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FANO FOURFOLDS WITH LARGE ANTICANONICAL BASE LOCUS

ANDREAS HÖRING AND SAVERIO A. SECCI

Abstract. A famous theorem of Shokurov states that a general anticanonical divisor
of a smooth Fano threefold is a smooth K3 surface. This is quite surprising since there
are several examples where the base locus of the anticanonical system has codimension
two. In this paper we show that for four-dimensional Fano manifolds the behaviour is
completely opposite: if the base locus is a normal surface, hence has codimension two, all
the anticanonical divisors are singular.

1. Introduction

1.A. Motivation and main result. The anticanonical system is arguably the most nat-
ural object attached to a Fano manifold, and it plays an important role in the classification
of Fano manifolds of low dimension. While it is expected that the anticanonical bundle
always has global sections [Cet93, Amb99, Kaw00], it is in general not globally generated.
In dimension three Shokurov’s theorem gives a complete description of the situation:

1.1. Theorem. [Sho80] Let X be a smooth Fano threefold such that the base locus Bs(| −
KX |) is not empty. Then the base locus is a smooth rational curve. Moreover a general
anticanonical divisor Y ∈ | −KX | is smooth.

In dimension four our current knowledge about the anticanonical system is very limited.
An example by the first named author and Voisin shows that Shokurov’s theorem does not
generalise to higher dimension:

1.2. Example. [HV11, Ex.2.12] Let S be a smooth del Pezzo surface of degree one, and
denote by p ∈ S the unique base point of | −KS |. Set X := S × S, and let Y ∈ | −KX | be
a general anticanonical divisor. Then Y is singular in the point (p, p).

Indeed the threefold Y contains the base locus Bs(| − KX |) = p × S ∪ S × p which has
embedding dimension four in the point (p, p). The varieties in Example 1.2 belong to the
unique family of Fano fourfolds having the maximal Picard number 18 [Cas23, Thm.1.1],
so one might hope that the presence of singular general anticanonical divisors is a rare
pathology. In this paper we destroy this hope by showing that a sufficiently large base locus
always leads to singularities:

1.3. Theorem. Let X be a smooth Fano fourfold such that h0(X,OX (−KX)) ≥ 3. Assume
that the base locus Bs(|−KX |) is an irreducible normal surface. Then a general anticanonical
divisor Y ∈ | −KX | is not Q-factorial, in particular it is singular.

This theorem covers all the examples we know of smooth Fano fourfolds such that Bs(|−KX |)
is an irreducible surface, cf. Examples 3.2, 3.3, 3.4. These examples differ from Example
1.2 in a significant way: they have moving singularities, i.e. the singular locus Ysing ⊂
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Bs(| − KX |) depends on the choice of Y ∈ | − KX |. Theorem 1.3 is almost optimal: if
the base scheme Bs(| −KX |) is smooth of dimension at most one, a general anticanonical
divisor Y is smooth by a strong version of Bertini’s theorem [DH91, Cor.2.4]. It seems
likely that Theorem 1.3 still holds under the relaxed assumption that Bs(| −KX |) contains
a surface. However this additional generality leads to numerous case distinctions in our
proofs, a technicality that we wanted to avoid.

While our main result states that the anticanonical geometry of a Fano fourfold is more
complicated than in dimension three, the tools developed in this paper indicate that two-
dimensional base loci lead to numerous restrictions on the geometry and the numerical
invariants. Therefore Theorem 1.3 is actually a first step towards the classification of Fano
fourfolds with large anticanonical base locus, we plan to come back to this topic in the near
future.

1.B. The setup. Let X be a smooth Fano fourfold such that h0(X,OX (−KX)) ≥ 3 and
Bs(| −KX |) is an irreducible normal surface B.

Let Y ∈ | −KX | be a general anticanonical divisor, so Y is a normal threefold (Corollary
2.8). By Kodaira vanishing the restriction morphism

H0(X,OX (−KX)) → H0(Y,OY (−KX))

is surjective. Thus we know that

Bs(| −KX |Y |) = Bs(| −KX |) = B

and h0(Y,OY (−KX)) = h0(X,OX (−KX)) − 1 ≥ 2. Denote by |M | the mobile part of the
linear system | −KX |Y |, then we have a linear equivalence of effective Weil divisors

−KX |Y ≃M +B.

The proof of Theorem 1.3 will be by contradiction, so we make the

1.4. Assumption. We assume that Y is Q-factorial.

Combined with the known results about anticanonical divisors, cf. Corollary 2.9 this as-
sumption implies that the Weil divisors M and B are Cartier. By Grothendieck’s Lefschetz
hyperplane theorem [Laz04a, Example 3.1.25] the restriction morphism

Pic(X) → Pic(Y )

is an isomorphism, so there exists uniquely defined Cartier divisor classes MX → X and
BX → X such that

M ≃MX |Y , B ≃ BX |Y .

Note that it is not clear whether the divisors MX and BX are effective, establishing this
will be an important first step in our proof.

1.C. General strategy and structure of the proof. The proof of Shokurov’s theorem
1.1 can be split into two steps, cf. [IP99, §2.3]: first one shows that Y has canonical
singularities. Then one applies Mayer’s theorem to a minimal resolution Y ′ → Y .

1.5. Theorem. [May72, Prop.5] Let S be a smooth K3 surface, and let A be a nef and big
Cartier divisor on S such that Bs(|A|) 6= ∅. Then we have a decomposition into fixed and
mobile part

A ≃M +B

where B ≃ P1 and M is a nef divisor that defines an elliptic fibration ϕ|M | : S → P1.
2



Since the first part of Shokurov’s proof also works for Fano fourfolds [Kaw00, Thm.5.2], the
most natural approach would be to look for an analogue of Mayer’s theorem for Calabi-Yau
threefolds (with mild singularities). This approach immediately encounters two obstacles:
while it is easy to classify fixed prime divisors on a K3 surface (they are (−2)-curves), there
are many possibilities on a Calabi-Yau threefold, e.g. Enriques surfaces [BN16, Thm.3.1].
Moreover the mobile part of a linear system on a surface is always nef, this is not true on a
threefold.

The second obstacle leads to a basic case distinction in our proof: if MX is nef, the basepoint
free theorem yields a morphism X → T that we can use to study the anticanonical system.
This situation is rather close to the Examples 3.2, 3.3, 3.4, and we will need a series of
rather specific classification results to settle this case in Section 7.

In the second case, MX is not nef, we use the embedding Y ⊂ X in a more explicit way. We
start by showing that −KX +MX is nef and big, i.e. the anticanonical divisor compensates
the negativity of MX . This allows us to show that the surface B is a complete intersection:
we find an effective divisor BX with canonical singularities such that

B = Y ∩BX .

Moreover, using an extension theorem of Fujino, we obtain that the restriction map

H0(X,OX (−KX)) → H0(BX ,OBX
(−KX))

is surjective. Combined with some classification results for linear systems on irregular
surfaces, cf. Section 4, we exclude this possibility.

1.D. Future research. In Theorem 1.3 we make the assumption that h0(X,OX (−KX)) ≥
3, an assumption that is satisfied by all smooth Fano fourfolds that we are aware of1.
Riemann-Roch computations only show that h0(X,OX (−KX)) ≥ 2 (Theorem 2.8), so it
would be highly desirable to have an answer to the following

1.6. Problem. [Fuj88, Küc97, Liu20] Is there a smooth Fano fourfold X with
h0(X,OX (−KX)) = 2?

Is there a smooth Calabi-Yau threefold Y with an ample Cartier divisor A such that
h0(Y,OY (A)) = 1?

Beauville [Bea99] gave an example of a numerical Calabi-Yau threefold with a fixed ample
divisor, for our purpose we are interested in strict Calabi-Yau’s, i.e. Y is simply connected.

A significant problem in this theory is the lack of interesting examples. Our Example 3.4
generalises a construction from the threefold case, but it is still related to the del Pezzo
surface of degree one.

1.7. Problem. Construct new examples of smooth Fano fourfolds X such that Bs(|−KX |)
has dimension two.

Acknowledgements. A.H. thanks the Institut Universitaire de France for providing ex-
cellent working conditions for this project. S.A.S. thanks the LJAD Université Côte d’Azur
for partially funding his long stay in Nice, in order to establish this project; he also thanks
the Mathematics Department of the University of Turin for the opportunities given during
his Ph.D.

1There is an example with h0(X,OX(−KX)) = 3; see [Küc97, Prop.2.2][Qur21, Table 2].
3



2. Notation and basic facts

We work over C, for general definitions we refer to [Har77]. All the schemes appearing
in this paper are projective, manifolds and normal varieties will always be supposed to be
irreducible. For notions of positivity of divisors and vector bundles we refer to Lazarsfeld’s
book [Laz04a, Laz04b]. Given two Cartier divisors D1,D2 on a projective variety we denote
by D1 ≃ D2 (resp. D1 ≡ D2) the linear equivalence (resp. numerical equivalence) of
the Cartier divisor classes. Given a Cartier divisor D we will denote by OX(D) both the
associated invertible sheaf and the corresponding line bundle. Somewhat abusively we will
say that a Cartier divisor class is effective if it contains an effective divisor.

