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Abstract
We study the mod 2 cohomology of real Calabi–Yau
threefolds given by real structures that preserve the torus
fibrations constructed by Gross. We extend the results
of Castaño–Bernard–Matessi and Arguz–Prince to the
case of real structures twisted by a Lagrangian section. In
particular, we find exact sequences linking the cohomol-
ogy of the real Calabi–Yau with the cohomology of the
complex one. Applying Strominger–Yau–Zaslow mirror
symmetry, we show that the connecting homomorphism
is determined by a “twisted squaring of divisors” in the
mirror Calabi–Yau, that is, by 𝐷 ↦ 𝐷2 + 𝐷𝐿 where 𝐷
is a divisor in the mirror and 𝐿 is the divisor mirror to
the twisting section. We use this to find an example of a
connected (𝑀 − 2)-real quintic threefold.

MSC 2020
14J33, 14P25 (primary), 53D12 (secondary)

1 INTRODUCTION

A real structure on a complex manifold 𝑋 is an anti-holomorphic involution 𝜄 ∶ 𝑋 → 𝑋, as, for
example, conjugation on an algebraic variety 𝑋 ⊂ ℂℙ𝑛+1 defined over ℝ. The real part of 𝑋 is the
fixed point set of 𝜄, which we denote by Σ. Understanding the topology of Σ is a notoriously dif-
ficult problem, see, for instance, Wilson’s classical survey on Hilbert’s sixteenth problem [25].
A remarkable method to construct real hypersurfaces in toric varieties with controlled topol-
ogy is Viro’s patchworking technique [19, 23, 24], which laid the foundations for the field of
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tropical geometry. Indeed patchworking allowed the construction of many interesting examples
and counterexamples, especially in the case of curves and surfaces [15, 16].
One of the questions one may ask is about the relationship between the topologies of Σ and 𝑋.

For instance, a famous result is the Smith–Thom inequality relating the ℤ2 Betti numbers of Σ
and 𝑋: ∑

𝑏𝑗(Σ, ℤ2) ⩽
∑

𝑏𝑗(𝑋, ℤ2).

When the equality is satisfied, then Σ is said to bemaximal, or an𝑀-real hypersurface [25, Defini-
tion 3.2].We say it is of type (𝑀 − 𝑘) if the difference between the two sums of Betti numbers is 2𝑘.
There are many examples of maximal hypersurfaces in the case of curves and surfaces, but little
is known in higher dimensions [16]. Another problem is to find bounds on individual Betti num-
bers. For instance, a sharp bound on individual Betti numbers of real surfaces inℝℙ3 is unknown
in high degrees [17].
Onemay investigate the same questions for real hypersurfaces constructed via patchworking. In

this context, Itenberg [17] conjectured that ifΣ is a hypersurface inℝℙ𝑛+1 constructed by primitive
patchworking then

𝑏𝑞(Σ, ℤ2) ⩽

{
ℎ𝑞,𝑞(𝑋) if 𝑞 = 𝑛∕2,

ℎ𝑞,𝑛−𝑞(𝑋) + 1 otherwise.
.

This conjecture has been recently proved by Renaudineau and Shaw [20], who actually proved a
more general version for real hypersurfaces in toric varieties (see inequalities (24)). In this paper,
we investigate similar questions but for real structures arising in a different context.

1.1 Lagrangian fibrations with real structures

Our goal is to generalize the results of Castaño–Bernard and Matessi [6] and Arguz and Prince
[2] on the cohomology of real Calabi–Yau threefolds constructed via Lagrangian torus fibrations.
In this context, (𝑋, 𝜔) is a (real) 2𝑛-dimensional symplectic manifold, with symplectic form 𝜔,
together with a Lagrangian torus fibration 𝑓 ∶ 𝑋 → 𝐵 onto a real 𝑛-dimensional manifold 𝐵. A
compatible real structure is an anti-symplectic involution 𝜄, that is, 𝜄∗𝜔 = −𝜔, which preserves
the fibers of the torus fibration. The real variety Σ is the fixed point set of 𝜄. Let 𝜋 ∶ Σ → 𝐵 be the
restriction of 𝑓 to Σ. The general idea in [2, 6] and in this paper is to relate the cohomology with
ℤ2 coefficients of 𝑋 and Σ by comparing the Leray spectral sequences associated to 𝑓 and 𝜋.
The torus fibrations that we consider in this paper are those constructed topologically by Gross

