamics (founder effects, gene flow) of the colonisation events. 
Subsequently, estimates of colonisation time are combined with a 
time- series of sea- shoreline reconstructions and compared to ar-
chaeological data. Data of human activity on Mediterranean islands 
(Martinelli et al., 2021; Paschou et al., 2014; Presti et al., 2019; 
Rowley- Conwy et al., 2013; Zazzo et al., 2015; Zeder, 2008) sug-
gest that ancient colonisation events (>12 kya) are not compatible 
with human- assisted introduction and therefore reflect natural col-
onisation events, possibly favoured by marine regression during ice 
ages. For more recent colonisation events (<12 kya), the potential 
joint effects of natural and human- aided dispersal complicate ex-
pectations because natural colonisation could have occurred at any 
time and human introductions enable dispersal across a wide range 

of overseas distances. Our reconstruction of colonisation histories 
of Mediterranean archipelagos by P. siculus reveals a complex series 
of independent colonisation events, either by natural or human- 
assisted dispersal. Because we clarify the native versus non- native 
status of island populations (Figure 1), we also discuss the impor-
tance of our findings for conservation strategies.

2  |  MATERIAL S AND METHODS

2.1  |  Sampling areas

We collected samples of Podarcis siculus in 2014– 2015 from 23 lo-
calities in four regions; Tuscany: three mainland populations and 
three islands in the Tuscan archipelago; Dalmatia: two mainland pop-
ulations, and two northern and three southern islands in the Dalma-
tian archipelago; Western Sicily: two populations in Sicily and three 
islands in the Aegadian archipelago; Eastern Sicily: one population in 
Sicily and four islands in the Aeolian archipelago (Figure 1, Table S1). 
In each locality, we sampled six to eight lizards. The tail tip (~2 cm) 
was collected and stored in 95%– 100% ethanol before immediately 
releasing the specimen. The removal of tail tips results in a very low 
disturbance (see García- Muñoz et al., 2011), as lizards quickly regen-
erate their tails. All collected samples followed national regulations.

F I G U R E  1  Sampling localities within the four geographical regions. The maps show the location of the four geographical regions and the 23 
sampling localities: Tuscany (ARG, CAP, TAL) and the Tuscan archipelago (FOR, GIA, GIG); Dalmatia (SPL, DUB) and the Dalmatian archipelago: 
Sušac (SUS), northern islands (CIN = KLU + PIJ) and southern islands (CIS = KOP + MRC); Western Sicily (BIR, ERI) and the Aegadian archipelago 
(FAV, LEV, MAR); Eastern Sicily (MIL) and the Aeolian archipelago (FIL, SAL, STR, VUL). The colour of circles indicate the biogeographic status 
hypothesized by the literature. The map of each region include present- day and Last Glacial Maximum (LGM) shoreline configurations.
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4  |    SHERPA et al.

2.2  |  DNA extraction, library preparation and SNP 
identification

Genomic DNA was extracted using the DNEasy Blood & Tissue kit. 
A double- digest restriction- site associated DNA (ddRADseq) experi-
ment was conducted on 150 lizards following the protocol described 
in Capblancq et al. (2015) with a few modifications (Appendix S1). 
The identification of SNPs was performed using a de novo approach 
in Stacks v2.59 (Rochette et al., 2019). Downstream processing of 
reads including sequence clean- up and loci reconstruction is de-
tailed in Appendix S1. We generated a global dataset including all 
individuals (N = 140), and regional datasets for each region: Tuscany 
(N = 48), Dalmatia (N = 34), Western Sicily (N = 28) and Eastern Sicily 
(N = 30). Loci and SNP filtering included minimum coverage, excess 
of heterozygosity, proportion of missing data, physical linkage and 
minor allele frequency (Appendix S1; Tables S2 and S3).

2.3  |  Population structure and genetic diversity

We first investigated genetic variation with all populations together 
using the global dataset. We performed a principal component 
analysis (PCA), calculated population differentiation (pairwise FST), 
and inferred population structure using ADMIXTURE (Alexander 
et al., 2009). We then inferred population structure within each re-
gion, repeating these analyses using the four regional datasets. For 
ADMIXTURE, we tested K possible genetic clusters (range 1– 10) and 
determined the ‘optimal’ number of K that minimises the 10- fold 
cross- validation error. As only considering this ‘optimal’ value would 
produce an incomplete view of differentiation across populations, we 
also explored the pattern of population structure for increasing val-
ues of K (Janes et al., 2017). PCA and pairwise FST calculations were 
performed in R (R Core Team, 2017) using the packages adegenet 
v2.1.1 (Jombart, 2008) and hierfstat 0.04– 22 (Goudet, 2005) respec-
tively. The hierfstat package was used to calculate genetic diversity 
indices: individual and population observed heterozygosity (Ho), pop-
ulation expected heterozygosity (He), allelic richness (AR), inbreeding 
coefficient (FIS) and population- specific FST (local drift). Individual Ho 
was used to test the difference in genetic diversity among islands and 
between island and mainland populations using ANOVAs in R.