We use the terminology of [KM98] for birational geometry and of [Kol96] for rational curves.
We refer to [Kol13] for the definitions and basic facts about singularities of the MMP.

Given a normal projective surface S with Gorenstein singularities we will denote by

q(S) := h1(S,OS)

the irregularity, and by

pg(S) := h2(S,OS) = h0(S,OS(KS))

the geometric genus.

2.1. Definition. Let Y be a projective variety, and let D be a nef Cartier divisor on Y .
The numerical dimension ν(Y,D) is defined as

max{k ∈ N | Dk 6= 0}.

We collect a number of basic facts for the convenience of the reader:

2.2. Fact. Let A be a Cartier divisor on a projective variety Y such that the complete linear
system |A| has a non-empty fixed part B. Then h0(Y,OY (B)) = 1.

2.3. Fact. Let X be a Fano manifold, and let D be a nef Cartier divisor on X. Then there
exists a morphism with connected fibres ϕ : X → T and an ample Cartier divisor HT on T
such that D ≃ ϕ∗HT .

Proof. By the basepoint free theorem we have mD ≃ ϕ∗Hm for some very ample divisor
Hm → T for every m ≫ 0. Thus HT := Hm+1 − Hm is a Cartier divisor such that
D ≃ ϕ∗HT . Since D is numerically the pull-back of an ample class on T , the divisor HT is
ample. �

2.4. Fact. Let S be an irreducible projective surface with Gorenstein singularities, and let
C ⊂ S be an irreducible curve that is not contained in the singular locus of S. If −KS ·C ≥ 2,
the curve C deforms in S in a positive-dimensional family.

Proof. Let τ : S′ → S be the composition of normalisation and minimal resolution. Then
we have KS′ ≃ τ∗KS − E where E is an effective divisor that maps into the singular locus
of S. Thus if C ′ ⊂ S′ is the strict transform, it is not contained in the support of E. Thus
we have

−KS′ · C ′ ≥ −KS · C ≥ 2.

The statement now follows from [Kol96, Thm.1.15]. �

2.5. Fact. [BS95, Lemma 2.4.1] Let X be a normal projective variety with rational singu-
larities such that q(X) > 0. Then the Albanese map α : X → A to the Albanese torus exists
and is determined by the Albanese map of some resolution of singularities.
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2.6. Fact. Let S be a normal projective surface with rational singularities, and let A be a
Cartier divisor on S. Then the Riemann-Roch formula

χ(S,OS(A)) =
1

2
A2 +

1

2
(−KS) · A+ χ(S,OS)

holds.

Let Y be a normal projective threefold with terminal singularities, and let A be a Cartier
divisor on Y . Then the Riemann-Roch formula

χ(Y,OY (A)) =
1

12
A · (A−KY ) · (2A−KY ) +

1

12
A · c2(Y ) + χ(Y,OY )

holds.

Proof. It is sufficient to verify that all the terms are well-defined and can be calculated on
a resolution of singularities. This is well-known, cf. [Hör12, Sect.2], the statement then
follows via the projection formula. �

In the rest of the paper we will refer to the following set of statements by inversion of
adjunction:

2.7. Theorem. [KM98, Thm.5.50] [Kaw07, Thm.] [Kol13, Thm.4.9] Let X be a normal
projective variety, and let S ⊂ X be a reduced Weil divisor that is Cartier in codimension
two. Let ∆ be an effective boundary divisor on X that has no common component with S
such that KX + S +∆ is Q-Cartier. Then the following holds:

• The pair (X,S +∆) is lc near S if and only if the pair (S,∆|S) is slc.
• The pair (X,S +∆) is plt near S if and only if the pair (S,∆|S) is klt.

2.A. Anticanonical divisors on Fano fourfolds. The following statement collects the
known results about anticanonical divisors on smooth Fano fourfolds

2.8. Theorem. [Kaw00, Thm.5.2],[HV11, Thm.1.7], [Heu15, Thm.2] Let X be a smooth
Fano fourfold. Then we have

h0(X,OX (−KX)) ≥ 2.

Let Y ∈ | −KX | be a general anticanonical divisor. Then Y is a normal prime divisor with
terminal Gorenstein singularities. The variety Y is Calabi-Yau, i.e. KY ≃ OY and

H1(Y,OY ) = H2(Y,OY ) = 0.

In fact the possible singularities of Y are completely described by [Heu15, Thm.4], but we
will not need this description for our proof. By [Kaw88, Lemma 5.1] a terminal Q-factorial
Gorenstein threefold singularity is factorial, so Theorem 2.8 implies:

2.9. Corollary. Let X be a smooth Fano fourfold. If a general anticanonical divisor Y is
Q-factorial, it is factorial.

2.10. Theorem. [Kol91, Theorem] Let X be a Fano manifold of dimension at least four,
and let Y ∈ | −KX | be an irreducible2 anticanonical divisor. Then the inclusion

NE(Y ) →֒ NE(X)

is a bijection. Equivalently a Cartier divisor D → X is nef if and only if its restriction D|Y
is nef.

2The statement in [Kol91] is for smooth divisors, but the proof works without this assumption.
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2.11. Theorem. [Kaw00, Prop.4.2] Let Y be a normal projective threefold with canonical
Gorenstein singularities such that c1(Y ) = 0. Let A→ Y be an ample Cartier divisor, and
let D ∈ |A| be a general element. Then the pair (Y,D) is lc.

2.12. Corollary. In the situation of Setup 1.B, let M be a general element of the mobile
part of | −KX |Y |. Then the pair (Y,M +B) is lc, hence the pairs (Y,M) and (Y,B) are lc.
In particular B is a normal projective Gorenstein surface with at most lc singularities and
pg(B) = 0. Moreover

(B,M |B)

is an lc pair such that

(1) −KX |B ≃ KB +M |B

is ample with (KB +M |B) ·M |B > 0.

Proof. Since M is a general divisor in the mobile part, the divisor M + B is general in
| −KX |Y |. Thus (Y,M + B) is lc by Theorem 2.11. The statement for (Y,M) and (Y,B)
is now immediate since we assume that Y is Q-factorial. By adjunction (Theorem 2.7)
this implies that the surfaces Y and B have at most slc singularities. Since B is normal
by assumption, it has lc singularities. Consider the cohomology sequence associated to the
exact sequence

0 → OY → OY (B) → OB(B) ≃ OB(KB) → 0.

The Calabi-Yau threefold Y has h1(Y,OY ) = 0 and h0(Y,OY (B)) = 1 by Fact 2.2, so
pg(B) = h0(B,OB(KB)) = 0.

Again by adjunction the pair (B,M |B) is slc (hence lc) since (Y,M +B) is lc. Since KY is
trivial, the linear equivalence (1) follows from the adjunction formula. Finally observe that
the support of the divisor M + B ≃ −KX |Y is connected since it is ample. Therefore the
intersection M ∩B has positive dimension and (KB +M |B) ·M |B = −KX |B ·M |B > 0. �

3. Examples and first observations

We start this section by collecting some arguments that give a moral explanation for The-
orem 1.3.

3.1. Lemma. Let X be a Fano manifold, and let B ⊂ Bs(| − KX |) be a submanifold
of dimension at least dimX

2
. Assume that the conormal bundle N∗

B/X is nef. Then every

anticanonical divisor Y ∈ | −KX | has at least one singular point along B.

Proof. Consider the natural morphism

α : H0(X,OX (−KX)) ≃ H0(X,IB ⊗OX(−KX)) → H0(B, IB/I
2
B ⊗OX(−KX)).

By [BS95, Lemma 1.7.4] the divisor Y is smooth along B if and only if the section α(s) ∈
H0(B, IB/I

2
B ⊗OX(−KX)) is nowhere zero, where 0 6= s ∈ H0(X,OX (−KX)) is a section

vanishing on Y . Since IB/I
2
B ⊗ OX(−KX) ≃ N∗

B/X ⊗ OX(−KX) is a tensor product of

a nef vector bundle and an ample line bundle, it is ample [Laz04b, Thm.6.2.12.(iv)]. Set
d = codimXB. If α(s) does not vanish in any point of B, the top Chern class cd(N

∗
B/X ⊗

OX(−KX)) is zero. Yet since d ≤ dimB this is a contradiction to the positivity of Chern
classes of ample vector bundles [Laz04a, Thm.8.3.9] �

The lemma allows to cover all the known examples of Fano fourfolds with a two-dimensional
base locus:
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3.2. Example. Let X = S1 × S be the product of smooth del Pezzo surface S1 of degree
one and S a smooth del Pezzo surface of degree at least two. Then every anticanonical
divisor Y ∈ | −KX | is singular.

