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DECOMPOSITION OF GEODESICS IN THE WASSERSTEIN
SPACE AND THE GLOBALIZATION PROBLEM

Fabio Cavalletti

Abstract. We will prove a decomposition for Wasserstein geodesics in the following
sense: let (X, d,m) be a non-branching metric measure space verifying CDloc(K,N)
or equivalently CD∗(K,N). We prove that every geodesic μt in the L2-Wasserstein
space, with μt � m, is decomposable as the product of two densities, one corre-
sponding to a geodesic with support of codimension one verifying CD∗(K,N − 1),
and the other associated with a precise one dimensional measure, provided the
length map enjoys local Lipschitz regularity. The motivation for our decomposition
is in the use of the component evolving like CD∗ in the globalization problem. For
a particular class of optimal transportation we prove the linearity in time of the
other component, obtaining therefore the global CD(K,N) for μt. The result can be
therefore interpret as a globalization theorem for CD(K,N) for this class of optimal
transportation, or as a “self-improving property” for CD∗(K,N). Assuming more
regularity, namely in the setting of infinitesimally strictly convex metric measure
space, the one dimensional density is the product of two differentials giving more
insight on the density decomposition.
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1 Introduction

The class of metric measure spaces with generalized lower bounds on the Ricci curva-
ture formulated in terms of optimal transportation, has been introduced by Sturm
in [Stu06a,Stu06b] and independently by Lott and Villani in [LV09]. The spaces
belonging to this class are called CD(K,N)-spaces and the condition characterizing
them is denoted with CD(K,N).

In the curvature-dimension condition CD(K,N) the two parameters K and N
play the role of a curvature lower bound and a dimension upper bound, respectively.
Among the many relevant properties enjoyed by CD(K,N), the following one also
serves as a motivation: a complete Riemannian manifold satisfies CD(K,N) if and
only if its Ricci curvature is bounded from below by K and its dimension from above
by N .

Roughly speaking curvature-dimension condition CD(K,N) prescribes how the
volume of a given set is affected by curvature when it is moved via optimal trans-
portation. It imposes that the distortion is ruled by a coefficient denoted by τ (t)

K,N (θ)
depending on the curvature K, on the dimension N , on the time of the evolution t
and on the point length θ. The main feature of τ (t)

K,N (θ) is that it is obtained mix-
ing two different volume distortions: an (N−1)-dimensional distortion depending on
the curvature K and a one dimensional evolution that doesn’t contain any curvature
information. Namely

τ
(t)
K,N (θ) = t1/Nσ

(t)
K,N−1(θ)

(N−1)/N ,

where σ(t)
K,N−1(θ)

(N−1)/N contains the information on the (N−1)-dimensional volume
distortion and the evolution in the remaining direction is ruled just by t1/N . The
coefficient σ(t)

K,N (θ) is the solution (in time) of the second order differential equation

y′′ + θ2K

N
y = 0, y(0) = 0, y′(0) = 1.

The previous equation appears naturally in the study of the Jacobian of the
differential of the exponential map in the context of differential geometry, and indeed
it rules the part of the Jacobian associated to the restriction to an hyperplane of the
differential of the exponential map, see [Stu06b] for more details.
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A broad variety of geometric and functional analytic properties can be deduced
from the curvature-dimension condition CD(K,N): the Brunn–Minkowski inequality,
the Bishop–Gromov volume comparison theorem, the Bonnet–Myers theorem, the
doubling property and local Poincaré inequalities on balls. All these listed results
are in a quantitative form (volume of intermediate points, volume growth, upper
bound on the diameter and so on) depending on K,N .

One of the most important questions on CD(K,N) that are still open, and we will
try to understand in this note, is whether this notion enjoys a globalization prop-
erty: can we say that a metric measure space (X, d,m) satisfies CD(K,N) provided
CD(K,N) holds true locally on a family of sets Xi covering X?

A first tentative of answer this problem was given by Bacher and Sturm in
[BS10]: they proved that a non-branching metric measure space (X, d,m) verifies
the local curvature-dimension condition CDloc(K,N) if and only if it verifies the
global reduced curvature-dimension condition CD∗(K,N). The latter is obtained
from CD(K,N) imposing that the volume distortion, during the evolution through
an optimal transportation, is ruled by σ(t)

K,N (θ) instead of τ (t)
K,N (θ). The CD∗(K,N)

is a priori weaker than CD(K,N) and the converse comparison can be obtained
only changing the value of the lower bound on the curvature: condition CD∗(K,N)
implies CD(K∗, N) where K∗ = K(N − 1)/N (for K ≥ 0 and for K < 0 a suitable
formula holds). Therefore the curvature condition contained in CD∗(K,N) is a priori
weaker than the one contained CD(K,N).

Roughly speaking, the main reason why the globalization property holds for
the reduced curvature-dimension condition stays in the good behavior (in time) of
σ

(t)
K,N (θ), which in turn can be led back to the previous second order differential equa-

tion. The same approach applied to CD(K,N), that is try to prove the globalization
property for CD(K,N) directly from the properties of τ (t)

K,N (θ), seems to not work.

A different approach to the problem has been presented by the author together
with Sturm in [CS12]. The approach in [CS12] was, in the case of an optimal trans-
portation between a diffuse measure and a Dirac delta, to isolate a local (N − 1)-
dimensional evolution ruled by σ

(t)
K,N−1(θ) and then using the nice properties of

σ
(t)
K,N−1(θ), obtain a global (N − 1)-dimensional evolution ruled by the coefficient

σ
(t)
K,N−1(θ). Then using Hölder inequality and the linear behavior of the other direc-

tion, pass from the (N − 1)-dimensional version to the full-dimensional version with
coefficient τ (t)

K,N (θ).

So the strategy was to reproduce in the setting of metric measure spaces the
calculations done in the Riemannian framework where, taking advantage of parallel
transport, from Ric ≥ K it is possible to split the Jacobian determinant of the dif-
ferential of the exponential map into two components: one of codimension 1 evolving
accordingly to σK,N−1 and one representing the distortion in the direction of motion
that is concave.
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To be more precise in [CS12] it is proved that if (X, d,m) is a non-branching met-
ric measure space that verifies CDloc(K,N) then it verifies the weaker MCP(K,N).
While CD(K,N) is a condition on the optimal transport between any pair of
absolutely continuous (w.r.t. m) probability measure on X, MCP(K,N) is a condi-
tion on the optimal transport between a Dirac delta and the uniform distribution m
on X. Indeed to detect the (N − 1)-dimensional evolution it is necessary to decom-
pose the whole evolution. Considering the optimal transport between a Dirac mass
in o and the uniform distribution m permits to immediately understand that the
family of spheres around o provides the correct (N − 1)-dimensional support of the
evolving measures. So the choice of a Dirac delta as second marginal was really
crucial and strongly influenced the geometry of the optimal transportation.

The aim of this paper is to identify, in the general case of optimal transportation
between any measures, the (N − 1)-dimensional evolution verifying CD∗(K,N − 1)
and, starting from that, provide a decomposition for densities of geodesics that can
be interpret as a parallel transport. The N -dimensional density will be written as
the product between the (N − 1)-dimensional density verifying CD∗(K,N − 1) and
of a 1-dimensional density not necessarily associated to a 1-dimensional geodesic.
In the framework of infinitesimally strictly convex spaces, the 1-dimensional density
will be obtained as the product of two differential, producing then a more direct
decomposition.

We will construct a full decomposition for any optimal transportation verifying
a local Lipschitz regularity, see Assumptions 1 and 2 for the precise hypothesis.
We apply this decomposition to the globalization problem for CD(K,N). With this
approach we are able to reduce the problem to prove the concavity in time of the
1-dimensional density, provided Assumptions 1 and 2 are verified. It is important to
underline here that in the framework of Riemannian manifolds endowed with volume
measures both Assumptions 1 and 2 are proved to hold.

Moreover in the particular case of optimal transport plans giving the same speed
to geodesics leaving from the same level set of the associated Kantorovich potential,
we prove indeed both regularity and linearity of the 1-dimensional factor and we
get the full CD(K,N) inequality. So we prove the global estimate of CD(K,N)
for a certain class of optimal transportation, clearly including all the cases treated
in [CS12].

We now present the paper in more details. Let (X, d,m) be a non-branching
metric measure space verifying the local curvature dimension condition and μt = �tm
be a geodesic (in the L2-Wasserstein space) that we want to decompose as stated
before. The first difficulty we have to handle with is to find a suitable partition of
the space. Unlikely optimal transportations connecting measures to deltas, there is
not just a universal family of sets but one for each t ∈ [0, 1]: if ϕ is a Kantorovich
potential associated to (μ0, μ1), then

{γt : ϕ(γ0) = a, γ ∈ supp(γ)}a∈R
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is the family of partitions, one for each t ∈ [0, 1], that will be considered. Here
γ ∈ P(G(X)) is a dynamical optimal transference plan of μt and P(G(X)) denotes
the space of probability measures over G(X), the space of geodesic in X endowed
with the uniform topology inherited as a subset of C([0, 1], X).

The intuitive reason suggesting that the previous family is the right one, stays
in the Brenier–McCann Theorem for optimal transportation on manifold that gives
a precise formula for the optimal maps:

Tt(x) = expx(−t∇ϕ(x)), (Tt)�μ0 = μt.

By definition, geodesics on manifold verify ∇γ̇ γ̇ = 0, where ∇ only here denotes
the Levi-Civita connection, meaning that there is no curvature in the direction of
γ. Hence the direction orthogonal to the motion should be the one carrying all the
curvature information. Since γ̇0 = −∇ϕ, (here ∇ϕ is the gradient of ϕ) the family
of sets orthogonal to the motion are the level sets of ϕ.

On the rigorous mathematical side, the reason why that family is the right one
stays in the following property: the set

{(γ0, γ1) ∈ X ×X : ϕ(γ0) = a}
is d-cyclically monotone (Proposition 4.1). Hence for γ �= γ̂ ∈ supp(γ) with ϕ(γ0) =
ϕ(γ1) it holds

γs �= γt, ∀s, t ∈ (0, 1).

Therefore for s �= t, {γs : ϕ(γ0) = a} and {γt : ϕ(γ0) = a} are disjoint. This key
property permits to consider the evolution of each “slice” of the geodesic μt, where
with “slice” we mean its conditional measure with respect to the level sets of the
chosen Kantorovich potential.

Here the structure is very rich. Using this new property of d-cyclical monotonicity,
it is possible to construct L2-Wasserstein geodesics with also d-monotone support.
The whole construction does not rely on any curvature bound of the space and its
interest goes beyond the scope of this paper. For this reason we commit Section 4
to the presentation of these results in their fully generality.

As it is well known, any d-monotone set is formed by family of geodesics that
do not intersect at any time. For this reason a translation along this geodesics is
well defined. Denote by φa a Kantorovich potential associated to the d-monotone
set {(γs, γt) : γ ∈ Ga, s ≤ t ∈ [0, 1]}. The crucial idea to construct L2-geodesics is
to move via “translation” level sets of φa to level sets of φa. As proved in Lemma
4.6 and Proposition 4.7 this will produce a geodesic in the L2-Wasserstein space,
showing a new connection between L1 and L2 optimal transportation problems.

The relevance of this construction for the globalization problem stays in the fol-
lowing property: the family of geodesics obtained in Section 4 have a linear structure
on each geodesic forming the d-monotone set. Therefore there is one degree of free-
dom to play with. This property, that was already present in [CS12] but somehow
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hidden, will be fundamental here to improve the curvature estimates for the element
of codimension one passing from N to N − 1.

Coming back the the decomposition, if we want to perform a dimensional reduc-
tion argument on measures the right tool is Disintegration Theorem (Theorem 2.18):
(Proposition 5.2)

γ =
∫

ϕ(μ0)

γaL1(da), γa ∈ P(G), γa({γ ∈ G : ϕ(γ0) = a}) = ‖γa‖,

where ϕ(μ0) = ϕ(supp(μ0)) and G is the support of γ. Since

μt = (et)�γ =
∫

ϕ(μ0)

(et)�γaL1(da),

the geodesics of codimension one that should verify curvature estimates like
CD∗(K,N − 1) is t 
→ (et)�(γa), for all a ∈ ϕ(μ0). Since curvature properties in
metric measure spaces are formulated in terms of a reference measure and (et)�(γa)
is singular with respect to m, it is not obvious which reference measures of codimen-
sion one we have to choose. One option could be to consider for each t ∈ [0, 1], the
family

{γt : ϕ(γ0) = a, γ ∈ G}a∈ϕ(μ0).

Then for each t ∈ [0, 1], by d2-cyclical monotonicity, the family is a partition of
et(G) and hence we have (Proposition 5.2 and Lemma 5.4)

m�et(G)=
∫

ϕ(μ0)

m̂a,tL1(da), m̂a,t({γt : ϕ(γ0) = a}) = ‖m̂a,t‖.

But the (N − 1)-dimensional measures m̂a,t are not the right reference measures
to prove CD∗(K,N −1) estimate for the densities of (et)�γa. Indeed if (et)�γ = μt =
�tm, then,

∫
�tm̂a,tL1(da) = �tm�et(G)= μt =

∫
(et)�γaL1(da)

and by uniqueness of disintegration (et)�γa = �tm̂a,t and therefore the density is �t

and no gain in dimension is possible.
The correct reference measures are built as follows. For each a ∈ ϕ(μ0), consider

the following family of sets

{γt : ϕ(γ0) = a, γ ∈ G}t∈[0,1],

that is for a fixed a we take all the evolutions for t ∈ [0, 1] of the level set a of ϕ.
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By d-cyclical monotonicity, they are disjoint (Lemma 4.2). If Γ̄a(1) := ∪t∈[0,1]{γt :
ϕ(γ0) = a, γ ∈ G}, then (Proposition 5.6)

m�Γ̄a(1)=
∫

[0,1]

ma,tL1(dt), ma,t({γt : ϕ(γ0) = a}) = ‖ma,t‖.

Since in the disintegration above the quotient measure is supported on [0, 1], that
is the range of the time variable, ma,t should be interpret as the conditional measure
moving (with t) in the same direction of the optimal transportation.

In order to apply the results of Section 4 to get an improvement of curvature
estimates, we have to show that (et)�γa � ma,t. After having that, to get the
improvement one could use the “linear” structure of geodesics of Section 4 together
with the curvature bound estimate they have to satisfy because of (et)�γa � ma,t.

So suppose that we have already proved (et)�(γa) = ha,tma,t and t 
→ ha,t(γt)
satisfies the local (and hence the global) reduced curvature-dimension condition
CD∗

loc(K,N − 1). Then the situation would be

ha,tma,t = et �γa = �tm̂a,t.

Our final scope is to prove properties on �t, and to translate information on ha.t into
information on �t is necessary to put in relation the two different reference measures
of codimension one ma,t and m̂a,t.

Actually the path we will adopt in the note will be the other way round. First we
will show that λtma,t = m̂a,t for some function λt defined on et(G) and then from
that we deduce that (et)�(γa) can be written as ha,tma,t. After that we will prove
CD∗(K,N − 1) for ha,t. We will obtain a decomposition of the following type

�t =
1
λt
ha,t

and therefore to prove curvature estimate for �t also information on λt are needed.
We have additional properties of λt, that will permit to prove the full CD(K,N)

estimate for �t, in the particular case of optimal transportation giving constant speed
to geodesics leaving from the same level sets and not inverting the level sets of ϕ
during the evolution, that is

L(γ) = f(ϕ(γ0)), γ-a.e. γ ∈ G(X),

with f : ϕ(supp[μ0]) → R such that a 
→ a− f2/2 is a non increasing function of a.
This condition permits to say, see Lemma 5.1, that a level set of ϕ after time t is
moved to a level set of ϕt and this produce a simplification on the geometry of the
optimal transportation. Indeed under this assumption, the map t 
→ λt(γt) is linear.

Due to the relevance of this family of optimal transportations and to better
explain why λt is linear, we will first present part of the decomposition procedure in
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Section 5 under this additional assumption on the length of geodesics. In particular
in Section 5 we will show that (Proposition 5.2, Lemma 5.4 and Proposition 5.6)

m�et(G)=
∫

ϕ(μ0)

m̂a,tL1(da), m�Γ̄a(1)=
∫

[0,1]

ma,tL1(dt), (1.1)

and (Proposition 5.2 and Lemma 5.4)

m̂a,t � Sh�et(Ga), ma,t � Sh�et(Ga). (1.2)

The latter will be fundamental in order to compare ma,t to m̂a,t. Here Sh denotes
the spherical Hausdorff measure of codimension one, see Section 2.2. The proofs of
these results will be easier and shorter compared to the one in the general case.

In Section 6 we prove (1.1) and (1.2) without the extra assumption on the shape of
the Wasserstein geodesic. Anyway while (1.1) can be proven with no difficulties, the
proof of (1.2) necessary relies on some regularity property of two important function
and it is here that we have to introduce Assumptions 1 and 2. The functions are the
length map at time t for t ∈ (0, 1), that is Lt : et(G) → (0,∞) defined by

Lt(γt) = L(γ).

