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Abstract: Big Data management is a key enabling factor for en-

terprises that want to compete in the global market. Data coming

from enterprise production processes, if properly analyzed, can pro-

vide a boost in the enterprise management and optimization, guar-

anteeing faster processes, better customer management, and lower

overheads/costs. Guaranteeing a proper Big Data pipeline is the

Holy Grail of Big Data, often opposed by the difficulty of evaluat-

ing the correctness of the Big Data pipeline results. This problem
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2 1 INTRODUCTION

is even worse when Big Data pipelines are provided as a service in

the cloud, and must comply with both laws and users’ requirements.

To this aim, assurance techniques can complete Big Data pipelines,

providing the means to guarantee that they behave correctly, to-

wards the deployment of Big Data pipelines fully compliant with

laws and users’ requirements. In this paper, we define an assurance

solution for Big Data based on Service-Level Agreements, where a

semi-automatic approach supports users from the definition of the

requirements to the negotiation of the terms regulating the provi-

sioned services, and the continuous refinement thereof.

1 Introduction

Big Data is a major research topic, leading all productive environments and

enterprises towards the data-driven economy. Big Data becomes fundamental

for all enterprises, from big ones to SMEs, that want to compete in the global

market. Better management of data coming from productive processes in fact

leads to faster processes, better customer management, and lower overheads and

costs. Often, the immense benefits of Big Data are forbidden to those enterprises

that do not have in-house Big Data skills and competences, and are therefore

unable to manage the intrinsic complexity of such technologies.

To this aim, the R&D community has focused in the last few years on widen-

ing the adoption of Big Data technologies by providing solutions supporting

users in easily implementing a Big Data campaign [9, 21]. Several approaches

to Big Data-as-a-Service have been defined, providing services for the manage-

ment and execution of Big Data pipelines at different layers of the cloud stack.

Substantial work has been done on Big Data Platform-as-a-Service, where users

are provided with a pre-configured platform, as for instance Microsoft Azure
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HDInsight and Amazon EMR. Users need to only concentrate on configuring

and executing the analytics without worrying about how to manage and deploy

the corresponding platform. This scenario, however, collides with the lack of

data scientists having the skills and competences to implement a sound Big

Data campaign and retrieve meaningful results.

Following this issue, different techniques supporting the concept of Big Data

Analytics-as-a-Service have been defined [5, 42, 6, 24, 13], where high-level re-

quirements of the users are transformed in Big Data workflows that can be

executed on the target Big Data platform. However, these approaches suffer

from the inability to evaluate and manage the quality and correctness of the

implemented Big Data analytics. It is therefore increasingly important to guar-

antee that the overall Big Data infrastructure complies with users’ expectation,

and even more with national/international laws and regulations. This challenge

points to the concept of Big Data assurance, which aims to provide justifiable

confidence that a Big Data pipeline behaves as expected. In the past, assurance

techniques (i.e., audit, certification, compliance) have been used to evaluate the

status of distributed systems such as the cloud [4]. These solutions, however,

barely apply to Big Data scenarios and require a rethinking of the assurance

concept at large. Effectively tackling such issue is fundamental to increase trust

in the Big Data-as-a-Service paradigm, and in turn to foster the movement of

critical businesses to it.

The approach in this paper enables the definition and execution of trustwor-

thy Big Data pipelines with provable compliance to non-functional (e.g., secu-

rity) properties. It enriches the Model-based Big Data Analytics-as-a-Service

(MBDAaaS) methodology in [7] with the notion of assurance, by the means of

generic annotations. The proposed assurance methodology is integrated with

Service-Level Agreements (SLAs), which help negotiating the Big Data services
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to execute the pipeline, and evaluating its compliance to non-functional prop-

erties, towards full support of users’ requirements.

The contribution of this paper is twofold. We first refine the MBDAaaS

methodology by introducing assurance requirements and controls at declarative

and procedural levels using annotations. We then integrate and take advantage

of SLAs management, by i) supporting users in SLAs negotiation by automati-

cally generating SLAs negotiation rules according to the provided requirements;

ii) defining an integrated approach that continuously refine the negotiated ser-

vices towards full compliance.

The remainder of this paper is organized as follows. Section 2 presents

related work and our reference scenario. Section 3 introduces the MBDAaaS

methodology, then enriched with assurance support in Section 4. Section 5 de-

tails the proposed SLA specification, while Section 6 describes the integration

of SLA lifecycle within the MBDAaaS methodology. Section 7 presents a walk-

through of the whole methodology. Finally, Section 8 draws our conclusions.

2 Related Work and Reference Scenario

2.1 Related Work

Security Assurance. It is be defined as a way to gain justifiable confidence

that a system will consistently demonstrate one or more non-functional (e.g.,

security, privacy, and dependability) properties, and operationally behaves as

expected despite failures and attacks [4]. It provides methodologies support-

ing different properties based on several techniques [4], such as i) audit [31, 8];

ii) certification/labelling [3, 36, 2]; iii) compliance [11]. At a lower level, they

typically rely on i) testing [3, 2]; ii) monitoring [11, 31]; iii) hybrid and other

approaches (e.g., testing and risk [36]). These techniques support different sys-
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tems, from (hybrid) cloud environments [11, 31, 3, 2], to edge computing [8],

and Internet of Things [36].