Proof. The base locus is B = p × S where p = Bs(| −KS1
|). Thus N∗

B/X ≃ O⊕2
B is trivial

and Lemma 3.1 applies.

Applied to an irreducible component of the base locus the argument above also works for
[HV11, Ex.2.12].

3.3. Example. Let X = Z × P1 where Z is a smooth Fano threefold such that C :=
Bs(| −KZ |) is not empty. Then every anticanonical divisor Y ∈ | −KX | is singular.

Proof. The base locus is B = C×P1 and we know that N∗
C/Z ≃ O⊕2

C or N∗
C/Z ≃ OC⊕OC(1)

(cf. the proof of [IP99, Lemma 2.4.4]). Thus N∗
B/X is nef and Lemma 3.1 applies.

The next manifold is a generalisation of a well-known example in the threefold case [MM82,
Table 2, No 1].

3.4. Example. For n ≥ 4 let M be a general sextic hypersurface in the weighted projective
space P(1n, 2, 3). Then M is a del Pezzo manifold of dimension n and degree 1 [Fuj90,
Thm.8.11], i.e. we have −KX ≃ (n − 1)A with A an ample Cartier divisor such that
An = 1. The del Pezzo manifold M has a ladder [Fuj90, Thm.3.5], i.e. we can choose n− 1
general elements D1, . . . ,Dn−1 in the linear system |A| such that

C := D1 ∩ . . . ∩Dn−1

is a smooth elliptic curve. Morever |A| has a unique base-point p.

Let now µ : X → M be the blow-up along C, and denote by E the exceptional divisor.
Then µ resolves the base locus of the linear system |V | generated by D1, . . . ,Dn−1 so we
have a fibration

f : X → Pn−2

such that µ∗A ≃ f∗H + E where H is the hyperplane divisor on Pn−2. Using the Nakai-
Moishezon criterion we obtain immediately that

−KX ≃ µ∗(−KM )− (n− 2)E ≃ (n− 1)µ∗A− (n − 2)E ≃ (n− 2)f∗H + µ∗A

is ample, so X is a Fano manifold. The general f -fibre is a surface S obtained as the
complete intersection of n − 2 elements in |V |, so it is a del Pezzo surface of degree one.
In particular | − KS | has a unique base point pS such that µ(pS) = p. This implies that
µ−1(p) ≃ Pn−2 is contained in Bs(| −KX |).

Since N∗
Pn−2/X ≃ OPn−2 ⊕ OPn−2(1) is nef we can apply Lemma 3.1 to see that all the

anticanonical divisors in X are singular.

3.5. Remark. Let X be a complex manifold, and let B ⊂ X be a submanifold of codimen-
sion two. Let B ⊂ Y ⊂ X be a normal prime divisor. Then Y is singular in a point p ∈ B
if and only if Y is not factorial in p. Indeed if Y is factorial in p, the Weil divisor B ⊂ Y is
Cartier near the point p. Thus if Y is singular in p, so is the Cartier divisor B.

The next statement shows that for most prime Fano manifolds (i.e. the prime Fanos with
index one) the presence of a codimension two base locus is incompatible with the smoothness
of the anticanonical divisor.

7



3.6. Proposition. Let X be a Fano manifold of dimension at least four with Picard number
one such that h0(X,OX (−KX)) ≥ 3. Assume that the base locus Bs(| −KX |) has codimen-
sion two and a general anticanonical divisor Y ∈ | − KX | is smooth. Then X has Fano
index at least three.

Proof. Let
−KX |Y ≃M +B

be the decomposition into fixed and mobile part. Since Y is smooth the Weil divisors M and
B are Cartier. Since dimX ≥ 4 and ρ(X) = 1 the Lefschetz hyperplane theorem implies
PicY ≃ PicX ≃ ZH where H is the ample generator of the Picard group. Thus we have

M ≃ aH|Y , B ≃ bH|Y

with a, b ∈ N∗. Since h0(Y,OY (B)) = 1 and h0(Y,OY (M)) ≥ 2 we have a > b and therefore
a+ b ≥ 3. Since

−KX |Y ≃M +B ≃ (a+ b)H|Y ,

the statement follows from PicY ≃ PicX. �

3.7. Lemma. Let X be a smooth Fano fourfold, and let D be a non-zero nef Cartier divisor
on X. Then h0(X,OX(D)) ≥ 2.

Proof. If D has numerical dimension one, there exists a fibration ϕ : X → P1 such that
D ≃ ϕ∗H with H an ample Cartier divisor on P1 (cf. Fact 2.3). Thus h0(P1,OP1(H)) ≥ 2
yields the claim.

If D has numerical dimension at least two, we have D2 ·K2
X = D2 · (−KX)2 > 0. Moreover

h0(X,OX (D)) = χ(X,OX(D)) by Kodaira vanishing and by Riemann-Roch

χ(X,OX (D)) =
D4

4!
−
D3 ·KX

2 · 3!
+
D2 · (K2

X + c2(X))

12 · 2!
−
D ·KX · c2(X)

24 · 1!
+ χ(X,OX )

≥
D2 · (−KX)2

24
+
D2 · c2(X)

24
−
D ·KX · c2(X)

24
+ 1.

Since −KX ·D · c2(X) ≥ 0 and D2 · c2(X) ≥ 0 by [Pet12, Thm.1.3], [Miy87, Thm.6.1] we
obtain that the second line is at least two. �

3.8. Lemma. Let X be a smooth Fano fourfold, and let L be a line bundle on X such that
h0(X,L) 6= 0. Let D ∈ |L| be a general divisor, and assume that for a general anticanonical
divisor Y ∈ | − KX |, the pair (Y,D ∩ Y ) is log-canonical. Then the pair (X,D) is log-
canonical.

Proof. Since dimX ≤ 4 the anticanonical system | − KX | has no fixed component, cf.
Theorem 2.8. In particular Y has no common component with D.

We argue by contradiction and assume that the non-lc locus Z is not empty.

1st step. Assume that Z has positive dimension. Since Y is an ample divisor, it intersects
Z in at least one point, so the pair (X,D) is not lc near Y . Thus the pair (X,D + Y ) is
not lc near Y . By Theorem 2.7 this is a contradiction to Corollary 2.12.

2nd step. Assume that Z has dimension zero. We endow Z ⊂ X with its natural scheme
structure, cf. [Fuj11, §7]. Since

L− (KX +D) ≃ −KX

is ample we can apply Fujino’s extension theorem (with W the empty set, cf. [Fuj11,
Thm.8.1]) to see that the restriction map

H0(X,L) → H0(Z,L)
8



is surjective. Since Z is a finite scheme, the restriction L|Z is globally generated. Thus L
is globally generated near Z, in particular a general D ∈ |L| is smooth near Z. Hence the
pair (X,D) is lc, a contradiction. �

4. Auxiliary results about linear systems, part I

In Section 5 our study of the Fano fourfoldX will lead to several restrictions on the geometry
of the base locus Bs(| −KX |). These restrictions can be strengthened when combined with
the technical results of this section.

4.1. Lemma. Let S be a normal projective surface with canonical singularities such that
pg(S) = 0. Assume that the Albanese map induces a fibration α : S → C onto a curve of
genus g = q(S) > 0. Then the general α-fibre is P1 or g = 1.

Proof. Since canonical surface singularities are rational we can replace S with a resolution
of singularities. Thus S is a smooth surface with pg(S) = 0 and q(S) ≥ 1. If the general
α-fibre is not P1, the surface S is not uniruled. Thus we can apply [Bea96, Thm.VI.13] to
the minimal model of S to obtain that q(S) = 1. �

4.2. Proposition. Let S be a normal projective Gorenstein surface with pg(S) = 0, and
let A be a nef and big Cartier divisor on S such that

A ≃ KS +∆S

where ∆S is an effective Weil divisor such that the pair (S,∆S) is lc and A·∆S > 0. Assume
that we have

h0(S,OS(A)) ≤ q(S).

Then S has canonical singularities and the Albanese map induces a fibration

α : S → C

onto a curve of genus q(S) > 0. Set r := rk(α∗OS(A)), then we have

(r − 1)(q(S) − 1) ≤ 1.

Moreover we have
h0(S,OS(A)) = q(S).

Remark. In the second step of the proof we will use the following fact that follows easily
from the Leray spectral sequence: let S be a normal projective surface with Gorenstein
singularities such that pg(S) = 0. Assume that S has irrational (hence non-canonical
[KM98, Cor.5.24]) singularities, and let τ : Sc → S be the canonical modification [Kol13,
Thm.1.31]. Then we have

pg(Sc) = pg(S) = 0, q(Sc) > q(S).

Proof of Proposition 4.2. Since A ·∆S > 0 we have ∆S 6= 0. Thus

H2(S,OS(KS +∆S)) ≃ H0(S,OS(−∆S)) = 0

and we have the inequalities

q(S) ≥ h0(S,OS(KS +∆S)) ≥ χ(S,OS(KS +∆S)).