And the map Φt : et(G) → R defined by Φt(γt) = ϕ(γ0). Thanks to the non
branching assumption on the space, both functions are well defined. Note that here
we also observe that in the hypothesis of Section 5, both Assumptions 1 and 2 are
verified by Lt and Φt. Moreover we prove that Assumptions 1 and 2 hold if (X, d,m)
is a Riemannian manifold with Riemannian volume.

In Section 7 through a careful blow-up analysis (Propositions 7.3, 7.5 and Lemma
7.6), we prove that

m̂a,t � ma,t.

If m̂a,t = λtma,t, we also prove (Theorem 7.8) that

1
λt(γt)

= lim
s→0

Φt(γt) − Φt(γt+s)
s

.

This result is a key step in the proof of the aforementioned decomposition of �t.
It clarifies the expression of one of the two function decomposing �t. Moreover as a
consequence (Corollary 7.7) for every t ∈ [0, 1], we have (et)�(γa) � ma,t.

In Section 8 we show that if ha,t is the density introduced before, then t 
→ ha,t(γt)
satisfies the local reduced curvature-dimension condition CD∗

loc(K,N −1) (Theorem
8.2) and therefore CD∗(K,N − 1). Here the main point, as already said before, is
to use the results of Section 4 and consider a geodesic in the Wasserstein space,
absolute continuous with respect to m, moving in the same direction of t 
→ (et)�γa

Taking inspiration from the Riemannian framework, the volume distortion affects
only (N − 1) dimensions.
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So up to normalization constant

ha,tma,t = (et)�(γa) = �tm̂a,t = �tλtma,t,

with ha,t verifying CD∗(K,N − 1). We have therefore proved the following result
(Theorem 8.3)

Theorem 1.1. Let (X, d,m) be a non-branching metric measure space verifying
CDloc(K,N) or CD∗(K,N) and let {μt}t∈[0,1] ⊂ P2(X, d,m) be a geodesic with
μt = �tm. Assume moreover Assumptions 1 and 2. Then

�t(γt) = C(a)
1

λt(γt)
ha,t(γ), γ-a.e. γ ∈ G,

where a = ϕ(γ0) and C(a) = ‖γa‖ is a constant depending only on a. The map
[0, 1] � t 
→ ha,t(γ) verifies CD∗(K,N − 1) for γ-a.e. γ ∈ G and

1
λt(γt)

= lim
s→0

Φt(γt) − Φt(γt+s)
s

.

The constant C(a) of Theorem 1.1 has the following explicit formula

C(a) =
(∫

�t(z)m̂a,t(dz)
)

where a = ϕ(γ0).
Note again that the value of the integral does not depend on time, but just on a

and therefore in order to prove CD(K,N)-like estimates, the integral can be dropped
out.

In the second part of Section 8 we prove that under the same assumptions of
Section 5 the function λt(γt) is linear in t (Proposition 8.4). Hence we have obtained
the other main result of this note (Theorem 8.5).

Theorem 1.2. Let (X, d,m) be a non-branching metric measure space verifying
CDloc(K,N) or CD∗(K,N) and let {μt}t∈[0,1] ⊂ P2(X, d,m) be a geodesic with
μt = �tm. Assume moreover that

L(γ) = f(ϕ(γ0)),

for some f : ϕ(μ0) → (0,∞) such that ϕ(μ0) � a 
→ a−f2/a is non increasing. Then

�t(γt)−1/N ≥ �0(γ0)−1/Nτ
(1−t)
K,N (d(γ0, γ1)) + �1(γ1)−1/Nτ

(s)
K,N (d(γ0, γ1)),

for every t ∈ [0, 1] and for γ-a.e. γ ∈ G.
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The family of geodesics verifying the hypothesis of Theorem 1.2 includes for
instance all of those optimal transportation having as Kantorovich potential

ϕ(x) =
1
2
d2(x,A)

for any A ⊂ X. Indeed such ϕ is d2-concave and its weak upper gradient is always
one. No assumption on A is needed and therefore no assumption on the shape of ϕc.

We conclude the note with Section 9 where assuming the space to be infinitesi-
mally strictly convex (see (2.9)), we prove that (Proposition 9.2)

1
λt(γt)

= DΦt(∇ϕt)(γt), γ-a.e.γ,

and hence the general decomposition: up to a constant (in time) factor become

�t = DΦt(∇ϕt)ht.

We conclude the note with a formal calculation in the Euclidean space putting
in relation DΦt(∇ϕt) with the Hessian of ϕt.

Our starting hypothesis can be chosen to be equivalently CDloc(K,N) or
CD∗(K,N). Hence the results proved can be read from two different perspective,
accordingly to CDloc(K,N) or CD∗(K,N). From the point of view of CD∗(K,N),
where the globalization property is already known, the main result is that for nice
optimal transportations the entropy inequality can be improved to the curvature-
dimension condition, giving a “self-improving” type of result. From the point of
view of CDloc(K,N) clearly the main issue is the globalization problem. Here the
main statement is that the local-to-global property is true for nice optimal trans-
portations and in the general case under the aforementioned regularity properties,
is almost equivalent to the concavity of the 1-dimensional density λt. The latter it
is in turn strongly linked to the composition property of the differential operator D.

The last comment is for the assumption of non branching property for (X, d,m).
As shown by Rajala and Sturm in [RS12], strong CD(K,∞)-spaces and Riemannian
CD(K,N) for N ∈ R ∪ {∞} have the property that for any couple of probability
measures μ0, μ1 with μ0, μ1 � m all the L2-optimal transportations are concentrated
on a set of non branching geodesics. That is all γ ∈ P(G(X)), dynamical optimal
plans with starting point μ0 and ending point μ1 are such that the evaluation map
for each t ∈ [0, 1)

et : G → X

is injective, even if the space is not assumed to be non branching, where G is the
support of γ.

Since our construction relies not only on the L2-optimal dynamical plan but on
the strong interplay between d2-cyclically monotone sets and d-cyclically monotone
sets, the substitution of the non branching property of the space with RCD-condition
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or with the strong CD(K,∞) is a delicate task that would go beyond the scope of
this note. For instance RCD-condition will not prevent the following “bad” situation:
γ, γ̂ ∈ Ga so that they have a common point z = γs = γ̂t for t �= s. In particular the
proof of Lemma 4.2, that is one the building block of our analysis, does not work
only assuming non branching support of γ.

2 Preliminaries

Let (X, d) be a metric space. The length L(γ) of a continuous curve γ : [0, 1] → X
is defined as

L(γ) := sup
n∑

k=1

d(γ(tk−1), γ(tk))

where the supremum runs over n ∈ N and over all partitions 0 = t0 < t1 < · · · <
tn = 1. Note that L(γ) ≥ d(γ(0), γ(1)). A curve is called geodesic if and only if
L(γ) = d(γ(0), γ(1)). If this is the case, we can assume γ to have constant speed,
i.e. L(γ�[s,t]) = |s− t|L(γ) = |s− t|d(γ(0), γ(1)) for every 0 ≤ s ≤ t ≤ 1.

Denote by G(X) the space of geodesic γ : [0, 1] → X in X, regarded as sub-
set of C([0, 1],M) of continuous functions equipped with the topology of uniform
convergence.

(X, d) is said to be a length space if and only if for every x, y ∈ X,

d(x, y) = inf L(γ)

where the infimum runs over all continuous curves joining x and y. It is said to be
a geodesic space if all x and y are connected by a geodesic. A point z will be called
t-intermediate point of points x and y if d(x, z) = td(x, y) and d(z, y) = (1−t)d(x, y).

Definition 2.1. A geodesic space (X, d) is non-branching if and only if for every
r ≥ 0 and x, y ∈ X such that d(x, y) = r/2, the set

{z ∈ X : d(x, z) = r} ∩ {z ∈ X : d(y, z) = r/2}

consists of a single point.

Throughout the following we will denote by Br(z) the open ball of radius r
centered in z. A standard map in optimal transportation is the evaluation map:
for a fixed t ∈ [0, 1], et : G(X) → X is defined by et(γ) := γt. The push-forward
of a given measure, say η, via a map f will be denoted by f�η and is defined by
f�η(A) := η(f−1(A)), for any measurable A.
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2.1 Geometry of metric measure spaces. What follows is contained
[Stu06b].

A metric measure space is a triple (X, d,m) where (X, d) is a complete separable
metric space and m is a locally finite measure (i.e. m(Br(x)) < ∞ for all x ∈ X and
all sufficiently small r >0) on X equipped with its Borel σ-algebra. We exclude the
case m(X) = 0. A non-branching metric measure space will be a metric measure
space (X, d,m) such that (X, d) is a non-branching geodesic space.

P2(X, d) denotes the L2-Wasserstein space of Borel probability measures on X
and W2 the corresponding L2-Wasserstein distance. The subspace of m-absolutely
continuous measures is denoted by P2(X, d,m).

The following are well-known results in optimal transportation theory and are
valid for general metric measure spaces.

Lemma 2.2. Let (X, d,m) be a metric measure space. For each geodesic μ : [0, 1] →
P2(X, d) there exists a probability measure γ on G(X) such that

• et �γ = μt for all t ∈ [0, 1];
• for each pair (s, t) the transference plan (es, et)�γ is an optimal coupling for W2.

Consider the Rényi entropy functional

SN (·|m) : P2(X, d) → R

with respect to m, defined by

SN (μ|m) := −
∫

X

�−1/N (x)μ(dx) (2.1)

for μ ∈ P2(X), where � is the density of the absolutely continuous part μc in the
Lebesgue decomposition μ = μc + μs = �m+ μs.

Given two numbers K,N ∈ R with N ≥ 1, we put for (t, θ) ∈ [0, 1] × R+,

τ
(t)
K,N (θ) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ll∞, if Kθ2 ≥ (N − 1)π2,

t1/N

(
sin(tθ

√
K/(N − 1))

sin(θ
√
K/(N − 1))

)1−1/N

if 0 < Kθ2 ≤ (N − 1)π2,

t if Kθ2 < 0 or
if Kθ2 = 0 and N = 1,

t1/N

(
sinh(tθ

√−K/(N − 1))

sinh(θ
√−K/(N − 1))

)1−1/N

if Kθ2 ≤ 0 and N > 1.

(2.2)
That is, τ (t)

K,N (θ) := t1/Nσ
(t)
K,N−1(θ)

(N−1)/N where

σ
(t)
K,N (θ) =

sin(tθ
√
K/N)

sin(θ
√
K/N)

,
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if 0 < Kθ2 < Nπ2 and with appropriate interpretation otherwise. Moreover we put

ς
(t)
K,N (θ) := τ

(t)
K,N (θ)N .

The coefficients τ (t)
K,N (θ), σ(t)

K,N (θ) and ς
(t)
K,N (θ) are the volume distortion coeffi-

cients with K playing the role of curvature and N the one of dimension.
The curvature-dimension condition CD(K,N) is defined in terms of convexity

properties of the entropy functional. In the following definitions K and N will be
real numbers with N ≥ 1.

Definition 2.3. (Curvature-Dimension condition) We say that (X, d,m) satisfies
CD(K,N) if and only if for each pair μ0, μ1 ∈ P2(X, d,m) there exists an optimal
coupling π of μ0 = �0m and μ1 = �1m, and a geodesic μ : [0, 1] → P2(X, d,m)
connecting μ0 and μ1 such that

SN ′(μt|m) ≤ −
∫

X×X

[
τ

(1−t)
K,N ′ (d(x0, x1))�

−1/N ′

0 (x0)

+τ (t)
K,N ′(d(x0, x1))�

−1/N ′

1 (x1)
]
π(dx0dx1), (2.3)

for all t ∈ [0, 1] and all N ′ ≥ N .

The following is a variant of CD(K,N) and it has been introduced in [BS10].

Definition 2.4. (Reduced Curvature-Dimension condition) We say that (X, d,m)
satisfies CD∗(K,N) if and only if for each pair μ0, μ1 ∈ P2(X, d,m) there exists
an optimal coupling π of μ0 = �0m and μ1 = �1m, and a geodesic μ : [0, 1] →
P2(X, d,m) connecting μ0 and μ1 such that (2.3) holds true for all t ∈ [0, 1] and

all N ′ ≥ N with the coefficients τ
(t)
K,N (d(x0, x1)) and τ

(1−t)
K,N (d(x0, x1)) replaced by

σ
(t)
K,N (d(x0, x1)) and σ

(1−t)
K,N (d(x0, x1)), respectively.

For both definitions there is a local version. Here we state only the local coun-
terpart of CD(K,N), being clear what would be the one for CD∗(K,N).

Definition 2.5. (Local Curvature-Dimension condition) We say that (X, d,m) sat-
isfies CDloc(K,N) if and only if each point x ∈ X has a neighborhood X(x) such
that for each pair μ0, μ1 ∈ P2(X, d,m) supported in X(x) there exists an optimal
coupling π of μ0 = �0m and μ1 = �1m, and a geodesic μ : [0, 1] → P2(X, d,m)
connecting μ0 and μ1 such that (2.3) holds true for all t ∈ [0, 1] and all N ′ ≥ N .

It is worth noticing that in the previous definition the geodesic μ can exit from
the neighborhood X(x).

One of the main property of the reduced curvature dimension condition is the
globalization one: under the non-branching assumption conditions CD∗

loc(K,N) and
CD∗(K,N) are equivalent. Moreover it holds:
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• CD∗
loc(K,N) is equivalent to CDloc(K,N);

• CD(K,N) implies CD∗(K,N);
• CD∗(K,N) implies CD(K∗, N) where K∗ = K(N − 1)/N .

Hence it is possible to pass from CDloc to CD at the price of passing through
CD∗ and therefore worsening the lower bound on the curvature. For all of these
properties, see [BS10].

If a non-branching (X, d,m) satisfies CD(K,N) then geodesics are unique m⊗m-
a.e..

Lemma 2.6. Assume that (X, d,m) is non-branching and satisfies CD(K,N) for
some pair (K,N). Then for every x ∈ supp[m] and m-a.e. y ∈ X (with the excep-
tional set depending on x) there exists a unique geodesic between x and y.

Moreover there exists a measurable map γ : X2 → G(X) such that for m⊗m-a.e.
(x, y) ∈ X2 the curve t 
→ γt(x, y) is the unique geodesic connecting x and y.

Under non-branching assumption is possible to formulate CD(K,N) in an equiv-
alent point-wise version: (X, d,m) satisfies CD(K,N) if and only if for each pair
μ0, μ1 ∈ P2(X, d,m) and each dynamical optimal plan γ,

�t(γt(x0, x1)) ≤
[
τ

(1−t)
K,N ′ (d(x0, x1))�

−1/N ′

0 (x0) + τ
(t)
K,N ′(d(x0, x1))�

−1/N ′

1 (x1)
]−N

,

(2.4)
for all t ∈ [0, 1], and (e0, e1)�γ-a.e. (x0, x1) ∈ X × X. Here �t is the density of
the geodesic (et)�γ. Recall that γ ∈ P(G(X)) is a dynamical optimal plan if π =
(e0, e1)�γ ∈ Π(μ0, μ1) is optimal and the map t 
→ μt := et �γ is a geodesic in the
2-Wasserstein space.

We conclude with a partial list of properties enjoyed by metric measure spaces
satisfying CD∗(K,N) (or CDloc(K,N)). If (X, d,m) verifies CD∗(K,N) then:

• m is a doubling measure;
• m verifies Bishop–Gromov volume growth inequality;
• m verifies Brunn–Minkowski inequality;

with all of these properties stated in a quantitative form.

2.2 Spherical Hausdorff measure of codimension 1 and coarea formula.
What follows is contained in [Amb02] and is valid under milder assumption than

CD∗(K,N) (or CDloc(K,N)) but for an easier exposition we assume (X, d,m) to
satisfy CD∗(K,N).

Recall that for K ≥ 0 the measure m is doubling that is m(B2r(x)) ≤
(CD/2)m(Br(x)) where CD is the doubling constant of m. If K < 0 the measure m
is locally uniformly doubling, i.e. m(B2r(x)) ≤ (CR/2)m(Br(x)) for any r ≤ R and
some constant CR depending on R but not on x.



GAFA DECOMPOSITION AND GLOBALIZATION 507

If B(X) is the set of balls, define the function h : B(X) → [0,∞] as

h(B̄r(x)) :=
m(B̄r(x))

r
.

Due to the (locally uniformly) doubling properties of m, the function h turns
out to be a (locally uniformly) doubling function. Then, using the Carathéodory
construction, we may define the generalized Hausdorff spherical measure Sh as

Sh(A) := lim
r↓0

inf

{∑
i∈N

h(Bi) : Bi ∈ B(X), A ⊂
⋃
i∈N

Bi,diam(Bi) ≤ r

}
. (2.5)

The space of functions of bounded variation BV (X) and the perimeter measure
have been studied in [Amb01,Amb02,AMP04,Mir03]. If u ∈ BV (X), its total vari-
ation measure will be denoted with |Du|. We will use the following coarea formula.

