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Let (X, L) be a complex polarized n-fold with the structure of a classical scroll over 
a smooth projective threefold Y . The Hilbert curve of such a pair (X, L) is a complex 
affine plane curve of degree n, consisting of n − 3 evenly spaced parallel lines plus a 
cubic. This paper is devoted to a detailed study of this cubic. In particular, existence 
of triple points, behavior with respect to the line at infinity, and non-reducedness, 
are analyzed in connection with the structure of (X, L). Special attention is reserved 
to the case n = 4, where various examples are presented and the possibility that the 
cubic is itself the Hilbert curve of the base threefold Y for a suitable polarization is 
discussed.

© 2023 The Authors. Published by Elsevier B.V. This is an open access article 
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0. Introduction

The Hilbert curve of a polarized manifold (X, L) with dim(X) = n ≥ 2 is the complex affine plane curve 
Γ = Γ(X,L), of degree n, defined by the Hilbert-like polynomial χ(xKX + yL), where KX is the canonical 
bundle of X and x and y are regarded as complex variables. This notion was introduced in [4] and extensively 
studied in [5–10], for varieties which are special from the adjunction theoretic point of view. The natural 
expectation is that several properties of the polarized manifold that one considers are encoded by its Hilbert 
curve, as suggested by [4, Theorem 6.1]. In particular, if X is endowed with a fibration ϕ : X → Y over 
a normal variety Y of dimension < n and KX + aL = ϕ∗A, for some positive integer a and some Q-line 
bundle A on Y , then Γ contains a − 1 parallel lines of prescribed equations as components, and therefore it 
becomes important to understand the properties of the residual curve of the union of such lines in Γ, which 
is a plane curve of degree n − a + 1. Up to now the study of such residual curve has been done in some 
particular cases, like for scrolls over a curve (where a = n) [8], or scrolls over a surface (a = n − 1) [9], 
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in these cases the residual curve is a line and a conic, respectively. The other class of varieties considered 
are quadric fibrations over a surface (a = n − 2), where the residual curve is a cubic for which some of the 
geometric properties can be described in terms of the base surface and of an appropriate vector bundle, [6]. 
Our interest on scrolls over a 3-fold (a = n − 2) derives from the evident analogy with the quadric fibration 
case, due to the fact that the nef value is the same for both. Hence in this paper, inspired by [6] and [9], 
we investigate the Hilbert curves of n-dimensional pairs (X, L) with n ≥ 4, which are scrolls over a smooth 
threefold Y .

In this setting Γ = �1 + · · · + �n−3 + C, where the �i’s are certain n − 3 evenly spaced parallel lines and 
C is the residual cubic; moreover, both Γ and C are Serre-invariant, that is they are invariant under the 
involution induced on the affine plane containing Γ by Serre duality on X. As a first thing we determine the 
explicit equation of C in terms of the numerical invariants of (X, L) (Proposition 1.2). If we let π : X → Y

denote the scroll projection, then X ∼= P (E), where E := π∗L is an ample vector bundle on Y of rank n − 2, 
and L is the tautological line bundle on X. Our purpose is achieved through computations involving the 
Chern classes ci = ci(E) (i = 1, 2, 3) and appropriate intersection numbers on Y , by taking advantage of 
the special feature of the equation of Γ, which derives from [4, Theorem 6.1].

As to the first properties of C, we make explicit the conditions for the existence of a triple point as well 
as that of a singular point at infinity (Proposition 3.1), and putting them together we characterize when C
is non-reduced (Corollary 3.2). In Section 2 we focus on the subclass of scrolls for which KY + det E is not 
an ample line bundle (namely, scrolls which fail to be adjunction theoretic ones). The precise list of them 
is given in Proposition 2.1, where for the convenience of the reader we have collected results due to several 
authors ([2], [7], [20], [13], [19]). In particular, every scroll over a smooth projective threefold is an adjunction 
theoretic one for n ≥ 7. We also characterize those pairs in Proposition 2.1 for which (KY + c1)2c1 = 0 and 
(KY + c1)3 = 0 (Lemma 2.2), since such intersection numbers come up in studying the properties of C. 
The corresponding pairs (X, L) are characterized in Section 3 by the property that the projective closure 
C of the residual cubic C of their Hilbert curve contains the point at infinity of the remaining n − 3 lines 
constituting Γ (Corollary 3.4). This follows from a precise analysis of the intersection multiplicity of C with 
the line at infinity at that point in terms of the properties of KY + det E (Theorem 3.3).

In the case n = 4 the equation of C simplifies considerably and therefore one can provide a more 
detailed specification of the above result. This is done in Section 4, where, in particular, we obtain the 
precise list of pairs (Y, E) for which C = 3�0, where �0 is the line through the point representing 1

2KX and 
parallel to the �i’s (i = 1, . . . , n − 3) (Corollary 4.2). Moreover, letting T denote the 1-cycle of Y given by 
K2

Y −2c2(Y ) + c21−4c2, we see that the vanishing of T implies that C has a triple point. Looking for special 
situations in which this condition is satisfied leads to nontrivial examples.

In Section 5, still assuming n = 4, we address for our scrolls (X, L) the problem of when the cubic C
itself is the Hilbert curve of the base threefold Y with the average polarization 1

2 det E , [4, Problem 6.6]. If 
this happens, we show that either c1(c21 − 4c2) = KY (c21 − 4c2) = 0, or χ(OY ) = 0 and KY (KY + c1)2 = 0
(Proposition 5.2). This fact highlights pairs (Y, E) for which c21−4c2 = 0. We emphasize the analogy with the 
condition of Bogomolov proper semistability of the vector bundle E , which was found in [9] while discussing 
the same problem for scrolls over surfaces. In some instances we show that the condition c21−4c2 = 0 implies 
that E = M⊕2 for some ample line bundle M on Y , hence X ∼= Y × P 1. This happens in particular, when 
Y is either P 3, the quadric Q3, a del Pezzo 3-fold of degree d = 3, 4, 5, 8, or a prime Fano 3-fold with Picard 
number one (Proposition 5.4). The paper ends with several examples, including the discussion of the cases 
in which Y is a del Pezzo 3-fold of degree 6 or 7 and the vector bundle E is decomposable.

1. Hilbert curve and residual cubic

Let (X, L) be a scroll (in the classical sense) with dim(X) = n ≥ 4 over a smooth projective threefold Y , 
with scroll projection π : X → Y . Then X = P (E), where E := π∗L is an ample vector bundle of rank n − 2
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on Y , L is the tautological line bundle of E on X, and KX + (n − 2)L = π∗(KY + det E), by the canonical 
bundle formula. Moreover, if (X, L) is a scroll also in the adjunction theoretic sense, then, according to the 
definition [3, p. 81], A := KY + det E is ample.

In the following we denote by ci the i-th Chern class of E , hence c1 = det E .
Let p(x, y) = 0 be the equation of the Hilbert curve of (X, L). Recall that p(x, y) = χ(xKX + yL) is 

the polynomial expressing the Euler–Poincaré characteristic of xKX + yL, when x and y are regarded as 
complex variables. According to [4, Theorem 6.1], we have that

p(x, y) =
n−3∏
i=1

(
(n− 2)x− y − i

)
R(x, y), (1)

where R(x, y) is a polynomial of degree 3. From the qualitative point of view, this means that the Hilbert 
curve Γ of (X, L) can be written as

Γ = �1 + · · · + �n−3 + C, (2)

i.e., it consists of n − 3 evenly spaced parallel lines with slope (n − 2) (the nef value of (X, L)) plus a cubic 
C, which we call the residual cubic.