2.4  |  Multi- population trees

To reconstruct genetic relationships and identify migration edges 
(m) between populations, we built a population admixture graph 
for each region using TreeMix v1.13 (Pickrell & Pritchard, 2012). 
The program plink2treemix.py (https://bitbu cket.org/nygcr esear ch/
treemix) was used for formatting. We ran 100 independent analy-
ses for each m value ranging from m = 0 to m = 6 for Tuscany (four 
populations), and from m = 0 to m = 10 for Dalmatia, Western Sicily, 
and Eastern Sicily (five populations). The SNP block size for estimat-
ing the covariance matrix was set to 100. To determine the optimal 

number of m, we stopped adding migration edges when the model 
explained 99.8% of the total variance (Pickrell & Pritchard, 2012). 
Models that reached this threshold with m > 2 were retested using 
the R package OptM v0.1.6 (Fitak, 2021). The changes in variance 
explained by the models were estimated using the ad hoc Δm sta-
tistic. After identifying the optimal m, we performed 500 new in-
dependent runs with this value and 100- SNP blocks. We retained 
the tree with the highest likelihood as the best population tree. 
Bootstrap supports for each node were estimated based on the 
consensus tree of the 500 sampled trees using the program PHYLIP 
Consense v3.695 (Felsenstein, 2005) and TreeMix results were visu-
alised using the R package BITE v1.2.0008 (Milanesi et al., 2017).

2.5  |  Population demographic models

Population demographic histories were reconstructed for each region 
separately from the site frequency spectrum (SFS). We generated SFS 
files of one- population (1D- SFS) and multi- population (joint- SFS) di-
mensions using easySFS (https://github.com/isaac overc ast/easySFS). 
We used the full (folded) SFSs to maintain maximum resolution of the 
data. One- population demographic inferences were performed using 
a 1D- SFS as input to Stairway Plot v2 (Liu & Fu, 2020). The proportion 
of sites used in model training was 67% and the random break points 
were different for each population, depending on the number of hap-
loid copies (e.g. 3, 6, 9 and 12 for a population of n = 6 individuals) 
following the authors' recommendation. We assumed a mutation rate 
of 1.0 × 10−8, following rates used or estimated for lizards and other 
reptiles (Bouzid et al., 2022; Bergeron et al., 2023), and a generation 
time of 2 years. Each model was based on 100 bootstraps analyses.

Multi- population models were performed using joint- SFS and 
fastsimcoal v2.7 (Excoffier et al., 2021). The models were designed 
according to the results of TreeMix and Stairway Plot analyses (Ap-
pendix S1; Table S4). We compared four models of divergence: (1) 
strict isolation, (2) strict isolation and Ne change before divergence, 
(3) isolation with migration and (4) a combination of models 2 and 3. 
We performed 100 runs for each model, each run with 40 optimis-
ation cycles that consisted of 100,000 simulations. Support for the 
different models was evaluated with the Akaike Information Criterion 
(AIC). We also compared their maximum likelihood (ML) distributions 
by performing 100 runs of 100,000 simulations using the best- run 
ML parameters. Model selection might be biased due to linkage (Ex-
coffier et al., 2013; but see Chattopadhyay et al., 2019). However, in 
our case, the alternative scenarios do not test for changes in topology 
but only an increase in model complexity. Furthermore, founder ef-
fects and gene flow were not imposed, as founder Ne can be as large 
as current Ne and migration rates can be close to zero (Table S4). The 
accuracy of the best parameter estimates was evaluated by sampling 
50 new bootstrapped SFS to calculate 95% confidence intervals (CIs) 
and the same procedure for parameter estimation. Estimates of split 
time (in years) and Ne (in diploid gene copies) were used to calculate 
the intensity of founder effect, population growth, and the total mi-
gration rate per year since isolation (Appendix S1).
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2.6  |  Overseas distance between islands and 
source populations