Theorem 2.7 ([AMP04], Theorems 4.3, 4.4). For every u ∈ BV (X) and every
Borel set A ⊂ X it holds

|Du|(A) =

∞∫

−∞
P ({u > t}, A)dt.

Moreover for any set E ⊂ X of finite perimeter, the measure P (E, ·) is concentrated
on a subset of the essential boundary ∂∗E and for any Borel set B ⊂ X

1
c
Sh(B ∩ ∂∗E) ≤ P (E,B) ≤ cSh(B ∩ ∂∗E)

with c > 0 depending only on K and N .

If u is a Lipschitz function, its total variation is equivalent as measure to ‖∇u‖m,
where

‖∇u‖(x) := lim inf
r→0

1
r

sup
y∈B̄r(x)

|u(y) − u(x)|. (2.6)

The following comparison is taken from [Mir03]: for any Borel set A ⊂ X

c0

∫

A

‖∇u‖(x)m(dx) ≤ |Du|(A) ≤
∫

A

‖∇u‖(x)m(dx), (2.7)

for some constant c0 > 0 depending again only on K,N . The last result we would
like to recall is a particular form of coarea formula for Lipschitz functions.

Proposition 2.8 ([Amb02], Proposition 5.1). For any u Lipschitz function defined
on X and any B Borel set we have∫

R

Sh(B ∩ u−1(t))dt ≤ Lip(u)m(B).
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2.3 Gradients and differentials. This part is taken from [Gig12a]. A curve
γ ∈ C([0, 1], X) is said to be absolutely continuous provided there exists f ∈
L1([0, 1]) such that

d(γs, γt) ≤
t∫

s

f(τ)dτ, ∀s, t ∈ [0, 1], s ≤ t.

Let AC([0, 1], X) denote the set of absolutely continuous curves. If γ ∈
AC([0, 1], X) then the limit

lim
τ→0

d(γt+τ , γt)
τ

exists for a.e. t ∈ [0, 1], is called metric derivative and denoted by |γ̇t|.
Given Borel functions f : X → R, G : X → [0,∞] we say that G is an upper

gradient of f provided

|f(γ0) − f(γ1)| ≤
1∫

0

G(γt)|γ̇t|dt, ∀γ ∈ AC([0, 1],M),

where |γ̇t| is the metric derivative of γ in t. For f : X → R the local Lipschitz
constant |Df | : X → [0,∞] is defined by

|Df |(x) := lim sup
y→x

|f(y) − f(x)|
d(y, x)

if x is not isolated, and 0 otherwise. Define

|D+f |(x) := lim sup
y→x

(f(y) − f(x))+

d(y, x)
, |D−f |(x) := lim sup

y→x

(f(y) − f(x))−

d(y, x)
,

the ascending and descending slope respectively. If f is locally Lipschitz, then
|D±f |, |Df | are all upper gradients of f . In order to give a weaker notion of slope,
consider the following family: γ ∈ P(C([0, 1], X)) is a test plan if

et �γ ≤ Cm, ∀t ∈ [0, 1], and
∫ 1∫

0

|γ̇t|dtγ(dγ) < ∞,

where C is a positive constant. Therefore we have the following.

Definition 2.9. A Borel map f : X → R belongs to the Sobolev class S2(X, d,m)
(resp. S2

loc(X, d,m)) if there exists a non-negative function G ∈ L2(X,m) (resp.
L2

loc(X,m)) such that

∫
|f(γ0) − f(γ1)|γ(dγ) ≤

∫ 1∫

0

G(γs)|γ̇s|dsγ(dγ), ∀γ test plan. (2.8)

If this is the case, G is called weak upper gradient.
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For f ∈ S2(X, d,m) there exists a minimal function G, in the m-a.e. sense, in
L2(X,m) such that (2.8) holds. Denote such minimal function with |Df |w. Accord-
ingly define the semi-norm ‖f‖S2(X,d,m) := ‖|Df |w‖L2(X,m).

We now state a result on the weak upper gradient of Kantorovich potentials also
known as metric Brenier’s Theorem.

Proposition 2.10 ([AGS], Theorem 10.3). Let (X, d,m) verify CD(K,N) for K ∈
R and N ≥ 1 and be non-branching. Let μ0, μ1 ∈ P2(X, d,m), ϕ be a Kantorovich
potential. Then for every γ optimal dynamical transference plan it holds

d(γ0, γ1) = |Dϕ|w(γ0) = |D+ϕ|(γ0), for γ-a.e.γ.

If moreover the densities of μ0 and of μ1 are both in L∞(X,m), then

lim
t↓0

ϕ(γ0) − ϕ(γt)
d(γ0, γt)

= d(γ0, γ1), in L2(G(X),γ).

In order to compute higher order derivatives, we introduce the following.

Definition 2.11. Let f, g ∈ S2(X, d,m). The functions

D+f(∇g) := lim inf
ε↓0

|D(g + εf)|2w − |Dg|2w
2ε

,

D−f(∇g) := lim sup
ε↑0

|D(g + εf)|2w − |Dg|2w
2ε

.

are well defined.

Spaces where the two differentials coincide are called infinitesimally strictly con-
vex, i.e. (X, d,m) is said to be infinitesimally strictly convex provided
∫
D+f(∇g)(x)m(dx) =

∫
D−f(∇g)(x)m(dx), ∀f, g ∈ S2(X, d,m). (2.9)

It is proven in [Gig12a] that (2.9) is equivalent to the point-wise one:

D+f(∇g) = D−f(∇g), m-a.e., ∀f, g ∈ S2
loc(X, d,m).

If the space is infinitesimally strictly convex, we can denote by Df(∇g) the
common value and Df(∇g) is linear in f and 1-homogeneous and continuous in g.

There is a strong link between differentials and derivation along families of curves.
For γ ∈ P(C([0, 1], X)), define the norm ‖γ‖2 ∈ [0,∞] of γ by

‖γ‖2
2 := lim sup

t↓0

1
t

∫ t∫

0

|γ̇s|2dsγ(dγ),

if γ ∈ P(AC([0, 1], X)) and +∞ otherwise.
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Definition 2.12. Let g ∈ S2(X, d,m). We say that γ ∈ P(C([0, 1], X)) represents
∇g if γ is of bounded compression, ‖γ‖2 < ∞, and it holds

lim inf
t↓0

∫
g(γt) − g(γ0)

t
γ(dγ) ≥ 1

2
(‖|Dg|w‖2

L2(X,e0 �γ) + ‖γ‖2
2

)
. (2.10)

A straightforward consequence of (2.10) is that if γ represents ∇g, then the
whole limit in the lefthand-side of (2.10) exists and verifies

lim
t↓0

∫
g(γt) − g(γ0)

t
γ(dγ) =

1
2
(‖|Dg|w‖2

L2(X,e0 �γ) + ‖γ‖2
2

)
.

Theorem 2.13 ([Gig12a], Theorem 3.10). Let f, g ∈ S2(X, d,m). For every γ ∈
P(C([0, 1],M)) representing ∇g it holds

∫
D+f(∇g)e0 �γ ≥ lim sup

t↓0

∫
f(γt) − f(γ0)

t
γ(dγ)

≥ lim inf
t↓0

∫
f(γt) − f(γ0)

t
γ(dγ) ≥

∫
D−f(∇g)e0 �γ.

2.4 Hopf–Lax formula for Kantorovich potentials. What follows is con-
tained in [AGS].

The definitions below make sense for a general Borel and real valued cost but we
will only consider the d2/2 case, for this reason c has to be interpret as d2/2.

Definition 2.14. Let ϕ : X → R ∪ {±∞}. Its d2-transform ϕc : X → R ∪ {−∞} is
defined by

ϕc(y) := inf
x∈X

1
2
d2(x, y) − ϕ(x).

Accordingly ϕ : X 
→ R ∪ {±∞} is d2-concave if there exists v : X → R ∪ {−∞}
such that ϕ = vc.

A d2-concave function ϕ such that (ϕ,ϕc) is a maximizing pair for the dual
Kantorovich problem between μ0, μ1 is called a d2-concave Kantorovich potential
for the couple (μ0, μ1). A function ϕ is called a d2-convex Kantorovich potential if
−ϕ is a d2-concave Kantorovich potential.

We are interested in the evolution of potentials. They evolve accordingly to the
Hopf–Lax evolution semigroup Hs

t via the following formula:

Hs
t (ψ)(x) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ll inf
y∈X

1
2
d2(x, y)
s− t

+ ψ(y), if t < s,

ψ(x), if t = s,

sup
y∈X

ψ(y) − 1
2
d2(x, y)
t− s

, if t > s.

(2.11)
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We also introduce the rescaled cost ct.s defined by

ct,s(x, y) :=
1
2
d2(x, y)
s− t

, ∀t < s, x, y ∈ X.

Observe that for t < r < s

ct,r(x, y) + cr,s(y, z) ≥ ct,s(x, z), ∀x, y, z ∈ X,

and equality holds if and only if there is a constant speed geodesic γ : [t, s] → X
such that x = γt, y = γr and z = γs. The following result is taken from [Vil08]
(Theorems 7.30 and 7.36) but here we report a different version.

Theorem 2.15 ([AG11], Theorem 2.18). Let (μt) ⊂ P2(X) be a constant speed
geodesic in (P2(X, d), dW ) and ψ a c0,1-convex Kantorovich potential for the couple
(μ0, μ1). Then ψs := Hs

0(ψ) is a ct,s-concave Kantorovich potential for (μs, μt), for
any t < s.

Similarly, if φ is a c-concave Kantorovich potential for (μ1, μ0), then Ht
1 is a

ct,s-convex Kantorovich potential for (μt, μs), for any t < s.

The following is an easy consequence.

Corollary 2.16. Let ϕ be a d2-concave Kantorovich potential for (μ0, μ1). Let
ϕt := −Ht

1(ϕ
c) be a ct,1-concave Kantorovich potential for (μt, μ1) and analogously

let ϕc
t := Ht

0(−ϕ) a c0,t-concave Kantorovich potential for (μt, μ0). Then:

ϕt(γt) = ϕ(γ0) − t

2
d2(γ0, γ1), ϕc

t(γt) = ϕc(γ1) − 1 − t

2
d2(γ0, γ1), γ-a.e. γ.

Proof. Since the proofs of the statements for ϕt and for ϕc
t are the same, we prefer

to present only the one for ϕt.
Since

ϕt(x) = −Ht
1(ϕ

c)(x) = inf
y∈X

1
2
d2(x, y)
1 − t

− ϕc(y).

for γ-a.e. γ

ϕt(γt) ≤ 1
2
d2(γt, γ1)

1 − t
+ ϕ(γ0) − 1

2
d2(γ0, γ1) = ϕ(γ0) − t

2
d2(γ0, γ1).

To prove the opposite inequality: observe that

d2(γ0, γt)
t

+
d2(γt, y)

1 − t
≥ d2(γ0, y),

therefore for γ-a.e. γ

1
2
d2(γt, y)

1 − t
− ϕc(y) ≥ 1

2
d2(γt, y)

1 − t
− 1

2
d2(γ0, y) + ϕ(γ0)

≥ ϕ(γ0) − 1
2
d2(γ0, γt)

t
= ϕ(γ0) − t

2
d2(γ0, γ1).

Taking the infimum the claim follows. ��



512 F. CAVALLETTI GAFA

2.5 Disintegration of measures. We conclude this introductory part with a
short review on disintegration theory. What follows is taken from [BC09].

Given a measurable space (R,R) and a function r : R → S, with S generic set,
we can endow S with the push forward σ-algebra S of R:

Q ∈ S ⇐⇒ r−1(Q) ∈ R,

which could also be defined as the biggest σ-algebra on S such that r is measurable.
Moreover given a measure space (R,R, ρ), the push forward measure η is then defined
as η := (r�ρ).

Consider a probability space (R,R, ρ) and its push forward measure space
(S,S , η) induced by a map r. From the above definition the map r is measurable.

Definition 2.17. A disintegration of ρ consistent with r is a map ρ : R×S → [0, 1]
such that

(1) ρs(·) is a probability measure on (R,R) for all s ∈ S,
(2) ρ·(B) is η-measurable for all B ∈ R,

and satisfies for all B ∈ R, C ∈ S the consistency condition

ρ(B ∩ r−1(C)) =
∫

C

ρs(B)η(ds).

A disintegration is strongly consistent with respect to r if for all s we have
ρs(r−1(s)) = 1.

The measures ρs are called conditional probabilities.
We say that a σ-algebra H is essentially countably generated with respect to a

measure m if there exists a countably generated σ-algebra Ĥ such that for all A ∈ H
there exists Â ∈ Ĥ such that m(A � Â) = 0.

We recall the following version of the disintegration theorem that can be found
on [Fre02], Section 452 (see [BC09] for a direct proof).

Theorem 2.18 (Disintegration of measures). Assume that (R,R, ρ) is a countably
generated probability space, R = ∪s∈SRs a partition of R, r : R → S the quotient
map and (S,S , η) the quotient measure space. Then S is essentially countably
generated w.r.t. η and there exists a unique disintegration s 
→ ρs in the following
sense: if ρ1, ρ2 are two consistent disintegration then ρ1,s(·) = ρ2,s(·) for η-a.e. s.

If {Sn}n∈N
is a family essentially generating S define the equivalence relation:

s ∼ s′ ⇐⇒ {s ∈ Sn ⇐⇒ s′ ∈ Sn, ∀n ∈ N}.
Denoting with p the quotient map associated to the above equivalence relation

and with (L,L , λ) the quotient measure space, the following properties hold:

• Rl := ∪s∈p−1(l)Rs = (p ◦ r)−1(l) is ρ-measurable and R = ∪l∈LRl;
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• the disintegration ρ =
∫
L ρlλ(dl) satisfies ρl(Rl) = 1, for λ-a.e. l. In particular

there exists a strongly consistent disintegration w.r.t. p ◦ r;
• the disintegration ρ =

∫
S ρsη(ds) satisfies ρs = ρp(s) for η-a.e. s.

In particular we will use the following corollary.

Corollary 2.19. If (S,S ) = (X,B(X)) with X Polish space, then the disintegra-
tion is strongly consistent.

3 Setting

We fix here the objects, notations and hypothesis that will be used throughout this
note.

(X, d,m) will be a non-branching metric measure space verifying CDloc(K,N)
or equivalently CD∗(K,N). The marginal measure μ0, μ1 ∈ P2(X, d,m) are fixed
together with π ∈ Π(μ0, μ1) the optimal coupling and γ ∈ P(G(X)) the associated
optimal dynamical transference plan such that

[0, 1] � t 
→ (et)�γ = μt, (e0, e1)�γ = π,

with μt geodesic in the L2-Wasserstein space and et is the evaluation map at time
t: for any geodesic γ ∈ G(X), et(γ) = γt. P(G(X)) denotes the space of probability
measures over G(X), the space of geodesic in X endowed with the uniform topology
inherited as a subset of C([0, 1], X). The support of γ will be denoted with G. The
evaluation map e without subscript is defined on [0, 1] ×G by e(s, γ) = γs.

Moreover

μt = �tm, ∀ ∈ t ∈ [0, 1].

Thanks to recent results on existence and uniqueness of optimal maps, see
[Gig12b], only one geodesic in G has a given couple of points as initial and final
points, that is for γ ∈ G

(e0, e1)−1{(γ0, γ1)} = {γ}.
Moreover by inner regularity of compact sets we can assume without loss of

generality that G is compact,

�t ≤ M, ∀ ∈ t ∈ [0, 1],

and metric Brenier’s Theorem holds for all γ ∈ G, that is

d(γ0, γ1) = |Dϕ|w(γ0). (3.1)

A d2-concave Kantorovich potential for (μ0, μ1) is ϕ and ϕt will be the d2-concave
Kantorovich potential for (μt, μ1) obtained through Theorem 2.15. When it will be
needed, we will prefer the notation ϕ0 to ϕ. Thanks to compactness of G we can also
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assume ϕ to be Lipschitz. Its d2/2-transform will be denoted by ϕc. From Corollary
2.16 it follows that ϕ1 = −ϕc μ1-a.e. and

ϕt(γt) = (1 − t)ϕ0(γ0) + tϕ1(γ1). (3.2)

We will also use the following notation

ϕt(μt) = ϕt(supp[μt]), ∀t ∈ [0, 1].

Since we will make an extensive use of the following sets, we fix their names once
for all:

Γ :=
{

(x, y) ∈ X ×X : ϕ(x) + ϕc(y) =
d2(x, y)

2

}
, (3.3)

contains the support of π and the transportation set for (μt, μ1) is

Γt :
{

(x, y) ∈ X ×X : ϕt(x) + ϕc(y) =
d2(x, y)
2(1 − t)

}
. (3.4)

and again (et, e1)�γ(Γt) = 1. Fix also the set of curves with starting point in ϕ−1(a):

Ga :=
{
γ ∈ G : ϕ(γ0) = a

}
. (3.5)

and the corresponding subset of Γ

Γa =
{

(x, y) ∈ X ×X : ϕ(x) + ϕc(y) =
d2(x, y)

2
, ϕ(x) = a

}
= Γ ∩ (ϕ−1(a) ×X

)
.