in [11] starting from the data of a 3-dimensional affine manifold with singularities 𝐵. It follows
from [12] that one can construct these fibrations over affine manifolds with singularities associ-
ated to Calabi–Yau hypersurfaces or complete intersections in toric Fano varieties. It is expected,
although not yet proved, that 𝑋 is homeomorphic to the corresponding Calabi–Yau. In the case
of the quintic threefold in ℙ4, this has been proved by Gross in [11]. The motivation behind these
torus fibrations comes frommirror symmetry, which is a highly nontrivial duality between a pair
of Calabi–Yau manifolds 𝑋 and �̌�. There are various constructions of mirror pairs of Calabi–Yau
manifolds, one of the earliest is [5], and the duality can be studied at different levels of com-
plexity [4]. The most basic manifestation of mirror symmetry is the exchange of Hodge numbers
ℎ𝑝,𝑞(𝑋) = ℎ𝑛−𝑝,𝑞(�̌�). The Strominger–Yau–Zaslow (SYZ) conjecture [22] suggested that a pair of
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ON REAL CALABI–YAU THREEFOLDS TWISTED BY A SECTION 3 of 35

mirror Calabi–Yau manifolds should be related by the process of dualizing (special) Lagrangian
torus fibrations. Themain feature of Gross’ fibrations is that they are built to naturally incorporate
SYZ mirror symmetry at a topological level (higher levels should include dualizing higher struc-
tures). In fact there is a standard procedure to dualize the torus fibrations to obtain the mirror
Calabi–Yau �̌� together with a fibration 𝑓 ∶ �̌� → 𝐵 in such a way to reproduce the exchange of
Hodge numbers (see Section 2 for more details).
In [7], it was shown that Gross’ fibrations could bemade into Lagrangian fibrationswith respect

to a symplectic form extending the natural one existing on the union of smooth fibers. These
fibrations also come with a Lagrangian zero section 𝜎0 ∶ 𝐵 → 𝑀.
A family of fiber preserving real structures on 𝑋 was constructed in [8]. We have the “standard

real structure” that fixes the zero section. Denote the corresponding real Calabi–Yau by Σ. Then
Σ has at least two connected components, one of them being the zero section, isomorphic to 𝐵.
Given a Lagrangian section 𝜏 ∶ 𝐵 → 𝑋, one can “twist” the standard real structure to get another
real structure 𝜄𝜏 (formula (7)). If 𝜏 is not the square of another section, then 𝜄𝜏 does not fix a sec-
tion and therefore it is not standard (see Subsection 3.2). Let us denote by Σ𝜏 the corresponding
real Calabi–Yau and by 𝜋𝜏 ∶ Σ𝜏 → 𝐵 the restriction of 𝑓 to Σ𝜏. We expect, although this has to be
proved, that such real structures on𝑋 are isomorphic to algebraic ones, possibly arising from some
patchworking. The results in [6] and [2] concern the topology of the standard real Calabi–Yau. In
this paper, we generalize to the twisted case.

1.2 The Leray spectral sequence and mirror symmetry

The Leray spectral sequence of a Gross fibration was investigated in [9–11]. Given some group
of coefficients 𝐺, we have the sheaves 𝑅𝑝𝑓∗𝐺 on 𝐵, whose stalk at a point 𝑏 is the cohomology
of the fiber 𝐹𝑏, that is, 𝐻𝑝(𝐹𝑏, 𝐺). The second page of the Leray spectral sequence is given by
𝐸
𝑞,𝑝

2
= 𝐻𝑞(𝐵, 𝑅𝑝𝑓∗𝐺). It is a feature of mirror symmetry, that is, of the duality between the torus

fibrations 𝑓 ∶ 𝑋 → 𝐵 and 𝑓 ∶ �̌� → 𝐵, that we have the following isomorphism (see Subsection
2.7)

𝐻𝑞(𝐵, 𝑅𝑝𝑓∗𝐺) ≅ 𝐻𝑞(𝐵, 𝑅𝑛−𝑝𝑓∗𝐺).

Gross shows that for various choices of 𝐺 (e.g., 𝐺 = ℚ, ℤ or ℤ𝑝) and with some assumptions on
𝐵, 𝑋 and �̌�, the spectral sequence degenerates at the 𝐸2 page. In this case, the cohomology of 𝑋
can be read off from the 𝐸2 page. In particular, the Hodge numbers of 𝑋 satisfy

ℎ𝑝,𝑞(𝑋) = dim𝐻𝑞(𝐵, 𝑅𝑝𝑓∗ℚ).

This equality holds in higher dimensions and it has been proved inmore generality in [14]. Notice
that together with the above mirror symmetry isomorphism, this implies the famous relationship
between the Hodge numbers of mirror Calabi–Yau manifolds ℎ𝑝,𝑞(𝑋) = ℎ𝑛−𝑝,𝑞(�̌�).