We call Serre involution the map s : A2 → A2 sending (x, y) to (1 − x, −y), induced by Serre duality, 
see [4, Section 2]. Note that Γ is Serre-invariant, i.e., invariant under s. Moreover, s exchanges the line �i
of equation (n − 2)x − y − i = 0 with �n−2−i (i = 1, . . . , n − 3), hence the set consisting of the n − 3 lines 
�1, . . . , �n−3 is globally Serre-invariant. It thus follows that the cubic C itself is also Serre-invariant. We use 
coordinates (u, v) in place of (x = 1

2 + u, y = v) in order to make this invariance more evident. Since the 
degree of C is odd, its equation in u and v does not contain terms of even degree, hence R(1

2 + u, v) is the 
sum of two homogeneous polynomials in u and v of degrees 3 and 1 respectively [4, Claim 7.1]. Thus we can 
write

R

(
1
2 + u, v

)
= R3(u, v) + R1(u, v), (3)

where

R3(u, v) = αu3 + βu2v + γuv2 + δv3 (4)

with (α, β, γ, δ) �= (0, 0, 0, 0), because degC = 3, and

R1(u, v) = σu + τv. (5)

Note that the property of having an equation of this type characterizes any Serre-invariant plane cubic, 
which is not necessarily the residual cubic of a Hilbert curve.

Our aim is to obtain the explicit expression of R
( 1

2 + u, v
)

in our specific case, which in particular 
describes our cubic C. To do that, first recall that for any divisor D on X,

χ(D) = 1
n!D

n + . . . ,

where the dots stand for lower degree terms. So, by using homogeneous coordinates (x : y : z), where z is 
the homogenizing coordinate, and letting p0(x, y, z) denote the homogeneous polynomial associated to p, 
we have:
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p0(x, 1, 0) = 1
n! (xKX + L)n (6)

= 1
n!

[
dnx

n +
(
n

1

)
dn−1x

n−1 +
(
n

2

)
dn−2x

n−2 + . . .

· · · +
(

n

n− 3

)
d3x

3 +
(

n

n− 2

)
d2x

2 +
(

n

n− 1

)
d1x + d

]
,

where di := Ki
XLn−i for i = 0, 1, . . . , n (d0 = d being the degree of (X, L)). On the other hand, from (1)

and (3) we see that p0(x, y, 0) = R3(x, y)
(
(n − 2)x − y

)n−3. Hence (4) gives

p0(x, 1, 0) = (αx3 + βx2 + γx + δ)
(
(n− 2)x− 1

)n−3
. (7)

By comparing (6) with (7), easy manipulations lead to the following expressions:

α = 1
n!(n− 2)(n−3) dn, (8)

β = (−1)n−1 1
2(n− 1)!

(
(n− 2)3(n− 3)

n
d + 2(n− 2)(n− 3)d1 + (n− 1)d2

)
, (9)

γ = (−1)n−1 1
n!

(
(n− 2)(n− 3)d + nd1

)
, (10)

δ = (−1)n−1 1
n! d. (11)

Lemma 1.1. We have:

d = c31 − 2c1c2 + c3, (12)

d1 = (3 − n)c31 + (2n− 5)c1c2 + (2 − n)c3 + KY c
2
1 −KY c2, (13)

d2 = (n− 3)2c31 − 2(n− 2)(n− 3)c1c2 + (n− 2)2c3 (14)

−2(n− 3)KY c
2
1 + 2(n− 2)KY c2 + K2

Y c1,

dn = (−1)n(n− 2)n−2
[1
3(n− 3)(n− 4)c31 − (n− 2)(n− 4)c1c2 + (n− 2)2c3 (15)

−1
2n(n− 3)KY c

2
1 + n(n− 2)KY c2 −

1
6n(n− 1)K3

Y

]
.

Proof. Clearly Ln−3π∗D1π
∗D2π

∗D3 = D1D2D3 for any divisors D1, D2, D3 on Y ; moreover, recalling the 
Chern–Wu relation

Ln−2 = π∗c1L
n−3 − π∗c2L

n−4 + π∗c3L
n−5, (16)

we see that Ln−2π∗D1π
∗D2 = c1D1D2 and Ln−1π∗D1 = D1(c21 − c2). Thus, recalling that d = Ln and 

KX = −(n − 2)L + π∗(KY + c1), by an iterated application of (16) we get the above expressions of d, d1, d2
and dn. �

Lemma 1.1 along with the relations (8)–(11) allows us to get the explicit expressions of α, β, γ and δ in 
terms of the natural invariants of (X, L). Next, recalling that π∗OX = OY and that the higher direct images 
are zero, we get hi(OX) = hi(OY ) for every i, by the Leray spectral sequence, hence

p(0, 0) = χ(OX) = χ(OY ). (17)
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On the other hand, from (1) and (3) we get

p(0, 0) =
n−3∏
i=1

(−i)
(
− α

8 − σ

2

)
= (−1)n (n− 3)!

8 (α + 4σ). (18)

Thus the equation obtained by comparing (17) with (18) allows us to get the expression of σ. To determine 
τ , recall that KX + (n − 2)L = π∗A = π∗(KY + c1). It thus follows that π∗

(
KX + (n − 2)L

)
= KY + c1 by 

projection formula, the higher direct images are zero, hence hi(KX + (n − 2)L) = hi(KY + c1) for every i. 
Therefore

p(1, n− 2) = χ
(
KX + (n− 2)L

)
= χ(KY + c1), (19)

and thus it can be computed by using the Riemann–Roch theorem on Y . On the other hand, from (1) and 
(3) we get

p(1, n− 2) =
n−3∏
i=1

(
n− 2 − (n− 2) − i

)
R(1, n− 2) (20)

= (−1)n−3(n− 3)!
(α

8 + β

4 (n− 2) + γ

2 (n− 2)2

+δ(n− 2)3 + σ

2 + τ(n− 2)
)
.

So (19) and (20) give another equation, which, added to the previous ones, allows us to determine τ .
With the help of the Maple package we were able to compute the coefficients of the residual cubic of the 

Hilbert curve of (X, L).

α = (−1)n−1(n− 2)
6n!

{
n(n− 1)K3

Y + 3nKY [(n− 3)c21 − 2(n− 2)c2] (21)

−2(n− 3)(n− 4)c31 + 6(n− 2)(n− 4)c1c2 − 6(n− 2)2c3
}

β = (−1)n−1

2n!

{
n(n− 1)K2

Y c1 − 2nKY [(n− 3)c21 − 2(n− 2)c2] (22)

+(3n− 8)(n− 3)c31 − 8(n− 2)(n− 3)c1c2 + 6(n− 2)2c3
}

γ = (−1)n−1

n!

[
nKY (c21 − c2) − 2(n− 3)c31 + (5n− 12)c1c2 − 3(n− 2)c3

}
(23)

δ = (−1)n−1

n! (c31 − 2c1c2 + c3) (24)

σ = (−1)n(n− 2)
24n!

{
n(n− 1)K3

Y + nKY

[
3(n− 3)c21 − 6(n− 2)c2 − 2(n− 1)c2(Y )

]
(25)

−2(n− 3)(n− 4)c31 + 6(n− 2)(n− 4)c1c2 − 6(n− 2)2c3
}

τ = (−1)n

24n!

[
n(n− 1)K2

Y c1 + (5n− 8)(n− 3)c31 − 12(n− 2)2c1c2 (26)

−2n(n− 1)c1c2(Y ) + 6(n− 2)2c3
]
.
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Proposition 1.2. Let (X, L) be a scroll over a smooth threefold Y , as in Section 1. Then the residual cubic 
of its Hilbert curve is defined by (3), where the homogeneous part of degree 3 is

R3(u, v) = (−1)n−1(n− 2)
6n!

{
n(n− 1)K3

Y + 3nKY [(n− 3)c21 − 2(n− 2)c2] (27)

−2(n− 3)(n− 4)c31 + 6(n− 2)(n− 4)c1c2 − 6(n− 2)2c3
}
u3

(−1)n−1

2n!

{
n(n− 1)K2

Y c1 − 2nKY [(n− 3)c21 − 2(n− 2)c2]

+(3n− 8)(n− 3)c31 − 8(n− 2)(n− 3)c1c2 + 6(n− 2)2c3
}
u2v

+(−1)n−1

n!