(3.6)
In Sections 5.2 and 6.2 to disintegrate the reference measure m in the direction of
evolution, for r ∈ [0, 1] we will use the “closed” and “open” evolution sets:

Γ̄a(r) := e ([0, r] ×Ga) , Γa(r) := e ([0, r) ×Ga) . (3.7)

As it will be proved in Proposition 4.1, the set Γa is d-cyclically monotone. We
will denote with φa a Kantorovich potential associated to it, that is φa is 1-Lipschitz
function such that

Γa ⊂ {(x, y) ∈ X ×X : φa(x) − φa(y) = d(x, y)}.

The d-monotone set associated to φa will be used again so we will denote it with
Ka:

Ka := {(x, y) ∈ X ×X : φa(x) − φa(y) = d(x, y)}. (3.8)

A relevant function for the analysis is the length map at time t: for t ∈ [0, 1] the
map Lt : et(G) → (0,∞) is defined by

Lt(x) := L(e−1
t (x)).
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Again by inner regularity of compact sets, we can assume that there exists a
positive constant C such that

1
C
< L(γ) < C, ∀γ ∈ G.

In order to study the behavior of the evolution after time t of the level sets of
ϕ, i.e. {γt : γ ∈ G,ϕ(γ0) = a} for a ∈ R, is convenient to see them as level set of a
particular function. As it will be proven during this note this particular function is
defined by

et(G) � γt 
→ Φt(γt) := ϕt(γt) +
t

2
L2

t (γt), (3.9)

where in the definition of Φt we used that, for t ∈ (0, 1], for every x ∈ et(G) there
exists only one geodesic γ ∈ G with γt = x. This property for t = 1 holds only if
μ1 � m. Another possible definition is Φt(γt) := ϕ(γ0), see (3.2).

The map Φt enjoys the next monotonicity property.

Lemma 3.1. Let γ ∈ G be fixed. Then for every s > 0 it holds that

Φt(γt−s) > Φt(γt) > Φt(γt+s),

provided γt−s ∈ et(G) for the first inequality and γt+s ∈ et(G) for the second one.

Proof. We first prove the first inequality. Suppose by contradiction the existence
of s > 0 such that γt−s ∈ et(G) and Φt(γt−s) ≤ Φt(γt). From Proposition 4.1,
necessarily Φt(γt−s) < Φt(γt). So let γ̂ := e−1

t (γt−s), then the previous inequality
reads as

ϕ(γ̂0) < ϕ(γ0).

So we can deduce

1
2t
d2(γ̂0, γt−s) = ϕ(γ̂0) + ϕc

t(γt−s) < ϕ(γ0) + ϕc
t(γt−s) ≤ 1

2t
d2(γ0, γt−s),

and therefore d(γ̂0, γt−s) < d(γ0, γt−s). Hence

d2(γ0, γt−s)+d2(γ̂0, γt)

≤ d2(γ0, γt−s)+
(
d(γ̂0, γt−s)+d(γt−s, γt)

)2
= d2(γ0, γt−s)+d2(γ̂0, γt−s)+d2(γt−s, γt)+2d(γ̂0, γt−s)d(γt−s, γt)

< d2(γ0, γt−s)+d2(γ̂0, γt−s)+d2(γt−s, γt)+2d(γ0, γt−s)d(γt−s, γt)

= d2(γ0, γt)+d2(γ̂0, γt−s),

and since γ̂t = γt−s and γ̂ ∈ G, this is in contradiction with d2-cyclical monotonicity.
The proof of the other inequality follows in the same way. ��
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Another important set for our analysis is the following one: for γ ∈ G and
t ∈ (0, 1)

It(γ) := {τ ∈ (0, 1) : γτ ∈ et(G)}, (3.10)

that is the set of τ for which γτ belongs to et(G). A priori one can only say that t
belongs to It(γ) but actually the set It(γ) has sufficiently many points in a neigh-
borhood of t. The following Lemma proves a density result and it has been obtained
in collaboration with Martin Huesmann in [CH12].

Lemma 3.2. For L1-a.e. t ∈ [0, 1],

lim
ε→0

1
2ε

L1(It(γ) ∩ (t− ε, t+ ε)) = 1, inL1(G, γ).

That is, the point τ = t is a point of Lebesgue density (in L1 sense) 1 for the set
It(γ) := {τ ∈ [0, 1] : γτ ∈ et(G)}.

4 On the Metric Structure of Optimal Transportation

Only for this Section the setting will be more general than the one specified in
Section 3. Here we drop all the assumption on the curvature of the space. So (X, d,m)
is a geodesic, non branching and separable metric measure space, μt is geodesic in
the L2-Wasserstein space together with a family of Kantorovich potential ϕt for
t ∈ [0, 1] associated to it. We will use the notation of Section 3 for everything and
related to this objects.

Fix a ∈ ϕ(μ0). We will prove that Γa is d-cyclically monotone. Recall that

Γa := Γ ∩ ϕ−1(a) ×X,

with Γ transport set for (μ0, μ1) as from (3.3).

Proposition 4.1. The set Γa is d-cyclically monotone.

Proof. Let (xi, yi) ∈ Γa for i = 1, . . . , n and observe that

1
2
d2(xi, yi) = ϕ(xi) + ϕc(yi) = ϕ(xi−1) + ϕc(yi) ≤ 1

2
d2(xi−1, yi).

Hence d(xi, yi) ≤ d(xi−1, yi) and therefore

n∑
i=1

d(xi, yi) ≤
n∑

i=1

d(xi, yi+1)

and the claim follows. ��
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The main consequence of Proposition 4.1 is that two distinct geodesic of G,
starting from the same level set of ϕ, can meet only for t = 0 or t = 1, provided the
metric Brenier’s Theorem holds (in the sense of (3.1)). Recall the definition of

Γ̄a(1) = e([0, 1] ×Ga).

already introduced in (3.7) and Ga the set of geodesics starting from the level set a
of f , see (3.5).

Lemma 4.2. If the metric Brenier’s Theorem holds, then the family {et(Ga)}t∈[0,1]

is a partition of Γ̄a(1).

Proof. By construction the family covers Γ̄a(1), so we have only to show that over-
lapping doesn’t occur. Assume by contradiction the existence of γ̂, γ̃ ∈ Ga, γ̂ �= γ̃
such that γ̂s = γ̃t = z with, say, s < t.

Then d-cyclical monotonicity implies that γ̂ and γ̃ form a cycle of zero cost and
then non-branching property of (X, d,m) implies that they are contained in a longer
geodesic: if γ̂0 = x0, γ̂1 = y0 and γ̃0 = x1, γ̃1 = y1 then

d(x0, y1) + d(x1, y0) = d(x0, y0) + d(x1, y1).

There are two possible cases: or d(x1, y0) ≤ d(x0, y0) or d(x0, y1) ≤ d(x1, y1),
indeed if both were false we would have a contradiction with the previous identity.
In the first case

1
2
d2(x0, y0) = ϕ(x0) + ϕc(y0) = ϕ(x1) + ϕc(y0) ≤ 1

2
d2(x1, y0) ≤ 1

2
d2(x0, y0).

Therefore d(x0, y0) = d(x1, y0) and since they lie on the same geodesic x0 = x1.
In the second case

1
2
d2(x1, y1) = ϕ(x1) + ϕc(y1) = ϕ(x0) + ϕc(y1) ≤ 1

2
d2(x0, y1) ≤ 1

2
d2(x1, y1),

and the same conclusion holds true: x0 = x1.
Hence we have (x0, y0), (x0, y1) ∈ Γa. It follows from metric Brenier’s Theorem

(Proposition 2.10) that for all γ ∈ G

|Dϕ|w(x) = d(γ0, γ1).

Therefore necessarily y0 = y1. Since γ̂, γ̃ have also an inner common point, they
must coincide implying a contradiction. ��

The next is a simple consequence of Lemma 4.2.

Corollary 4.3. For each a ∈ R, the map e : [0, 1] ×Ga → X defined by

e(s, γ) := γs

is a measurable isomorphism.

The following is, to our knowledge, a new result and it proves that for t ∈ (0, 1)
the Kantorovich potentials ϕt, obtained with the Hopf–Lax formula from any Kan-
torovich potential ϕ0, verifies a property similar to the point wise metric Brenier’s
Theorem.
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Proposition 4.4. For every t ∈ (0, 1) and for every γ ∈ G

lim
s→0

ϕt(γt) − ϕt(γt+s)
d(γt, γt+s)

= d(γ0, γ1) = |Dϕt|(γt), (4.1)

where |Dϕt| denotes the local Lipschitz constant of ϕt.

Proof. Step 1. Fix γ ∈ G. Observe that the set

argmin
{
y 
→ d2(γt, y)

2(1 − t)
− ϕc(y)

}
,

is single valued and contains only γ1. Indeed suppose by contradiction the contrary.
Then there exists z ∈ X different from γ1 so that

ϕt(γt) + ϕc(z) =
d2(γt, z)
2(1 − t)

,

then since ϕt = −ϕc
t we have

1
2
d2(γ0, z) ≥ ϕ(γ0) + ϕc(z)

= ϕ(γ0) − ϕt(γt) + ϕt(γt) + ϕc(z)

=
1
2

(
d2(γ0, γt)

t
+
d2(γt, z)

1 − t

)

≥ 1
2
d2(γ0, z),

then necessarily d(γ0, z) = d(γ0, γt) + d(γt, z). But then non-branching property of
(X, d,m) implies a contradiction and then z = γ1.

Step 2. Then by Hopf–Lax formula for Hamilton–Jacobi equations on length spaces

lim sup
y→γt

|ϕt(y) − ϕt(γt)|
d(y, γt)

=
D+(γt, 1 − t)

1 − t

see Proposition 3.6 in [AGS]. Hence from Step 1. it follows that

lim sup
y→γt

|ϕt(y) − ϕt(γt)|
d(y, γt)

= d(γ0, γ1).

To conclude the proof observe that

ϕt(γt) − ϕt(γt+s) = ϕt(γt) + ϕc(γ1) − ϕc(γ1) − ϕt(γt+s)

≥ 1
2(1 − t)

(
d2(γt, γ1) − d2(γt+s, γ1)

)

=
1

2(1 − t)
(d(γt, γ1) − d(γt+s, γ1)) (d(γt, γ1) + d(γt+s, γ1))

=
1

2(1 − t)
d(γt, γt+s) (d(γt, γ1) + d(γt+s, γ1)) . (4.2)
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Hence

lim inf
s→0

ϕt(γt) − ϕt(γt+s)
d(γt, γt+s)

≥ d(γt, γ1)
1 − t

= d(γ0, γ1)

and the claim follows. ��
As a consequence of Proposition 4.4, the construction presented so far is purely

metric. Indeed instead of analyzing the geometric properties of the Wasserstein geo-
desic [0, 1] � t 
→ μt one could restrict the domain of μt to [ε, 1−ε] for any ε > 0 and
Lemma 4.2 is true without assuming any curvature bound on the space (X, d,m).

4.1 From L2-geodesics to L1-geodesics. Thanks to the properties proved so
far we can construct a link between L2 Wasserstein geodesics and the linear structure
of d-cyclically monotone sets. Since the distance is finite, from d-monotonicity of Γa

we deduce the existence a 1-Lipschitz function φa : X → R so that

Γa ⊂ Ka := {(x, y) ∈ X ×X : φa(x) − φa(y) = d(x, y)} .
Note that also the following inclusion holds

{(γs, γt) : γ ∈ Ga, s ≤ t} ⊂ Ka.

Remark 4.5. Even if an explicit expression of φa is not strictly needed to our analy-
sis, for the sake of completeness, a possible choice of φa is the following one:

e([0, 1], Ga) = Γ̄a(1) � γs 
→ φa(γs) = a− d(γ0, γs) = a− sL(γ).

Indeed all the geodesics in Ga follows at time 0 the direction of ∇ϕ and therefore
they are somehow orthogonal to ϕ−1(a). The same geodesics of Ga follows also the
steepest descent direction of φa and therefore they have the same direction of ∇φa.
Hence one would expect that at time 0 the set ϕ−1(a) is a level set also for φa:
therefore one could expect φa(γs) = a− d(γ0, γs).

We now prove that this heuristic motivation make sense. If 0 ≤ s ≤ t ≤ 1 and
γ ∈ Ga

φa(γs) − φa(γt) = (t− s)L(γ) = d(γs, γt),

and therefore

(γs, γt) : γ ∈ Ga, 0 ≤ s ≤ t ≤ 1} ⊂ Ka.

If s, t ∈ [0, 1] and γ, γ̂ ∈ Ga

φa(γs) − φa(γ̂t) = d(γ̂0, γ̂t) − d(γ0, γs),

and since

1
2
d(γ̂0, γ̂t)2 = ϕ(γ̂0) + ϕt(γ̂t) = ϕ(γ0) + ϕt(γ̂t) ≤ 1

2
d(γ0, γ̂t)2,
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it follows that

φa(γs) − φa(γ̂t) ≤ d(γ0, γ̂t) − d(γ0, γs) ≤ d(γs, γ̂t).

Hence φa is 1-Lipschitz and therefore it is a good L1-Kantorovich potential for
the d-monotone set {(γs, γt) : γ ∈ Ga, s ≤ t}. Note moreover that the calculations
above proves that

Γ̄a(1) � γs 
→ d(γ0, γs)

is 1-Lipschitz and coincides with γs 
→ min{d(γ̂0, γs) : γ̂ ∈ Ga}.

The following holds.

Lemma 4.6. Let Δ ⊂ Ka be any set so that:

(x0, y0), (x1, y1) ∈ Δ ⇒ (φa(y1) − φa(y0)) · (φa(x1) − φa(x0)) ≥ 0.

Then Δ is d2-cyclically monotone.

Proof. It follows directly from the hypothesis of the Lemma that the set

{(φa(x), φa(y)) : (x, y) ∈ Δ} ⊂ R × R

is | · |2-cyclically monotone, where | · | denotes the modulus. Then for {(xi, yi)}i≤N ⊂
Δ, since Δ ⊂ Ka, it holds

N∑
i=1

d2(xi, yi) =
N∑

i=1

|φa(xi) − φa(yi)|2

≤
N∑

i=1

|φa(xi) − φa(yi+1)|2

≤
N∑

i=1

d2(xi, yi+1),

where the last inequality is given by the 1-Lipschitz regularity of φa. The claim
follows. ��

Fix an interval (a0, b0) ⊂ R and for any γ so that (a0, b0) ⊂ φa(γ[0,1]) we can
define Rγ

0 , L
γ
0 ⊂ [0, 1] so that

φa ◦ γ ((Rγ
0 , R

γ
0 + Lγ

0)) = (a0, b0)

that is equivalent to say

φa ◦ γ(Rγ
0) = b0, φa ◦ γ(Rγ

0 + Lγ
0) = a0.

In the same manner, for another interval (a1, b1) ⊂ R we can associate to any γ so
that (a1, b1) ⊂ φa(γ[0,1]) the corresponding time interval (Rγ

1 , R
γ
1 + Lγ

1) Accordingly
for all t ∈ [0, 1] we define Rγ

t := (1 − t)Rγ
0 + tRγ

1 and Lγ
t := (1 − t)Lγ

0 + tLγ
1 .

We use these coefficients to construct an L2-Wasserstein geodesic.



GAFA DECOMPOSITION AND GLOBALIZATION 521

Proposition 4.7. Let H ⊂ Ga be so that for all γ ∈ H both (a0, b0), (a1, b1) ⊂
φa(γ(0,1)) with b0 > a0 > b1 > a1. Define the curve

[0, 1] � t 
→ νt :=
∫

H

1
Lγ

t

L1�[Rγ
t ,Rγ

t +Lγ
t ]η(dγ) ∈ P([0, 1] ×Ga), (4.3)

with η probability measure on G(X) so that η(H) = 1. Then [0, 1] � t 
→ (e)�νt is a
W2-geodesic.

Proof. First note that for any fixed s ∈ [0, 1] the value φa(γRγ
0+sLγ

0
) do not depend

on γ ∈ H. Indeed

φa(γRγ
0+sLγ

0
) = φa(γRγ

0
) − d(γRγ

0
, γRγ

0+sLγ
0
)

= φa(γRγ
0
) − sd(γRγ

0
, γRγ

0+Lγ
0
)

= φa(γRγ
0
) − s

(
φa(γRγ

0
) − φa(γRγ

0+Lγ
0
)
)

= b0 − s(b0 − a0),

and the same applies for φa(γRγ
1+sLγ

1
). It follows that the set

{
(γRγ

0+sLγ
0
, γRγ

1+sLγ
1
) : γ ∈ H, s ∈ [0, 1]

}

is d2-cyclically monotone. Indeed, using Lemma 4.6, we have only to show that for
any γ̂, γ ∈ H and ŝ, s ∈ [0, 1]:

(φa(γ̂Rγ̂
1+ŝLγ̂

1
) − φa(γRγ

1+sLγ
1
)) · (φa(γ̂Rγ̂

0+ŝLγ̂
0
) − φa(γRγ

0+sLγ
0
)) ≥ 0.