1st step. Assume that S has canonical singularities. By Fact 2.6 we have the Riemann-Roch
formula

χ(S,OS(KS +∆S)) =
1

2
(KS +∆S) ·∆S + χ(OS).

9



Hence A ·∆S > 0 implies that q(S) > χ(S,OS) = 1− q(S). In particular we have q(S) > 0,
so there is a non-trivial Albanese morphism α. If dimα(S) = 2, the ramification formula
shows that pg(S) > 0 which we excluded. Thus the Albanese morphism gives a fibration
[BS95, Lemma 2.4.5]

α : S → C

onto a curve C of genus g := q(S) > 0. Since the pair (S,∆S) is lc, the direct image sheaf

α∗OS(KS/C +∆S) ≃ α∗OS(A)⊗OC(−KC)

is a nef vector bundle [Fuj17, Thm.1.1] of rank r. Thus

V := α∗OS(A) ≃ α∗OS(KS/C +∆S)⊗OC(KC)

has c1(V ) ≥ r(2g − 2). By the Riemann-Roch formula on curves we have

(2) h0(S,OS(A)) = h0(C, V ) ≥ χ(C, V ) = c1(V ) + rχ(C,OC) ≥ r(g − 1).

Now observe that r(g − 1) > g unless (r − 1)(g − 1) ≤ 1.

Finally let us show that we have h0(S,OS(A)) = q(S): if h0(S,OS(A)) ≤ q(S) − 1 the
Riemann-Roch estimate (2) becomes g − 1 ≥ r(g − 1).

Subcase a) Assume that g > 1. Then the unique possibility r = 1. Since A is nef and big,
this implies that the general α-fibre is not P1. Yet this contradicts Lemma 4.1.

Subcase b) Assume that g = 1. In this case the Riemann-Roch inequality becomes

h0(S,OS(KS +∆S)) ≥
1

2
(KS +∆S) ·∆S > 0,

so h0(S,OS(KS +∆S)) ≥ 1 = g.

2nd step. We show that S has canonical singularities. Since S is Gorenstein, it has canonical
singularities if and only if it has rational singularities. Arguing by contradiction we assume
that S has non-canonical singularities and denote by τ : Sc → S the canonical modification.
Then we have KSc ≃ τ∗KS −E with E an effective Weil divisor. Observe that

KSc + E + τ∗∆S ≃ τ∗(KS +∆S),

so the pair (Sc,∆Sc) := (Sc, E + τ∗∆S) is lc. Moreover

Ac := τ∗A ≃ KSc +∆Sc

is a nef and big Cartier divisor with Ac · ∆Sc = A · ∆S > 0 and h0(S,OS(A)) =
h0(Sc,OSc(Ac)). Finally by the remark before the proof one has pg(Sc) ≤ pg(S) = 0
and q(Sc) > q(S). Therefore by Step 1 of the proof

h0(S,OS(A)) = h0(Sc,OSc(Ac)) = q(Sc) > q(S),

a contradiction to our assumption. �

The conditions in Proposition 4.2 are very restrictive, however there is a classical example
that will play a prominent role in Section 7:

4.3. Example. Let C be an elliptic curve, and for some point p ∈ C let

0 → OC → V → OC(p) → 0

be an unsplit extension. Set α : S := P(V ) → C and denote by ζS the tautological class on
S. Set ∆S := 3ζS − α∗p, then ∆S is an ample divisor [Har77, V, Prop.2.21] such that |∆S |
contains an element with normal crossing singularities. Thus the pair (S,∆S) is lc and

A := KS +∆S ≃ ζS

is an ample divisor with h0(S,OS(A)) = 1 = q(S).
10



Since it would be tedious to go into the classification of surfaces with small invariants,
we want a convenient criterion to exclude this kind of exceptional surfaces in the proof of
Theorem 1.3:

4.4. Proposition. Let S be a normal projective Gorenstein surface with pg(S) = 0, and
let A be an ample Cartier divisor on S such that

A ≃ KS +∆S

where ∆S is an effective Weil divisor such that the pair (S,∆S) is lc and A·∆S > 0. Assume
that we have

h0(S,OS(A)) ≤ q(S).

Then ∆S does not contain a smooth rational curve l.

Proof. We argue by contradiction, so let l ⊂ ∆S be a smooth rational curve. By Proposition
4.2 the surface has canonical singularities and we have an Albanese fibration α : S → C
onto a smooth curve C of genus g = q(S). Moreover we have

(3) (r − 1) · (q(S) − 1) ≤ 1

where r = rk(α∗OS(A)).

1st case. Assume that g > 1. By Lemma 4.1 the general α-fibre F is P1. Since A ·F ≥ 1 we
have r ≥ 2 and thus (3) yields g = 2 and r = 2. Moreover A ·F = 1 implies that α : S → C
is a P1-bundle over the genus two curve C [Kol96, II,Thm.2.8]. In particular the rational
curve l is a fibre of α, thus a nef divisor on S. The pair (S,∆S − l) is lc, so the direct image

α∗OS(KS/C +∆S − l) ≃ α∗OS(A)⊗OC(−KC − l)

is a nef vector bundle [Fuj17, Thm.1.1]. Thus α∗OS(A) has degree at least six. By the
Riemann-Roch formula on the curve C this implies h0(S,OS(A)) = h0(C,α∗OS(A)) ≥ 4, a
contradiction.

2nd case. Assume that g = 1. By Proposition 4.2 we have h0(S,OS(A)) = 1 and thus by
Riemann-Roch

1 ≥ χ(S,OS(A)) =
1

2
(KS +∆S) ·∆S > 0.

Therefore A · ∆S = (KS + ∆S) · ∆S = 2 and Lemma 4.5 applies: all the irreducible
components of ∆S are rational curves, so they are contracted by the Albanese map. Since
∆S is connected (ibid), it is contained in an α-fibre F0. Since pa(∆S) = 2 we deduce that
pa(F0) ≥ 2. Since the arithmetic genus is constant in the flat family α : S → C we obtain
that S is not uniruled. Let τ : S′ → S be the minimal resolution, and let ν : S′ → Sm the
minimal model of S′. Since S has canonical singularities we have

pg(Sm) = pg(S
′) = pg(S) = 0, q(Sm) = q(S′) = q(S) > 0.

By [Bea96, Prop.VI.6] the minimal surface Sm does not contain any rational curves. Since
the exceptional divisors of the resolution τ are rational curves the rigidity lemma [Deb01,
Lemma 1.15] yields a birational map ν : S → Sm that contracts all the rational curves on
S. In particular it contracts the divisor ∆S . Yet pa(∆S) = 2 > 0, a contradiction to the
fact that the smooth surface Sm has rational singularities. �

4.5. Lemma. Let S be a normal projective surface with canonical singularities and pg(S) =
0, and let A be an ample Cartier divisor on S such that

A ≃ KS +∆S

11



where ∆S is an effective Weil divisor such that the pair (S,∆S) is lc and A · ∆S = 2.
Assume that ∆S has an irreducible component that is a smooth rational curve l. Then all
the irreducible components of ∆S are rational curves.

Proof. Recall first that canonical surface singularities are Gorenstein, so both KS and ∆S =
A−KS are Cartier. We have pa(∆S) = 2, so the inclusion l ⊂ ∆S must be strict. Since A
is ample with A ·∆S = 2 we obtain

∆S = l +R

with R an irreducible curve such that A · R = 1. In particular we have by subadjunction

degKR ≤ (KS +R) · R ≤ (KS + l +R) · R = A · R = 1,

so pa(R) =
1
2
degKR + 1 ≤ 1. In particular ∆S is connected because otherwise

2 = pa(∆S) = pa(R) + pa(l) ≤ 1

yields a contradiction.

Let τ : S′ → S be the minimal resolution and set

∆S′ := τ∗∆S

Since ∆S is connected, the cycle ∆S′ is connected. We denote by R′ ⊂ ∆S′ the strict
transform of R, we are done if we show that R′ is a rational curve.

Proof of the claim. Since S has canonical singularities the minimal resolution τ is crepant,
so we have KS′ ≃ τ∗KS and

KS′ +∆S′ = τ∗(KS +∆S) = τ∗A.

Thus we have

1 = τ∗A ·R′ = (KS′ +∆S′) ·R′ = (KS′ +R′) ·R′ + (∆S′ −R′) · R′.

If we show that (∆S′ − R′) · R′ ≥ 2, then the adjunction formula yields the claim. Since
∆S′ is connected, we have (∆S′ −R′) ·R′ ≥ 1, we will argue by contradiction to exclude the
case where we have an equality.

In this case R′ is a curve of arithmetic genus one that meets ∆S′ −R′ transversally exactly
in one point. In particular we have

2 = pa(∆S′) = pa(R
′) + pa(∆S′ −R′) = 1 + pa(∆S′ −R′).