[
nKY (c21 − c2) − 2(n− 3)c31 + (5n− 12)c1c2 − 3(n− 2)c3

]
uv2

+(−1)n−1

n! (c31 − 2c1c2 + c3) v3,

while the homogenous part of degree 1 is

R1(u, v) = (−1)n(n− 2)
24n!

{
n(n− 1)K3

Y + nKY

[
3(n− 3)c21 − 6(n− 2)c2 (28)

−2(n− 1)c2(Y )
]
− 2(n− 3)(n− 4)c31 + 6(n− 2)(n− 4)c1c2

−6(n− 2)2c3
}
u +

(−1)n

24n!

[
n(n− 1)K2

Y c1 + (5n− 8)(n− 3)c31 − 12(n− 2)2c1c2

−2n(n− 1)c1c2(Y ) + 6(n− 2)2c3
]
v.

Here are some examples which show various possibilities for the residual cubic C, for different values of 
n.

Example 1.1. Let (Y, E) = (P 3, TP3⊕N (2)), where TP3 and N are the tangent bundle and the null correlation 
bundle, respectively. Let H ∈ |OP3(1)|. In this case KY = −4H and Hc2(Y ) = 6 c1 = 8H, c2 = 27H2, c3 =
48H3 = 48. Plugging these values and n = 7 in (27) and (28) we get that C is defined by

− 65
252u

3 + 241
630u

2v − 221
1260uv

2 + 8
315v

3 − 19
1008u + 1

126v = 0.

Here C is an irreducible smooth cubic.

Example 1.2. Let (Y, E) = (P 3, N (2)⊕2), and let H ∈ |OP3(1)|. In this case KY = −4H and Hc2(Y ) = 6
again; moreover, c1 = 8H, c2 = 26H2, c3 = 40. Plugging these values and n = 6 in (27) and (28) we get that 
C is defined by

1
90(2u− v)(32u2 − 56uv + 17v2 + 7) = 0.

Thus C consists of a line and an irreducible conic.
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Example 1.3. Let (Y, E) = (Q3, S(2)⊕2), where S is the spinor bundle [14]. Let H ∈ |OQ3(1)|. In this case 
KY = −3H, Hc2(Y ) = 8, c1 = 6H, c2 = 14H2, c3 = 27, and thus, plugging these values and n = 6 in (27)
and (28) we get that C is defined by

5
6u

3 − 33
20u

2v + 19
20uv

2 − 41
240v

3 + 1
8u− 11

240v = 0.

Here C is an irreducible smooth cubic.

Example 1.4. Let (Y, E) = (P 3, TP3), and let H ∈ |OP3(1)|. In this case KY = −4H, Hc2(Y ) = 6, c1 =
4H, c2 = 6H2, c3 = 4, and thus, plugging these values and n = 5 in (27) and (28) one can see that C is 
defined by

− 1
24(3u− v)(6u− 2v − 1)(6u− 2v + 1) = 0.

Here C consists of three parallel lines, and two of them coincide with �1, �2, which are the lines constituting 
Γ \ C.

Example 1.5. Let (Y, E) = (P 3, N (2) ⊕ OP3(1)), let H ∈ |OP3(1)|. We have KY = −4H and Hc2(Y ) = 6
again; moreover, c1 = 5H, c2 = 9H2, c3 = 5, and thus, plugging these values and n = 5 in (27) and (28) we 
get that C is defined by

− 1
48(2u− v)(10u− 4v − 1)(10u− 4v + 1) = 0.

Here C consists of two parallel lines plus a third line transverse to them.

Example 1.6. Let (Y, E) = (P 3, OP3(1) ⊕ OP3(2) ⊕ OP3(3)), let H ∈ |OP3(1)|. In this case c1 = 6H, c2 =
11H2, c3 = 6, and thus, plugging these values and n = 5 in (27) and (28) we get that C is defined by

− 1
48(2u− v)(164u2 − 152uv + 36v2 − 17) = 0.

Here C consists of a line and an irreducible conic.

Example 1.7. Let (Y, E) = (P 3, OP3(1)⊕2⊕OP3(3)), let H ∈ |OP3(1)|. In this case c1 = 5H, c2 = 7H2, c3 = 3, 
and thus, plugging these values and n = 5 in (27) and (28) we get that C is defined by

−112
15 u3 + 269

30 u2v − 18
5 uv2 + 29

60v
3 + 13

15u− 43
120v = 0.

Here C is a smooth irreducible cubic.

For an example with C irreducible and its projective closure singular at a point at infinity, see Example 5.2.

2. Classical and adjunction theoretic scrolls

Let (X, L) be as in Section 1. It is useful to recall that (X, L) is also a scroll in the adjunction theoretic 
sense unless KY + det E is not ample. By combining [2, Corollary 2.5 and Theorem 3.1], with [7], [20, 
Theorem 3], and [19] (see also [15, Theorem 0.4], [13, Theorem 1.3], and [18, Proposition 3.1]), we can state 
the following result.
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Proposition 2.1. Let (X, L) be a classical scroll over a smooth threefold Y , with dim(X) = n ≥ 4 and let E
be the ample vector bundle on Y of rank n − 2 defined by π∗L, where π : X → Y is the scroll projection. 
Then KY + det E fails to be ample exactly in the following cases:

A) n = 6 and (Y, E) =
(
P 3, OP3(1)⊕4);

B) n = 5 and (Y, E) is one of the following pairs:
(B1) Y = P 3 and E = OP3(1)⊕3, OP3(2) ⊕OP3(1)⊕2, or the tangent bundle TP3 ;
(B2)

(
Q3, OQ3(1)⊕3);

(B3) Y is a P 2-bundle over a smooth curve B and EF = OP2(1)⊕3 for every fiber F = P 2 of the bundle 
projection Y → B;

C) n = 4 and (Y, E) is one of the following pairs:
(C1) Y = P 3 and E = OP3(1)⊕2, OP3(2) ⊕ OP3(1), OP3(3) ⊕ OP3(1), or N (2), where N is the null 

correlation bundle;
(C2) Y = Q3 and E = OQ3(1)⊕2, OQ3(2) ⊕OQ3(1), or S(2), where S is the spinor bundle;
(C3) (Y, H) is a del Pezzo threefold and E = H⊕2 (this includes 

(
P 3, OP3(2)⊕2));

(C4) Y is a quadric fibration over a smooth curve B and EF = OQ2(1)⊕2 for the general fiber F = Q2

of the fibration Y → B;
(C5) Y is a P 2-bundle over a smooth curve B and EF = OP2(1)⊕2, OP2(2) ⊕ OP2(1), or the tangent 

bundle TP2 for every fiber F = P 2 of the bundle projection Y → B (the former case includes the 
possibility that Y = P 2 × P 1 with E = O(2, 1) ⊕ O(1, 1) or p∗1TP2 ⊗ O(0, 1), where p1 stands for 
the first projection);

(C6) Y is a P 1-fibration over a smooth surface S and Ef = OP1(1)⊕2 for the general fiber f = P 1 of 
the fibration Y → S;

(C7) there exist a birational morphism η : Y → Y ′ expressing Y as a smooth threefold Y ′ blown-up at a 
finite set and an ample vector bundle E ′ of rank 2 on Y ′ such that E = η∗E ′⊗OY (−E), where E is 
the exceptional divisor of η; moreover, either KY ′ +det E ′ is ample, or (Y ′, E ′) =

(
P 3, OP3(2)⊕2).

In particular, KY + det E is always ample if n ≥ 7.

We recall that the two pairs 
(
P 3, N (2)

)
and 

(
Q3, S(2)

)
define the same scroll (X, L) (with respect to 

two distinct projections) [17, Proposition 2.6 and Proposition 3.4]. The intersection properties of the adjoint 
bundle KY + det E will be relevant in Theorem 3.3, especially when it is not ample. So let us look in some 
detail at the exceptional pairs (Y, E) listed in Proposition 2.1.