To evaluate the relationship between time- since- isolation and geo-
graphical distance at the time of island colonisation, we combined 
genetic, topographic and sea level data. Topographic data were 
obtained from the EMODnet Digital Terrain Model (resolution: 
1/16 arc- minutes, approx. 115 m) (EMODnet Bathymetry Consor-
tium, 2020) and sea level changes were retrieved from published 
data (Waelbroeck et al., 2002). For each island- source pair, we cre-
ated a geographical configuration time- series based on relative sea 
level and sea level CIs, at each available date between the present- 
day and 400 kya (above sea level: 0; below sea level: 1). Raster data 
manipulation was performed using the R packages sp v1.3– 1 (Hij-
mans, 2018) and raster v2.8– 4 (Pebesma & Bivand, 2005). Island- 
source minimum overseas distances were calculated using the 
gdistance v1.2– 2 R package (van Etten, 2018).

We performed a weighted least squares regression between 
the estimated island- source divergence time and the estimated 
island- source minimum overseas distance at this time. Weighted 
least squares regression, contrary to ordinary least squares, does 
not assume equal variance among observations, and incorporates 
weights for each observation based on their uncertainty, giving 
more weight to the most robust observations. This approach thus 
helped to integrate the knowledge of sea level uncertainties into the 
regression analysis (Strutz, 2016). Specifically, observations were 
weighted using the inverse of variance calculated from the overseas 
distances based on sea level CIs (Waelbroeck et al., 2002). When the 
variance was zero, we used the minimum variance between other 
island- source pairs. When two island populations most likely origi-
nated from a single colonisation event, we used the mean of the two 
island- source minimum overseas distances for estimates based on 
relative sea level, and the minimum and maximum of the two island- 
source minimum overseas distances for estimates based on sea level 
CIs. Analysis was performed in R and overseas distances and diver-
gence times were log- transformed.

3  |  RESULTS

3.1  |  Genomic variation of populations across 
Mediterranean archipelagos

3.1.1  |  Global population structure

Our ddRADseq panel generated ~135 million reads for a total 140 
lizards from 23 island and mainland populations across four archi-
pelagos in the Mediterranean: Tuscany, Dalmatia, Western Sicily and 
Eastern Sicily (Figure 1; Tables S1 and S2). De novo variant calling 
resulted in 4115 SNPs with a mean coverage of 19X and 19% missing 
data per sample on average (Table S3). Global genetic differentiation 
among all populations was strong (FST = 0.72). Assessment of popula-
tion structure using PCA revealed three genetic groups differentiated 

by the two first axes (57% of total genetic variance) corresponding to 
three geographical regions: Tuscany, Dalmatia and Sicily (Figure S1). 
Analysis using ADMIXTURE revealed an optimal number of genetic 
clusters was K = 5 genetic groups (Figure S2), differentiating Western 
Sicily from Eastern Sicily, Dalmatia (with many admixed individuals), 
and two clusters in Tuscany with substantial admixture in one of the 
island localities (GIA; Figure 2). Pairwise FST ranged between 0.23 
and 0.90 between populations of different regions and between 0.00 
and 0.77 between populations of the same region (Figure S3).

3.1.2  |  Population structure and genetic diversity 
within archipelagos

Next, we investigated genetic variation within each archipelago: Tus-
cany (4562 SNPs); Dalmatia (2046 SNPs); Western Sicily (2716 SNPs) 
and Eastern Sicily (3245 SNPs) (full details in Tables S2 and S3). PCA and 
ADMIXTURE revealed substructure within all archipelagos (Figures 2, 
S4 and S5). For Tuscany, the three islands were strongly differentiated 
from the mainland, with the optimal K = 4. For Dalmatia, two genetic 
groups were identified (optimal K = 2), the first corresponding to the 
southern islands of the archipelago (SUS, CIS) and the second to the 
mainland populations (DUB, SPL), with northern islands showing evi-
dence of admixture (CIN) (Figures 2 and S4). In Western and Eastern 
Sicily, although the optimal K was K = 1 (Figure S5), it was evident from 
higher K values and the PCA that all the islands were differentiated 
from each other and from the mainland (Figures 2 and S4). For West-
ern Sicily, the islands LEV and FAV clustered together, and MAR with 
Sicily (BIR and ERI). In Eastern Sicily, the islands SAL and FIL clustered 
together, and the islands STR and VUL clustered with Sicily (MIL).