1.3 Main results

Let 𝐵0 be the set of regular values of 𝑓, so that for every 𝑏 ∈ 𝐵0, the fiber 𝐹𝑏 = 𝑓−1(𝑏) is a smooth
𝑛-dimensional torus. By the Arnold–Liouville theorem, 𝐹𝑏 is of the type 𝑉∕Λ∗ where 𝑉 is an
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4 of 35 MATESSI

affine space modeled on 𝑇∗
𝑏
𝐵0 and Λ∗ ≅ ℤ𝑛 is an 𝑛-dimensional lattice in 𝑇∗

𝑏
𝐵0. It follows that

a compatible real structure 𝜄 on 𝑋, restricted to the fiber 𝐹𝑏, acts as reflection with respect to
some point on 𝑉 (i.e., as the affine map 𝑦 ↦ 𝑦 + 2(𝑜 − 𝑦) for some point 𝑜 ∈ 𝑉). In particular,
𝜋−1(𝑏) = Σ ∩ 𝐹𝑏 consists of 2𝑛 points that have the structure of an 𝑛-dimensional affine space
defined over ℤ2. In the case of Gross’ fibrations, 𝜋−1(𝑏) is finite for all 𝑏 ∈ 𝐵. In particular, the
Leray spectral sequence of 𝜋 is trivial: the cohomology of Σ satisfies

𝐻𝑞(Σ, ℤ2) ≅ 𝐻𝑞(𝐵, 𝜋∗ℤ2).

Our results consider the case when 𝑋 is a Calabi–Yau threefold, that is, 𝑛 = 3. The first result
is the following.

Theorem 1. Let 𝜏 be a Lagrangian section of 𝑓 ∶ 𝑋 → 𝐵 and 𝜄𝜏 the associated real structure. There
exist sheaves 1

𝜏 and 
2
𝜏 over 𝐵 and a short exact sequence

0⟶ 1
𝜏 ⟶ 𝜋𝜏∗ℤ2 ⟶ 2

𝜏 ⟶ 0,

such that 1
𝜏 and 

2
𝜏 are related to the topology of 𝑋 by the following short exact sequences

0⟶ ℤ2 ⟶ 1
𝜏 ⟶ 𝑅1𝑓∗ℤ2 ⟶ 0,

0⟶ 𝑅2𝑓∗ℤ2 ⟶ 2
𝜏 ⟶ ℤ2 ⟶ 0.

Notice that at a regular value 𝑏 ∈ 𝐵0, we have

(𝜋𝜏∗ℤ2)𝑏 = 𝐻0(𝜋−1𝜏 (𝑏), ℤ2) = Maps(𝜋−1𝜏 (𝑏), ℤ2).

The sheaf 1
𝜏 in 𝑏 coincides with the affine maps. This also explains the second sequence, which

is the usual splitting of affine functions as the sum of a constant function and a linear function.
In the case of the standard real structure, the first sequence coincides with the one found in [6].
Indeed in this case 𝜋−1(𝑏) is naturally a vector space, as the zero section defines an origin. This
implies that the second and third sequence are both split.
The first sequence gives a long exact sequence in cohomology that computes theℤ2 cohomology

of Σ𝜏. In particular, we have the connecting homomorphism

𝛽 ∶ 𝐻1(𝐵,2
𝜏) → 𝐻2(𝐵,1

𝜏).

By composing 𝛽 with the morphisms from the second and third sequence (see diagram (18)) we
get the homomorphism

𝛽′ ∶ 𝐻1(𝐵, 𝑅2𝑓∗ℤ2) → 𝐻2(𝐵, 𝑅1𝑓∗ℤ2).

It was shown in [6] that in the case 𝐵 is a homology ℤ2-sphere and 𝐻1(𝑋, ℤ2) = 𝐻1(�̌�, ℤ2) = 0,
then the untwisted Σ has exactly two connected components. Under the same hypothesis, we
prove here that in the twisted case,Σ𝜏 is connected. In both cases the cohomology ofΣ𝜏 is uniquely
determined by 𝛽′. As a corollary of this construction we also get that if in addition the integral
cohomologies of 𝑋 and �̌� have no torsion, then the Betti numbers of Σ𝜏 satisfy the same bounds
as those proved by Renaudineau–Shaw (inequalities (24)). Indeed, in the twisted case the bound
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ON REAL CALABI–YAU THREEFOLDS TWISTED BY A SECTION 5 of 35

is stronger: a twisted Σ𝜏 can be at most of type (𝑀 − 2) and this happens if and only if 𝛽′ is the
zero map.
If we apply the mirror symmetry isomorphism we can view 𝛽′ as a map 𝛽′ ∶ 𝐻1(𝐵, 𝑅1𝑓∗ℤ2) →

𝐻2(𝐵, 𝑅2𝑓∗ℤ2) on the cohomology of the mirror �̌�. We now have that a Lagrangian section 𝜏 can
be naturally viewed as a class 𝜏 ∈ 𝐻1(𝐵, 𝑅2𝑓∗ℤ2). If we apply mirror symmetry to 𝜏, we get an
element 𝐿𝜏 ∈ 𝐻1(𝐵, 𝑅1𝑓∗ℤ2). Notice that the latter group can be interpreted as aℤ2 version of the
Picard group of �̌�. It is expected that Lagrangian sections on 𝑋 should be mirror to line bundles
on �̌�. Although we do not have in this context an explicit correspondence, we view 𝐿𝜏 as the ℤ2-
reduction of the first Chern class of the conjectured line bundle that is mirror to 𝜏. By abuse of
notation we will refer to 𝐿𝜏 as the mirror line bundle.
We can now state the main theorem of this paper.