But as observed few lines above

φa(γRγ
1+sLγ

1
) = φa(γ̂Rγ̂

1+sLγ̂
1
), φa(γRγ

0+sLγ
0
) = φa(γ̂Rγ̂

0+sLγ̂
0
).

Hence the claim is equivalent to

(φa(γ̂Rγ̂
1+ŝLγ̂

1
) − φa(γ̂Rγ̂

1+sLγ̂
1
)) · (φa(γ̂Rγ̂

0+ŝLγ̂
0
) − φa(γ̂Rγ̂

0+sLγ̂
0
)) ≥ 0,

that in turn is equivalent to

(s− ŝ)(b1 − a1) · (s− ŝ)(b0 − a0) = (s− ŝ)2(b1 − a1)(b0 − a1) ≥ 0,

hence the claim follows. ��
Hence, an optimal transport is achieved by not changing the “angular” parts

and coupling radial parts according to optimal coupling on R. Since in the radial
(or linear) part of the coupling is linear, one is allowed to rescale the radial speed
and gain one degree of freedom.

In the next Sections we will use regularity properties of CDloc-spaces to properly
apply the constructions of this Section to improve the curvature estimates and to
study the globalization problem.
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5 Dimension Reduction for a Class of Optimal Transportations

In this Section we start our general analysis in the particular case of optimal trans-
port plan with lengths of geodesics depending only on the level set of ϕ from where
they start, that is

L(γ) = f(ϕ(γ0)), ∀γ ∈ G,

and the level sets of ϕ maintain their order during the evolution, that is

ϕ(μ0) � a 
→ a− 1
2
f2(a) ∈ R,

is non decreasing. In what follows we will denote with F (a) the function a−f2(a)/2.
Thanks to Luzin’s Theorem, we can also assume the map e0(G) � γ0 
→ f(ϕ(γ0)) to
be continuous.

Under this particular assumption, the transportation enjoys nice properties. In
the following Lemma we prove that level sets are moved by γ in a monotone way.
Recall that

et(Ga) = {γt : γ ∈ G,ϕ(γ0) = a}.

Lemma 5.1. Assume that L(γ) = f(ϕ(γ0)), then it holds

et(Ga) = ϕ−1
t

(
a− t

2
f2(a)

)
∩ et(G).

for a ∈ ϕ(μ0).

Proof. The first inclusion follows immediately from Corollary 2.16: if ϕ(γ0) = a then

ϕt(γt) = a− t

2
L2(γ) = a− t

2
f2(a).

To prove the other inclusion we observe that the evolution at time t of two
different level sets of ϕ0 cannot be contained in the same level set of ϕt. Indeed if
a > b ∈ ϕ(μ0) then for all γ ∈ Ga and γ̄ ∈ Gb it holds

ϕ1(γ1) = −ϕc(γ1) = F (a) ≥ F (b) = −ϕc(γ̄1) = ϕ1(γ̄1).

Hence for all t ∈ (0, 1)

ϕt(γt) = (1 − t)ϕ(γ0) + tϕ1(γ1) > (1 − t)ϕ(γ̄0) + tϕ1(γ̄1) = ϕt(γ̄t).

The claim follows. ��
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5.1 Level sets of Kantorovich potentials. On the set e0(G) we will con-
sider the partition given by the saturated sets of ϕ, i.e. {ϕ−1(a)}a∈R. Disintegration
Theorem implies that

m�e0(G)=
∫

ϕ(μ0)

m̃aq(da), ϕ�

(
m�e0(G)

)
= q,

with m̃a(ϕ−1(a)c) = 0 for q-a.e. a ∈ ϕ(μ0), where, in order to have a shorter notation,
we have denoted by ϕ(μ0) the set ϕ(supp[μ0]).

Proposition 5.2. The measure q = ϕ�(m�e0(G)) is absolute continuous w.r.t. L1.
Moreover for q-a.e. a ∈ ϕ(μ0) it holds

m̃a � Sh,

where Sh is the spherical Hausdorff measure of codimension one.

Proof. Step 1. Recall that on G the point wise metric Brenier’s Theorem holds true:
|Dϕ|w(γ0) = d(γ0, γ1), for all γ ∈ G. Define the map

e0(G) � x 
→ ϕ̂(x) := inf
y∈e1(G)

{
d2(x, y)

2
− ϕc(y)

}
.

Since G is compact, e0(G) and e1(G) are bounded and ϕ̂ is obtained as the
infimum of Lipschitz maps with uniformly bounded Lipschitz constant. Therefore ϕ̂
is Lipschitz and coincide with ϕ(x). Extend ϕ̂ to the whole space keeping the same
Lipschitz constant.

We can use the coarea formula (see Section 2.2) in the particular case of Lipschitz
maps: for any B ⊂ X Borel

+∞∫

−∞
P ({ϕ̂ > a}, B)da ≥ c0

∫

B

‖∇ϕ̂‖(x)m(dx), (5.1)

where c0 is a strictly positive constant.
Step 2. For (x, y) ∈ (e0, e1)(G), ‖∇ϕ̂‖(x) ≥ d(x, y). Indeed fix (x, y) ∈ (e0, e1)(G),

then ϕ̂(x) + ϕc(y) = d2(x, y)/2 and

ϕ̂(x) − ϕ̂(z) ≥ 1
2
(d2(x, y) − d2(z, y)) =

1
2
(d(x, y) − d(z, y))(d(x, y) + d(z, y))

Select a minimizing sequence ρn → 0 for ‖∇ϕ̂‖(x) and zn on the geodesic con-
necting x to y at distance ρn from x. Then

1
ρn

sup
z∈Bρn (x)

|ϕ̂(z) − ϕ̂(x)| ≥ 1
2

1
ρn

(d(x, y) − d(zn, y))(d(x, y) + d(zn, y))

=
1
2
(d(x, y) + d(zn, y)).

Passing to the limit we have ‖∇ϕ̂‖(x) ≥ d(x, y).
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Let E ⊂ R with L1(E) = 0, then from (5.1) it follows that∫

ϕ−1(E)∩e0(G)

‖∇ϕ̂‖(x)m(dx) =
∫

ϕ̂−1(E)∩e0(G)

‖∇ϕ̂‖(x)m(dx)

≤ 1
c0

∫

E

P ({ϕ̂ > a}, e0(G))da = 0. (5.2)

But on e0(G) the gradient of ϕ̂ is strictly positive, it follows that m(ϕ−1(E) ∩
e0(G)) = 0 and therefore the first part of the claim is proved. Moreover from (5.2)
it follows that

m̃a ≤ P ({ϕ̂ > a}, ·).
Being the latter absolutely continuous with respect to Sh, also the second part

of the statement follows. ��
Remark 5.3. Proposition 5.2 proves a property of disintegration at time t = 0
where the particular shape of the optimal transportation or of the Kantorovich
potentials do not play any role and indeed the proof is done without using any
particular assumption. Hence the result will be used also in the general case.

So Proposition 5.2 implies the following decomposition for t = 0:

m�e0(G)=
∫

ϕ(μ0)

m̃aq(a)L1(da) =
∫

ϕ(μ0)

m̂aL1(da),

with clearly again m̂a � Sh.
For t ∈ [0, 1) an analogous partition can be considered also on the support of μt,

et(G). Indeed the d2-cyclical monotonicity of Γ implies that the family

{γt : γ ∈ G,ϕ(γ0) = a}a∈ϕ(μ0) = {et(Ga)}a∈ϕ(μ0)

is a disjoint family and a partition of et(G). Therefore we consider the disintegration
of m�et(G) w.r.t. the aforementioned family. Since for every t ∈ [0, 1)

μ0(ϕ−1(A)) = μt({γt : ϕ(γ0) ∈ A}),

the quotient measures of μ0 and μt are the same measure. We can conclude that the
quotient measures of m�et(G) and of m�e0(G) are equivalent and

m�et(G)=
∫

ϕ(μ0)

m̃a,tft(a)L1(da) =
∫

ϕ(μ0)

m̂a,tL1(da), m̂a,t({γt : ϕ(γ0) = a}c) = 0.

(5.3)
To keep notation consistent, we will denote also the conditional probabilities for

t = 0 with m̂a,0.
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For t = 1 only if μ1 is absolute continuous with respect to m we can do the same
disintegration. Indeed if this is the case, from Theorem 2.7 of [Gig12b], for m-a.e.
x ∈ e1(G) there is only one geodesic γ in G so that γ1 = x and the family

{γ1 : γ ∈ G,ϕ(γ0) = a}a∈ϕ(μ0)

is again partition of e1(G). Since we are assuming both μ0 and μ1 absolute continuous
with respect to m, we have

m�et(G)=
∫

ϕ(μ0)

m̂a,tL1(da), m̂a,t(et(Ga)) = ‖m̂a,t‖,

for all t ∈ [0, 1].

Lemma 5.4. For every t ∈ [0, 1] and L1-a.e. a ∈ ϕ(μ0), with the exceptional set
depending on t, it holds

m̂a,t � Sh,

where Sh is the spherical Hausdorff measure of codimension one defined in (2.5).

Proof. For t = 0 the claim has been already obtained in Proposition 5.2. For t ∈ (0, 1]
we observe that from Lemma 5.1 the partition of et(G)

{γt : γ ∈ Ga}a∈ϕ(μ0),

can be equivalently written as

{ϕ−1
t (a)}a∈ϕt(μt).

Then using coarea formula as in Proposition 5.2 the claim follows. ��
Since level sets of ϕ0 are moved after time t to level sets of ϕt, the monotone

map F (a) = a− f2(a)/2 is the optimal map between the quotient measures.

Lemma 5.5. For each t ∈ [0, 1], consider the map Ft(a) := a − tf2(a)/2 defined on
ϕ(μ0). Then for each t ∈ [0, 1], Ft is the optimal map for between

(ϕ0)�μ0, (ϕt)�μt

and f is locally Lipschitz.

Proof. Just note that

Ft(ϕ(γ0)) = ϕ(γ0) − t

2
L2(γ) = ϕt(γt). (5.4)

Since g1 is monotone by assumption and, thanks to Proposition 5.2, (ϕi)�μi are
absolute continuous w.r.t. to L1 for i = 0, 1, the claim follows. ��
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5.2 Disintegration in the direction of motion. As already motivated in
the Introduction, m̂a,t is not the right reference measure to improve the curvature
estimate to a “codimension 1”-like estimate. So we consider the evolution in time
of a single level set as a whole subset of X, that is the set e([0, 1] × Ga), and we
disintegrate the reference measure m with respect to the family {et(Ga)}t∈[0,1]. In
this way the quotient space of the disintegration will be the time variable and as t
moves the conditional probabilities will move in the same direction of the optimal
transportation.

Recall Γ̄a(1) := e([0, 1] ×Ga). Thanks to Lemma 4.2, we can consider the disin-
tegration of m�Γ̄a(1) w.r.t. the family of sets {et(Ga)}t∈[0,1]:

m�Γ̄a(1)=
∫

[0,1]

m̄a,tq(dt), q ∈ P([0, 1]), q(I) = m(e(I ×Ga)).

Observe that any γ ∈ Ga can be taken as quotient set, therefore Corollary 2.19
implies the strong consistency of the disintegration, i.e. for q-a.e. t ∈ [0, 1] m̄a,t is
concentrated on et(Ga).

Proposition 5.6. The quotient measure qa is absolute continuous with respect to
L1.

Proof. Since Γa is d-cyclically monotone, we can consider another partition of Γ̄a(1).
Consider the family of sets {γs : s ∈ [0, 1]}γ∈Ga

. By Lemma 4.2, we have that

• the following disintegration holds true:

m�Γ̄a(1)=
∫
ηyqa(dy),

where the quotient measure qa is concentrated on {γ1/2 : γ ∈ Ga} and qa-a.e.
conditional probability ηy is concentrated on {γs : s ∈ [0, 1], γ ∈ e−1

1/2(y) ∩Ga};
• Since CDloc(K,N) implies MCP(K,N), from Theorem 9.5 of [BC13] we have that
ηy = g(y, ·)L1�[0,1] for qa-a.e. y, and for r ≤ R

(
sin
(

r
Rd(γ0, γR)

√
K/(N − 1)

)
sin
(
d(γ0, γR)

√
K/(N − 1)

)
)N−1

≤ g(y, r)
g(y,R)

≤
(

sin
(

r
Rd(γr, γ1)

√
K/(N − 1)

)
sin
(
d(γr, γ1)

√
K/(N − 1)

)
)N−1

, (5.5)

where γ = e−1
1/2(y) ∩Ga, and and the measure g(y, ·)L1�[0,1] has to be intended as

(γ)�(g(y, ·)L1�[0,1]), with γ the unique element of Ga so that γ1/2 = y.
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To prove the claim it is enough to observe that the two disintegration proposed
for m�Γ̄a(1) are the same. Use Fubini’s Theorem to get

∫

[0,1]

m̄a,tq(dt) = m�Γ̄a(1)=
∫
g(y, ·)L1(dt)qa(dy) =

∫

[0,1]

g(·, t)qa(dy)dt,

therefore from uniqueness of disintegration,

m̄a,t = g(·, t)qa
(∫

g(y, t)qa(dy)
)−1

, q =
(∫

g(y, t)qa(dy)
)

L1,

and the claim follows. ��
Hence if dq/dL1 denotes the density of q with respect to L1, posing ma,t :=

(dq/dL1)m̄a,t, we have

m�Γ̄a(1)=
∫

[0,1]

ma,tdt. (5.6)

Note that Proposition 5.6, and therefore (5.6), has been obtained without using
the assumption of constant speed of geodesics along the level set of ϕ. So we will
use it also in the general case without any need of prove it again.

Proposition 5.7. For L2-a.e. (a, t) ∈ ϕ(μ0) × [0, 1] it holds

ma,t � Sh,

where Sh is the spherical Hausdorff measure of codimension one defined in (2.5).

Proof. Following the proof of Lemma 5.4, the claim will be proved if we write the
family of sets

{γt : γ ∈ Ga}t∈[0,1] = {et(Ga)}t∈[0,1],

as a family of level sets {Λ−1(t)}t∈[0,1] for some locally Lipschitz Λ : Γ̄a(1) → R with
non zero gradient.

Step 1. Consider the evaluation map e : [0, 1] × Ga → Γ̄a(1) as e(s, γ) := γs and
define the following function

Γ̄a(1) � x 
→ Λ(x) := P1(e−1(x)).

Hence Λ(x) is the unique t for which there exists γ ∈ Ga so that γt = x. From
its definition, Λ is clearly measurable and

Λ−1(t) = {γt : γ ∈ Ga}.
Its derivative in the direction of s 
→ γt+s is 1 for any t ∈ (0, 1) and γ ∈ Ga. We now
show that Λ is locally Lipschitz. Note that for s < t and any γ, γ̂ ∈ Ga

Λ(γt) − Λ(γ̂s) = t− s =
1

L(γ̂)
d(γ̂s, γ̂t).
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On the other hand from Lemma 5.1 ϕs(γs) = ϕs(γ̂s) and therefore

1
(t− s)2

d2(γ̂s, γ̂t) = ϕs(γ̂s) + ϕc
1−t(γ̂t) = ϕs(γ̂s) + ϕc

1−t(γt) ≤ 1
(t− s)2

d2(γ̂s, γt).

Hence

|Λ(γt) − Λ(γ̂s)| ≤ 1
C
d(γt, γ̂s).

and therefore the claim is proved. ��
So the results obtained in this Section are: assuming that L(γ) = f(ϕ(γ0)), and

a− 1
2f

2(a) is non decreasing, we have

m�et(G)=
∫

ϕ(μ0)

m̂a,tL1(da), m�Γ̄a(1)=
∫

[0,1]

ma,tL1(dt)

for all t ∈ [0, 1] and a ∈ ϕ(μ0) and m̂a,t,ma,t � Sh�et(Ga) for L1-a.e. a, t ∈ [0, 1].

6 Dimension Reduction for the General Transportation

In this Section we obtain the result of Section 5 dropping the assumption of constant
length on level sets of ϕ but assuming few regularity properties for γ. In particular we
will assume a regularity property of the length map that has been already introduce
in Section 3: for t ∈ (0, 1)

et(G) � x 
→ Lt(x) := L(e−1
t (x)) ∈ (0,∞).

Assumption 1. For all t ∈ (0, 1) the map Lt is locally Lipschitz: for μt-a.e. x ∈ et(G)
there exists an open neighborhood U(x) of x and a positive constant C so that

|Lt(z) − Lt(w)| ≤ Cd(z, w), ∀z, w ∈ U(x).

We can now introduce the function Φt defined on et(G):

Φt(x) := ϕt(x) +
t

2
L2

t (x).