Island populations had either higher, equivalent or lower genetic 
diversity than mainland groups (Table S5). Nested ANOVAs revealed 
higher observed heterozygosity (Ho) in mainland Tuscany than in Tus-
can islands (F1,4 = 14.48, p = 0.019), in mainland Dalmatia and north-
ern Dalmatian islands (CIN) than in southern islands (CIS) (F2,4 = 41.37, 
p = 0.002), but Ho was not different between Western Sicily and Ae-
gadian islands (F1,3 = 0.49, p = 0.531) and between Eastern Sicily and 
Aeolian islands (F1,3 = 1.42, p = 0.319; Figure S6). Exploring the ge-
netic diversity within each archipelago revealed marked differences 
in observed and expected (He) heterozygosity, allelic richness (AR) 
and population- specific FST values (Table S5). The majority of FIS val-
ues were close to 0. Ho showed significant differences among the 
Tuscan (F4,42 = 24.14, p < 0.001), the Aegadian (F3,23 = 5.99, p = 0.008) 
and the Aeolian (F3,24 = 8.66, p < 0.001) islands, but not within north-
ern and southern Dalmatian islands (F4,27 = 0.28, p = 0.891; Figure S6).

3.2  |  Colonisation history of islands

3.2.1  |  Demographic inference

Based on the strong genetic differentiation observed (Figures 2, 
S1 and S3), the colonisation dynamics of each archipelago were 
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reconstructed separately, using the topology of TreeMix best popu-
lation trees that revealed a best number of migration events of one 
within Tuscany, Dalmatia and Western Sicily, and two within Eastern 
Sicily (Figure 3, S7 and S8). Current effective population sizes (Ne) 
inferred using Stairway Plot analyses and migration events identi-
fied by TreeMix were used to calibrate demographic models (Ap-
pendix S1). Fastsimcoal demographic inference of the timescales and 
modes of divergence showed that the most complex model, includ-
ing founder effects and gene flow, was the best model for all the 
regions (lowest Δ- likelihood and AIC, non- overlapping ML distribu-
tions; Table S6, Figures S9 and S10).

In Tuscany, the Ne of mainland populations started to increase 
around 180 kya, followed by the expansion of the GIG island pop-
ulation around 100 kya (Figure 4), and the divergence of GIG and 
GIA from the mainland occurred around 65 (31– 100) kya (Figure 5). 
This was most likely a single event with a low founder Ne, followed 
by a rapid genetic subdivision (63 (56– 71) kya; Figures 5 and 6). Ef-
fective migration rates suggest gene flow from mainland Tuscany 
to GIA after the initial divergence, while GIG remained genetically 
isolated, in accordance with our ADMIXTURE results (Figures 2, 6 
and S11). The population inhabiting the tiny islet of Formica Grande 
(FOR) diverged more recently (0– 10 kya), which was accompanied 
by a founder effect before isolation, followed by a strong bottle-
neck (Figures 4– 6). This population has the lowest current Ne and 
He among the three islands (Figure S6), despite evidence for post- 
divergence gene flow with GIG (Figures 2, 3 and 5).

In Dalmatia, mainland populations showed an expansion after 
140 kya followed by constant high Ne (Figure 4). For Dalmatian 
islands, CIN showed an apparent decrease of Ne, while SUS and 

CIS showed small but constant Ne over time. The most distant is-
land population (SUS) diverged in strict isolation from the mainland 
population around 230 (180– 280) kya (Figure 5). The two mainland 
populations SPL and DUB diverged around 25 (19– 32) kya, and 
the northern (CIN) and southern (CIS) Dalmatian islands diverged 
from the SUS population at 14 (12– 15) and 0.6 (0.2– 1.0) kya respec-
tively. Consistent gene flow between SUS and CIS, and relatively 
high founder Ne, maintained the level of diversity in CIS (constant 
Ne; Figures 4– 6). Similarly, gene flow between mainland Dalmatia 
(SPL) and CIN explains that many individuals in CIN are admixed 
and show the highest Ho in the Dalmatian region (Figures 2– 6, S6 
and S11).

In Western Sicily, all populations showed very consistent de-
mographic histories, with an expansion between 50 and 20 kya, 
followed by constant Ne over time (Figure 4). The two island popula-
tions LEV and FAV originated from a large ancestral population (high 
founder Ne) that diverged from Western Sicily around 34 (20– 49) 
kya and that split into LEV and FAV around 13 (11– 15) kya (Figures 5 
and 6). This was accompanied by a strong decline in Ne, especially 
in LEV that diverged in strict isolation, whereas FAV remained con-
nected to Sicily by gene flow (Figure 6). The furthest island popu-
lation, MAR, diverged from Sicily around 10 (9– 11) kya (Figure 5). 
High migration rates between FAV and MAR after their respective 
divergence from Sicily contributed to an increase in Ne and explains 
the admixture pattern we found in MAR (Figures 2– 6, and S6). We 
also found more recent post- colonisation gene flow between LEV 
and mainland Sicily (<1.2 kya; Figures 3, 5 and S11).