SLAs. They are contracts between service providers and consumers. Most of

all, SLAs are used to specify the terms for such service provision. In general,

research on SLAs followed the evolution of the ICT landscape. The first lan-

guages aimed at web services, starting from Web Service Level Agreement [32]

and other formalisms [30] culminated in WS-Agreement [1] and corresponding

refinements and extensions [39, 28]. Then, other languages emerged addressing

the requirements of cloud computing [19] (e.g., CSLA [29], SLAC [46]). Finally,

novel languages and paradigms are under investigation in the context of cloud-

IoT architectures (e.g., Multi-Level SLA [20]). In general, these languages aim

to simplify the SLA specification process for the involved parties, and provide an

adequate level of expressiveness. The research community adopted SLAs also

for other purposes, such as service [26, 43] and cloud provider selection [40].

Despite the extended research on SLAs, they still fail to completely address the

requirements of Big Data Analytics services, as two main issues remain mostly

unsupported: i) security and privacy requirements; ii) complex services and

operations dependencies, that are typical of these environments.

Assessment of Big Data Pipelines. It is an active line of research for which

many solutions have been proposed. Some of them are based on SLAs [52],

despite the aforementioned issues. They mainly target MapReduce jobs [48, 23,

50], aiming to identify and address SLA violations. Other approaches focus on

anomaly detection in Big Data pipelines [17, 41, 45, 53], and specific security

properties such as integrity [51], availability [27], and privacy [37, 49]. Finally,

another flourishing research line specifically addresses quality assurance [25],

that partially overlaps with security assurance as they both consider non-func-

tional properties.
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Figure 1: Architecture diagram of our reference scenario

Following the state of the art, Big Data assurance is a pressing need, as

it is a key enabler for trustworthy Big Data analytics; SLAs specification and

management must be also part of the system, as they are the formal agreements

between service consumers and providers. The approach in this paper provides a

first boost in this direction, taking the best out of the combination of assurance

and SLAs.

2.2 Reference Scenario

Our reference scenario in Figure 1 is provided by SAP, a global market leader

in enterprise resource planning, where an ERP system continuously sends its

application logs to two connected cloud platforms, a private cloud Monsoon

instance and a publicly-accessible AWS instance saving data into a Hadoop

data store. In the private cloud, the data are first pseudonymized and then

anonymized with differential privacy before being streamed to the AWS instance.
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There, the data are constantly monitored by a Retention Service, configured to

delete logs older than 1 year. An auditor (Clara) can connect to this service and

manually check whether there is a violation of the retention policy. An analyst

(Bob) can check the logs through an analytics agent, which first clusters logs and

then further anonymize clusters with k-anonymity. k-anonymity is configured to

run only on large clusters, as small clusters are considered anomalies, hence not

eligible for k-anonymity. Once Bob completes his analysis, he defines anomaly

ranges which allow the response team (Alice) to look at the raw logs whitelisted

by Bob, enforcing a 4-eyes principle. Alice uses a log viewer to take the proper

decision, such as contacting the identified fraudster for a face-to-face interview.

When using the log viewer, the raw, non-anonymized logs are displayed to her,

but only if they pertain to the ranges defined in the anomaly range storage by

Bob (e.g., specific log IDs, specific time-ranges).

3 MBDAaaS Methodology

Big Data analytics and management are practical and pressing needs. While a

Big Data pipeline can be easily deployed, it still takes substantial expert knowl-

edge to set the pipeline up in such a way that it actually produces meaningful

and sound results. Current approaches mostly focus on providing the so-called

Big Data Platform-as-a-Service (BDPaaS) paradigm, where Big Data providers

(e.g., Azure, Amazon) offer Big Data platforms on demand to end users. End

users then access a complete Big Data platform, without the need of knowing

how to install and configure it, and just focus on implementing the Big Data

computation. BDPaaS is fundamental to support the users in the management

of Big Data analytics and in all involved activities. Though important, how-

ever, it is insufficient to widen the adoption of Big Data technologies among the

different production domains.
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The most recent trends in Big Data application development point to a

model-based approach, where users specify their expectations in terms of re-

quirements, and users/consultants follow them in implementing the Big Data

pipeline [5]. The aim is to reduce as much as possible the involvement of the

users in Big Data management. In the following, we briefly summarize such an

approach.

3.1 MBDAaaS Models and Workflow

Unlike existing solutions focusing mostly on data modeling and representa-

tion [33], the proposal in this paper is based on the approach in [5], permitting to

define declarative requirements along all phases of a Big Data pipeline: i) data

preparation, consisting of all activities to be done at data collection/ingestion

time to prepare data for analytics (e.g., cleansing and anonymization); ii) data

representation, consisting in the choices for representing data to be analyzed

(e.g., data model, data structure, and data management); iii) data analytics,

specifying the mining operations to execute (e.g., the type and the model of

analytics, the learning approach); iv) data processing, specifying data routing

and parallelization (e.g., real time, batch); v) data visualization and reporting,

specifying the representation of the outcome of the pipeline (e.g., information

on the dimensionality, cardinality).