Theorem 2. The map 𝛽′ ∶ 𝐻1(𝐵, 𝑅1𝑓∗ℤ2) → 𝐻2(𝐵, 𝑅2𝑓∗ℤ2) coincides with the map

𝑆𝜏 ∶ 𝐻
1(𝐵, 𝑅1𝑓∗ℤ2)⟶ 𝐻2(𝐵, 𝑅2𝑓∗ℤ2)

𝐷 ⟼ 𝐷2 + 𝐷𝐿𝜏.

This theorem generalizes the main result in [2], which proves the untwisted case, that is, when
𝐿𝜏 = 0.
As an applicationwe find a connected (𝑀 − 2)-real quintic.Weuse the torus fibration on a quin-

tic inℙ4 constructed byGross in [11]. Then, on themirror quintic �̌�, we have that𝐻1(𝐵, 𝑅1𝑓∗ℤ2) ≅

𝐻2(�̌�, ℤ2), which coincides with the Picard group mod 2. To find an (𝑀 − 2)-real quintic it is
then enough to find an 𝐿 ∈ 𝐻2(�̌�, ℤ2) such that 𝐷2 + 𝐷𝐿 = 0 for all 𝐷 ∈ 𝐻2(�̌�, ℤ2). The real
quintic will then be Σ𝜏, such that 𝐿 = 𝐿𝜏. We find such an 𝐿 by using the explicit description
of the triple cup product form (𝛼, 𝛽, 𝛾) ↦ 𝛼 ⌣ 𝛽 ⌣ 𝛾 on𝐻2(�̌�, ℤ) given in [11]. Arguz and Prince
have computed the Betti numbers of the untwisted real quintic Σ, obtaining 𝑏1(Σ) = 29. In partic-
ular, Σ is far from beingmaximal, therefore none of the real quintics constructedwith thismethod
is maximal.

1.4 Structure of the paper

In Section 2, we review the necessary background on Gross’ construction of torus fibrations, topo-
logical mirror symmetry and the Leray spectral sequence. In Section 3, we recall the setup in [8]
where the standard and twisted real structures are defined andwe discuss the results in [6] and [2]
for the standard real structure. In Section 4, we prove Theorem 1 (i.e., Theorem 4.1). In Section 5,
we prove Theorem 2 (i.e., Theorem 5.1). In Section 6, we prove some consequences, such as con-
nectedness and bounds on the Betti numbers. In Section 7, we discuss the relationship between
our short exact sequences and the spectral sequence constructed by Renaudineau and Shaw. In
Section 8, we explain the construction of the connected (𝑀 − 2) real quintic.

2 LAGRANGIAN FIBRATIONS ANDMIRROR SYMMETRY

We explain the construction of Lagrangian torus fibrations starting from the data of an integral
affine manifold with singularities. The topological construction was done by Gross [11] for the
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6 of 35 MATESSI

threefold case and an extension to all dimensions was announced by Ruddat and Zharkov [21]. It
was shown in [7] that a variant of Gross’ topological fibrations are indeed Lagrangian with respect
to a symplectic form on 𝑋, induced by the integral affine structure on 𝐵.

Definition 2.1. An integral affinemanifold with singularities is a triple (𝐵, Δ,)where 𝐵 is an 𝑛-
dimensional topological manifold; Δ ⊂ 𝐵 a closed, codimension 2 subset and  a maximal atlas
on 𝐵0 = 𝐵 − Δ whose change of coordinate maps are in ℝ𝑛 ⋊ SL(ℤ, 𝑛). The set Δ is called the
discriminant locus.

Given 𝐵0 = 𝐵 − Δ, we denote by 𝑗 ∶ 𝐵0 → 𝐵 the inclusion. The cotangent bundle 𝑇∗𝐵0 carries
the standard symplectic form, moreover we have the lattice

Λ∗ = spanℤ⟨𝑑𝑥1, … , 𝑑𝑥𝑛⟩,
where (𝑥1, … , 𝑥𝑛) are local integral affine coordinates. This defines the symplectic manifold

𝑋0 = 𝑇∗𝐵0∕Λ
∗

together with the Lagrangian torus fibration 𝑓0 ∶ 𝑋0 → 𝐵0 given by the standard projections. A
(partial) compactification of 𝑋0 is given by a 2𝑛-dimensional manifold 𝑋 together with map 𝑓 ∶

𝑋 → 𝐵 and a commutative diagram

(1)

where the top arrow is a homeomorphism onto its image. In dimension 𝑛 = 3, Gross shows that
under certain hypothesis on the set Δ and the affine structure around it, such a compactifica-
tion can be carried out topologically in a canonical way. In the same dimension and with the
same hypothesis, Castaño–Bernard and Matessi [7] prove that, after a small thickening of Δ, 𝑋
has a symplectic structure such that the inclusion 𝑋0 → 𝑋 is a symplectomorphism and 𝑓 is a
Lagrangian fibration.
Thehypothesis onΔ and on the affine structure is that they are locally isomorphic to certain pre-

scribed local models. When these hypothesis are satisfied we will say that 𝐵 is simple. We describe
below the local models in dimensions 2 and 3. In higher dimensions there is a longer list. The
models are characterized by two key properties of the monodromy of Λ∗ around Δ that are called
simplicity and positivity, see [13] for further details.