In Eastern Sicily, the population MIL and two island populations 
(VUL and STR) showed a demographic expansion between 50 and 

F I G U R E  2  Population genetic structure. ADMIXTURE ancestry coefficients for K = 5 and all 140 individuals (top, global dataset) and for 
each region (bottom, regional datasets). Optimal number of genetic clusters: global, K = 5; regional (in bold): Tuscany, K = 4; Dalmatia, K = 2; 
Western Sicily, K = 1 and Eastern Sicily, K = 1 (Figures S2 and S5).
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    |  7SHERPA et al.

20 kya, whereas SAL and FIL show a distinct history and originated 
from an ancestral population that diverged from MIL around 29 
(25– 34) kya (Figures 4 and 5). This ancestral population then split 
into FIL and SAL around 11 (10– 12) kya, which was accompanied by 
a decrease in Ne in both populations (Figures 5 and 6). The popu-
lation SAL diverged in strict isolation from the mainland, whereas 
FIL remained connected to Sicily by gene flow until 1 kya although 
evidence for a single admixed individual suggests more recent gene 
flow in FIL (Figures 2– 6). The two other island populations (STR 
and VUL) diverged more recently, 4.8 (4.3– 5.3) and 0.9 (0.5– 1.4) 
kya respectively. The STR population experienced a strong founder 
effect and diverged in strict isolation, although our ADMIXTURE 

results show evidence of a first- generation migrant from the main-
land (Figure 2). The population colonising VUL was highly diverse 
and subsequently connected by gene flow with SAL (Figures 2– 6, 
and S11).

3.2.2  |  Relationship between 
time- since- isolation and sea- crossing distances

The minimum overseas distance between islands and their respec-
tive source has been strongly influenced by changes in sea level 
over the past 350 kya (Figure S12). Some islands were likely fully 

F I G U R E  3  Multi- population trees. The number of migration edges (m) between populations was determined from 100 independent 
TreeMix analyses. The best tree topology was identified from 500 new independent TreeMix runs with the best m value. Bootstrap supports 
for each node were estimated based on the consensus tree of the 500 sampled trees and are represented by green circles (90%– 100% 
bootstrap support), green squares (75%– 90% bootstrap support) and green triangles (50%– 75% bootstrap support). The migration weight is 
represented by colour intensity, as shown in the figure.
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8  |    SHERPA et al.

connected to the mainland for long time periods during glaciations 
(~100,000 years during the last glaciation; Western Sicily: FAV and 
LEV) or occasionally during glacial maxima (Tuscany: GIG and FOR; 
Dalmatia: SUS, CIN and CIS). Other islands were never connected 
to the mainland, but the overseas distance was greatly reduced: 
4 km between Tuscany and GIG and 2 km between Western Sicily 
and MAR. On the contrary, the four Aeolian islands have never 
been connected to Eastern Sicily, and the overseas distance re-
mained large (>20 km) even during glacial maxima (Figure S12). 
The minimum overseas distances at estimated dates of divergence 
ranged between 0 and 56 km (Figure 7). We found a positive re-
lationship between time- since- isolation (divergence time in years) 
and overseas distances between islands and their source popu-
lations at this time (linear model: R2 = 0.33, F1,8 = 5.40, p = 0.049; 
Figure 7).

4  |  DISCUSSION

4.1  |  Population genomics, palaeogeographical and 
archaeological data inform island biogeographical 
patterns

Quaternary climatic and palaeogeographical events are often pin-
pointed as the major drivers of present- day biogeographical pat-
terns in the Mediterranean Region (Blondel, 2010; Hewitt, 2011). 
Nevertheless, we still have an incomplete view of the interplay be-
tween these keystone events and prehistoric human movements 
in shaping Mediterranean insular biodiversity. The pattern is par-
ticularly intricate for near- shore islands, because their geographi-
cal proximity with the continent induced episodic permeability to 
natural dispersal and facilitated early colonisation through human 

F I G U R E  4  Changes in effective population size (Ne) over time. Solid lines represent the median and dotted lines the 95% CIs generated 
from 100 bootstrap replicates using Stairway Plot. Vertical grey boxes denote the Last Glacial Maximum (LGM; ~20 kya) and the Penultimate 
Glacial Maximum (PGM; ~140 kya).
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    |  9SHERPA et al.