We develop on the approach in [5], which uses three models and different

model transformations, as follows.

Declarative model. It collects user’s requirements and expectations on the

Big Data pipeline. The user accesses a graphical interface and defines such

requirements in terms of goals. Formally, a goal is modeled as a triple ⟨g, i, o⟩,

where g is the name of the goal; i is the indicator representing the technique

to measure/assess the goal; and o is the target to achieve to consider the goal
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fulfilled. Each goal can also be enriched with constraints as pairs (attribute,

value), further refining user’s expectations. The declarative model is expressed

as a JSON file, and represents the input of the MBDAaaS methodology.

Procedural model. It is a technology-independent model that defines the

workflow of the Big Data pipeline. It is a direct acyclic graph where i) each

node represents a service in one of the five phases of a Big Data pipeline; ii)

each arc between two nodes represents the execution flow. Each service is config-

ured according to constraints in the declarative model, or preferences specified

directly by the user. The procedural model defines a service composition spec-

ified in a semantic language based on OWL-S [35].

Deployment model. It is a technology-dependent model that specifies the ex-

ecution of the Big Data pipeline on the target platform. It is a representation of

the procedural model using a workflow language (e.g., Oozie, Spring Cloud Data

Flow) that can be automatically executed on the target platform. A compiler

transforms the OWL-S procedural model in a language-specific workflow. The

deployment model contains all details on the target system and implemented

algorithms.

Transformations. They are a series of semi-automatic model transformations

that take as input the declarative model and produce as output the deployment

model. On the basis of the user-defined goals and constraints in the declarative

model, our methodology retrieves the set of compatible services. Then, the user

manually configures and composes a subset of them to produce the procedu-

ral model. This model is then automatically transformed by a compiler in a

deployment model, which is ready to be executed on the target platform [5].

Example 1. Following the reference scenario in Section 2.2, Listing 1, Figure 2

and Listing 2 present an example of declarative, procedural, and deployment
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Listing 1: Declarative model of reference scenario

{
// [...]
"tdm:targetDataSources": [

"hdfs://192.168.0.5:8020"
],
// [...]
"tdm:processing": {

// [...]
"@type": "tdm:Phase" ,
"tdm:label": "Data Processing" ,
"tdm:incorporates": [

{
"@type": "tdm:Goal" ,
"tdm:label": "Anonymization" ,
"tdm:constraint": "{}" ,
"tdm:incorporates": [

{
"@type": "tdm:Indicator" ,
"tdm:label": "Anonymization Techniques" ,
"tdm:constraint": "{}" ,
"tdm:visualisationType": "Option" ,
"tdm:incorporates": [

{
"@type": "tdm:Objective" ,
"tdm:constraint": "{k:10}" ,
"tdm:label": "K-Anonymity"

}
]

}
]

}
]

}
// [...]

}

models respectively. SAP defines the declarative model in Listing 1, including

the following goals.

G1 Anonymization for the data preparation phase, with indicator Anonymiza-

tion technique and value Pseudonymization, extended with a constraint

(Algorithm, hash=SHA-256).

G2 Anonymization for the data preparation phase, with indicator Anonymiza-

tion technique and value Priv-bayes [47], extended with a constraint on

the noise level (Algorithm, ϵ=0.1).

G3 Compliance for the data analytics phase, with indicator Data Erasure and

value 1 year.
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Data Preparation

Data Analytics Data Processing

Pseudonym.
SHA-256

s1

Anon.
Priv-bayes(ϵ=0.1)

s2

Stream
Connector

s3

Retention
1Y

s4

Spark
k-means

s5

Anonymizer
10-Anonymity

s6

Figure 2: Procedural model of reference scenario

Listing 2: Deployment model of reference scenario

# PSEUDONYMIZATION
pseudonymization-service
--parameter.output_column=pseudo
--parameter.input_column=user
--parameter.input_file=hdfs://user/root/sap/anon1/input.csv
--parameter.input_data=hdfs://user/root/sap/anon1/input_data.csv
--parameter.delimiter=;
--parameter.output_file=hdfs://user/root/sap/anon1/output.csv
# ANONYMIZATION
privbayes-service
--input_file=hdfs://user/root/sap/anon1/output.csv
--delimiter=;
--output_file=hdfs://user/root/sap/anon1/results.csv

G4 Analytics for the data analytics phase, with i) indicator Task and value

Crisp Clustering; and ii) indicator Learning Approach and value Unsu-

pervised.

G5 Anonymization for the data processing phase, with indicator Anonymiza-

tion technique and value k-anonymity, extended with two constraints:

i) on the value of k (Algorithm, k=10); ii) on the cluster size, prescribing

to anonymize only large clusters (Exception, Cluster-size<5).

Our methodology then retrieves all compatible services, leading to a proce-
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dural model which applies i) pseudonymization and ii) anonymization; iii) a

stream data connector to ingest data; iv) a retention service deleting old logs;

v) an analytics service clustering logs; vi) an anonymization service generalizing

the content before visualization. Finally, the user configures the above services

(and the composition thereof), and the compiler generates the deployment model

in the Spring Cloud Data Flow language, including all the details of the compo-

sition.