Remark 2.1.

i) In case A), KY + det E is trivial.
ii) For (Y, E) as in B), it follows from [20, Theorem 2] that KY + det E is nef except in the case of (B1) 

with E = OP3(1)⊕3 (for which KY + det E = OP3(−1)): moreover it is trivial in the other cases of (B1) 
and in (B2).

iii) Finally, for pairs (Y, E) as in C), KY + det E is nef except in the following situations.
E−1) KY + det E is not nef in cases: (C1) with E = OP3(1)⊕2 and OP3(2) ⊕ OP3(1), (C2) with E =

OQ3(1)⊕2, and (C5) with EF = OP2(1)⊕2 (see [20, Theorem 3]); in all these cases, except the last 
one, KY +det E is the opposite of an ample line bundle, hence (KY + c1)3 < 0. The remaining case 
is settled by Lemma 2.2 below.

E0) KY + det E = OY in cases: (C1) with E = OP3(3) ⊕ OP3(1) and N (2), (C2) with E = OQ3(2) ⊕
OQ3(1), or S(2), (C3) and (C5) with (Y, E) being one of the two possibilities mentioned in the 
brackets (see [19]);
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E1) the morphism defined by a multiple of KY +det E has a 1-dimensional image, hence (KY +c1)2 = 0
in H4(Y ), in case (C4) and in case (C5) with EF = OP2(2) ⊕OP2(1), except the subcases mentioned 
in E0;

E2) the morphism defined by a multiple of KY +det E has a 2-dimensional image, hence (KY +c1)3 = 0, 
in case (C6).

Lemma 2.2. Let (Y, E) be as in case (C5) of Proposition 2.1, with EF = OP1(1)⊕2 for any fiber F of Y . 
Then

(i) the equality (KY + c1)2c1 = 0 occurs if and only if Y = P
(
O⊕2

P1 ⊕OP1(1)
)
, i.e. Y is isomorphic to P 3

blown-up along a line, and E = [ζ + F ]⊕2, where ζ is the tautological line bundle on Y ;
(ii) we have (KY + c1)3 = 0 if and only if (Y, E) =

(
P 2 × P 1, O(1, 1)⊕2).

Proof. Write Y = P (V), where V is an ample vector bundle of rank 3 on the base curve B. Let ξ denote 
the tautological line bundle of V and q : Y → B the bundle projection; then E = ξ ⊗ q∗G, where G is 
a rank-2 vector bundle on B. So c1 = det E = 2ξ + q∗ detG and c2 = c2(E) = ξ2 + ξq∗ detG. Moreover, 
KY = −3ξ+q∗(KB +detV). Then KY +c1 = −ξ+q∗(KB +detV+detG) ≡ −ξ+(2g−2 +degV+degG)F , 
where g is the genus of B. Recall that ξ3 = ξ2q∗ detV = degV, due to the Chern–Wu relation. Recalling 
(12) we get

0 < d = c31 − 2c1c2 = (2ξ + degG F )3 − 2(2ξ + q∗ detG)(ξ2 + ξq∗ detG) (29)

= 2(2 degV + 3 degG).

This shows that 2 degV + 3 degG ≥ 1. Now, suppose that (KY + c1)2c1 = 0. Then we get

0 = (KY + c1)2c1 = −4(2g − 2) − (2 degV + 3 degG). (30)

Recalling (29) this implies that 0 ≤ 7 − 8g, hence g = 0, i.e. B = P 1. Rewrite Y as Y = P (U) where U
is normalized as in [3, Lemma 3.2.4, p. 74]. So, U = OP1 ⊕ OP1(a1) ⊕ OP1(a2), where 0 ≤ a1 ≤ a2. In 
particular, degU = a1 + a2 ≥ 0. Denote by ζ the tautological line bundle of U . Then ζ3 = degU ≥ 0, 
by Chern–Wu. Moreover, E = ζ ⊗ q∗F , where F is a vector bundle of rank 2 on P 1, hence of the form 
F = OP1(b1) ⊕ OP1(b2). Thus E = [ζ + b1F ] ⊕ [ζ + b2F ], and the ampleness of E implies that of the 
two summands [ζ + bi F ], which is expressed by the condition bi > 0 for i = 1, 2, since U is normalized. 
Thus degF = b1 + b2 ≥ 2. In this setting c1 = 2ζ + degF F and KY = −3ζ + (degU − 2) F , hence 
KY + c1 = −ζ + (degU + degF − 2) F . So (30) becomes

0 = (KY + c1)2c1 = 8 − 2 degU − 3 degF ≤ 2(1 − degU). (31)

Thus degU ≤ 1; on the other hand, if degU = 0 then (31) gives 3 degF = 8, but this is clearly impossible. 
Therefore degU = 1, hence U = O⊕2

P1 ⊕OP1(1) and degF = 2, which in turn implies that F = OP1(1)⊕2. In 
particular, Y = P (U) is isomorphic to P 3 blown-up along a line. This proves (i). To prove (ii), come back 
to the description of (Y, E) in terms of V and G and suppose that

0 = (KY + c1)3 = 3(2g − 2) + 2 degV + 3 degG. (32)

The same argument used in the proof of (i) shows that B = P 1. So we can use the description of (Y, E) in 
terms of the vector bundles U and F once more. In these terms the expression in (32) can be rewritten in 
the form
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(KY + c1)3 = (−ζ)3 + 3(degU + degF − 2)ζ F = 2 degU + 3 degF − 6. (33)

Recalling that degF ≥ 2, we thus see that 2 degU ≤ 0, hence degU = 0 and thus U is the trivial bundle 
and E = [ζ + F ]⊕2. This means exactly that Y = P 2 × P 1 and E = O(1, 1)⊕2. �

By the way, note that for the pair (Y, E) in (i) we have (KY + c1)3 = 2.

3. First properties of the residual cubic

In this Section we discuss some properties of the residual cubic C of the Hilbert curve of a scroll over a 
threefold Y as in Section 1 and of its projective closure C. As we will see, the behavior of C with respect to 
the line at infinity of the (u, v)-plane is strictly related to the properties of the adjoint bundle KY + det E .

As a first thing, note that when C is irreducible, then it cannot have a singular point in A2. In fact, if 
it did, due to the symmetry of C, the origin itself would be a singular point and then, necessarily, a triple 
point, in view of the equation (3). But then C would be reducible, a contradiction. On the other hand, it 
can happen that the projective closure of an irreducible C is singular at a point at infinity, as Example 5.2
shows. We have the following basic result.

Proposition 3.1. Let (X, L) be a scroll over a smooth threefold Y as in Section 1, and let C be the residual 
cubic of its Hilbert curve. Then

(i) C has a triple point if and only if σ = τ = 0,
(ii) C has a singular point at infinity if and only if

27α2δ2 − 18αβγδ + 4αγ3 + 4β3δ − β2γ2 = 0. (34)

In this case the singular point at infinity is Q∞ = (1 : m : 0), where either m = 0 or

m = 9αδ − βγ

2(γ2 − 3βδ) . (35)

Proof. To prove (i) note that C has a triple point, if and only if the origin O of the (u, v)-plane is a triple 
point of C, and this happens if and only if σ = τ = 0. To prove (ii), consider the homogeneous equation of 
C:

αu3 + βu2v + γuv2 + δv3 + σuw2 + τvw2 = 0,

where w = 0 represents the line at infinity. Recall that δ �= 0, since δ is the degree of (X, L) up to a non zero 
factor, by (11). Therefore C cannot be singular at (0 : 1 : 0). So if it is singular at some point at infinity, 
this point must be Q∞ = (1 : m : 0), for some m ∈ C. In particular, m = 0 if and only if α = β = 0. 
Suppose that this is not the case. Looking for the singular points via the Jacobian criterion and imposing 
that one of them is at Q∞ = (1 : m : 0) we obtain

{
γ m2 + 2β m + 3α = 0
3δ m2 + 2γ m + β = 0.

(36)

Thus the assertion follows from the fact that the resultant of the two polynomials in (36) is the expression 
appearing in (34), up to a constant factor. Finally, by equating the expressions of m2 deriving from the two 
above equations we immediately get (35). �
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Clearly the two conditions in (i) and (ii) of Proposition 3.1 are independent. For example, for the curve C
in Example 5.2 condition (34) is satisfied and m = 0, whereas (σ, τ) = (−2, 2 + d

2 ). However, by combining 
the two conditions together we obtain the following characterization.