2.1 Dimension 2: Focus–focus points

In dimension 2, we ask for Δ to be a discrete set of points with an affine structure around them
locally isomorphic to the one depicted in Figure 1. Such singular points are called focus–focus
points. More precisely let 𝐵 consist of two simplices glued along an edge and let the singular point
be the barycenter of the common edge, that is, the (red) cross in Figure 1. Two charts are defined on
the open subsets given by removing the “cuts” depicted in Figure 1 as the (blue) wiggled segments.
The intersection between the two charts is given by removing the whole edge. The two sides of
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ON REAL CALABI–YAU THREEFOLDS TWISTED BY A SECTION 7 of 35

F IGURE 1 Charts around a focus–focus point.

Figure 1, viewed as embedded in ℝ2, give the affine coordinates on these two charts. The change
of coordinates map is given by the unique integral affine maps that match the two simplices on
the left with the two on the right. More detailed descriptions are given in [13, Example 1.16] or [7,
Example 3.7].

2.2 The affine quartic

This is a global compact example. Take the simplex 𝑃 in ℝ3 whose vertices are

𝑝0 = (−1,−1, −1), 𝑝1 = (3, −1, −1),

𝑝2 = (−1, 3, −1), 𝑝3 = (−1,−1, 3).

We take 𝐵 = 𝜕𝑃. Each edge of 𝑃 contains five integral points and is subdivided by these into four
segments. Define Δ to be the set of midpoints of these segments. In total Δ consists of 24 points.
We can define charts on 𝐵 as follows. We have four charts consisting of the interior of each 2-face
of 𝑃 together with their natural integral affine structure. For every integral point 𝑞 on some edge
consider a neighborhood 𝑈𝑞 ⊂ 𝐵 − Δ. Define a chart by the projection 𝑈𝑞 → ℝ3∕ℝ𝑞, where ℝ𝑞
is the line generated by 𝑞. By choosing these neighborhoods so that they cover 𝐵0, we obtain an
integral affine structure on 𝐵0.
Every 𝑝 ∈ Δ is of focus–focus type. One can prove this as follows. Let 𝑞1 and 𝑞2 two consec-

utive integral points on an edge of 𝑃 such that 𝑝 is the midpoint between them. There are two
2-faces of 𝜕𝑃 containing the segment between 𝑞1 and 𝑞2. Choose, on each of these faces, inte-
gral points 𝑞3 and 𝑞4, respectively, such that {𝑞1, 𝑞2, 𝑞3} and {𝑞1, 𝑞2, 𝑞4} both form bases of ℤ3. We
must have that 𝑞4 = 𝑎𝑞1 + 𝑏𝑞2 − 𝑞3 for some 𝑎, 𝑏 ∈ ℤ. Notice that the union of the two triangles
with vertices {𝑞1, 𝑞2, 𝑞3} and {𝑞1, 𝑞2, 𝑞4}, respectively, forms a neighborhood of 𝑝 in 𝐵. Consider
the two quotients ℝ3∕ℝ𝑞1 and ℝ3∕ℝ𝑞2. On the first quotient choose the basis 𝑒1 = [𝑞2 − 𝑞1] and
𝑒2 = [𝑞3 − 𝑞1] and on the second quotient the basis 𝑓1 = [𝑞2 − 𝑞1] and 𝑓2 = [𝑞3 − 𝑞2]. On both
coordinate systems fix the origin to be [𝑞1]. Then the two triangles are represented in Figure 2:
on the left with respect to the first quotient and on the right with respect to the second one. The
change of coordinates map is given by the unique (piecewise) affine map that matches the two
pairs of triangles. Notice that 𝑃 is a Delzant polytope and this implies that 𝑎 + 𝑏 = 1. Therefore,
the two bottom triangles are identified by the identity map. This shows that 𝑝 is a focus–focus
point.
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8 of 35 MATESSI

F IGURE 2 Charts on the affine quartic.

F IGURE 3 Charts near a negative vertex.

This example is called the affine quartic because it is the affine structure associated to a toric
degeneration of a quartic in ℙ3 (see, for instance, the example in [13, Introduction]).