4 Big Data Assurance

The success of a methodology that assists users in instantiating their Big Data

pipelines depends on its ability to guarantee that the retrieved pipelines results

are in line with user’s expectations. In our case, the retrieved results must be the

results of a pipeline correctly implementing the user’s declarative specifications.

The soundness of this entire process depends on whether the instantiated Big

Data pipeline satisfies the assurance requirements specified by the user.

4.1 Assurance Requirements

Assurance requirements on Big Data pipelines express user’s expectations at

both functional and non-functional levels. These requirements are later trans-

lated into real assurance controls at deployment level (Section 4.2). With no lack

of generality, an assurance requirement is modeled as an assurance annotation,

as follows.

Definition 4.1. An assurance annotation is a triple ⟨attr op value⟩, where attr

is an assurance target; op is an operator ∈{=, <, >, ̸=, ≤, ≥}; and value is

the objective for the attribute.

We note that an assurance annotation can also be specified as a logical combi-
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nation of other annotations. Our definition captures different ways of expressing

assurance annotations, including SLAs, certification, audit, and compliance. It

can be easily mapped to different formalisms and (higher) level of abstractions,

such as fuzzy logic [18, 44, 14] or specific languages [12, 10, 38, 15], where value

in the triple ⟨attr op value⟩ can be replaced with words increasing the usability

for end users. We note that each annotation can also specify the importance a

specific non-functional requirement plays in the pipeline for the user, such as,

for instance, desirable or mandatory. In the following, according to the state of

the art [3], we assume all annotations to be mandatory and leave the specific

treatment and balancing of users’ non-functional requirements for our future

work. These annotations can be specified at two levels, as follows.

Declarative level defines assurance annotations on specific goals of the declar-

ative model in Section 3.1. These annotations are then refined and integrated in

a semi-automatic manner during the transformation in the procedural model.

Example 2. Following Example 1, goal G5 is annotated with ⟨k=10⟩, prescrib-

ing the usage of k-anonymity with k=10.

Procedural level defines assurance annotations on specific services of the pro-

cedural model in Section 3.1. These annotations can be the refinement of an-

notations at declarative level or be directly specified by the user.

Example 3. Following Example 2, the service s6 implementing k-anonymity

can be annotated with ⟨location=EU⟩, prescribing to perform the computation

in Europe.

4.2 Assurance Process

The MBDAaaS assurance process based on the above annotations consists of

three steps, as sketched in Figure 3 and described in the following.
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Requirements Definition. It extends declarative and procedural models with

annotations specifying assurance requirements according to any specific for-

malisms compatible with Definition 4.1. We note that some assurance require-

ments can be automatically derived during the transformation at procedural

level. At this step, the user refines all the annotations, each of them associated

with the corresponding services.

Weaving. It weaves the procedural model and the corresponding annotations

into a deployment model, following the approach in Section 3. It transforms as-

surance annotations into assurance controls, that is, assurance scripts returning

a Boolean result, indicating the success (⊤) or failure (⊥) of the correspond-

ing annotation. Each control is also associated with a scheduling rule specifying

when it should be executed (e.g., after the corresponding services complete their

execution, at pre-defined intervals). In other words, the deployment model i) in-

cludes a ready-to-be-executed workflow of the pipeline and ii) integrates all as-

surance controls to evaluate the compliance between the pipeline and the user’s

expectations.

Execution and Refinement. It executes the deployment model to perform

the Big Data computation. It includes an assurance manager managing the life

cycle of the assurance controls according to the specified scheduling rules. Fi-

nally, the retrieved assurance results can guide the refinement of the declarative

model towards full compliance with the user’s expectations.

4.3 Multi-Layer Evaluation

Our Big Data assurance methodology extends traditional assurance to embrace

different layers of evaluation: platform, analytics process, and data. In particu-

lar, the latter points to veracity of the 5V model for Big Data [16], referring to

data trustworthiness. These three layers map to the five phases of a Big Data
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Declarative Model

Target Platform

Deployment Model

Procedural Model

Assurance Requirements

Assurance-Based
Refinement

Execution

Model
Transformation

Assurance
Annotations
Refinement

Service
Composition

Assurance
Controls

Figure 3: Integration of MBDAaaS methodology and assurance.

pipeline (data preparation, data representation, data analytics, data processing,

data visualization and reporting in Section 3.1), as summarized in Table 1 and

described in the following.

Data assurance. It evaluates how data are managed, represented, and pre-

pared for the Big Data platform. It relates to phases data preparation and

data representation. In our scenario, the analyst must never see individual data

records, but only data buckets generalized by applying k-anonymity. To this

aim, an assurance control verifies that each displayed data record are indistin-

guishable from at least k−1 other records.

Process assurance. It evaluates the status of a Big Data pipeline by moni-

toring all the activities between the ingestion of data and the production of the

pipeline outcome. It relates to phases data analytics, data visualization and

reporting. In our scenario, data must not be kept on the cloud for more than

one year. To this aim, an assurance control verifies that data records are never

older than one year.