intervention. Differentiating between natural and human- aided 
dispersal processes generally involves the evaluation of two main 
criteria: the time- since- isolation and contemporary geographical 
isolation (Essl et al., 2018; Wilson et al., 2009). By combining high- 
resolution genomic data and palaeogeographical data, our analyses 
revealed that the current distribution of wall lizards across Medi-
terranean islands is the result of a complex dispersal framework, 
determined by biogeographical affinities (dispersal from the ad-
jacent continent/islands during marine regressions) and multiple 

overseas colonisation events, either by natural or human- mediated 
dispersal.

Island- source divergence times revealed that seven islands 
were colonised long before known human settlements (>12 kya). 
The number of propagules and their frequency of arrival are ex-
pected to decrease in more isolated islands, but remote islands may 
be prone to establishment of populations into previously vacant 
niches (Whittaker & Fernández- Palacios, 2007). Our assessment 
of colonisation patterns confirms that ancient colonisation events 

F I G U R E  5  Divergence models for the four Mediterranean archipelagos. The best model for all archipelagos included founder effects 
and gene flow. Effective population sizes (Ne) are provided in Table S4. For effective migration rates, only rates ≥0.002 are represented 
(Figure S11). Divergence times correspond to best ML parameter estimates, and their 95% CIs from 50 bootstrap parameter estimates.
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10  |    SHERPA et al.

occurred when islands were connected or closer to the continent 
(Figure 7), supporting the hypothesis that natural colonisation is 
most likely when island isolation is minimised. The presence of 
vast emerged areas at the end of the last glacial period probably 
allowed the expansion of the Western Sicily ancestral population 
into the islands of LEV and FAV, whereas the subsequent rise of sea 
level rapidly disconnected these islands from one another (Presti 
et al., 2019). This result supports the hypothesis that glaciation- 
induced expansions are a main driver of the distribution of island 
biotas in the Mediterranean Basin (Bisconti et al., 2011; Podnar 
et al., 2004; Salvi et al., 2014; Senczuk et al., 2019). Similarly, a 
continental population colonised the Tuscan islands GIA and GIG 

thanks to reduced overseas distances (~10 km) during the last gla-
cial period. This narrow distance also facilitated colonisation by 
other species, as shown by faunistic similarities between these two 
islands (Fattorini, 2010a). Sea- level lowering may have also pro-
moted the colonisation of the Dalmatian island SUS. However, pos-
sible secondary contact between Dalmatian and Sicilian lineages 
makes it difficult to propose a scenario for Dalmatian islands with-
out additional data covering both sides of the Adriatic coast and 
other Dalmatian islands (Figure 2; Podnar et al., 2005).

The distant volcanic islands of the Aeolian archipelago (Eastern 
Sicily) were never connected to Sicily, but genomic and archaeolog-
ical data support the hypothesis of natural dispersal for two islands 

F I G U R E  6  Island- colonisation dynamics across Mediterranean archipelagos. Founder diversity, total migration rate per year since 
isolation and population growth were calculated from fastsimcoal ML parameter estimates (see Appendix S1). Black points: best model 
estimates; density distributions: bootstrap estimates. FST: genetic differentiation between island and source populations (see Figure 5 for 
sources), mean FST if several possible sources (Figure S3).
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    |  11SHERPA et al.

(SAL and FIL), as the estimated divergence times (10– 34) are much 
older than any human settlement in these islands (7– 7.5 kya; Mar-
tinelli et al., 2021). This ancient colonisation is likely related to liz-
ard ability to cross the sea over long distances (20– 45 km), which 
has occasionally been shown (Escoriza, 2021; Glor et al., 2005; 
Welt & Raxworthy, 2022). This was probably facilitated by island- 
to- island colonisation events and by natural drifting on sea surface 
currents directed towards the Aeolian archipelago from Eastern 
Sicily (Escoriza, 2021; Fattorini, 2010b; Stroscio et al., 2011), and 
supports the hypothesis that transmarine dispersal events between 
landmasses and islands have played a major role in biotic exchange 
across the Mediterranean, and in the diversification of many terres-
trial vertebrates including lizards (Hewitt, 2011; Mendes et al., 2017; 
Salvi et al., 2021).