Corollary 3.2. Let (X, L) be a scroll over a smooth threefold Y as in Section 1, and let C be the residual 
cubic of its Hilbert curve. Then C is non-reduced if and only if σ = τ = 0 and (34) is satisfied.

Proof. Claiming that C is non-reduced is equivalent to writing that C = 2�1 + �2, where both �1 and �2 are 
lines (possibly coinciding) passing through O. This, in turn, means that O is a triple point of C and that 
the point at infinity of �1 is a singular point of C. Then the assertion follows from Proposition 3.1 �
Remark 3.1. (i) Let C = 2�1 + �2 be as above. As already observed in the proof of Proposition 3.1, δ �= 0, 
hence we can describe both �1 and �2 by equations of the form mu − v = 0 and m′u − v = 0, for some 
m, m′ ∈ C, respectively. Then letting t = v/u we see that R3(u, v) = u3 f(t), where f(t) = δt3+γt2+βt +α. 
By imposing that f(t) = δ(t −m)2(t −m′), we thus get

α = −δm2m′, β = δm(m + 2m′), γ = −δ(2m + m′).

By the way, note that eliminating m and m′ from these equations we directly obtain the expression in (34).
(ii) Clearly, if C = 3�1, the above equations specialize to

α = −δm3, β = 3δm2, γ = −3δm,

which are equivalent to γ2 − 3βδ = β2 − 3αγ = 0.

Now, let �∞ be the line at infinity of the (u, v)-plane. We denote by �0 the line of equation (n −2)u −v = 0, 
whose point at infinity is P∞ := (1 : n − 2 : 0). Observe that �0 =< O, P∞ >, where O is the origin.

Theorem 3.3. Let (X, L) be a scroll over a smooth threefold Y , as in Section 1, and let C be the residual 
cubic of its Hilbert curve. Then C intersects �∞ at P∞ with multiplicity ν, where,

j) ν ≥ 1 if and only if (KY + c1)3 = 0;
jj) ν ≥ 2 if and only if, in addition, c1(KY + c1)2 = 0;
jjj) ν = 3 if and only if, in addition to the above, (KY + c1)(c21 − c2) = 0.

Proof. From (11) and (12) we know that δ �= 0. So, letting t = v/u we can consider again the degree 3
polynomial f(t) = δt3 + γt2 + βt + α and then ν turns out to be the multiplicity of n − 2 as a root of f . In 
particular, C ∩ �∞ � P∞ if and only if n − 2 is a root of f . Plugging the values of α, β, γ, δ given by (21), 
(22), (23), and (24) respectively in f(n − 2) we get

f(n− 2) = α + (n− 2)β + (n− 2)2γ + (n− 2)3δ = (−1)n−1(KY + c1)3

6(n− 3)! .

This proves j). We have ν ≥ 2 if and only if n −2 is a root of f and of its first derivative f ′(t) = 3δt2+2γt +β. 
Taking into account (24), (23) and (22) we see that

f ′(n− 2) = 3(n− 2)2δ + 2(n− 2)γ + β = (−1)n−1
c1(KY + c1)2. (37)
2(n− 2)!
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This proves jj). Finally, condition ν = 3 is equivalent to imposing that n −2 is a triple root of f . To do that, 
in addition to the previous conditions of being a root of f and of f ′, we have to require that n − 2 is also a 
root of the second derivative f ′′(t) = 6δt + 2γ. A computation taking into account (24) and (23) gives

2γ + 6δ(n− 2) = 2(−1)n−1

(n− 1)! (KY + c1)(c21 − c2), (38)

and this proves jjj). �
We like to remark that jj) is equivalent to the two single conditions (KY +c1)2c1 = (KY +c1)2KY = 0 (this 

in view of j)); and also that jjj) is equivalent to the two conditions (KY +c1)(c21−c2) = (KY +c1)(c21−K2
Y ) = 0

(this in view of jj)).
Clearly, we have the following consequence.

Corollary 3.4. Let (X, L) and C be as in Theorem 3.3. If (X, L) is also an adjunction theoretic scroll, then 
C does not contain P∞. In particular, this happens for every scroll, if n ≥ 7.

More generally, the same is true if (Y, E) is as in (C7) of Proposition 2.1, in which case KY + det E
is nef and big. Now consider the line �0. Since C is defined by R3(u, v) + R1(u, v) = 0, with R3 and R1

given by Proposition 1.2, imposing that C contains �0 is equivalent to requiring that R3(u, (n − 2)u) =
R1(u, (n − 2)u) = 0, identically. The first of these two conditions is equivalent to f(n − 2) = 0, hence to 
(KY + c1)3 = 0, as shown in the proof of Theorem 3.3. On the other hand, the second condition, namely 
σ + (n − 2)τ = 0, becomes

(−1)n(n− 2)(KY + c1)
[
3(n− 3)c21 + (n− 1)K2

Y − 6(n− 2)c2 − 2(n− 1)c2(Y )
]

24(n− 1)! = 0,

after replacing σ and τ with the values appearing in (28). In particular, this shows that if KY + c1 ≡ 0, 
then C contains �0. In fact, a slightly weaker condition is enough.

Corollary 3.5. Let (X, L) and C be as in Theorem 3.3. If (KY +c1)3 = (KY +c1)2c1 = (KY +c1)(c21−c2) = 0, 
then C contains �0. In particular, if n is even, then �0 is a component of multiplicity 2 of Γ.

Proof. The three conditions above are equivalent to ν = 3 by Theorem 3.3. This implies that C consists of 
three parallel lines with slope n − 2 and then, due to the symmetry of C, necessarily one of them has to be 
�0. �

We finally note that if σ = τ = 0 in addition to the three conditions above, then O is a triple point of C, 
as well as P∞. Therefore C = 3�0, a situation fitting with Remark 3.1 (ii).

Remark 3.2. We like to point out that the above results also provide a partial answer to the question 
about the structure of C, when C is reducible in lines parallel or equal to some of the lines constituting 
Γ \ C = l1 + . . . ln−3.

In fact if C = L1 + L2 + L3 and if some of the line Lj is parallel or equal to one of �1, . . . , �n−3, then C
contains P∞ (because P∞ is the point at infinity of �i). Moreover, if C has two such components then C
has P∞ as a double point. In particular, this says that we are in the conditions j) and jj) of Theorem 3.3, 
respectively. We know, from Corollary 3.4, that such situations can occur only if (X, L) is not an adjunction 
theoretic scroll and such cases are listed in Proposition 2.1.
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4. The case n = 4

In this Section we specialize the situation to the case n = 4. So, let (X, L) be a 4-dimensional scroll over 
a smooth threefold Y , as in Section 1, and let C be the residual cubic of its Hilbert curve. First of all, from 
Proposition 1.2, letting n = 4, we see that the polynomial R3(u, v) + R1(u, v) defining C becomes

R3(u, v) + R1(u, v) = −1
6
(
K3

Y + KY (c21 − 4c2)
)
u3 (39)

− 1
12

(
c1(c21 − 4c2) − 2KY (c21 − 4c2) + 3K2

Y c1
)
u2v

+ 1
48

(
4c1(c21 − 4c2) − 8KY (c21 − c2)

)
uv2

− 1
24 c1(c21 − 2c2)v3

+ 1
48 2KY

(
K2

Y − 2c2(Y ) + c21 − 4c2
)
u

+ 1
48 c1

(
K2

Y − 2c2(Y ) + c21 − 4c2
)
v.

Here is a non trivial example.