Platform assurance. It evaluates the status of the Big Data platform. It goes
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Table 1: Mapping between pipeline phases and assurance layers
Assurance Layer MBDAaaS

Phases
Description

Data Data preparation,
Data representation

Evaluation of non-functional properties of data

Process Data analytics,
Data visualization
& reporting

Evaluation and monitoring of non-functional
properties of Big Data pipeline, results, and vi-
sualization

Platform Data processing Evaluation of non-functional properties of plat-
form components, their deployments and config-
urations

beyond phase data processing and also considers the components supporting

non-functional requirements such data security, and performance. In our sce-

nario, the Big Data platform must guarantee data availability by replicating

data on several nodes. To this aim, an assurance control verifies that Hadoop

correctly replicates data.

In the remaining of the paper, we describe the integration of the proposed

assurance methodology and SLAs management. First, we detail the SLA spec-

ification (Section 5), second, we show the overall integration (Section 6).

5 SLA Definition

Typically, Big Data pipelines are executed by service providers. Hence, the users

need to negotiate with the providers to define the SLAs specifying the assurance

guarantees on the provisioned Big Data services. SLAs are formal agreements

(i.e., contracts) that clarify the service provisioning and the responsibilities be-

tween the service consumer and the service provider [52]. At a minimal level,

SLAs define the non-functional properties to preserve during the provision of

a service, and the penalties to apply in case of violations. Our SLA specifica-

tion language extends WS-Agreement to cover the MBDAaaS concept. Figure 4

shows the three main sections composing an SLA in WS-Agreement. The first

section, Name, provides an optional SLA name. The second section, Context,

contains metadata for the entire SLA (e.g., participants, lifetime). The third
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Agreement
Name
Context
Terms
Service Terms

Guarantee Terms

Figure 4: Structure of WS-Agreement SLA

section, Terms, specifies the terms of the SLA. They are of two types: a) Service

Terms specifying the services regulated by the SLA; and b) Guarantee Terms

specifying the service levels that should be satisfied during the service provi-

sion. More in detail, Guarantee Terms define the expected quality of service in

terms of: i) ServiceLevelObjective (SLO) specifying the conditions to be met to

fulfill the guarantee, either as Key Performance Indicators (KPIs) or as custom

expressions; ii) corresponding BusinessValueList, specifying different aspects of

the SLO, such as importance, penalty, and other custom aspects (CustomBusi-

nessValue). Notwithstanding these features, WS-Agreement is ill-suited for our

scenario because of the lack of i) security and privacy SLOs; ii) actions used

to react to changes during the SLA life cycle; iii) multi-party SLAs, to express

Big Data pipelines composed of multiple parties.

For these reasons, we propose an extension of WS-Agreement, supporting

actions to undertake when guarantees are violated. To this aim, we extend the

sub-element CustomBusinessValue of element BusinessValueList, being created

for this scope [1]. Our extension introduces a new element CounterActions, con-

taining one or more elements CounterAction, specifying the counteractions to

perform if some conditions are met. In particular, each CounterAction has an

attribute named Target specifying the action to undertake. The possible values

are: i) RENEGOTIATION, causing a SLA negotiation; ii) PENALTY, causing

a penalty; iii) REWARD, causing a reward. A CounterAction is guarded by
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a condition (sub-element QualifyingCondition), that, in turn, consists of one

or more atomic conditions (sub-element Condition) combined together with a

logical operator (e.g., All for ∧, Any for ∨). A Condition consists of a compar-

ison operator specified in the attribute Name. The operator is applied to two

arguments specified in the sub-element Argument. In turn, element Argument

consists of two sub-elements specifying the actual arguments of the condition,

either as simple values (ArgumentValue) or as a result of a function call (Argu-

mentFunction).

In addition, we provide three built-in functions: i) VIOLATIONS(GuaranteeTerm),

returning the number of times the GuaranteeTerm has been violated so far;

ii) PENALTY_AMOUNT(GuaranteeTerm), returning the amount accrued in

penalties due to violations of the GuaranteeTerm; iii) COUNTER(Action, Guar-

anteeTerm), returning the number of times Action has been executed following

a GuaranteeTerm triggering. We note that the GuaranteeTerm input of these

functions is implicit, as they can only be called from within a GuaranteeTerm.

We note that WS-Agreement already supports the specification of penalties,

but our extension permits a more precise definition.

Example 4. Following Example 3, Listing 3 shows an example excerpt of an

extended WS-Agreement, starting from element CustomBusinessValue. Names-

pace wsga refers to the base WS-Agreement, while wsga-x refers to our exten-

sion. It specifies to renegotiate the SLA (lines 2–21) if the number of violations

(lines 4–18) is ≥5 (lines 6–16).