The curve l ⊂ S being smooth it meets the exceptional divisor over every point p ∈ l∩Ssing
in exactly one point and the intersection is transverse. Thus we have

pa(∆S′ −R′) = pa(l) +
∑

p∈l∩Ssing

τ−1(p) = 0

since the exceptional divisors of the minimal resolution of an ADE-singularity have arith-
metic genus zero. This gives the final contradiction. �

5. Positivity arguments

This section is the technical core of the paper. We will study the positivity properties of the
Cartier classes MX and BX and successively improve our knowledge about the existence
and singularities of effective divisors contained in these classes.

5.1. Proposition. In the situation of Setup 1.B, the divisor BX is not nef. If BX is
effective, then h0(X,OX (BX)) = 1 and BX is a normal prime divisor.
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Proof. Consider the exact sequence

0 → OX(−MX) → OX(BX) → OY (B) → 0.

We have h0(X,OX (−MX)) = 0 since otherwise −MX and thus its restriction −M to the
general anticanonical divisor Y is effective. Thus we have an injection

H0(X,OX (BX)) →֒ H0(Y,OY (B)).

Since h0(Y,OY (B)) = 1 by Fact 2.2, we have h0(X,OX (BX)) ≤ 1. By Lemma 3.7 this
implies that BX is not nef.

If BX is effective, it is a normal prime divisor since its restriction to the ample divisor Y is
the normal prime divisor B. �

5.2. Proposition. Let Y be a Q-factorial threefold with canonical Gorenstein singularities
such that c1(Y ) = 0. Let A be an ample Cartier divisor with h0(Y,OY (A)) ≥ 2 such that
Bs(|A|) has pure dimension two. Let A ≃M +B be the decomposition into mobile part and
fixed part B. Then A+M is a nef and big divisor.

Proof. We choose a general element M in the mobile part, so by Theorem 2.11 the pair
(Y,M+B) is lc. If A+M is not nef, there exists an irreducible curve γ such that (A+M)·γ <
0. Since A is ample, we have M · γ ≤ −2. In particular we have have γ ⊂ Bs(|M |). Since
|M | is the mobile part of |A| we have Bs(|M |) ⊂ Bs(|A|). By assumption Bs(|A|) has pure
dimension two, so it coincides with B. Thus we have γ ⊂ B, and hence

γ ⊂M ∩B.

The surface M + B is slc by Theorem 2.7, so it has normal crossing singularities in codi-
mension one. Therefore B and M are smooth in the generic point of γ, in particular γ is
not contained in the singular locus of M . Since

−KM · γ = −M · γ ≥ 2,

we know by Fact 2.4 that the curve γ deforms in M . In particular M contains a positive-
dimensional family of curves γt such that M · γt < 0. Yet M is a mobile divisor and
dimY = 3, so this is impossible. �

5.3. Corollary. In the situation of Setup 1.B, the divisor −KX + MX is nef and has
numerical dimension at least three. In particular

Hq(X,OX (MX)) = 0 ∀ q ≥ 2.

Proof. By Theorem 2.10 we know that −KX +MX is nef if and only if the restriction to Y
is nef. Thus nefness follows from Proposition 5.2. The numerical dimension is at least three
since the restriction to Y is big, so of numerical dimension three. Finally the vanishing
follows from

Hq(X,OX (MX)) = Hq(X,OX (KX + (−KX +MX)))

and the numerical Kawamata-Viehweg vanishing theorem [Laz04a, Example 4.3.7]. �

5.4. Proposition. In the situation of Setup 1.B, assume that MX is not nef. Then we
have

Hq(X,OX(KX +MX)) = 0 ∀ q ≥ 3.

For the proof we start with a general lemma which is essentially contained in Küronya’s
paper [Kür13]:
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5.5. Lemma. Let Y be a normal projective threefold with canonical Gorenstein singularities,
and let D be an effective Cartier divisor on Y such that for every irreducible component
D′ ⊂ D, the restriction D|D′ is pseudoeffective. Then

Hq(Y,OY (KY +D)) = 0 ∀ q ≥ 2

unless (maybe) D is nef of numerical dimension at most one.

Proof. Since the restriction D|D′ is pseudoeffective and dimD′ = 2 there are at most finitely
many curves γ ⊂ Y such that D·γ < 0. In particular for a general very ample divisor A ⊂ Y ,
the restriction D|A is nef. Moreover

(D|A)
2 = D2 ·A = D|D ·A|D ≥ 0

and equality holds if and only if the pseudoeffective class D|D is zero. In the latter case the
restriction D|D is numerically trivial, so D is nef with numerical dimension at most one. In
the former case the restriction D|A is nef and big, so we conclude with [Kür13, Thm.C]3. �

Proof of Proposition 5.4. We twist the exact sequence

0 → OX(−Y ) ≃ OX(KX) → OX → OY → 0

with MX to get

0 → OX(KX +MX) → OX(MX) → OY (M) → 0.

Since M is mobile, it satisfies the conditions of Lemma 5.5; by assumption MX (and thus M)
is not nef, so we have Hq(Y,OY (M)) = 0 for q ≥ 2. By the exact sequence in cohomology
this implies

Hq(X,OX (KX +MX)) = Hq(X,OX (MX)) ∀ q ≥ 3.

Yet the later vanishes by Corollary 5.3. �

5.6. Corollary. In the situation of Setup 1.B, assume that MX is not nef. Then the divisor
class BX is effective.

Proof. We twist the restriction sequence

0 → OX(−Y ) ≃ OX(−(MX +BX)) → OX → OY → 0

with BX to get

0 → OX(−MX) → OX(BX) → OY (B) → 0.

By Serre duality and Proposition 5.4 one has

H1(X,OX (−MX)) = H3(X,OX(KX +MX)) = 0.

Therefore h0(Y,OY (B)) = 1 implies that BX is effective. �

5.7. Proposition. In the situation of Setup 1.B, the divisor class MX is effective and
mobile.

Remark. If MX is nef, the linear system |MX | might have fixed components. Nevertheless
the class being nef, it is mobile. If MX is not nef the proof will show that

h0(X,OX (MX)) = h0(X,OX (−KX))− 1.

3The statement in [Kür13] is for a manifold, but it is straightforward to see that the proof works in our
setup.

14



Proof. If MX is nef, this is immediate from Lemma 3.7. If MX is not nef we know by
Corollary 7.4 that BX is effective. Thus BX is normal prime divisor by Proposition 5.1 and
we can twist the restriction sequence for BX by KX +BX to get an exact sequence

0 → OX(KX) → OX(KX +BX) → OBX
(KX +BX) ≃ OBX

(KBX
) → 0.

Taking cohomology we get a sequence

. . .→ H3(X,OX (KX)) → H3(X,OX (KX +BX)) → H3(BX ,OBX
(KBX

))

→ H4(X,OX (KX)) → H4(X,OX (KX +BX)) → 0

Using Serre duality on X and BX this transforms into

. . .→ H1(X,OX ) = 0 → H3(X,OX (KX +BX)) → H0(BX ,OBX
) = C

→ H0(X,OX ) = C → H0(X,OX(−BX)) = 0 → 0

In conclusion we get

Hq(X,OX (KX +BX)) = 0 ∀ q ≥ 3.

Now we twist the restriction sequence to Y by MX to get

0 → OX(−BX) → OX(MX) → OY (M) → 0.

By Serre duality and what precedes

H1(X,OX (−BX)) = H3(X,OX(KX +BX)) = 0.

Thus the restriction map

H0(X,OX (MX)) → H0(Y,OY (M))

is surjective. In particular

Bs(|M |) = Bs(|MX |) ∩ Y.

Since Y is ample and M is mobile, this shows that dimBs(|MX |) ≤ 2. Thus |MX | is
mobile. �

The divisor MX being effective by Proposition 5.7, the divisor class −KX + MX is big.
Since −KX +MX is also nef by Corollary 5.3 we finally obtain:

5.8. Corollary. In the situation of Setup 1.B, the divisor −KX +MX is nef and big.

5.9. Proposition. In the situation of Setup 1.B, assume that h0(X,OX (BX)) 6= 0. Then
the pair (X,BX) is log-canonical. Moreover the log-canonical centres are the prime divisor
BX and (possibly) some smooth curves C ⊂ BX such that BX · C < 0.

Proof. We have h0(X,OX (BX)) = 1 by Proposition 5.1. Thus BX is the unique effective
divisor in its linear system, hence general. Since (Y,B) = (Y, Y ∩ BX) is log-canonical by
Corollary 2.12, we know by Lemma 3.8 that (X,BX) is lc.

Let us now describe its lc centres: since BX − (KX + BX) = −KX is ample we know by
[Fuj11, Thm.8.1] that for every lc centre Z ⊂ X the restriction morphism

H0(X,OX (BX)) → H0(Z,OZ (BX))

is surjective. Since Z ⊂ BX and h0(X,OX (BX)) = 1 we obtain that H0(Z,OZ (BX)) = 0.