2.3 Dimension 3: Positive and negative vertices

In dimension 3, Δ must be a trivalent graph. We have three local models. One for a generic
point along an edge of Δ and two local models for vertices, which can be either of positive or
negative type.
The affine structure along an edge of Δ has the following description. Take the focus–focus 2-

dimensional model, denote it by (𝐵𝑓𝑓, 𝑝), where 𝑝 is the focus–focus singular point. Then along
the interior of an edge ofΔwewant the affine structure to be locally isomorphic to𝐵𝑓𝑓 × ℝ, where
now Δ = {𝑝} × ℝ.
A negative vertex is depicted in Figure 3. Here 𝐵 is the union of two standard simplices and

Δ is the trivalent graph (with just one vertex) depicted in red inside the common face. Figure 3
depicts the affine structure on 𝐵0. It has three charts, one for each vertex of the common face. In
the figure, the shaded regions are not part of the charts.
The map Φ1 is the identity on the bottom simplex and on the top simplex it is the linear map

given by the matrix

⎛⎜⎜⎝
1 0 0

0 1 1

0 0 1

⎞⎟⎟⎠ .
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ON REAL CALABI–YAU THREEFOLDS TWISTED BY A SECTION 9 of 35

ThemapΦ2 is the identity on the bottom simplex and on the top simplex it is the linear map given
by the matrix

⎛⎜⎜⎝
1 0 1

0 1 0

0 0 1

⎞⎟⎟⎠ .
For the positive vertex, we let 𝐵 = ℝ × ℝ2 and take Δ inside {0} × ℝ2 given by the set

{𝑦 = 0, 𝑥 ⩾ 0} ∪ {𝑥 = 0, 𝑦 ⩾ 0} ∪ {𝑥 = 𝑦, 𝑥 ⩽ 0}.

Define the sets

𝑅+ = ℝ⩾0 × Δ, 𝑅− = ℝ⩽0 × Δ

The affine structure on 𝐵0 has two charts. The open sets are

𝑈1 = (ℝ × ℝ2) − 𝑅−, 𝑈2 = (ℝ × ℝ2) − 𝑅+.

On ℝ2 define the piecewise linear function

𝜈(𝑥, 𝑦) = min{0, 𝑥, 𝑦}

Define the coordinate map 𝜙1 on 𝑈1 to be the identity and the coordinate map 𝜙2 on 𝑈2 to be

𝜙2(𝑡, 𝑥, 𝑦) = (𝑡 + 𝜈(𝑥, 𝑦), 𝑥, 𝑦).

2.4 The affine quintic

This example is similar to the affine quartic, but one dimension higher. Take the simplex 𝑃 in ℝ4

with vertices

𝑝0 = (−1,−1, − 1, −1), 𝑝1 = (4, −1, −1, −1), 𝑝2 = (−1, 4, −1, −1),

𝑝3 = (−1,−1, 4, −1), 𝑝4 = (−1,−1, −1, 4).

Let 𝐵 = 𝜕𝑃. Inside every 2-face of 𝑃, consider the honeycomb (red) graph depicted in Figure 4.
Define Δ to be union of such graphs over all 2-faces of 𝑃. The interior of each 2-face contains 25
trivalent vertices. There are also five trivalent vertices in the interior of each edge. These are the
points where the honeycomb graph intersects an edge, indeed each edge is contained in exactly
three 2-faces. We can define charts on 𝐵 as follows. We have obvious charts consisting of the
interior of each 3-face of 𝑃. For every integral point 𝑞 in a 2-face, consider a neighborhood 𝑈𝑞 ⊂

𝐵 − Δ. Define a chart by the projection 𝑈𝑞 → ℝ4∕ℝ𝑞, where ℝ𝑞 is the line generated by 𝑞. By
choosing these neighborhoods so that they cover 𝐵0, we obtain an integral affine structure. It can
be shown that vertices in the interior of 2-faces are of negative type and vertices in the interior of
edges are of positive type. This example is called the affine quintic because it is the affine structure
associated to a toric degeneration of a quintic in ℙ4. More examples of similar affine manifolds
with singularities associated to toric degenerations of Calabi–Yau complete intersections in Fano
toric varieties are constructed in [12].
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10 of 35 MATESSI

F IGURE 4 Discriminant of an affine quintic.

2.5 Singular fibers

The compactification in diagram (1) is obtained by gluing suitable singular fibers over Δ. For
instance, in dimension 2, the singular fiber over a focus–focus point is a once pinched torus. In
dimension 3, the singular fiber over a point in the interior of an edge of Δ is 𝐹 × 𝑆1 where 𝐹 is
a once pinched torus. The fiber over a positive vertex is obtained by considering a three torus
𝑇2 × 𝑆1, where 𝑇2 is a two torus, and collapsing a two torus 𝑇2 × {𝑝} to a point. The singular fiber
over a negative vertex is more complicated, we refer to [11] or [7] for the Lagrangianmodels. In the
case of the affine quartic the compactifiedmanifold𝑋 is homeomorphic to a K3 surface, that is, to
a quartic and the affine quintic is homeomorphic to a quintic Calabi–Yau, as proved by Gross in
[11]. It is expected that when 𝑋 is constructed from affine manifolds with singularities associated
to toric degenerations of Calabi–Yau complete intersections in Fano toric varieties as in [12], then
it is homeomorphic to the given Calabi–Yau.