Example 4.1. Let Y be either an abelian 3-fold or a Calabi-Yau 3-fold of Type A, according to [12] (we recall 
that such varieties arise as quotients of an abelian threefold by a finite group acting freely in codimension 
one, e.g. see [16]). Then KY = 0 and c2(Y ) = 0 in both cases. Thus, letting h := c1(c21 − 4c2), according to 
the above expression, the equation of C takes the form

− 1
48

(
4hu2 − 4huv + 2(h + 2c1c2)v2 − h

)
v = 0. (40)

Therefore C is reducible, consisting of the u-axis plus a conic G whose matrix is

A =

⎡
⎢⎣ 4h −2h 0
−2h 2(h + 2c1c2) 0

0 0 −h

⎤
⎥⎦ . (41)

In particular, we see that detA = −4h2c31, hence G is irreducible if and only if h �= 0.

Again with regard to the equation of C, the expression of the last two coefficients allows us to explore 
the condition σ = τ = 0 (or equivalently that C has a triple point at O) at least in the special case n = 4. 
Examples 5.2–5.5 fit in this case. Actually, if we consider the 1-cycle T := K2

Y − 2c2(Y ) + c21 − 4c2, then we 
can write

σ = 2KY T and τ = c1T. (42)

In particular this shows that if T = 0 then C has a triple point. Certainly this happens when each of the two 
1-cycles K2

Y − 2c2(Y ) and c21 − 4c2, summands of T , is trivial (e.g. the first of these two conditions, namely 
K2

Y − 2c2(Y ) = 0, holds if KY ≡ 0 and c2(Y ) = 0, for example if Y is an abelian 3-fold or a Calabi-Yau 
3-fold of Type A, as observed in Example 4.1). On the other hand, if (σ, τ) �= (0, 0), then O is a smooth 
point of C, and then (42) allows us to express the equation of the tangent line to C at O in the form: 
(2KY T )u + (c1T )v = 0.
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Now we revisit the three assertions in Theorem 3.3 in connection with Proposition 2.1 C). By Corol-
lary 3.4, condition ν ≥ 1 implies that (X, L) cannot be an adjunction theoretic scroll. In fact we can add 
that it cannot even be as in the first two cases of (C1), in the first case of (C2), and as in (C7). As to the 
first case in (C5) Lemma 2.2 (ii) says that (KY + c1)3 = 0 occurs only for the pair (P 2 × P 1, O(1, 1)⊕2).

For instance we have

Example 4.2. Let (Y, E) = (P 3, OP3(1)⊕2). In this case (40) easily shows that C is defined by

1
6(4u− v)(4u− v − 1)(4u− v + 1) = 0.

Here C does not contain P∞, since (KY + c1)3 �= 0. However, it intersects �∞ at Q∞ with multiplicity 3, 
where Q∞ = (1 : 4 : 0). Moreover, the Hilbert curve of the corresponding scroll (X, L) has equation

p(X,L)

(
1
2 + u, v

)
= 1

6(2u− v)(4u− v)(4u− v − 1)(4u− v + 1) = 0.

This is in accordance with [9, Theorem 4.1], since (X, L) = (P 3 × P 1, O(1, 1)) can also be regarded as a 
scroll over P 1.

As to condition ν = 2, note that pairs (Y, E) as in case (C5) of Proposition 2.1 obviously satisfy the 
equality (KY +c1)2c1 = 0, since (KY +c1)2 is the trivial 1-cycle. In case (C6) we have that (KY +c1)2c1 �= 0. 
Moreover, this is the only possibility when KY + c1 is nef. On the other hand, when KY + c1 is not nef, 
Lemma 2.2 (i) shows that the equality (KY + c1)2c1 = 0 occurs only in a special subcase of the first case of 
(C5), in which, however, (KY + c1)3 �= 0. So we have

Corollary 4.1. Let (X, L) be a scroll over a smooth threefold Y , as in Section 1, with n = 4, and let C be 
the residual cubic of its Hilbert curve. Then

1) C intersects �∞ at P∞ transversally if and only if (KY + c1)3 = 0 and (KY + c1)2c1 �= 0. This happens 
exactly in the following cases:
1-1) KY + det E is nef and (Y, E) is as in (C6) of Proposition 2.1;
1-2) KY + det E is not nef and (Y, E) is as in Lemma 2.2, (ii).

2) Suppose that (X, L) is not an adjunction theoretic scroll. Then C intersects �∞ at P∞ with multiplicity 
ν = 2 if and only if (KY + c1)3 = (KY + c1)2c1 = 0 and (KY + c1)(c21 − c2) �= 0. This happens exactly 
when KY + det E is nef and (Y, E) is as in (C5) of Proposition 2.1.

Finally, condition ν = 3 is certainly satisfied when KY + c1 ≡ 0, which means that (X, L) is a “Fano-
bundle” of index 2 (recalling that rk(E) = n −2 = 2). In particular Y is a Fano threefold, and c1 = −KY . In 
this case the equation of C can be made explicit since the coefficients displayed in (39) simplify considerably. 
Set Z := K2

Y − 2c2. Recalling that the pairs (Y, E) of this type are listed in E0 of Remark 2.1 iii), a direct 
check shows that KY Z �= 0 for all pairs in the list. Recalling also that KY c2(Y ) = −24, since Y is Fano, a 
straightforward check shows that the equation R3(u, v) + R1(u, v) = 0 becomes

− 1
24 KY Z (2u− v)

(
(2u− v)2 −

(
1 + 24

KY Z

))
= 0. (43)

In particular, we see that C = 3�0 if and only if KY Z = −24 and a quick inspection shows when this is the 
case. So we have
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Corollary 4.2. Suppose that KY + c1 ≡ 0. Then C = 3�0 if and only if K3
Y = 2(KY c2 − 12); this occurs 

exactly for the following pairs (Y, E): 
(
P 3, N (2)

)
, 
(
Q3, S(2)

)
, (Y, H⊕2), where (Y, H) is any of the two del 

Pezzo threefolds of degree 6, and 
(
P 2 × P 1, p∗1TP2 ⊗O(0, 1)

)
.

5. The case n = 4: C as a Hilbert curve

Let (X, L) be a 4-dimensional scroll over a smooth threefold Y , as in Section 1 and let C be the residual 
cubic of its Hilbert curve. Referring to [4, Problem 6.6], and stimulated by what [8, Remark 4.1] and [9, 
Theorem 4.1] suggest, we ask under what conditions the cubic C will be the Hilbert curve of Y polarized 
by the ample Q-line bundle 1

2 det E , induced by E , which we call “average” polarization, since rk(E) =
n − 2 = 2. To motivate this question we recall that if (V, M) and (W, N ) are two polarized manifolds, then 
p(V×W,M�N ) = p(V,M) p(W,N ) [4, 2.5]. In particular, if n = 4 and (X ∼= Y × P 1, L) is the product scroll, 
namely (PY (E), M �OP1(1)), where E = M⊕2 for some ample line bundle M on Y , then

p(X,L) = −p(Y,M) (2u− v), (44)

hence the residual cubic of the Hilbert curve of (X, L) is itself the Hilbert curve of Y polarized by the 
average polarization M = (1/2) det E . First of all, as a consequence of this fact we can produce explicit 
examples of scrolls (X, L) as in Section 1, with n = 4, for which the residual cubic C is either irreducible 
and smooth or irreducible with projective closure having a singular point.

Example 5.1. Choose as Y a general element in |OP2×P2(2, 3)|, and let M =
(
OP2×P2(1, 1)

)
Y

. According to 
[4, Example 4.11], the projective closure of Γ(Y,M) is a smooth cubic. Then X := P (M⊕2), polarized by the 
tautological line bundle, is a scroll over Y and, according to (44), its Hilbert curve consists of Γ(Y,M) plus 
the line 2u − v = 0. Thus C = Γ(Y,M) is a smooth cubic. The same conclusion holds, if we take as (Y, M) a 
3-dimensional geometric conic fibration in P 6 as in [5, Remark 6.4].

Example 5.2. Let (Y, M) be a geometric conic fibration over a del Pezzo surface of degree d ≥ 3, constructed 
as in [5, p. 559], and consider X := P (M⊕2) ∼= Y ×P 1. Here the tautological line bundle is L = M�OP1(1). 
Then, according to (44), the residual cubic C of the Hilbert curve of the 4 dimensional scroll (X, L) is the 
Hilbert curve Γ(Y,M), hence C is defined by

dv2(v − u) − 2u +
(

2 + d

2

)
v = 0

[5, Example 6.3]. Therefore C is irreducible and its projective closure is singular at the point at infinity of 
the u axis.