As already pointed out in Section 3, the relevance of Φt is explained by the
following equivalent identities:

Φt(γt) = ϕ(γ0), Φ−1
t (a) = {γt : γ ∈ G,ϕ(γ0) = a}.

It follows from Assumption 1 that also Φt is locally Lipschitz. Moreover almost
by definition

(Φt)�m�et(G)� L1,
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indeed since Φt ◦ et = ϕ ◦ e0 it follows that (Φt)�μt = (ϕ)�μ0 and therefore

(Φt)��tm�et(G)= (ϕ)��0m�e0(G).

Since �t > 0 on et(G), also the converse is true, that is

L1�ϕ(μ0)� (Φt)�m�et(G).

Anyway this property is not sufficient to guarantee that its metric gradient do
not vanish. See [ABC11] for a counter example to this property (constructed on
R

2). One of the first steps we have to do is prove that the reference measures of
codimension one are all absolute continuous with respect to the spherical Hausdorff
measure Sh, and, as in the proof of Proposition 5.2, we will use Coarea formula and
we will apply it to the function Φt. Since Coarea formula brings information only
where the gradient is non zero we have to ask for the following property to hold.

Assumption 2. For all t ∈ [0, 1] for γ-a.e. γ ∈ G the following holds

lim
s→0

Φt(γt) − Φt(γt+s)
d(γt, γt+s)

∈ (0,∞).

Remark 6.1. Assumption 1 is verified in the hypothesis of Section 5 that is:

L(γ) = f(ϕ(γ0)), ∀γ ∈ G,

with f so that a 
→ a − f2(a)/2 is non-decreasing. Indeed as proved in Lemma 5.5
f is locally Lipschitz. Moreover if Ft : ϕ0(μ0) → ϕt(μt) is the locally bi-Lipschitz
function of (5.4), then

et(G) � γt 
→ f ◦ F−1
t ◦ ϕt(γt)

is locally Lipschitz and coincides with Lt(γt). Noticing that Φt = F−1
t ◦ϕt Assump-

tion 2 is straightforward.

Before showing how Assumptions 1 and 2 are used in the metric framework, we
prove that if X is a Riemannian manifold with d geodesic distance induced by a
Riemannian tensor g and m is the volume measure, then Assumptions 1 and 2 are
verified.

Proposition 6.2. Assume (X, d,m) has a Riemannian structure, that is (X, d) is a
Riemannian manifold with metric g andm is the volume measure. Then Assumptions
1 and 2 are both verified.

Proof. Assumption 1 follows from the Monge–Mather shortening principle, see
[Vil08] Theorem 8.5.

Actually Theorem 8.5 of [Vil08] proves Lipschitz regularity on compact sets of
the transport map from intermediate times: if

Tt : e0(G) → et(G), (Tt)�μ0 = μt
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then for any t ∈ (0, 1) the map T−1
t is Lipschitz and in particular m-almost every

where differentiable: Since Φt = ϕ ◦ T−1
t , it follows that Assumption 2 is equivalent

to prove that

gγ0(∇ϕ(γ0), DT−1
t ∇ϕt(γt)) > 0.

In order to compute the previous quantity is convenient to consider the expression
of DT−1

t proved in [CMS11], see Theorem 4.2:

DT−1
t = Y (H − tHessxϕ

c
t),

where Y is the differential of the exponential map in (γt,−t∇ϕc
t) ∈ X × Tγt

X, H
is the Hessian of the squared of distance function and ϕc

t has been introduced in
Section 2.4 and minus its gradient composed with the exponential maps gives the
optimal transport from μt to μ0. Since

Y∇ϕt(γt) = ∇ϕ(γ0)

it follows from Gauss Lemma, see [GHL87] Theorem 3.70, that

gγ0(∇ϕ(γ0), DT−1
t ∇ϕt(γt)) = gγt

(∇ϕ(γt), (H − tHessxϕ
c
t)∇ϕt(γt)). (6.1)

Since (H − tHessxϕ
c
t) is symmetric with strictly positive determinant μt-almost

everywhere, the claim follows. ��

6.1 Level sets of Kantorovich potentials.

Proposition 6.3. For every t ∈ [0, 1) and L1-a.e. a ∈ ϕ(μ0), with the exceptional
set depending on t, it holds

m̂a,t � Sh,

where Sh is the spherical Hausdorff measure of codimension one defined in (2.5).

Proof. Step 1. For t = 0 the claim has been already proved in Proposition 5.2, see
Remark 5.3.

As a consequence of Assumption 1, Φt is locally Lipschitz on et(G). Since we
are proving a local property, possibly taking a compact subset of G, we can assume
without loss of generality that Φt is Lipschitz on the whole et(G). Denote with Φ̂t

its Lipschitz extension to X. Coarea formula for Lipschitz maps applies (see Section
2.2 and references therein): for any measurable A ⊂ X

+∞∫

−∞
P ({Φ̂t > a}, A)L1(da) ≥ c0

∫

A

‖∇Φ̂t‖(x)m(dx),

where c0 is a strictly positive constant.
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Step 2. Since Φ̂t is Lipschitz,

P ({Φ̂t > a}, ·) ≤ cSh.

where c is a positive constant depending on K and N . So we have

∫
‖∇Φ̂t‖m̂a,tL1(da) ≤

+∞∫

−∞
P ({Φ̂t > a}, ·)L1(da),

which in turn gives

‖∇Φ̂t‖m̂a,t ≤ cSh.

From Assumption 2 it follows that ‖∇Φ̂t‖ > 0 on et(G) and the claim follows.��

6.2 Disintegration in the direction of motion. As in Section 5.2, we dis-
integrate m�Γ̄a(1) in with respect to the partition {et(Ga)}t∈[0,1]. From Proposition
5.6 we have

m�Γ̄a(1)=
∫

[0,1]

ma,tL1(dt).

We now prove a regularity property for the conditional measures ma,t. Recall
that we are considering optimal transportation with uniformly positive and bounded
lengths: there exists C > 0 so that

1
C
< L(γ) < C, ∀γ ∈ G.

Lemma 6.4. For L2-a.e. (a, t) ∈ ϕ(μ0) × [0, 1] it holds

ma,t � Sh,

where Sh is the spherical Hausdorff measure of codimension one defined in (2.5).

Proof. The idea of the proof is exactly the same as Proposition 5.7.
Step 1. Define the map

Γ̄a(1) � x 
→ Λ(x) := P1(e−1(x)),

hence Λ(x) is the unique t for which there exists γ ∈ Ga so that γt = x. From its
definition, Λ is clearly measurable, Λ−1(t) = {γt : γ ∈ Ga} and its derivative in the
direction of s 
→ γt+s is 1 for any t ∈ (0, 1) and γ ∈ Ga.
Step 2. We now show that Λ is locally Lipschitz. Consider the map

Ga ×Ga × [0, 1]2 � (γ̄, γ̂, s, t) 
→ Y (γ̄, γ̂, s, t) = d(γ̄s, γ̂t) − 1
C

|t− s|.
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Fix γ ∈ Ga and note that for any s, t ∈ [0, 1]:

Y (γ, γ, s, t) = |t− s|
(
L(γ) − 1

C

)
> 0.

By continuity, there exists an open set U inGa×Ga×[0, 1]2 so that Y (U) ⊂ (0,∞)
and

K := {(γ, γ, s, t) : s, t ∈ [0, 1]} ⊂ U.

Since K is compact, there exists ε > 0 so that Kε ⊂ U where Kε is the ε-
neighborhood of K in the metric space Ga × Ga × [0, 1]2. Consider γ̄, γ̂ ∈ Ga so
that

d∞(γ̄, γ) <
ε

2
, d∞(γ̂, γ) <

ε

2
,

where d∞ the metric on G(X). Then (γ̂, γ̄, s, t) ∈ Kε for any s, t ∈ [0, 1]. Therefore

d(γ̂s, γ̄t) >
1
C

|s− t|, ∀ s, t ∈ [0, 1].

Hence we have shown that for any γ ∈ Ga there exists ε > 0 so that the map

e ([0, 1] ×Bε(γ)) � x 
→ Λ(x)

is Lipschitz indeed for x, y ∈ e ([0, 1] ×Bε(γ)) with say x = γ̄s and y = γ̂t it holds

|Λ(x) − Λ(y)| = |s− t| ≤ Cd(γ̄s, γ̂t).

Step 3. Repeating the proof of Proposition 6.3 with coarea formula we obtain that

ma,t�e([0,1]×Bε(γ))� Sh,

for L1-a.e. t ∈ [0, 1]. Since Ga is compact the claim on the whole Γ̄a(1) follows by a
covering argument. ��

7 Uniqueness of Conditional Measures

This Section is devoted to find a relation and possibly a comparison betweenma,t and
m̂a,t. Find a comparison between this two different reference measure of codimension
one is fundamental. Indeed disintegrate γ w.r.t. {e−1

0 (ϕ−1(a))}a∈R that is the set of
geodesic starting from a given level set of ϕ:

γ =
∫

ϕ(μ0)

γaq(a)L1(da), γa

(
(ϕ ◦ e0)−1(a)

)
= 1.

Clearly this disintegration is just the lift for each t of the disintegration of μt w.r.t.
{et(Ga)}a∈ϕ(μ0). Therefore the quotient measure q(a)L1(da) is the same quotient
measure of μt for every t ∈ [0, 1]. Then necessarily,
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∫

ϕ(μ0)

�tm̂a,tL1(da) = μt = (et)�γ =
∫

ϕ(μ0)

(et)�γaq(a)L1(da),

and from uniqueness of disintegration,

(et)�γa =
(∫

�t(z)m̂a,t(dz)
)−1

�tm̂a,t.

Hence if we want to express the geodesic of codimension one (et)�γa in terms
of the reference measure ma,t moving in the same direction of the optimal trans-
portation, we have to prove that (et)�γa � ma,t. To do that we will prove that
m̂a,t � ma,t.

Remark 7.1. Here we want to stress the differences between m̂a,t and ma,t. It is
worth underlining again that both measures are concentrated on et(Ga). Also they
are both obtained as conditional measures of m or, otherwise stated, they belong to
the range of two different disintegration maps of m:

m�et(G)=
∫

ϕ(μ0)

m̂a,tL1(da), m�Γ̄a(1)=
∫

[0,1]

ma,tL1(dt).

Since in both disintegrations the quotient measure is L1, conditional measures
can be interpret as the “derivative” with respect to the parameter in the quotient
space, a in the first case and t in the second one, of m. Even if m and et(Ga) are
fixed, what do matters, and implies m̂a,t �= ma,t, is the difference between et+ε(Ga)
and et(Ga+ε). The difference can be observed in Figure 1.

Lemma 7.2. For every a ∈ ϕ(μ0),

lim
s→0

1
s

∫

(t,t+s)

ma,τL1(dτ) = ma,t,

for L1-a.e. t ∈ [0, 1], where the convergence is in the weak sense.

Proof. Since (X, d,m) is locally compact, the space of real valued continuous and
bounded functions Cb(X) is separable. Let {fk}k∈N ⊂ Cb(X) be a dense family.

Fix a ∈ ϕ(μ0). The Lebesgue differentiation theorem implies that for every k ∈ N

1
s

∫

(t,t+s)

(∫
fk(z)ma,τ (dz)

)
L1(dτ) →

∫
fk(z)ma,t(dz), as s ↘ 0,

as real numbers, for all t ∈ [0, 1] \Ea,k with L1(Ea,k) = 0. Hence Ea := ∪m∈NEa,k is
L1-negligible. Take f ∈ Cb(X) and chose {fkh

}h∈N approximating f in the uniform
norm. Using fkh

, it is then fairly easy to show that

lim
s→0

1
s

∫

(t,t+s)

(∫
f(z)ma,τ (dz)

)
L1(dτ) =

∫
f(z)ma,t(dz)
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Figure 1: Above and below the disintegration with conditional m̂a,t and ma,t, respec-
tively

for all t ∈ [0, 1] \ Ea. ��
The analogous statement of Lemma 7.2 is true for the conditional measures m̂a,t

of (5.3): fix t ∈ [0, 1], then

lim
b→0

1
b

∫

(a,a+b)

m̂α,tL1(dα) = m̂a,t,

for L1-a.e. a ∈ ϕ(μ0), where the convergence is in the weak sense.

7.1 Comparison between conditional measures. The next one is the main
technical statement of the section.

Proposition 7.3. For L1-a.e. a ∈ ϕ(μ0) and every sequence εn → 0+ there exists
a subsequence εnk

so that:

lim
ε→0+

1
ε

·m�Φ−1
t ([a−ε,a])= lim

k→∞
1
εnk

·m�Φ−1
t ([a−εnk

,a])∩Γ̄a(1)

for L1-a.e. t ∈ [0, 1], where the exceptional set depends on the subsequence εnk
and

the limit is in the weak topology.

Proof. Step 1. We show that for every a ∈ ϕ(μ0),

lim
ε→0

1
ε

∫

(0,1)

m
(
Φ−1

t ([a− ε, a]) \ Γ̄a(1)
)
dt = 0.
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Suppose by contradiction the existence of a ∈ ϕ(μ0) and of a sequence εn → 0
such that

lim
n→∞

1
εn

∫

(0,1)

m
(
Φ−1

t ([a− εn, a]) \ Γ̄a(1)
)
dt ≥ α.

Then, since in Lemma 5.4 we have proved that ‖∇Φ̂t‖m̂b,t ≤ cSh�et(Gb) for
L1-a.e. b ∈ ϕ(μ0), with ‖∇Φ̂t‖ positive m-a.e., it follows that

lim
n→∞

1
εn

∫

(0,1)

∫

[a−εn,a]

Sh(et(Gb) \ Γ̄a(1))L1(db)L1(dt) ≥ α.

Then by Fubini’s Theorem

lim
n→∞

1
εn

∫

[a−εn,a]

∫

(0,1)

Sh(et(Gb) \ Γ̄a(1))L1(dt)L1(db) ≥ α.

Hence there exists a sequence ak converging to a from below such that∫

(0,1)

Sh(et(Gak
) \ Γ̄a(1))L1(dt) ≥ α.

for all k ∈ N.
Step 2. It follows from Lemma 6.4 and Proposition 2.8 that, since m�Γ̄ak

(1)=∫
mak,tdt:

lim inf
k→0

m
(
Γ̄ak

(1) \ Γ̄a(1)
) ≥ α.

Since as k → ∞ the sequence ak is converging to a, the sequence of compact sets
of geodesics {Gak

}k∈N is converging in Hausdorff topology to a subset of Ga, hence
the same happens for the sequence of compact sets {Γ̄ak

(1)}k∈N. Then just observe
that

m(Γ̄a(1)) = lim
δ→0

m(Γ̄a(1)δ) ≥ m(Γ̄a(1)) + lim inf
k→∞

m(Γ̄ak
(1) \ Γ̄a(1)) ≥ m(Γ̄a(1)) + α,

where Γ̄a(1)δ = {z ∈ X : d(z, Γ̄a(1)) ≤ δ} is a neighborhood of Γ̄a(1) and the first
inequality follows from the definition of Hausdorff convergence. Since α > 0 we have
a contradiction and therefore for each a ∈ ϕ(μ0)

lim
ε→0

1
ε

∫

(0,1)

m
(
Φ−1

t ([a− ε, a]) \ Γ̄a(1)
)
dt = 0.

So for each sequence εn → 0 there exists a subsequence εnk
such that

lim
k→∞

1
εnk

m
(
Φ−1

t ([a− εnk
, a]) \ Γ̄a(1)

)
= 0,

for L1-a.e. t ∈ [0, 1].
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Step 3. Let {fh}h∈N ⊂ Cb(X) be a dense family. Then for each fk

lim
k→∞

⎛
⎜⎝ 1
εnk

∫

[a−εnk
,a]

fhm̂b,tL1(db) − 1
εnk

∫

Φ−1
t ([a−εnk

,a])∩Γ̄a(1)

fhm

⎞
⎟⎠ = 0

for all t ∈ [0, 1] minus a set of measure zero. Reasoning as Lemma 7.2, we have the
existence of a set E ⊂ [0, 1] with L1(E) = 0 such that for all f ∈ Cb(X) it holds

lim
k→∞

⎛
⎜⎝ 1
εnk

∫

[a−εnk
,a]

fm̂b,tL1(db) − 1
εnk

∫

Φ−1
t ([a−εnk

,a])∩Γ̄a(1)

fm

⎞
⎟⎠ = 0

for all t ∈ [0, 1]\E. Then again from Lemma 7.2 applied to m̂a,t we have the claim.��
The proof of the next Corollary follows from Lemma 7.2 and Proposition 7.3.

Corollary 7.4. For L1-a.e. a ∈ ϕ(μ0) the following holds: for every sequence εn →
0 there exists a subsequence εnk

→ 0 so that

lim
k→∞

1
εnk

·m�Φ−1
t ([a−εnk

,a])∩Γ̄a(1)= m̂a,t

for L1-a.e. t ∈ [0, 1], where the exceptional set depends on the subsequence εnk
and

the limit is in the weak topology.