2.6 Topological mirror symmetry

In [11], Gross constructs the topological mirror �̌� of 𝑋. Given the lattice Λ ⊂ 𝑇𝐵0, dual to Λ∗, we
can form

�̌�0 = 𝑇𝐵0∕Λ

together with projection 𝑓0 ∶ �̌�0 → 𝐵0. Gross proved that when 𝐵 is simple, also �̌�0 can be com-
pactified to amanifold �̌�with amap𝑓 ∶ �̌� → 𝐵 extending𝑓0. Indeed, in dimension 3, the positive
fibers in 𝑋 must be replaced by negative fibers in �̌� and viceversa.
As the tangent bundle does not have a natural symplectic structure, to construct a Lagrangian

fibration on �̌� one needs the additional data of a potential 𝜙. This is a multivalued strictly convex
function that can be used to define a symplectic form on 𝑇𝐵0 or, equivalently, to define a mirror
affine structure on 𝐵0 via a Legendre transform. For the purpose of this paper, it will be enough
to consider the mirror �̌� as the topological manifold obtained from 𝑇𝐵0.
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ON REAL CALABI–YAU THREEFOLDS TWISTED BY A SECTION 11 of 35

2.7 The Leray spectral sequence

The cohomology of 𝑋 can be computed by the Leray spectral sequence associated to the map
𝑓 ∶ 𝑋 → 𝐵. Recall that given a group 𝐺 we denote by 𝑅𝑝𝑓∗𝐺 the sheaf on 𝐵 associated to the
presheaf 𝑈 ↦ 𝐻𝑝(𝑓−1(𝑈), 𝐺). The fibration is called 𝐺-simple if

𝑗∗𝑅
𝑝𝑓0∗𝐺 = 𝑅𝑝𝑓∗𝐺.

This essentially means that the cohomology of the singular fibers is determined by the local mon-
odromy of Λ∗ ⊗ 𝐺. Gross proves that the fibrations constructed above (i.e., from a simple 𝐵) are
𝐺-simple for 𝐺 = ℤ,ℚ and ℤ𝑛.
The 𝐸2 page is given by the cohomology groups𝐻𝑞(𝐵, 𝑅𝑝𝑓∗𝐺). As the fibers are connected, we

have that

𝑅0𝑓∗𝐺 ≅ 𝐺. (2)

Let us now consider 𝐺 = ℤ. The fact that transition maps of the affine structure are in ℝ𝑛 ⋊
SL(ℤ, 𝑛) implies that the fibers are oriented, in particular

𝑅𝑛𝑓∗ℤ ≅ ℤ. (3)

This is equivalent to the fact that 𝐵0 has a global integral volume form. If 𝑏 ∈ 𝐵0, we have that

(𝑅𝑝𝑓∗ℤ)𝑏 =

𝑝⋀
Λ𝑏. (4)

On the other hand, if we consider the Leray spectral sequence for the mirror we have

(𝑅𝑝𝑓∗ℤ)𝑏 =

𝑝⋀
Λ∗
𝑏
. (5)

By contraction with the global volume form (or equivalently by Poincaré duality on the fibers) we
have the natural isomorphism

𝑅𝑝𝑓0∗ℤ ≅ 𝑅𝑛−𝑝𝑓0∗ℤ.

This extends to an isomorphism

𝑅𝑝𝑓∗ℤ ≅ 𝑅𝑛−𝑝𝑓∗ℤ (6)

by ℤ-simplicity.
We now consider 𝑛 = 3 and 𝐺 = ℚ. With the additional assumptions that 𝐵 is a ℚ-homology

sphere and that 𝑏1(𝑋) = 𝑏1(�̌�) = 0 it can be shown that the 𝐸2 page for 𝑋 looks as follows

ℚ 0 0 ℚ

0 𝐻1(𝐵, 𝑅2𝑓∗ℚ) 𝐻2(𝐵, 𝑅2𝑓∗ℚ) 0

0 𝐻1(𝐵, 𝑅1𝑓∗ℚ) 𝐻2(𝐵, 𝑅1𝑓∗ℚ) 0

ℚ 0 0 ℚ

The bottom and top rows follow from (2) and (3) and the assumption that 𝐵 is a ℚ-homology
sphere. The vanishing of 𝐻0(𝐵, 𝑅1𝑓∗ℚ) and 𝐻3(𝐵, 𝑅2𝑓∗ℚ) follow from the assumption 𝑏1(𝑋) =
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12 of 35 MATESSI

𝑏5(𝑋) = 0. The vanishing of𝐻0(𝐵, 𝑅2𝑓∗ℚ) and𝐻3(𝐵, 𝑅1𝑓∗ℚ) follow from (6) and the assumption
𝑏1(�̌�) = 𝑏5(�̌�) = 0.
Gross [9–11] proves that, with the given hypothesis, the spectral sequence degenerates at the 𝐸2

page. In particular, we have

𝐻2(𝑋,ℚ) ≅ 𝐻1(𝐵, 𝑅1𝑓∗ℚ) ≅ 𝐻2(𝐵, 𝑅2𝑓∗ℚ) ≅ 𝐻4(𝑋,ℚ)

and similarly for �̌�. Using (6), we also have

𝐻1(𝐵, 𝑅2𝑓∗ℚ) ≅ 𝐻1(𝐵, 𝑅1𝑓∗ℚ) ≅ 𝐻2(𝐵, 𝑅2𝑓∗ℚ) ≅ 𝐻2(𝐵, 𝑅1𝑓∗ℚ).