Now consider the base Y of our scroll (X, L), endowed with the average polarization. We compute 
p(Y, 12 c1)(

1
2 + u, v) using Riemann–Roch theorem and we get that

p(Y, 12 c1)

(
1
2 + u, v

)
= K3

Y

6 u3 + K2
Y c1
4 u2v + KY c

2
1

8 uv2 + c31
48 v3 (45)

+ 2KY c2(Y ) −K3
Y

24 u + −K2
Y c1 + 2c1c2(Y )

48 v.

In particular, if KY + c1 ≡ 0, then c1 = −KY and KY c2(Y ) = −24 since Y is Fano. Then (45) takes the 
form
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p(Y, 12 c1)

(
1
2 + u, v

)
= 1

48K
3
Y (2u− v)

(
(2u− v)2 −

(
1 + 48

K3
Y

))
= 0. (46)

This says that the Hilbert curve of (X, L) consists of three parallel lines one of which is �0, and they collapse 
to �0 exactly in case K3

Y = −48. Moreover, comparing (46) with the equation of C given by (43), we see 
that Γ(Y, 12 c1) = C if and only if the two equations are proportional, hence if and only if K3

Y = 2KY Z. 
Since Z = K2

Y − 2c2, this is in turn equivalent to K3
Y = 4KY c2. A direct check for all pairs (Y, E) in E0 of 

Remark 2.1 iii) shows that this condition if fulfilled only in case (C3) of Proposition 2.1, i.e. when Y is a 
del Pezzo threefold and E = H⊕2. So, we have

Proposition 5.1. Let (X, L) be a scroll over a smooth threefold Y , as in Section 1, with n = 4, and let C
be the residual cubic of its Hilbert curve. Suppose that KY + c1 ≡ 0. Then Γ(Y, 12 c1) = C if and only if 
(Y, H = −1

2KY ) is a del Pezzo threefold of degree d. In particular, Γ(Y, 12 c1) = 3�0 if and only if d = 6.

Comparing Proposition 5.1 with Corollary 4.2, we deduce that for the three pairs (Y, E) = (P 3, N (2)),
(Q3, S(2)), and (P 2 × P 1, p∗1TP2 ⊗O(0, 1)), C is not the Hilbert curve of (Y, 12c1). In fact a straightforward 
calculation shows that Γ(Y, 12 c1) has equation

p(Y, 12 c1)

(
1
2 + u, v

)
= −1

3(2u− v)(4u− 2v + 1)(4u− 2v − 1) = 0

in the first of the above three cases, and

p(Y, 12 c1)

(
1
2 + u, v

)
= −1

8(2u− v)(6u− 3v + 1)(6u− 3v − 1) = 0,

in the last two cases, respectively.
Although this situation is outside the range of adjunction theoretic scrolls, this shows that the question 

whether the residual cubic C is itself the Hilbert curve of (Y, 12c1) is nontrivial.
Next, we come back to the general case. The polynomial defining C, displayed in (39), is proportional to 

that in (45) if its coefficients are the same as the corresponding ones up to a non-zero constant, say λ.
For simplicity we call K3

Y = x0, KY c
2
1 = x1, KY c2 = x2, c31 = x3, K2

Y c1 = x4, c1c2 = x5, KY c2(Y ) = x6, 
c1c2(Y ) = x7. Hence we get a system of six homogeneous linear equations in the unknown x0, . . . , x7, 
regarding λ as a parameter. Solving such system of equations we get that either

i) λ = −1, x2 = 1
4x1 and x5 = 1

4x3, that is λ = −1, KY (c21 − 4c2) = 0 and c1(c21 − 4c2) = 0, or
ii) χ(OY ) = 0, x0 = −x3 − 3x7, x1 = −x3 − x7, x2 = −(1

4λ + 1
2 )x3 − (3

4λ − 1)x7, x4 = x3 + 2x7, x5 =
(1
4λ + 1

2 )x3.

A special case corresponding to i) is when c21 − 4c2 = 0. Some information on this case is provided by 
Proposition 5.4 and the examples below when Y is a Fano threefold.

In case ii), we can assume that λ �= −1, and then, solving the system gives in particular

c31 + 3c1c2(Y ) = −K3
Y ,

c31 + c1c2(Y ) = −KY c
2
1,

c31 + 2c1c2(Y ) = K2
Y c1.

The second and third relations show that c1c2(Y ) = KY c1(KY + c1), while the first and the third one 
imply c1c2(Y ) = −K2

Y (KY + c1). Combining these two relations gives KY (KY + c1)2 = 0. Now, if (X, L)
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is an adjunction theoretic scroll, from the ampleness of KY + c1 we conclude that no positive multiple 
of KY can be effective, hence Y has negative Kodaira dimension. On the other hand, if (X, L) is not an 
adjunction theoretic scroll, then condition χ(OY ) = 0 implies that (X, L) can only be as in cases (C5)–(C7) 
of Proposition 2.1. Moreover, in case (C5) the base curve of Y turns out to be an elliptic curve. Summing 
up the above discussion, we have

Proposition 5.2. Let (X, L) be a 4-dimensional scroll over a smooth threefold Y and suppose that the residual 
cubic C of its Hilbert curve is the Hilbert curve of (Y, 12 det E), precisely

p(X,L)

(
1
2 + u, v

)
= λ (2u− v) p(Y, 12 det E)

(
1
2 + u, v

)
(47)

for some proportionality factor λ �= 0. Then either

i) λ = −1, and c1(c21 − 4c2) = KY (c21 − 4c2) = 0, or
ii) λ �= −1, χ(OY ) = 0, and KY (KY + c1)2 = 0. In particular, if (X, L) is also an adjunction theoretic 

scroll, then Y has negative Kodaira dimension. If (X, L) is not an adjunction theoretic scroll, then 
(X, L) is as in one of the cases (C5)–(C7) of Proposition 2.1.

Case c21 − 4c2 = 0 provides an interesting situation for i). We stress that this condition is the one 
characterizing the Bogomolov proper semistability of the rank two vector bundle, which arises in the study 
of the same problem for scrolls over surfaces [9]. Note that this condition is clearly fulfilled when (Y, E) is 
as in case (C3) of Proposition 2.1 (see also Proposition 5.1). More generally, let us observe the following 
fact. Let (X, L) be a 4-dimensional scroll over a smooth threefold Y and suppose that X ∼= Y × P 1. Then 
X = P (E), where E = M⊕2 for some ample line bundle M on Y . In this case, c1 = 2M and c2 = M2, hence 
c21 − 4c2 = 0. A natural question is the converse: when does condition c21 − 4c2 = 0 imply that X ∼= Y ×P 1? 
This is not always true as Example 5.5 will show. Here is a partial answer.

Proposition 5.3. Let X = P (E), where E is an ample vector bundle of rank 2 on a smooth threefold Y with 
Picard number ρ(Y ) = 1. If E is decomposable and c21 − 4c2 = 0, then necessarily X ∼= Y × P 1.

Proof. Actually, letting M denote the ample generator of NS(Y ) we can write E = [aM ] ⊕ [bM ] for some 
positive integers a and b. Hence c1 = (a + b)M and c2 = abM2, and then the condition 0 = c21 − 4c2 =
(a − b)2M2 shows that a = b. Therefore E = [aM ]⊕2, hence X ∼= Y × P 1. �

For instance the cases in which Y is either a complete intersection or a general abelian threefold fall into 
the above Proposition 5.3 since for both the Picard group has rank 1. The following result gives another 
partial answer to the above question.

Proposition 5.4. Let (X, L) be a 4-dimensional scroll over a smooth threefold Y . Assume that Y is either 
P 3, Q3, Vd, the del Pezzo threefold of degree d = 3, 4, 5, 8, or a prime Fano threefold with Picard number 
ρ(Y ) = 1. Let E be a rank two vector bundle on Y such that c21 − 4c2 = 0. Then X ∼= P 1 × Y .