We now prove that m̂a,t � ma,t. Let us recall the disintegration formula for m
as constructed in Proposition 5.6: for each a ∈ ϕ(μ0) since the geodesics in Ga are
disjoint even for different times it holds

mΓ̄a(1) =
∫

e1/2(Ga)

g(y, ·)L1�[0,1]qa(dy). (7.1)

where g satisfies (5.5), qa is the quotient measure satisfying for I ⊂ e1/2(Ga)

qa(I) = m({γt : γ ∈ Ga, γ1/2 ∈ I})

and the measure g(y, ·)L1�[0,1] has to be intended as (γ)�(g(y, ·)L1�[0,1]), with γ
the unique element of Ga so that γ1/2 = y. Being the evaluation map e1/2 a Borel
isomorphism between Ga and e1/2(G) the measure qa can be also interpret as a
measure on Ga.

Proposition 7.5. For L1-a.e. a ∈ ϕ(μ0)

m̂a,t � ma,t

for L1-a.e. t ∈ [0, 1]. Equivalently (e1/2)�γa � qa.

Proof. Consider a ∈ ϕ(μ0) and a subsequence εnk
so that Corollary 7.4 holds.
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Step 1. Consider the evaluation map e : [0, 1] × e1/2(Ga) → Γ̄a(1) defined as usual
by

e(s, y) = es ◦ e−1
1/2(y).

Note that it is continuous, surjective and its inverse is continuous as well. Hence
Γ̄a(1) and [0, 1] × e1/2(Ga) are homeomorphic.

Take I compact subset of e1/2(Ga) with qa(I) = 0. Since qa is a regular finite
measure on e1/2(Ga), by outer regularity there exists a sequence {Ai}i∈N with Ai ⊂
e1/2(Ga) and open in the subspace topology of e1/2(Ga) so that

I ⊂ Ai, qa(Ai) ≤ 1
i
.

Take now any open set U ⊂ [0, 1] neighborhood of 1/2. Then e(U × Ai) will be
an open set in Γ̄a(1) for each i ∈ N.

Step 2. Then

1
εnk

m�Φ−1
t ([a−εnk

,a])∩Γ̄a(1)(e(U ×Ai))

=
1
εnk

∫

Ai

(g(y, ·)L1) (U ∩ {τ ∈ [t, 1] : Φt(γτ ) ∈ [a− εnk
, a]}) qa(dy).

Let sk ∈ (0, 1) be such that

sk = max{s : Φt(γt+s) ≥ a− εnk
}.

Then sk ≥ L1 ({τ ∈ [t, 1] : Φt(γτ ) ∈ [a− εnk
, a]}) and

εnk
= a− (a− εnk

) ≥ Φt(γt) − Φt(γt+sk
)

Therefore

lim
k→∞

1
εnk

L1 ({τ ∈ [0, 1] : Φt(γτ ) ∈ [a− εnk
, a]}) ≤ lim

k→∞
sk

Φt(γt) − Φt(γt+sk
)

(7.2)

and the last term by Assumption 2 is bounded. Since g is uniformly bounded as
well, it follows that

1
εnk

m�Φ−1
t ([a−εnk

,a])∩Γ̄a(1)(e(U ×Ai)) ≤ Cqa(Ai),

for some positive constant C not depending on k.
Step 3. We now observe that Γ̄a(1) is a compact set. Hence any function f ∈ Cb(X)
can be extended, by Tiezte’s Theorem, to a bounded and continuous function on
the whole space, say f̃ . It follows that

lim
k→∞

1
εnk

·m�Φ−1
t ([a−εnk

,a])∩Γ̄a(1)= m̂a,t
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holds also in the weak topology of P(Γ̄a(1)). So we can use lower semicontinuity on
open sets of weakly converging measures, also for open sets in the trace topology of
Γ̄a(1). Therefore

m̂a,t(e(U ×Ai)) ≤ lim inf
k→∞

1
εnk

m�Φ−1
t ([a−εnk

,a])∩Γ̄a(1)(e(U ×Ai)) ≤ C
1
i
.

By outer regularity, m̂a,t(I) = 0 and the claim follows. ��

Direct consequence of Proposition 7.5 is that for L1-a.e. a ∈ ϕ(μ0) we have
m̂a,t = θa,tqa for L1-a.e. t ∈ [0, 1], that is

m̂a,t(K) =
∫

e1/2(e
−1
t (K))

θa,t(y)qa(dy),

for all K ⊂ et(Ga).

7.2 A formula for the density. We now derive an explicit expression for the
density of m̂a,t with respect to ma,t.

Lemma 7.6. For L1-a.e. a ∈ ϕ(μ0) and every sequence εn → 0+, there exists a
subsequence εnk

such that the limit

lim
k→∞

1
εnk

L1
({
τ ∈ (0, 1) : Φt(γτ ) ∈ [a− εnk

, a]
})

(7.3)

exists for γa-a.e. γ ∈ Ga and L1-a.e. t ∈ [0, 1]. If we denote by λt(γt) its value, then

m̂a,t = λtma,t.

Proof. Consider a ∈ ϕ(μ0) and εnk
so that Corollary 7.4 and Proposition 7.5 holds.

Then we have

lim
k→∞

∫
1
εnk

(
g(y, ·)L1

)({
τ∈(0,1):Φt(γτ )∈[a−εnk

,a]
})qa(dy) = θa,tqa,

again for L1-a.e. t ∈ [0, 1] with the exceptional set depending on the subsequence
and where the convergence is in the weak topology. Using a localization argument
on the support of qa, it follows that there exists another subsequence that we will
call again εnk

so that

lim
k→∞

1
εnk

(
g(y, ·)L1

)({
τ∈(0,1):Φt(γτ )∈[a−εnk

,a]
}) = θa,tδy
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for L1-a.e. t ∈ [0, 1] and qa-a.e. y ∈ e1/2(Ga). Then by continuity of t 
→ g(y, t) for
qa-a.e. y, it follows that

lim
k→∞

1

L1
({
τ ∈ (0, 1) : Φt(γτ ) ∈ [a− εnk

, a]
})

×
(
g(y, ·)L1

)({
τ∈(0,1):Φt(γτ )∈[a−εnk

,a]
}) = g(y, t)δy

for L1-a.e. t ∈ [0, 1] and qa-a.e. y ∈ e1/2(Ga). Then necessarily

lim
k→∞

1
εnk

L1
({
τ ∈ (0, 1) : Φt(γτ ) ∈ [a− εnk

, a]
})

exists L1-a.e. t ∈ [0, 1] and qa-a.e. y ∈ e1/2(Ga). By uniqueness of the limit

θa,t = g(y, t) · lim
k→∞

1
εnk

L1
({
τ ∈ (0, 1) : Φt(γτ ) ∈ [a− εnk

, a]
})
.

Hence if we define λt(y) = θa,t(y)/g(y, t) then

λt(y) = lim
k→∞

1
εnk

L1
({
τ ∈ (0, 1) : Φt(γτ ) ∈ [a− εnk

, a]
})

and since ma,t = g(·, t)qa and m̂a,t = θa,tqa it follows that

m̂a,t = λtma,t,

and therefore the claim. ��
At the beginning of this section we observed that

et �γa =
(∫

�t(z)m̂a,t(dz)
)−1

�tm̂a,t,

so now Proposition 7.5 and Lemma 7.6 implies the next corollary.

Corollary 7.7. The measure (et)�γa is absolute continuous with respect to the
surface measure ma,t.

Let ĥa,t be such that (et)�γa = ĥa,tma,t. We prefer to think of ĥa,t as a function
defined on Ga rather than on et(Ga), hence define ha,r : Ga → [0,∞] by ha,r(γ) :=
ĥa,r(γr). So we have found a decomposition of �t:

�t(γt) =
(∫

�t(z)m̂a,t(dz)
)

1
λt(γt)

ha,t(γ),

where a = ϕ(γ0). We now deduce a more convenient expression for λt. Recall the
definition

It(γ) = {τ ∈ [0, 1] : γτ ∈ et(G)} = {τ ∈ [0, 1] : d(γτ , et(G)) = 0},
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Theorem 7.8. For L1-a.e t ∈ [0, 1]

1
λt(γt)

= lim
s→0

Φt(γt) − Φt(γt+s)
s

, (7.4)

point wise for γ-a.e. γ ∈ G.

Proof. Step 1. From Lemma 7.6 for L1-a.e. a ∈ ϕ(μ0), for every εn → 0+ there exists
a subsequence εnk

such that

λt(γt) = lim
k→∞

1
εnk

L1
({
τ ∈ (0, 1) : Φt(γτ ) ∈ [a− εnk

, a]
})
,

point wise γa ⊗ L1-a.e. in Ga × [0, 1]. An equivalent expression of λt(γt) is:

λt(γt) = lim
k→∞

(
(Φt ◦ γ)�L1

)
([a− εnk

, a])
L1([a− εnk

, a])
.

Using Assumption 2 λt can be written in terms of the same limit above substi-
tuting Φt◦γ, that is defined only on It(γ), with an extension of Φt to a neighborhood
of t.

Since for each γ ∈ G the set It(γ) is compact, we can extend Φt by linearity on
each geodesic of Ga. By d-monotonicity this will create no problem in the definition.
More specifically: for δ > 0 fixed, for each τ ∈ [t− δ, t+ δ] and γ ∈ Ga there exists

τm = max{s ∈ It(γ) : s ≤ τ}, τM = min{s ∈ It(γ) : τ ≤ s}.
Clearly τm and τM depends on γ and if τ ∈ It(γ) they all coincide τ = τm = τM .

Then we define the extension map Φ̂t by linearity

Φ̂t(γτ ) = Φt(γτm
) + (τ − τm)

Φt(γτM
) − Φt(γτm

)
τM − τm

.

Since by d-cyclical monotonicity γt �= γ̄s for all t, s ∈ [0, 1] if γ, γ̄ ∈ Ga with γ �= γ̄,
the map Φ̂t is well defined on e([t− δ, t+ δ] ×Ga) and is measurable. Moreover by
Assumption 2, on each line the map

[t− δ, t+ δ] � τ 
→ Φ̂t(γτ )

is differentiable in t with strictly negative derivative and is Lipschitz in the whole
interval [t− δ, t+ δ].

Consider now τk = max{τ ∈ [t, t+ δ] : Φ̂t(γτ ) ≥ a− εnk
}, then

L1
((

Φ̂t ◦ γ)−1[a− εnk
, a]
)

≤ τk − t.

Since by construction

Φ̂t(γt) − Φ̂t(γτk
) ≥ 1

c
(τk − t),
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for some positive constant C, we have (τk − t) ≤ cεnk
implying that

∫

Ga

∣∣∣∣∣
(
(Φt ◦ γ)�L1

)
([a− εnk

, a])
εnk

−
(
(Φ̂t ◦ γ)�L1

)
([a− εnk

, a])
εnk

∣∣∣∣∣γa(dγ)

≤
∫

Ga

(
(Φ̂t ◦ γ)�L1

)
([a− εnk

, a] ∩ It(γ)c)
εnk

γa(dγ)

≤
∫

Ga

L1 ((t− cεnk
, t+ cεnk

) ∩ It(γ)c)
εnk

γa(dγ).

By Lemma 3.2 the last integral converges to 0 as k → ∞. We have therefore
proved that for L1-a.e. a ∈ ϕ(μ0), for every εn → 0 there exists a subsequence εnk

such that

λt(γt) = lim
k→∞

1
εnk

L1
({
τ ∈ (0, 1) : Φ̂t(γτ ) ∈ [a− εnk

, a]
})
,

for γa ⊗ L1-a.e. in Ga × [0, 1].

Step 2. Now we take advantage from the fact that Φ̂t ◦ γ is defined on a connected
set and invertible. For any ε sufficiently small the following identity holds:

(
(Φ̂t ◦ γ)�L1

)
([a− ε, a])

ε
=

sε

Φ̂t(γt) − Φ̂t(γt+sε
)
,

where sε is the unique s ∈ [t, t+ δ] such that

Φ̂t(γt+sε
) = a− ε.

It follows that
1

λt(γt)
= lim

s→0

Φ̂t(γt) − Φ̂t(γt+s)
s

, (7.5)

for γa ⊗ L1-a.e. (γ, t) ∈ Ga × [0, 1]. Restricting s to It(γ) the claim follows. ��

8 Global Estimates and Main Theorems

So far we have proved that in a metric measure space (X, d,m) verifying CDloc(K,N)
or CD∗(K,N) (actually MCP(K,N) would be enough), given a geodesic μt = �tm in
the L2-Wasserstein space with some regularity, the following decomposition holds:

�t(γt) =
(∫

�t(z)m̂a,t(dz)
)

1
λt(γt)

ha,t(γ),
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where a = ϕ(γ0) and the functions involved in the decomposition are determined by
the following identities:

ha,tma,t = (et)�γa =
(∫

�t(z)m̂a,t(dz)
)−1

�tm̂a,t,

1
λt(γt)

= lim
s→0

Φt(γt) − Φt(γt+s)
s

.

From Assumption 2, λt(γt) > 0 γ-a.e. and the above expression make sense.
To give a complete meaning to this decomposition we have to prove additional

properties for both ha,t and λa,t. In this Section we will consider this function ha,t

and λt in the perspective of lower curvature bounds. In particular, thanks to the
metric results proved in Section 4, we prove that ha,t verifies CD∗(K,N − 1).

As already observed (see (7.1)) a disintegration of m�Γ̄a(1) is given by the next
expression:

mΓ̄a(1) =
∫

e1/2(Ga)

(
g(y, ·)L1�[0,1]

)
qa(dy), (8.1)

where g(y, ·)L1�[0,1] has to be intended as a measure on γ[0,1] ⊂ X, the image of γ
where γ = e−1

1/2(y).
Since λt(γt) > 0 also for γa-a.e γ ∈ Ga, it follows from Proposition 7.5 that

(e1/2)�γa can be taken to be the quotient measure in (8.1), at the price of changing
the value of g:

mΓ̄a(1) =
∫

Ga

(
g(γ1/2, ·)L1�[0,1]

)
γa(dγ), (8.2)

with the change of the value constant in t and therefore the new g still verifies
(5.5). For ease of notation in what follows we will just denote with g(γ, t) instead of
g(γ1/2, t). The new densities g enjoy the following property.

Lemma 8.1. For γa-a.e. γ ∈ Ga

ha,t(γ)g(γ, t) = 1, L1 − a.e. t ∈ [0, 1].

Proof. The function ĥa,t has been introduced after Corollary 7.7. For any measurable
sets H ⊂ Ga, I ⊂ [0, 1] the following identities hold:

γa(H)L1(I) =
∫

I

(ha,tma,t)(et(H))dt =
∫

{γt:γ∈H,t∈I}
ĥa,t(z)ma,t(dz)dt

=
∫

{γt:γ∈H,t∈I}
ĥa,t(z)m(dz)

=
∫

H

⎛
⎝
∫

I

ha,t(γ)g(γ, t)dt

⎞
⎠γa(dγ),
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where passing from the second to the third line we used (8.2) and ĥa,t was introduced
after Corollary 7.7. The claim follows from the arbitrariness of H and I. ��
8.1 Gain of one degree of freedom. As proved in Section 4, for any a1 < b1 <
a0 < b0 and for any γ ∈ Ga so that (a0, b1) ⊂ φa(γ[0,1]) we can define Rγ

0 , L
γ
0 ⊂ [0, 1]

and Rγ
1 , L

γ
1 ⊂ [0, 1] so that

φa ◦ γ ((Rγ
0 , R

γ
0 + Lγ

0)) = (a0, b0), φa ◦ γ ((Rγ
1 , R

γ
1 + Lγ

1)) = (a1, b1),

where φa is a Kantorovich potential associated to the d-monotone set {(γs, γt) : γ ∈
Ga, s ≤ t}. The previous equations are equivalent to

φa ◦ γ(Rγ
0) = b0, φa ◦ γ(Rγ

0 + Lγ
0) = a0.

and

φa ◦ γ(Rγ
1) = b1, φa ◦ γ(Rγ

1 + Lγ
0) = a1.

Accordingly for all t ∈ [0, 1] we define

Rγ
t := (1 − t)Rγ

0 + tRγ
1 , Lγ

t := (1 − t)Lγ
0 + tLγ

1 .