This immediately excludes the possibility that dimZ = 0. Since BX is normal by Proposi-
tion 5.1, there are no two-dimensional lc centres.
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The unique remaining possibility is that dimZ = 1 and the centre is minimal. Thus by
Kawamata subadjunction [Kaw98] the curve Z is normal and there exist an effective divisor
∆Z on Z such that

KZ +∆Z ∼Q (KX +BX)|Z .

In particular

BX |Z − (KZ +∆Z) ∼Q −KX |Z

is ample. Thus if BX ·Z ≥ 0, a Riemann-Roch computation shows that h0(Z,OZ(BX)) > 0,
a contradiction. �

We now come to the key technical result of this section:

5.10. Lemma. In the situation of Setup 1.B, assume that h0(X,OX (BX)) 6= 0. Then we
have a surjective restriction morphism

H0(X,OX (−KX)) → H0(BX ,OBX
(−KX)).

Proof. By Proposition 5.9 the pair (X,BX ) is lc, and BX is an lc centre for this pair. By
Fujino’s extension theorem [Fuj14, Thm.1.11] we have to show that

−KX − (KX +BX) = −KX +MX

is nef and log big, i.e. the restriction of −KX +MX to every lc centre of (X,BX ) is big.

By Corollary 5.8 the nef divisor −KX+MX is big on X. Since MX is mobile by Proposition
5.7, the restriction MX |BX

is pseudoeffective, so (−KX +MX)|BX
is big. By Proposition

5.9 an lc centre Z that is distinct from BX is a curve such that BX · Z < 0. Therefore
MX · Z > 0 and hence (−KX +MX)|Z is ample. �

5.11. Proposition. In the situation of Setup 1.B, assume that h0(X,OX (BX)) 6= 0. Then
we have an injection

H0(B,OB(−KX)) →֒ H1(BX ,OBX
) ∼= H1(B,OB).

Moreover we have

h0(BX ,OBX
(−KX)) = 1.

Proof. We have B = Y ∩BX , so B ⊂ BX is a Cartier divisor that is linearly equivalent to
−KX |BX

. Thus we have an exact sequence

0 → OBX
→ OBX

(−KX) → OB(−KX) → 0.

Let us first show that the restriction map

H0(BX ,OBX
(−KX)) → H0(B,OB(−KX))

is zero. Since B ⊂ Bs(| −KX |) the restriction map

H0(X,OX (−KX)) → H0(B,OB(−KX))

is zero. Since H0(X,OX (−KX)) → H0(BX ,OBX
(−KX)) is surjective by Lemma 5.10, we

get the claim.

This already implies the second statement since the kernel of the restriction map is
H0(BX ,OBX

) = C. Since the restriction map is zero, we have an injection

H0(B,OB(−KX)) → H1(BX ,OBX
).

Now consider the exact sequence

0 → OBX
(KX) → OBX

→ OB → 0.
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The pair (X,BX ) is lc by Proposition 5.9 and BX is normal by Proposition 5.1, so BX is
a threefold with lc singularities. Since KX |BX

is an antiample Cartier divisor we can apply
Kodaira vanishing [KSS10, Cor.6.6] to get

H1(BX ,OBX
(KX)) = 0 = H2(BX ,OBX

(KX)).

Thus we have an isomorphism H1(BX ,OBX
) ≃ H1(B,OB) and the first statement follows.

�

5.12. Corollary. In the situation of Setup 1.B, assume that h0(X,OX (BX)) 6= 0. Then
the pair (X,BX ) is plt, i.e. the threefold BX has canonical Gorenstein singularities.

Proof. By Proposition 5.11 we have h0(B,OB(−KX)) ≤ q(B). By Corollary 2.12 the con-
ditions of Lemma 4.2 are satisfied. Thus we know that B has canonical singularities. By
inversion of adjunction (Theorem 2.7) the pair (BX , B) = (BX , Y ∩BX) is plt near B. Thus
(BX , 0) is plt (i.e. klt) near B. Since BX is Gorenstein this implies that BX has canonical
singularities near B. Since B = BX ∩ Y is an ample divisor the non-canonical locus of BX

is at most a finite set.

By Proposition 5.9 the pair (X,BX) is lc and the lc centres of dimension at most two
are irreducible curves C. Again by inversion of adjunction the non-canonical locus of BX

coincides with the union of lower-dimensional lc centres which has pure dimension one. By
the first paragraph the non-canonical locus has dimension at most zero, so it is empty. �

We are now ready for the first reduction step in the proof of Theorem 1.3:

5.13. Theorem. In the situation of Setup 1.B, the divisor MX is nef.

Proof. We argue by contradiction and assume thatMX is not nef. By the cone theorem there
exists a KX -negative extremal ray R+γ such that MX ·γ < 0. Since MX is mobile by Propo-
sition 5.7 the extremal ray is small. Thus by Kawamata’s classification [Kaw89, Thm.1.1] a
connected component of the exceptional locus is a P2 ⊂ X such that OP2(−KX) ≃ OP2(1).
Thus the intersection Y ∩ P2 is either a line or the whole surface P2. In the latter case we
would have P2 ⊂ M ⊂ Y , in contradiction to the mobility of M . Therefore Y ∩ P2 is a
smooth rational curve l such that M · l < 0. Thus

l ⊂ Bs(|M |) ⊂ Bs(| −KX |Y |) = B

shows that the effective divisor M |B contains a smooth rational curve.

Since MX is not nef, the divisor BX is effective by Corollary 5.6. Thus Proposition 5.11
implies that we have an injection

H0(B,OB(−KX)) →֒ H1(B,OB).

By Corollary 2.12 the surface B satisfies the conditions of Proposition 4.4. Thus the support
of M |B does not contain a smooth rational curve, in contradiction to the first paragraph. �

6. Auxiliary results about linear systems, part II

Theorem 5.13 shows the nefness of the divisor class MX which by Fact 2.3 will give us a
morphism X → T that add additional structure to all the varieties appearing in our setup.
In this section we prove further technical results that use these structures.

We start with a statement that is a variation of Kollár’s injectivity theorem [Kol86, Thm.2.2].
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6.1. Proposition. Let Y be a normal Q-factorial projective variety with klt singularities
such that c1(Y ) = 0. Assume that Y admits a fibration ψ : Y → C onto a smooth projective
curve, and let F be a general fibre. Let A be a nef and big Cartier divisor such that

A ≡ mF +B

with B an effective divisor such that (Y,B) is lc. If m > 1, the restriction map

H0(Y,OY (A)) → H0(F,OF (A))

is surjective.

Proof. It is clearly sufficient to show that

H1(Y,OY (A− F )) = 0.

Since Y has klt singularities and (Y,B) is lc, the pair (Y, ǫB) is klt for every ǫ < 1 [KM98,
Cor.2.35(5)]. In particular (Y, 1

mB) is klt. Now we write

A− F ≡ KY + (m− 1)F +B = (KY +
1

m
B) + (m− 1)(F +

1

m
B)

Since A ≡ m(F + 1
mB) and m > 1 the Q-divisor class (m − 1)(F + 1

mB) is nef and big.
Now we conclude with Kawamata-Viehweg vanishing [Deb01, Thm.7.26]. �

6.2. Lemma. Let Y be a normal projective Q-factorial threefold with terminal singularities
such that KY ≃ OY . Suppose that Y admits an elliptic fibration

ϕ : Y → T

onto a surface T . Let A be a nef and big Cartier divisor such that we have A ≃ M + B
where M ≃ ϕ∗MT with MT a nef and big Cartier divisor on T and B is an effective divisor
such that B ⊂ Bs(|A|).

Then we have an injection

(4) H0(B,OB(KB +M)) →֒ H0(T,OT (KT +MT )).

Proof. Since Y is a terminal, Gorenstein, Q-factorial threefold, it is factorial [Kaw88, Lemma
5.1]. Thus all the Weil divisors on Y are Cartier.

Consider the exact sequence

0 → OY (M) → OY (A) → OB(A) → 0

and the long exact sequence in cohomology

H0(Y,OY (A)) → H0(B,OB(A)) → H1(Y,OY (M)) → H1(Y,OY (A))

By Kawamata-Viehweg vanishing we have H1(Y,OY (A)) = 0. Since B ⊂ Bs(|A|) the
restriction map H0(Y,OY (A)) → H0(B,OB(A)) is zero, so we have an isomorphism

(5) H0(B,OB(KB +M)) ≃ H0(B,OB(A)) ≃ H1(Y,OY (M)).