Most populations in anciently colonised islands diverged in strict 
isolation, with the sea acting as a strong barrier to gene flow. Inter-
estingly, we still found evidence for subsequent gene flow with the 
mainland in GIA, probably associated with LGM land connections 
forming after the original colonisation event (Figure S12). Consis-
tent with other studies (Lourenço et al., 2018; Wang et al., 2014), 
long- established populations tend to show lower genetic diversity 
and higher differentiation compared to mainland populations. These 
patterns of distribution, diversity and differentiation highlight the 
key role of natural dispersal and vicariant events for the biogeogra-
phy of the Mediterranean Basin.

Recent colonisation events (<12 kya) mostly happened in is-
lands further from the continent (Figure 7). This is probably because 

human transport loosened barriers to dispersal, even though long- 
distance natural dispersal remains possible. For three of the recent 
colonisation events, the time- since- isolation perfectly matches the 
known colonisation history of islands by humans, strongly support-
ing the role of human- assisted introductions. The colonisation of 
Marettimo (MAR) from Western Sicily (9– 11 kya) overlaps with the 
first dated evidence of human presence in this island (9– 13.5 kya; 
Presti et al., 2019), and might be even more recent than estimated 
considering the limited sampling of putative sources in Sicily. Phylo-
geographical studies on other taxa showed strong genetic similari-
ties between populations from Western Sicily and the two islands 
LEV and FAV, and endemic lineages occurring on MAR (Fiorentino 
et al., 2008; Senczuk et al., 2019). On the contrary, P. siculus popula-
tions in Western Sicily are genetically closer to the MAR population, 
supporting the hypothesis of a more recent, human- aided introduc-
tion. In Eastern Sicily, Stromboli (STR) has a history of strong vol-
canic activity, and humans probably colonised this island relatively 
recently (4– 5.5 kya; Orlando et al., 2018; Martinelli et al., 2021), 
which matches our inferred date of arrival of P. siculus in this island 
(4.3– 5.3 kya). Also due to volcanic activity, Vulcano (VUL) is the only 
Aeolian island without prehistoric settlements, but evidence of min-
ing and agriculture during the Middle Ages (Manni et al., 2019) sug-
gests that humans may have facilitated an introduction of P. siculus 
that is estimated at 0.5– 1.4 kya. These results confirm a strong in-
teraction between past human societies and Mediterranean insular 
biodiversity (Gippoliti & Amori, 2006; Médail, 2022). We also found 
a tendency of increased dispersal distances and an increased gene 
flow between populations in recent times (Figure 5 and 7), support-
ing the rising impact of human activity on species redistribution and 
genetic homogenisation (Capinha et al., 2015; Olden et al., 2004). 
This might be particularly important for anthropophilic species like 
wall lizards, which have been accidentally introduced through the 
transportation of materials and cultivated plants (Santos et al., 2019; 
Silva- Rocha et al., 2015, 2019).

The congruencies between genetics and geological/archaeo-
logical data were striking, confirming the power of genomic ap-
proaches for detecting major events determining the demography 
and distribution of species. However, natural and human- aided 
dispersal events are not always easy to tease apart. For instance, 
the actual drivers for the colonisation of islets (FOR, CIN, CIS) can-
not be identified, as short overseas distances and multiple sources 
are compatible with both dispersal processes. Furthermore, other 
processes besides dispersal probably contributed to the observed 
patterns. First, recently colonised islands host populations with 
varying levels of genetic diversity because each of them has its 
own demographic history (founder diversity, time- since- isolation, 
post- colonisation gene flow), which makes it challenging to gen-
eralise about patterns of genetic diversity across islands (García- 
Verdugo et al., 2015). Second, recent colonisation of the islands by 
P. siculus does not exclude a more ancient presence. Demographic 
stochasticity might have exacerbated the extinction risk of small 
populations due to bottleneck effects (FOR that was connected 
to mainland during the LGM). Our results also suggest a combined 

F I G U R E  7  Relationship between island- source divergence 
time and overseas distance at time of isolation. Vertical error bars 
represent the minimum overseas distance confidence intervals 
at each estimated divergence time, used in model weighting to 
account for differing sea level uncertainties across estimated 
divergence times.

40
0

20
0

10
0 50 20 10 5 1

0
5

10
25

50

Is
la

nd
-s

ou
rc

e 
m

in
im

um
 o

ve
rs

ea
s 

di
st

an
ce

 (k
m

) 

Island-source divergence time (k years ago) 

SUS 

GIG+GIA 

SAL+FIL 

FOR 

CIN 

STR 

FAV+LEV 

MAR 

CIS 

Tuscany 
Dalmatia 
Western Sicily 
Eastern Sicily 

Both natural and  
human-aided dispersal 

Most likely natural 
dispersal 

VUL 

12
 k

ya
 

 13652699, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jbi.14739 by C

ochraneItalia, W
iley O

nline L
ibrary on [10/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



12  |    SHERPA et al.

effect of environmental stochasticity and human colonisation 
history. The volcanic activity in the Aeolians could have reduced 
suitability of some islands (VUL, STR) that were recolonised more 
recently, while the species persisted in other islands (SAL, FIL) 
within the same archipelagos.