6 SLA-Based Big Data Assurance

Our MBDAaaS platform acts as a middleman between service consumers and

providers in a multi-party platform, where some consumers and providers are
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Listing 3: Example of WS-Agreement extension

1 <wsag:CustomBusinessValue>
2 <wsag-x:CounterActions>
3 <wsga-x:CounterAction Target="RENEGOTIATION" >
4 <wsag:QualifyingCondition>
5 <wsag:All>
6 <wsag-x:Condition
7 Name="GREAT-OR-EQUAL" >
8 <wsag-x:Argument>
9 <wsag-x:ArgumentFunction>

10 <wsag-x:Function Name="VIOLATIONS" />
11 </wsag-x:ArgumentFunction>
12 <wsag-x:ArgumentValue>
13 5
14 </wsag-x:ArgumentValue>
15 </wsag-x:Argument>
16 </wsag-x:Condition>
17 </wsag:All>
18 </wsag:QualifyingCondition>
19 </wsga-x:CounterAction>
20 </wsag-x:CounterActions>
21 </wsag:CustomBusinessValue>
22 </wsag:BusinessValueList>

already enrolled, that is, their corresponding SLAs have been already negotiated

when a new party arrives (i.e., consumer). Here, the goal is to let the new party

agree on a SLA compatible with all the others (i.e., providers). In general, the

SLA lifecycle is a five-steps process [19]: i) negotiation, where the different

parties negotiate the SLA; ii) establishment , where the requested services are

deployed; iii) monitoring , where the SLA guarantees are monitored ensuring

compliance; iv) violation management , where eventual violations are properly

addressed; v) reporting and termination, where a report about the SLA is pro-

duced, and the SLA is terminated according to the defined termination rules.

The SLA-based Big Data assurance methodology in this paper closely follows

this lifecycle, and consists of two main phases: i) models definition (including

negotiation, establishment); ii) SLAs monitoring (including monitoring, viola-

tion management, reporting and termination); we describe them in the following

and summarize this mapping in Table 2.
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Table 2: Mapping between the phases of SLA lifecycle and the phases
of our methodology
Our methodology SLA lifecycle

Models definition Negotiation, establishment
Monitoring Monitoring, violation management, reporting and termination

6.1 Models Definition

The user first defines the declarative model in Section 3 together with the assur-

ance annotations, which are then refined and paired with additional annotations

in the procedural model; a compiler finally produces the deployment model de-

tailing the assurance controls corresponding to the assurance annotations. We

note that the compiler specifies the fine-grained scheduling rules to execute the

controls (e.g., immediately following the execution of the corresponding service).

The defined models are then the input of a second compiler which generates the

negotiation rules to follow to negotiate the final SLAs with the providers. More

in detail, the rules model the interactions forming the negotiation process be-

tween the new incoming party and the other ones for which SLAs have been

already negotiated. This compiler translates all the concepts in the assurance-

enriched models in negotiation rules, and, through negotiation, to the SLAs

and, finally, to the provisioned services. We note that assurance annotation

importance in Section 4.1 is removed from the provisioned Big Data platform,

since it is used for negotiation only.

Our approach is based on the PROSDIN negotiation framework, a proactive

run-time SLA negotiation tool [34]. PROSDIN acts as a negotiation broker

executing negotiation rules on behalf of the interested parties. We automatically

derive negotiation rules in the form of XML rules from the models in Section 4.

These rules are of the form:

IF (condition) THEN (effect) ELSE (effect)
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Conditions are either atomic conditions or logical combinations of atomic con-

ditions over specific property attributes of the relevant services. Effects can be

of three types: i) accept, accepting the value of a (set of) property attribute in a

SLA offer; ii) reject, rejecting the value of a (set of) property attribute in a SLA

offer; iii) set, proposing a new value or range of values for a (set of) property

attribute as part of an SLA offer. Section 7 presents an example of negotiation

rules. PROSDIN then translates these rules into Jess rules, that is, the rule

engine it uses internally [22].

In the simpler approach, we derive matching rules only, that is, the MB-

DAaaS platform tries only to match the new SLA with the terms of the SLAs

of the other parties, with no counteroffers being made (that is, no effect set).

Otherwise, we can derive full negotiation rules, where the MBDAaaS platform

tries to negotiate the terms of the new SLA to obtain a match. In case the

terms do not match, a counteroffer is made proposing new values (using effect

set). We note that other negotiation approaches exist, as described in [7].

Finally, once the negotiation process is over, our approach produces the

corresponding SLA(s) in the extended WS-Agreement specification (Section 5).

Then, the SLA(s) is weaved together with the deployment model, injecting the

(optional) actions upon violation.

6.2 Monitoring

The Big Data platform includes the corresponding assurance controls, which are

executed according to the fine-grained scheduling rules specified during weaving

(Section 4.2). This continuous execution enables to monitor the compliance to

the negotiated SLAs resulting from the generated negotiation rules and, in turn,

to the assurance requirements. More in detail, every time an assurance control

fails (i.e., it returns ⊥), it signals a non-compliance of the service it is associ-
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Figure 5: Overview of the whole SLA-based assurance process

ated with (Section 4.2). To the aim of providing a (mostly) automated solution,

our assurance methodology goes beyond merely detecting non-compliance, by

proposing and possibly applying remediations encoded in the generated SLAs.