By the Leray spectral sequence we have an exact sequence

0 → H1(T, ϕ∗OY (M)) → H1(Y,OY (M)) → H0(T,R1ϕ∗OY (M))

By the canonical bundle formula [Amb05] there exists a boundary divisor ∆T on T such
that (T,∆T ) is klt and KT +∆T ∼Q 0. Since ϕ∗OY (M) ≃ OT (MT ) is nef and big we can
apply the Kawamata-Viehweg vanishing theorem [Deb01, Thm.7.26] to see that

H1(T, ϕ∗OY (M)) = 0.
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By the projection formula we have

R1ϕ∗OY (M) ≃ R1ϕ∗OY ⊗OT (MT ),

so R1ϕ∗OY (M) is torsion-free by [Kol86, Thm.2.1].

Since KY ≃ OY and ϕ is flat over a big open susbset of T we have by relative duality [Kle80]

(R1ϕ∗OY ) ≃ (ϕ∗OY (KY/T ))
∗ ≃ OT (KT )

in the complement of finitely many points. Taken together the torsion-free sheaf
R1ϕ∗OY (M) injects into its bidual OT (KT +MT ), so we get an injection

H0(T,R1ϕ∗OY (M)) → H0(T,OT (KT +MT )).

The statement now follows from (5). �

We need the following characterisation of Example 4.3, a singular variant of [Fuj84, Thm.0.2]
and its proof.

6.3. Proposition. Let S be a normal projective surface with canonical singularities such
that H1(S,OS) 6= 0. Let A be an ample, effective Cartier divisor such that A2 = 1 and
KS ·A = −1. Then S is a P1-bundle f : P(V ) → C over an elliptic curve C such that A is
the tautological divisor.

Proof. Since KS ·A = −1 the canonical bundle is not pseudoeffective, so S is uniruled. Since
H1(S,OS) 6= 0 the surface is not rationally connected, and the MRC fibration coincides with
the Albanese map f : S → Alb(S). In particular f contracts all the rational curves on S
and π1(S) ≃ π1(C) where C is the image of f . Our goal is to show that q(S) = 1 and f is
a P1-bundle.

Since the Cartier divisor A is effective and A2 = 1, the divisor A is an integral curve.
By the adjunction formula the arithmetic genus of A is one, so either A is smooth or its
normalisation is P1. Since the ample divisor A is not contracted by the fibration f , we
see that A is a smooth elliptic curve. Now recall that canonical surface singularities are
hypersurface singularities, so by Goresky-MacPherson’s Lefschetz theorem for homotopy
groups [Laz04a, Thm.3.1.21,Rem.3.1.41], the morphism

Z2 ≃ π1(A) → π1(S)

is surjective, in particular q(S) = 1 and C is also an elliptic curve. Since

π1(A) → π1(S) ≃ π1(C)

is surjective, the étale map map A→ C is an isomorphism. Thus A is a section of f . Since
A is ample and has degree one on the fibres, all the f -fibres are integral curves. Thus f is
a P1-bundle by [Kol96, II,Thm.2.8]. Since A · f = 1, we have S ≃ P(f∗OS(A)). �

6.4. Remark. An elementary computation [Har77, V, Prop.2.21] shows that in the situa-
tion of Proposition 6.3, the divisor A is adjoint, i.e we have

A ≃ KS +∆S

with ∆S an ample divisor with ∆2
S = 3.

6.5. Proposition. Let Z be a normal projective threefold with canonical Gorenstein singu-
larities such that q(Z) = 1 and −KZ is nef. Let S ⊂ Z be a normal surface with canonical
singularities such that S is an ample Cartier divisor in Z. Suppose that

h0(Z,OZ (S)) = 1, and S · (−KZ)
2 ≥ 2.

Then either KS ≡ 0 or S is the surface from Proposition 6.3.
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Proof. Let τ : Z ′ → Z be a terminalisation of Z. Then −KZ′ ≃ τ∗(−KZ) is nef and
hi(Z ′,OZ′) = hi(Z,OZ) for all i ∈ N. Since τ∗S · (−KZ′)2 = S · (−KZ)

2 > 0 the nef divisor
−KZ′ is not trivial. Thus Z ′ is uniruled and hence h3(Z ′,OZ′) = 0. Since q(Z) = 1 by
assumption we obtain χ(Z ′,OZ′) ≥ 0. Since τ∗S is nef and big and −KZ′ is nef we have

Hj(Z ′,OZ′(τ∗S)) = Hj(Z ′,OZ′(KZ′ + (−KZ′ + τ∗S))) = 0 ∀ j ≥ 1

by Kawamata-Viehweg vanishing. Thus the Riemann-Roch formula (Fact 2.6) yields

(6) 1 = h0(Z ′,OZ′(τ∗S)) = χ(Z ′,OZ′(τ∗S))

≥
1

12
τ∗S · τ∗(S −KZ) · τ

∗(2S −KZ) +
1

12
τ∗S · c2(Z

′)

Since −KZ′ is nef and τ∗S is nef we have τ∗S · c2(Z
′) ≥ 0 by [Ou23, Cor.1.5]. Applying the

projection formula we obtain

S · (S −KZ) · (2S −KZ) ≤ 12.

Set A := S|S and H = −KZ |S . Then A is an ample Cartier divisor on S and H is a nef and
big Cartier divisor on S such that H2 ≥ 2. By the Hodge index inequality (A·H)2 ≥ A2 ·H2.
[BS95, Prop.2.5.1] this implies A ·H ≥ 2. Since

12 ≥ S · (S −KZ) · (2S −KZ) = 2A2 + 3A ·H +H2 ≥ 4 + 3A ·H

we actually have A ·H = 2. Moreover we have A2 ≤ 2.

1st case. Suppose that A2 = 2. Then we have equality in the Hodge index inequality Thus
we have A ≡ H by [BS95, Cor.2.5.4]. Since

KS ≃ (KZ + S)|S ≃ −H +A

we obtain KS ≡ 0.

2nd case. Suppose that A2 = 1. Since

KS ≃ (KZ + S)|S ≃ −H +A

we have KS ·A = −1. Finally we have the Riemann-Roch inequality

h0(S,OS(A)) ≥
1

2
A2 +

1

2
(−KS ·A) + χ(OS).

Since S is an ample divisor in a threefold and Z has canonical singularities we can use
Kodaira vanishing to shows that q(S) = q(Z) = 1. In particular χ(OS) ≥ 0 and by the
Riemann-Roch inequality h0(S,OS(A)) > 0, so A is an effective divisor. Thus the polarised
surface (S,A) satisfies the conditions of Proposition 6.3. �

7. The nef case

The goal of this section is to show

7.1. Theorem. In the situation of setup 1.B, the divisor MX is not nef.

7.2. Setup. For the proof of Theorem 7.1 we will argue by contradiction and assume that
MX is nef. By the Fact 2.3 there exists a morphism with connected fibres

(7) ϕ : X → T

such that MX ≃ ϕ∗MT for some ample Cartier divisor MT → T . Note that BX is ϕ-ample
since BX ∼ϕ −KX .
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Since X is a Fano there exists a boundary divisor such that (X,∆) is klt and ∆ ∼Q −KX .
Thus we apply Ambro’s theorem [Amb05] to see that T is klt. Note that it is not clear
whether T is Q-factorial.

7.3. Lemma. In the situation of Setup 7.2 we have H1(X,OX (−MX)) = 0 unless T ≃ P1

and MT ≃ OP1(m) with m ≥ 2.

Proof. Since −KX is ϕ-ample we have Rjϕ∗OX = 0 for every j ≥ 1 by relative Kodaira
vanishing. Since MX ≃ ϕ∗MT we deduce that Rjϕ∗OX(−MX) = 0 for j ≥ 1 by the
projection formula. Thus we have

H1(X,OX (−MX)) ≃ H1(T,OT (−MT ))

and the latter is zero by Kodaira vanishing on the klt space T unless T is a curve. The rest
is now straightforward. �

7.4. Corollary. In the situation of Setup 7.2 we have H0(X,OX (BX)) 6= 0 unless T ≃ P1

and MT ≃ OP1(m) with m ≥ 2.

Proof. Immediate from Lemma 7.3 and the exact sequence

0 → OX(−MX) → OX(BX) → OY (B) → 0.

�

We will prove Theorem 7.1 by making a case distinction in terms of the dimension of the
base T .

7.5. Proposition. In the situation of Setup 7.2 we have dimT > 1.

Proof. If dimT = 1 the fibration ϕ has as general fibre a smooth Fano threefold F (the
divisor −KF ≃ −KX |F is ample) and T ≃ P1.

Choose Y ∈ |−KX | a general element, and denote by ψ : Y → P1 the restriction of ϕ to Y .
Denote by FY the general ψ-fibre, that is FY = F ∩ Y . We have a commutative diagram

H0(X,OX (−KX))

��

// // H0(Y,OY (−KX))

��

H0(F,OF (−KX)) // // H0(FY ,OFY
(−KX))

and the horizontal maps are surjective since q(X) = 0 = q(F ).