Proof. Because Y has Picard number ρ(Y ) = 1, let OY (H) be the ample generator of Pic(Y). Let E ′ =
E(−aH) be the normalized rank two vector bundle on Y , that is, whose determinant c1(E ′) equals OY (εH), 
with ε = 0 or −1. Since E is a rank two vector bundle on Y such that c21−4c2 = 0, then also c1(E ′)2−4c2(E ′) =
0. By [1, Corollary 1] and [11, Lemma 2.5] the vector bundle E ′ is not semistable unless it is the trivial 
bundle. If E ′ = O⊕2

Y then E = OY (aH)⊕2, which implies the assertion. On the other hand, if E ′ is not 
semistable then there exists a destabilizing line bundle A ⊂ E ′ and hence a short exact sequence
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0 → A → E ′ → B → 0 .

Since Pic(Y) ∼= Z it follows that A = OY (pH), B = OY (qH), for some p, q ∈ Z. From c1(E ′)2 −4c2(E ′) = 0, 
dotting with H we get ((p + q)2 − 4pq)H3 = 0, which implies that p = q. If c1(E ′) = 0 then p = q = 0 and 
moreover because Ext1(B, A) ∼= H1(OY ) = 0 it follows that E ′ is the trivial bundle, a contradiction. On 
the other hand, it cannot be that c1(E ′) = −1, otherwise −1 = 2p, which is impossible because p ∈ Z. In 
conclusion, E ′ has to be the trivial bundle and then our claim that X = PY (E) ∼= P 1 × Y follows. �
Example 5.3. Consider over P 3 the rank two bundle E = OP3(2)⊕2 and let X = P (E) ∼= P 1 × P 3. Because 
c1(E) = 4 = c2(E), it follows that c21 − 4c2 = 0. The equation of the Hilbert curve of (X, L) is

p(X,L)

(
1
2 + u, v

)
= 1

6 (2u− v)2(4u− 2v + 1)(4u− 2v − 1) = 0,

and (47) holds with λ = −1. We like to point out that X = P (E) is a Fano bundle, [17, Theorem 2.1]. 
Here C consists of 3 parallel lines, one of which is �0 and appears as a component of multiplicity 2 in Γ, in 
accordance with Corollary 3.5. More generally, note that here (X, L) fits into the setting considered in [10, 
Lemma 3.1].

Example 5.4. Consider over Q3 the rank two bundle E = OQ3(2)⊕2 and let X = P (E) ∼= P 1 ×Q3. Because 
c1(E) = 4H and c2(E) = 4H2, where H is the hyperplane bundle, it follows that c21 − 4c2 = 0. In this case 
the equation of the Hilbert curve of (X, L) is

p(X,L)

(
1
2 + u, v

)
= 1

12(2u− v)(6u− 4v + 1)(3u− 2v)(6u− 4v − 1) = 0

and (47) holds with λ = −1.

We like to point out that if in Proposition 5.4 we drop the assumption ρ(Y ) = 1 it is no longer true that 
we always have X ∼= P 1 × Y . The next two examples deal with the two del Pezzo threefolds of degree six.

Example 5.5. Let Y = P 1 × P 1 × P 1, let pi : P 1 × P 1 × P 1 → P 1, for i = 1, 2, 3, be the projections onto 
each factor and let hi denote the pull back of the class of a point in the i-th copy of P 1. Consider over 
P 1×P 1×P 1 the rank two bundle E = OP1×P1×P1(h1 +ph2 +h3) ⊕OP1×P1×P1(h1 +h2 +h3), for an integer 
p ≥ 2. In this case c1(E) = 2h1 + (1 + p)h2 + 2h3, c2 = (E) = (1 + p)h2h3 + 2h1h3 + (1 + p)h1h2 and hence 
c21 − 4c2 = 0. On the other hand, for X = P (E) we have that X � P 1 × Y .

The equation of the Hilbert curve of the polarized 4-fold (X, L) is

p(X,L)

(
1
2 + u, v

)
= 1

2 (2u− v)3
(
4u− (1 + p)v

)
= 0,

and (47) holds with λ = −1. Note that KY + c1 = 0 only when p = 1 and in this case we see that C = 3�0, 
in accordance with Corollary 4.2.

In some instances, however, even dropping the assumption ρ(Y ) = 1 but assuming that the rank two 
vector bundle E is decomposable, the condition c21 − 4c2 = 0 allows to prove that E = M⊕2 for some ample 
line bundle M on Y , which in turn implies that X = P (E) ∼= P 1 × Y . This is shown by the following 
example.

Example 5.6. Let Y = P (TP2) and let q : P (TP2) → P 2 be the projection morphism. Denote by ξ the 
tautological line bundle of P (TP2) and let h2 denote the pull back of the class of h ∈ |OP2(1)|, h2 = q∗h. 
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Let h1 = H − h2, with H ∈ |ξ| and consider h1, h2 as generators of Pic(Y). One has h3
1 = 0, h3

2 = 0; 
moreover, by using the Chern–Wu relation we see that h2

1 + h2
2 − h1h2 = 0. On Y we consider the rank two 

vector bundle E = OY (a h1 + b h2) ⊕ OY (c h1 + d h2), with a, b, c, d positive integers. In this case c1(E) =
OY

(
(a + c) h1 + (b + d) h2

)
, c2(E) = (ac)h2

1 + (ad + bc)h1h2 + (bd)h2
2. If we require that c1(E)2 − 4c2(E) = 0

then

(a + c)2h2
1 + (b + d)2h2

2 + 2(a + c)(b + d)h1h2 − 4
[
(ac)h2

1 + (ad + bc)h1h2 + (bd)h2
2
]

= 0.

Easy computations along with the fact that h1h2 = h2
1 + h2

2 give

(a− c)(a− c + 2b− 2d)h2
1 + (b− d)(b− d + 2a− 2c)h2

2 = 0.

Thus

(a− c)(a− c + 2b− 2d) = 0 (48)

and

(b− d)(b− d + 2a− 2c) = 0 . (49)

If a − c = 0 then plugging this information in equation (49) we get (b − d)2 = 0 and thus d = b and a = c, 
therefore E = OY (a h1 + b h2)⊕2. Same conclusion holds if b − d = 0.

If a − c + 2b − 2d = 0 then a − c = 2d − 2b and plugging this in equation (48) we get −3(b − d)2 = 0
and thus b = d from which it follows a = c and therefore E = OY (a h1 + b h2)⊕2. Same conclusion holds if 
b − d + 2a − 2c = 0. Thus the fourfold X = P (E) = P

(
OY (a h1 + b h2)⊕2) ∼= P 1 × Y .

In this case, the Hilbert curve of the polarized 4-fold (X, L) has equation

p(X,L)

(
1
2 + u, v

)
= 1

2(2u− v)(2u− bv)(2u− av)
(
4u− (a + b)v

)
= 0,

and (47) holds with λ = −1. Note that here KY + c1 = 0 only when a = b = 1, and in this case the above 
equation shows that C = 3�0, in accordance with Corollary 4.2.

Arguing in a similar way, the conclusion that X = Y ×P 1 can be obtained also for the del Pezzo threefold 
Y of degree 7, recalling that Y = P

(
OP2 ⊕OP2(1)

)
. In this case, as in Example 5.6, we can see that if E is 

a rank two decomposable vector bundle on Y with c21 − 4c2 = 0 then E = M⊕2, where M = OY (ah1 + bh2), 
h1 is the tautological line bundle on Y and h2 = q∗OP2(1), q : Y → P 2 being the bundle projection. Then 
for the Hilbert curve of (X, L) we get

p(X,L)

(
1
2 + u, v

)
= −1

6(2u− v)(2u− av)
(
28u2 − (10a + 18b)uv + (a2 + 3ab + 3b2)v2 − 1

)
,

and (47) holds with λ = −1. Note that here the residual cubic C has a conic as a component, which is 
reducible if and only if a = b.
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