In fact, thanks to the WS-Agreement extension in Section 5, (counter-)actions,

guards, and SLA functions are directly specified in the SLA and integrated with

the scheduling rules of the assurance manager. For instance, action guards are

translated into low-level conditions such as conditions on the results of assurance

controls. This way, when a non-compliance is detected, it can trigger either a

SLA renegotiation or a penalty. Figure 5 sketches the overall process. We high-

light that if renegotiation actions are used, our methodology keeps monitoring

and negotiating new SLAs until non-compliance events are no longer detected.

In other words, it permits to converge towards a service provision that matches

all user’s requirements.
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Table 3: Assurance annotations
# Goal Annotations Type Description

D1 G1 ⟨|Out|=256⟩ A Check output length
D2 G2 ⟨ϵ=0.1⟩ A Check noise level
D3 G3 ⟨Age≤1Y⟩ A Check retention
D4 G4 ⟨k=2⟩ M Check number of clusters (benign and malign)
D5 G5 ⟨k=10⟩ ∧ ⟨|Cluster| ≥ 5⟩ M Check k-anonymity

(a) declarative

# Serv. Annotations Type Description

P1 s3 ⟨size(In)=size(Out)⟩ M All data are ingested
P2 s3 ⟨location=EU⟩ M Computation in EU
P3 s4 ⟨location=EU⟩ M Computation in EU
P4 s5 ⟨location=EU⟩ M Computation in EU
P5 s6 ⟨location=EU⟩ M Computation in EU

(b) procedural

7 Walkthrough Example

Following the reference scenario in Section 2.2 and Examples 1–4, we provide a

full run of our methodology.

The first step involves the definition of the models in Section 3 detailing:

i) the goals of the Big Data pipeline in the declarative model (Example 1),

consisting of two anonymization goals (G1, G2 ) in the data preparation phase,

one-year retention (G3 ) and clustering (G4 ) in the data analytics phase, and

anonymization (G5 ) in the data processing phase; ii) the service composition

realizing such goals in the procedural model (Figure 2), built by automatically

selecting compatible services and manually composing and configuring them.

This step also involves the definition of assurance requirements, as anno-

tations on the declarative and procedural models above (Section 4). During

the production of the procedural model, some requirements are i) added auto-

matically and ii) translated into annotations in the resulting procedural model.

More in detail, Table 3(a) shows the assurance annotations at declarative level,

distinguishing between those specified by users (“M”) and those derived auto-

matically (“A”). Table 3(b) shows the assurance annotations at procedural level;
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Table 4: Assurance controls and corresponding
annotations
# Annotations Schedule
C1 P1 After
C2–C5 P2–P5 During
C6 D3 refined at procedural-level During

for brevity, we omitted those refining annotations at declarative level.

Next, a compiler weaves together the above models and annotations produc-

ing the deployment model by transforming i) the abstract service composition of

the procedural model into a concrete service composition, in this case in Spring

Cloud Data Flow language; ii) the procedural-level assurance annotations into

assurance controls, as part of the concrete service composition. We note that

these transformations are semi-automatic, that is, the user is also involved in

the refinement of the abstract service composition. Table 4 shows an excerpt

of procedural-level assurance annotations and corresponding assurance controls.

Some of them are executed by the assurance manager when the corresponding

services complete their execution (e.g., C1 ), others run in pair (e.g., C2–C5,

C6 ).

At this point, the service consumer still need to retrieve the AWS services

she is going to use. In other words, the consumer needs to negotiate the SLAs.

Our methodology supports her also in this step. It automatically produces

SLA negotiation rules from the above models, then executed by PROSDIN

(Section 6.1). In this case, we consider the simpler negotiation approach, trying

only to match with the provider’s SLA.

Listing 4 shows an excerpt of the generated negotiation rules. They consist

of two conditions chained with a logical AND (lines 3–22); they indicate that

if a service provider has made an (counter-)offer where i) the price to pay for

penalties is <100e (lines 4–11), and ii) the pseudonymization algorithm is SHA-

256 (lines 13–21), then those values should be accepted (lines 24–33). Once
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Listing 4: Jess rule for negotiation.

1 <tnsr:NegotiationRule name="rule1" >
2 <tnsr:If>
3 <tnsr:LogicalExpression>
4 <slac:Condition relation="LESS-THAN" >
5 <slac:Arg1><slac:QualityAttribute
6 name="PENALTY-AMOUNT" party="PROVIDER" />
7 </slac:Arg1>
8 <slac:Arg2><slac:Constant
9 type="NUMERICAL" unit="EUR" > 100