1st case. Suppose that OT (MT ) ≃ OP1(m) with m ≥ 2. We have −KX |Y ≃ ψ∗MT + B,
moreover the pair (Y,B) is lc by Corollary 2.12. Thus by Proposition 6.1 the restriction
map H0(Y,OY (−KX)) → H0(FY ,OFY

(−KX)) is surjective. Since −KX |Y ≃ ψ∗MT + B
and H0(Y,OY (−KX)) ≃ H0(Y,OY (ψ

∗MT )), the image of this restriction map is given by
B ∩ FY , so it has rank one. Thus we get h0(FY ,OFY

(−KX)) = 1. Since the restriction
map H0(F,OF (−KX)) → H0(FY ,OFY

(−KX)) has kernel H0(F,OF ) of rank one, we get
h0(F,OF (−KX)) = 2. Yet −KF ≃ −KX |F and for a smooth Fano threefold we always
have h0(F,OF (−KF )) ≥ 3 by [IP99, Cor.2.1.14].

2nd case. Suppose that OT (MT ) ≃ OP1(1). By Corollary 7.4 this implies that BX is an
effective divisor. Since −KX ≃ ϕ∗MT +BX ≃ F +BX , the divisor BX is relatively ample.
We claim that

H1(Y,OY (−KX |Y − FY )) = H1(Y,OY (B)) = 0.

As in the first case this yields the surjectivity of H0(Y,OY (−KX)) → H0(FY ,OFY
(−KX))

and the desired contradiction.
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Proof of the claim. By Proposition 5.1 we know that BX is not nef, so there exists a KX -
negative extremal ray R+γ such that BX · γ < 0. Since BX is effective, the corresponding
contraction

µ : X → X ′

must be birational with exceptional locus contained in BX . Since BX is ϕ-ample and µ-
antiample, the intersection of any µ-fibre with a ϕ-fibre must be finite. Thus the fibres of µ
have dimension at most one. By Ando’s theorem [And85, Thm.2.3] this implies that µ is a
smooth blowup along a surface. In particular we have (−KX +BX) · γ = 0, so −KX +BX

is non-negative on the extremal ray R+γ. Since γ was an arbitrary BX -negative extremal
ray the cone theorem implies that −KX + BX is nef. Since BX is effective, the divisor
−KX +BX is nef and big. Therefore

Hj(X,OX (BX)) = Hj(X,KX +OX(−KX +BX)) = 0

for j ≥ 1 by Kawamata-Viehweg vanishing. Now consider the exact sequence

0 → OX(−MX) → OX(BX) → OY (B) → 0.

Since MX ≃ ϕ∗MT and dimT = 1 we have H2(X,OX(−MX)) ≃ H2(T,OT (−MT )) = 0.
By the long exact sequence in cohomology the map 0 = H1(X,OX (BX)) → H1(Y,OY (B))
is surjective and we are finally done. �

7.6. Proposition. In the situation of Setup 7.2 we have dimT < 3.

Proof. Assume that dimT ≥ 3. Since Y is an ample divisor, the morphism ϕ|Y : Y → T
is generically finite onto its image, so M ≃ ϕ∗MT |Y is nef and big. Consider the exact
sequence

0 → OY (M) → OY (−KX) → OB(−KX) → 0.

Since H1(Y,OY (M)) = 0 by Kawamata-Viehweg vanishing the restriction morphism

H0(Y,OY (−KX)) → H0(B,OB(−KX))

is surjective. Since B is in the base locus of | −KX |Y | we obtain H0(B,OB(−KX)) = 0.

Since dimT ≥ 3 we have h0(X,OX(BX)) 6= 0 by Corollary 7.4. Thus Proposition 5.11
shows that we have an injection

H0(B,OB(−KX)) →֒ H1(B,OB).

By Corollary 2.12 the surface B satisfies the conditions of Proposition 4.2. Thus we have
q(B) > 0 and the inclusion H0(B,OB(−KX)) →֒ H1(B,OB) is an equality. Since the first
space has dimension zero, this is a contradiction. �

7.7. Proposition. In the situation of Setup 7.2 we have dimT 6= 2

This is the part of the proof that requires the most work. We will use properties of the
anticanonical divisor Y and the effective divisor BX to determine some of the invariants of
the base T , then we will use the smoothness of X to reach a contradiction.

Proof. Assume that dimT = 2. By Corollary 7.4 the divisor BX is effective. By Corollary
5.12 the divisor BX has canonical Gorenstein singularities, and by Proposition 5.11 we have

h0(BX ,OBX
(−KX)) = 1 and q(BX) = q(B).

Since Y ⊂ X is an ample divisor, the fibration ϕ induces an elliptic fibration

ψ : Y → T
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such that −KX |Y ≃ ψ∗MT +B. By Theorem 2.8 and Corollary 2.9 the threefold Y satisfies
the conditions of Lemma 6.2. Hence we have an injection

(8) H0(B,OB(KB +M)) →֒ H0(T,OT (KT +MT )).

Step 1. We show that h0(T,OT (KT +MT )) = 0 unless KT ≃ −MT .

Since BX is ϕ-ample, the induced morphism ϕ|BX
is surjective onto T . By the adjunction

formula
−KBX

≃MX |BX
≃ (ϕ∗MT )|BX

is nef with numerical dimension two. Since BX has canonical singularities we can apply
[FG12, Thm.3.1] to see that there exists a boundary divisor ∆T on T such that (T,∆T ) is
klt and

KBX
∼Q (ϕ∗(KT +∆T ))|BX

.

Thus we have KT + ∆T ≡ −MT and hence KT + MT = −∆T is not pseudoeffective
unless ∆T = 0. Therefore h0(T,OT (KT +MT )) = 0 unless ∆T = 0. In the latter case
h0(T,OT (KT +MT )) 6= 0 implies that KT ≃ −MT , in particular KT is Cartier.

Step 2. We reach a contradiction. By Proposition 5.11 we have an injection

H0(B,OB(−KX)) →֒ H1(B,OB).

By Corollary 2.12 the surface B satisfies the conditions of Proposition 4.2. In particular
B has canonical singularities, positive irregularity q(B) > 0, and the inclusion above is an
equality. Since

H0(B,OB(−KX)) = H0(B,OB(KB +M))

the injection (8) and the first step show that

H0(B,OB(−KX)) = H1(B,OB) = H0(T,OT (KT +MT ) = C.

In particular KT ≃ −MT by the first step, i.e T is a del Pezzo surface with at most canonical
singularities.

Since B is the complete intersection of BX and Y , it maps surjectively onto the surface T
and B ⊂ BX is an ample Cartier divisor. Since q(T ) = 0 and q(B) = 1, and the irregularity
is a birational invariant of varieties with rational singularities, the map

τ := ϕ|T : B → T

is not birational. Thus τ is generically finite of degree at least two and

(MX |B)
2 = (τ∗MT )

2 = deg τ ·M2
T ≥ 2.

Thus q(BX)=1, −KBX
≃ MX |BX

is nef, B ⊂ BX is an ample Cartier divisor with
h0(BX ,OBX

(B)) = h0(BX ,OBX
(−KX)) = 1 and B · (−KBX

)2 ≥ 2, so that the three-
fold BX satisfies the conditions of Proposition 6.5, and we have two cases:

Case a) We have KB ≡ 0. Since KB ≃ B|B this implies that B is nef. Thus BX is nef by
Theorem 2.10, a contradiction to Proposition 5.1.

Case b) B is isomorphic the ruled surface P(V ) → C from Proposition 6.3. Since ρ(P(V )) =
2 and the map τ is surjective, the del Pezzo surface T has Picard number at most two
(canonical singularities are Q-factorial, [KM98, Prop.4.11]). By Remark 6.4 the nef and
big class MX |B is ample and (MX |B)

2 = 3. Since MX |B ≃ τ∗MT ≃ τ∗(−KT ) and τ has
degree at least two, we deduce that τ is a finite morphism of degree three and (−KT )

2 = 1.
Thus T is a del Pezzo surface of degree one and Picard number at most two, in particular
it is not smooth. By [AW97, Prop.1.3] this implies that the fibration ϕ : X → T is not
equidimensional, so there exists a prime divisor D ⊂ X that is contracted onto a point in
T .
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Since the effective divisors BX and Y are ϕ-ample, the intersection

D ∩BX ∩ Y = D ∩B

is non-empty. Hence there exists a curve E ⊂ B that is contracted by τ . Yet we showed
above that τ is finite, a contradiction. �

Remark. It may seem annoying that the case of a fibration X → T with T a del Pezzo
surface of degree one requires so much additional effort. Note however that this situation
is very close to Example 3.2, so our arguments must be specific enough to rule out this
situation.

8. The conclusion.

Proof of Theorem 1.3. Assume that a general anticanonical divisor Y ∈ | −KX | is smooth.
Then Y is Q-factorial, so we satisfy the Assumption 1.4 from the Setup 1.B. By Theorem
5.13 the divisor MX is nef, yet this contradicts Theorem 7.1. �
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