4.2  |  Population genomics for a better 
management of island biodiversity

The introduction of non- native species is the main cause of biodiver-
sity decline in islands (Bellard et al., 2017; Nogué et al., 2021), mak-
ing the detection of non- native species critical. Low- density genetic 
markers have limited resolution for accurate estimates of popula-
tion parameters, with the consequent risk of defining inappropriate 
management actions (Supple & Shapiro, 2018). We demonstrate 
that population genomic approaches enable us to clarify when (colo-
nisation time approximated by divergence time), and how (natural 
dispersal vs. human transportation), populations established on an 
island, thus determining the status of species (native vs. non- native) 
when it is uncertain.

Until now, it has been assumed that the wall lizard is non- native in 
many Mediterranean islands (Bonardi et al., 2022), yet we detected 
at least seven island populations that established following old colo-
nisation events (>20 kya) and are not compatible with human- aided 
introductions. The joint effect of these natural and human- aided 
processes within each archipelago has major consequences for 
management. For instance, the Aeolian archipelago hosts the Crit-
ically Endangered, endemic lizard Podarcis raffonei. The decline of 
this species is often explained by the recent introduction of P. siculus 
(Capula, 2002; Ficetola et al., 2021), but our reconstruction of colo-
nisation history suggests a more complex pattern with both natural 
and human- aided colonisation events. Only in some islands it is likely 
that P. siculus has been introduced recently by human activities (e.g. 
Vulcano), thus supporting the importance of control actions (on P. 
siculus) for the preservation of endemic species.

Whether populations should be considered as native or non- 
native depends on the criteria used to classify them. Time- since- 
isolation is a criterion generally used to define the biogeographical 
status of a population (Essl et al., 2018), but it remains complicated 
for human- aided introductions occurring a few millennia ago nearby 
the native range (Crees & Turvey, 2015). Furthermore, demographic 
inferences have their own limitations and aspects of uncertainty, in-
cluding genetic resolution for model selection and parameter estima-
tion (Excoffier et al., 2013) and the set of a priori values, which can 
subsequently impact parameter estimation. Uncertainty also arises 
from the conversion of estimated parameters into absolute values, 
depending on the reliability on mutation rate and generation time, 
which are notoriously difficult to estimate in non- model species.

Finally, the relationship between divergence time and colonisa-
tion time can be complex. Divergence and colonisation times might be 
close when colonisation involves a single dispersal event from a small 
fraction of the mainland population. However, if islands remained 

connected to the mainland for long periods, the period between col-
onisation and divergence can be relatively long, thus divergence time 
can underestimate the true colonisation time. In other cases, the col-
onisation can be recent but the divergence time overestimated, for 
example, if the ancestral source population has not been sampled 
or become extinct (Stroscio et al., 2011), if secondary contact be-
tween previously isolated lineages erase part of the past history (as 
might have occurred in mainland Dalmatia), or if the model does not 
account for ancient population expansion (Momigliano et al., 2021). 
Nevertheless, the fact that divergence times match extremely well 
with the known human colonisation or geological history for most 
of colonisation events supports the robustness of our conclusions.

5  |  CONCLUSIONS

Resolving the interplay between natural and human- aided disper-
sal processes in the colonisation of islands is pivotal to identify the 
processes determining biodiversity in insular regions. Like many 
widespread Mediterranean species, the Italian wall lizard shows an 
extraordinarily large intraspecific diversity and a strong phylogeo-
graphical structure. By integrating fine- grained genomic and palaeo-
geographical data, we obtained precise reconstructions of the tempo 
and dynamics of arrival of island populations, and post- colonisation 
gene flow. Furthermore, archaeological information helped in teasing 
apart the effects of biogeographical processes during the Pleisto-
cene versus human- aided introductions during the Holocene. Such 
integrated approach is invaluable for understanding the factors and 
processes promoting species colonisation and diversity, and can be 
applied to the reconstruction of biogeographical history, biological 
invasions and natural range expansions, helping to identify appropri-
ate management strategies for native/non- native island species.
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