10 </slac:Constant></slac:Arg2>
11 </slac:Condition>
12 <slac:LogicalOperator> AND </slac:LogicalOperator>
13 <slac:Condition relation="EQUALS" >
14 <slac:Arg1><slac:QualityAttribute
15 name="PSEUDONYMIZATION" party="PROVIDER"
16 unit="SHA-256" />
17 </slac:Arg1>
18 <slac:Arg2><slac:Constant
19 type="BOOLEAN" >TRUE</slac:Constant>
20 </slac:Arg2>
21 </slac:Condition>
22 </tnsr:LogicalExpression>
23 </tnsr:If>
24 <tnsr:Then>
25 <tnsr:Action>
26 <tnsr:Accept>
27 <tnsr:QualityAttribute
28 name="PENALTY-AMOUNT" party="PROVIDER" />
29 <tnsr:QualityAttribute
30 name="PSEUDONYMIZATION" party="PROVIDER" />
31 </tnsr:Accept>
32 </tnsr:Action>
33 </tnsr:Then>
34 </tnsr:NegotiationRule>

the negotiation is over, an SLA is produced according to the specification in

Section 5; Listing 5 shows an excerpt thereof. The SLA has id 55 (line 1),

is called SAP-Log-Analytics (line 5), and is referred to service s6 (line 15). It

extends Example 4, prescribing a renegotiation after 5 violations (lines 37–53)

and a penalty of 75e (lines 54–60). The negotiated values for the anonymization

algorithm are contained within element CustomServiceLevel (lines 17–31), while

the amount to pay for penalty within element Penalty (lines 55–58). In addition,

it includes native support for assurance annotation importance (see Section 4.1)

by translating in the WS-Agreement construct Importance. In our case, value 3

refers to importance mandatory (line 34).

Our methodology refines the deployment model, by injecting the generated
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actions into the model; they are mapped into low-level functionalities of the plat-

form and integrated with existing assurance controls and corresponding schedul-

ing rules. When a SLA renegotiation is triggered, the negotiation starts once

again, leading to an improved deployment model. This process is repeated, en-

suring that the resulting deployment model is compliant to user’s expectations.

We recall that such expectations are expressed as assurance annotations from

which negotiation rules are generated.

8 Conclusions

We presented a methodology that aims to unleash a trustworthy MBDAaaS

paradigm, where assurance annotations, either generated automatically or spec-

ified by users, continuously assess the behavior of Big Data pipelines. The mod-

els in Section 3 and 4 are the basis to generate negotiation rules that finally

lead to the SLAs regulating the services provisioned for the pipeline. The de-

ployed platform is continuously monitored according to the rules defined in the

negotiated SLA, and is continuously improved towards full compliance to users’

expectations.
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Listing 5: Example of negotiated SLA in extended WS-Agreement

1 <wsag:Agreement AgreementId="55"
2 xmlns:wsag="http://www.ggf.org/namespaces/ws-agreement"
3 xmlns:wsag-x="https://www.mbdaas.com/namespaces/ws-agreement-ext"
4 xmlns:aws-kanon="https://aws-kanon.com/namespace" >
5 <wsag:Name>SAP-Log-Analytics</wsag:Name>
6 <wsag:AgreementContext>
7 <!-- ... -->
8 </wsag:AgreementContext>
9 <wsag:Terms>

10 <wsag:All>
11 <!-- .... -->
12 <wsag:GuaranteeTerm
13 Name="ANONYMIZATION-KANON"
14 Obligated="ServiceProvider" >
15 <wsag:ServiceScope ServiceName="S6" />
16 <wsag:ServiceLevelObjective>
17 <wsag:CustomServiceLevel>
18 <aws-kanon:ServiceDetails>
19 <aws-kanon:Function
20 Name="K-Anonymization" >
21 <aws-kanon:Config>
22 <aws-kanon:Parameter
23 Name="K"
24 Value="10" />
25 <aws-kanon:Parameter
26 Name="MinClusterSize"
27 Value="5" />
28 </aws-kanon:Config>
29 </aws-kanon:Function>
30 </aws-kanon:ServiceDetails>
31 </wsag:CustomServiceLevel>
32 </wsag:ServiceLevelObjective>
33 <wsag:BusinessValueList>
34 <wsag:Importance>3</wsag:Importance>
35 <wsag:CustomBusinessValue>
36 <wsag-x:CounterActions>
37 <wsga-x:CounterAction Target="RENEGOTIATION" >
38 <wsag:QualifyingCondition>
39 <wsag:All>
40 <wsag-x:Condition
41 Name="GREAT-OR-EQUAL" >
42 <wsag-x:Argument>
43 <wsag-x:ArgumentFunction>
44 <wsag-x:Function Name="VIOLATIONS" />
45 </wsag-x:ArgumentFunction>
46 <wsag-x:ArgumentValue>
47 5
48 </wsag-x:ArgumentValue>
49 </wsag-x:Argument>
50 </wsag-x:Condition>
51 </wsag:All>
52 </wsag:QualifyingCondition>
53 </wsga-x:CounterAction>
54 <wsga-x:CounterAction Target="PENALTY" >
55 <wsag-x:wsag-x:Penalty>
56 <wsag:ValueUnit>EUR</wsag:ValueUnit>
57 <wsag:ValueExpression>75</wsag:ValueExpression>
58 </wsag-x:wsag-x:Penalty>
59 <!-- then, same as RENEGOTIATION -->
60 </wsga-x:CounterAction>
61 </wsag-x:CounterActions>
62 </wsag:CustomBusinessValue>
63 </wsag:BusinessValueList>
64 </wsag:GuaranteeTerm>
65 </wsag:All>
66 </wsag:Terms>
67 </wsag:Agreement>
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