Let H ⊂ Ga be so that for all γ ∈ H both (a0, b0), (a1, b1) ⊂ φa(γ(0,1)) with
a1 < b1 < a0 < b0. The Proposition 4.7 implies if we define

[0, 1] � t 
→ νt :=
1

γa(H)

∫

H

1
Lγ

t

L1�[Rγ
t ,Rγ

t +Lγ
t ]γa(dγ) ∈ P([0, 1] ×Ga), (8.3)

then [0, 1] � t 
→ (e�)νt is a W2-geodesic.
Moreover from Lemma 8.1 we can deduce that for each t ∈ [0, 1] the density pt(x)

of (e)�νt w.r.t. m is given by

pt(γτ ) =

⎧⎨
⎩

1
γa(H)Lγ

t

ha,τ (γ), τ ∈ [Rγ
t , R

γ
t + Lγ

t ],

0, otherwise.
(8.4)

The dynamical optimal plan associated to νt can be obtained as follows: consider
the following map

Θ : G(X) × [0, 1] → G(X)
(γ, s) 
→ t 
→ ηt = γ(1−t)(Rγ

0+sLγ
0 )+t(Rγ

1+sLγ
1 )

Then if we pose

γ̃a := Θ�

(
1

γa(H)
γa�H⊗L1�[0,1]

)
, (8.5)

it follows that (e)�νt = (et)�γ̃a.
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Theorem 8.2. For γa-a.e. γ ∈ Ga and for any 0 ≤ τ0 < τ1 ≤ 1 the following
inequality holds true:

h
− 1

N−1
a,τ1/2 (γ) ≥ σ

(1/2)
K,N−1

(
(τ1 − τ0)L(γ)

){
h

− 1
N−1

a,τ0 (γ) + h
− 1

N−1
a,τ1 (γ)

}
, (8.6)

where τ1/2 = (τ0 + τ1)/2.

Proof. As a preliminary step, we note that in order to prove the claim is sufficient to
prove (8.6) locally, i.e. for R0 and R1 sufficiently close. As proved in [BS10], reduced
curvature dimension condition enjoys the globalization property.
Step 1. Since φa is 1-Lipschitz and Ga is compact, there exist real numbers αi, βi for
i = 0, 1 so that

φa ◦ e0(Ga) ⊂ [α0, α1], φa ◦ e1(Ga) ⊂ [β0, β1].

For any n ∈ N and N � k ≤ n− 1 we can consider the following family of curves

Ek,n := (φa ◦ e0)−1

([
α0 +

k

n
α1, α0 +

k + 1
n

α1

])
,

Dk,n := (φa ◦ e1)−1

([
β0 +

k

n
β1, β0 +

k + 1
n

β1

])
,

where the maps φa ◦ ei, for i = 0, 1, has to be considered as defined only on Ga.
Then we define the family of compact sets

Mh,k,n := Eh,n ∩Dk,n.

For any n ∈ N, as h and k vary from 0 to n−1 the sets Mh,k,n cover Ga. In particular
we will consider this covering for n so that

1
n

� min{L(γ), γ ∈ Ga}, |α1 − α0|, |β1 − β0|.

Under the previous condition

min{φa(γ0) : γ ∈ Mh,k,n} � max{φa(γ1) : γ ∈ Mh,k,n}.
Then for any a > b real numbers so that

min{φa(γ0) : γ ∈ Mh,k,n} > a > b > max{φa(γ1) : γ ∈ Mh,k,n},
for any γ ∈ Mh,k,n the image φa(γ[0,1]) contains [b, a]. Therefore we are under the
hypothesis of Proposition 4.7.

Step 2. Fix a compact set H ⊂ Mh,k,n and a, b such that the curvature dimension
condition CD(K,N) holds true for all measures supported in

φ−1
a ([b, a]) ∩ {γ[0,1] : γ ∈ H}.
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Chose now a0, b0 and a1, b1 so that (b0, a0), (b1, a1) ⊂ [b, a]. In the same manner
as Proposition 4.7 consider Rγ

0 , R
γ
1 , L

γ
0 and Lγ

1 . Finally define {(e)�νt}t∈[0,1] as before
in (8.3) and the associated dynamical optimal plan γ̃a as in (8.5). Note that since
Mh,k,n is a covering of Ga we can always assume γa(Mh,k,n) > 0 and therefore
γa(H) > 0.

Condition CDloc(K,N) for t = 1/2 imply that for γ̃a-a.e. η ∈ G(X)

p
−1/N
1/2 (η1/2) ≥ τ

(1/2)
K,N (d(η0, η1))

{
p

−1/N
0 (η0) + p

−1/N
1 (η1)

}
,

that can be formulated also in the following way: for L1-a.e. s ∈ [0, 1] and γa-a.e.
γ ∈ H

p
−1/N
1/2 (γRγ

1/2+sLγ
1/2

) ≥ τ
(1/2)
K,N

(
(Rγ

1 −Rγ
0 + s|Lγ

1 − Lγ
0 |)L(γ)

)

×
{
p

−1/N
0 (γRγ

0+sLγ
0
) + p

−1/N
1 (γRγ

1+sLγ
1
)
}
.

Then using (8.4) and the continuity of r 
→ hr(γ) (Lemma 8.1), letting s ↘ 0, it
follows that

(Lγ
0+Lγ

1)1/Nh
−1/N
a,Rγ

1/2
(γ)

≥ σ
(1/2)
K,N−1

(
(Rγ

1 −Rγ
0)L(γ)

)N−1
N

{
(Lγ

0)1/Nh
−1/N
a,Rγ

0
(γ) + (Lγ

1)1/Nh
−1/N
a,Rγ

1
(γ)
}
,(8.7)

for γa-a.e. γ ∈ H, with exceptional set depending on a0, b0, a1, b1.
Step 3. Note that all the involved quantities in (8.7) are continuous w.r.t.

Rγ
0 , L

γ
0 , R

γ
1 , L

γ
1 , that in turn are continuous functions of a0, b0, a1, b1 respectively.

Therefore there exists a common exceptional set H ′ ⊂ H of zero γa-measure such
that (8.7) holds true for all for all a0 > a1 ∈ (a, b), and all b0, b1 so that a0−b0, a1−b1
are sufficiently small and all γ ∈ H \H ′. Then for fixed fixed γ ∈ H \H ′, varying
Lγ

0 , L
γ
1 in (8.7) yields

h
− 1

N−1

a,Rγ
1/2

(γ) ≥ σ
(1/2)
K,N−1

(
(Rγ

1 −Rγ
0)L(γ)

){
h

− 1
N−1

a,Rγ
0

(γ) + h
− 1

N−1

a,Rγ
1

(γ)
}
.

Indeed the optimal choice is

Lγ
0 = L

h
−1/(N−1)
a,Rγ

0
(γ)

h
−1/(N−1)
a,Rγ

0
(γ) + h

−1/(N−1)
a,Rγ

1
(γ)

, Lγ
1 = L

h
−1/(N−1)
a,Rγ

1
(γ)

h
−1/(N−1)
a,Rγ

0
(γ) + h

−1/(N−1)
a,Rγ

1
(γ)

for sufficiently small L > 0.
Using the same argument of [CS12], we prove the global (8.6) for τγ

0 , τ
γ
1 so that

φa(γτγ
0
) ≤ a, φa(γτγ

1
) ≥ b,

for γ-a.e. γ ∈ Mh,k,n. Since n can be as big as we want, τγ
0 and τγ

0 can be taken 0
and 1 respectively. Therefore we obtain the claim. ��

We have therefore proved one of the main results of this note.
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Theorem 8.3. Let (X, d,m) be a non-branching metric measure space verifying
CDloc(K,N) or CD∗(K,N) and let {μt}t∈[0,1] ⊂ P2(X, d,m) be a geodesic with
μt = �tm. Assume moreover Assumptions 1 and 2. Then

�t(γt) = C(a)
1

λt(γt)
ha,t(γ), γ-a.e. γ ∈ G,

where a = ϕ(γ0) and C(a) = ‖γa‖ is a constant depending only on a. The map
[0, 1] � t 
→ ha,t(γ) verifies CD∗(K,N − 1) for γ-a.e. γ ∈ G and

1
λt(γt)

= lim
s→0

Φt(γt) − Φt(γt+s)
s

.

8.2 Globalization for a class of optimal transportation. In order to prove
globalization theorem of CDloc it now necessary to show concavity in time of λt(γt).
We will do that in the framework of Section 5: L(γ) depends only on ϕ(γ0), i.e.

L(γ) = f(ϕ(γ0)), γ-a.e. γ ∈ G,

for some f : ϕ(μ0) → (0,∞) such that ϕ(μ0) � a 
→ a− f2/a is non increasing.

Proposition 8.4. Assume the following: Then for γ-a.e. γ ∈ G the following holds
true

λt(γt) = (1 − t)λ0(γ0) + tλ1(γ1),

for every t ∈ [0, 1].

Proof. Since Φt = F−1
t ◦ ϕt, where Ft(a) = a− tf2/2 and

lim
s→0

ϕt(γt) − ϕt(γt+s)
s

= L2(γ),

for all t ∈ (0, 1), it follows that from Theorem 7.8 that

λt(γt) = (∂aFt)(F−1
t (ϕt(γt)))

1
L2(γ)

= (∂aFt)(ϕ(γ0))
1

L2(γ)
.

Since (∂aFt)gt is linear in t the claim follows. ��
Using the results proved so far, we can now state the following.

Theorem 8.5. Let (X, d,m) be a non-branching metric measure space verifying
CDloc(K,N) or CD∗(K,N) and let {μt}t∈[0,1] ⊂ P2(X, d,m) be a geodesic with
μt = �tm. Assume moreover that

L(γ) = f(ϕ(γ0)),

for some f : ϕ(μ0) → (0,∞) such that ϕ(μ0) � a 
→ a−f2/a is non increasing. Then

�t(γt)−1/N ≥ �0(γ0)−1/Nτ
(1−t)
K,N (d(γ0, γ1)) + �1(γ1)−1/Nτ

(s)
K,N (d(γ0, γ1)),

for every t ∈ [0, 1] and for γ-a.e. γ ∈ G.
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Proof. From Remark 6.1,

�t(γt) =
(∫

�t(z)m̂a,t(dz)
)
ha,t(γ)
λt(γt)

,

where the integral is constant in t and therefore in order to prove the claim we can
assume

�t(γt) =
1

λt(γt)
ha,t(γ).

Then from Theorem 8.2 and Proposition 8.4

�
−1/N
t (γt) =

( 1
λt(γt)

ha,t(γ)
)−1/N

=
(
(1 − t)λ0(γ0) + tλ1(γ1)

) 1
N
(
h

−1/(N−1)
a,t (γ)

)N−1
N

≥
(
(1 − t)λ0(γ0)

)1/N(
σ

(1−t)
K,N−1(d(γ0, γ1))h

− 1
N−1

a,0 (γ)
)N−1

N

+
(
tλ1(γ1)

)1/N(
σ

(t)
K,N−1(d(γ0, γ1))h

− 1
N−1

a,1 (γ)
)N−1

N

= �
−1/N
0 (γ0)τ

(1−t)
K,N (d(γ0, γ1)) + �

−1/N
1 (γ1)τ

(t)
K,N (d(γ0, γ1)).

The claim follows. ��

9 More on the One-Dimensional Component

Assuming the metric measure space (X, d,m) to be infinitesimally strictly convex,
see Section 2.3, we can give an more explicit expression for λt.

Define the restriction map as follows. For any t ∈ (0, 1) let restr[t,1] : G(X) →
G(X) be defined as follows restr[t,1](γ)s = γ(1−s)t+s. Denote by γ[t,1] the measure
restr[t,1]�γ.

Lemma 9.1. For all t ∈ [0, 1) the measure γ[t,1] represents ∇(1 − t)(−ϕt).

The notion of test plans representing gradients has been introduced in Definition
2.12.

Proof. First observe that ϕt ∈ S2(et(G), d,m). Indeed from Proposition 2.10, since
ϕt is a Kantorovich potential for (μt, μ1), it follows that

|Dϕt|w(γt) =
d(γt, γ1)

1 − t
= d(γ0, γ1), for γ-a.e.γ,

and therefore |Dϕt|w ∈ L2(et(G),m). We know that γ[t,1] is the optimal dynamical
transference plan between μt and μ1 and (1 − t)ϕt is the Kantorovich potential for
the d2 cost, hence Proposition 2.10 implies that

lim
t↓0

∫
ϕt(γ0) − ϕt(γτ )

τ
γ[t,1](dγ) =

∫
d2(γ0, γ1)

1 − t
γ[t,1](dγ).
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Since ‖γ[t,1]‖2
2 =

∫
d2(γ0, γ1)γ[t,1](dγ),

(1 − t) lim
t↓0

∫
ϕt(γ0) − ϕt(γτ )

τ
γ[t,1](dγ) = ‖γ[t,1]‖2

2

and the claim follows. ��
Using Theorems 2.13 and 7.8 we can now write λt in a differential expression.

Proposition 9.2. Let (X, d,m) be infinitesimally strictly convex. Then λt verifies
the following identity: for every t ∈ [0, 1)

1
λt(γt)

= DΦt(∇ϕt)(γt), γ-a.e.γ,

where the exceptional set depends on t.

Proof. Since (X, d,m) is infinitesimally strictly convex, and γ[t,1] represents ∇(1 −
t)(−ϕt), from Theorem 2.13 it follows that

lim
τ↓0

∫

restr[t,1](G)

Φt(γ0) − Φt(γτ )
τ

γ[t,1](dγ) = (1 − t)
∫
DΦt(∇ϕt)(x)μt(dx)

= (1 − t)
∫

restr[t,1](G)

DΦt(∇ϕt)(γ0)γ[t,1](dγ).

Since the previous identity holds true even if we restrict to a subset of
restr[t,1](G), it follows that it holds point-wise: for γ[t,1]-a.e. γ

lim
τ↓0

Φt(γ0) − Φt(γτ )
τ

= (1 − t)DΦt(∇ϕt)(γ0).

So fix γ̂ in the support of γ[t,1] such that the limit exists and consider γ in the
support of γ such that γ̂τ = γ(1−τ)t+τ , then we have

Φt(γ̂0) − Φt(γ̂τ )
τ

=
Φt(γt) − Φt(γ(1−τ)t+τ )

τ
=

Φt(γt) − Φt(γ(1−τ)t+τ )
τ(1 − t)

(1 − t),

and therefore the claim follows from Theorem 7.8. ��
Under the infinitesimally strictly convexity assumption, we have therefore the

following decomposition:

1
c(ϕ(γ0))

�t(γt) = DΦt(∇ϕt)(γt)ha,t(γt),

where c(a) =
∫
�t(z)m̂a,t(dz) is independent of t, and h verifies CD∗(K,N − 1).
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9.1 A formal computation. We conclude this note with a formal calculation
in order to show a formal expression of DΦt(∇ϕt)(γt) in a smooth framework.

So let us assume X be the Euclidean space with distance given by the euclidean
distance and m any measure absolute continuous with respect to the Lebesgue mea-
sure of the right dimension. Let μt = �tm be the usual geodesic in the L2-Wasserstein
space over X and let Tt, Tt,1 : X → X be optimal maps such that

(Tt)�μ0 = μt (Tt,1)�μt = μ1.

Hence

Tt = Id− t∇ϕ0, Tt,1 = Id− (1 − t)∇ϕt,

with ϕ0 a Kantorovich potential associated to μ0, μ1 and ϕt the usual evolution at
time t of ϕ0. Then the standard identity holds:

ϕt(γt) = (1 − t)ϕ0(γ0) + tϕ1(γ1).

Clearly γ0 = T−1
t (γt) and γ1 = Tt,1(γt). Then one can differentiate the standard

identity in the direction s 
→ γt+s. Then we get

‖∇ϕt‖2(γt) = (1 − t)〈∇ϕ0(γ0), DT−1
t (γt)∇ϕt(γt)〉 + t〈∇ϕ1(γ1), DTt,1(γt)∇ϕt(γt)〉.

Moreover one can write Φt in a more convenient way:

Φt = ϕ0 ◦ T−1
t

and then compute λt using Proposition 9.2

1
λt(γt)

= 〈(DT−1
t )t(γ0)∇ϕ0(γ0),∇ϕt(γt)〉

= 〈∇ϕ0(γ0), DT−1
t (γt)∇ϕt(γt)〉

Then using what calculated before

1
λt(γt)

=
1

1 − t
‖∇ϕt(γt)‖2 − t

1 − t
〈∇ϕ1(γ1), DTt,1(γt)∇ϕt(γt)〉

= ‖∇ϕt(γt)‖2 + t〈Hϕt(γt)∇ϕt(γt),∇ϕt(γt)〉,
where Hϕt is the Hessian of ϕt. Clearly the effect of curvature would change the
expression of DTt,1. Hence on a linear space

1
λt(γt)

= 〈(Id+ tHϕt(γt))∇ϕt(γt),∇ϕt(γt)〉.

As a final comment, by Corollary 2.16, it holds that ϕt = −ϕc
t and since

ϕc
t(x) = Ht

0(−ϕ) = inf
y∈X

1
2t
d2(x, y) − ϕ(y),



550 F. CAVALLETTI GAFA

it follows by semi-concavity that Id− tHϕc
t ≥ 0, in the sense of symmetric matrices.

Note that we have derived in a different way the same expression for λt obtained
in (6.1) from the decomposition of the differential of optimal transport map on
manifold of [CMS11]. Again from [CMS11] it follows that

Id− tHϕc
t > 0,

showing again consistency with Assumption 2.
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