If 𝑋 and �̌� are Calabi–Yau manifolds, we have that the Hodge numbers satisfy

ℎ1,1(𝑋) = dim𝐻1(𝐵, 𝑅1𝑓∗ℚ) = dim𝐻1(𝐵, 𝑅2𝑓∗ℚ) = ℎ1,2(�̌�).

In particular, we have the celebrated mirror symmetry of the Hodge diamonds of 𝑋 and �̌�.
In this paper, we will be concerned with cohomology with ℤ2 coefficients. Also in this case the

spectral sequence degenerates at the 𝐸2 page and if we assume that 𝐵 is a ℤ2-cohomology sphere
and𝐻1(𝑋, ℤ2) ≅ 𝐻1(�̌�, ℤ2) ≅ 0, the 𝐸2 page becomes

ℤ2 0 0 ℤ2

0 𝐻1(𝐵, 𝑅2𝑓∗ℤ2) 𝐻2(𝐵, 𝑅2𝑓∗ℤ2) 0

0 𝐻1(𝐵, 𝑅1𝑓∗ℤ2) 𝐻2(𝐵, 𝑅1𝑓∗ℤ2) 0

ℤ2 0 0 ℤ2

Again we have

𝐻2(𝑋, ℤ2) ≅ 𝐻1(𝐵, 𝑅1𝑓∗ℤ2),

𝐻1(𝐵, 𝑅2𝑓∗ℤ2) ≅ 𝐻2(𝐵, 𝑅1𝑓∗ℤ2).

In particular, the ℤ2-Betti numbers of 𝑋 satisfy

𝑏2(𝑋, ℤ2) = dim𝐻1(𝐵, 𝑅1𝑓∗ℤ2),

𝑏3(𝑋, ℤ2) = 2 + 2 dim𝐻1(𝐵, 𝑅2𝑓∗ℤ2).

The relation between the hodge numbers of𝑋 and the groups𝐻𝑞(𝐵, 𝑅𝑝𝑓∗ℤ2) depends onwhether
𝐻𝑝+𝑞(𝑋, ℤ) has torsion.

3 REAL STRUCTURES

3.1 The standard real structure

Consider the involution 𝜄0 ∶ 𝑋0 → 𝑋0 induced from the map 𝛼 ↦ −𝛼 on the fibers of the cotan-
gent bundle of 𝐵0. It is clearly anti-symplectic in the sense that on the symplectic form 𝜔 it acts as
𝜄∗
0
𝜔 = −𝜔. It was proved in [8] that 𝜄0 extends to a smooth fiber preserving anti-symplectic invo-

lution 𝜄 ∶ 𝑋 → 𝑋. It is clear that 𝜄 fixes the zero section. We call 𝜄 the standard real structure. We
denote by Σ the fixed point set of 𝜄, which we can think as the real part of 𝑋. The zero section is
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ON REAL CALABI–YAU THREEFOLDS TWISTED BY A SECTION 13 of 35

a connected component of Σ. We also denote by 𝜋 ∶ Σ → 𝐵 the restriction of 𝑓, that is, 𝜋 = 𝑓|Σ.
Notice that 𝜋 is generically a 2𝑛 to 1 covering.

3.2 Twisted real structures

In [8], we constructed real structures that can be viewed as a twist of 𝜄 by a Lagrangian section.
For technical reasons, in [8] we only considered sections that coincide with the zero section in
a small neighborhood of the negative fibers. We called these sections of type ℭ. For simplicity
we will assume that all sections are of this type also in this paper, we do not believe this to be a
restrictive condition.
Let 𝜏 ∶ 𝐵 → 𝑋 be a Lagrangian section. Consider on 𝑋0 the translation by 𝜏, that is, the map

which on the fibers acts by 𝛼 ↦ 𝛼 + 𝜏. It was shown in [8] that this map extends smoothly to
a fiber preserving symplectomorphism of 𝑋, for simplicity we continue to denote it by 𝜏. Now
assume that 𝜏 is not a square, that is, that there does not exist another section 𝜏′ such that 𝜏 = 2𝜏′.
Define

𝜄𝜏 = 𝜄◦𝜏. (7)

Clearly, 𝜄𝜏 is a fiber preserving antisymplectic map. It was shown in [8, Proposition 1.10] that this
implies that 𝜄𝜏 is an involution. Indeed we can see this as follows. Consider the map 𝜄◦𝜏◦𝜄. It is a
fiber preserving symplectomorphism. As such, it must be given by the translation by a section. In
fact, it is given by

𝜄◦𝜏◦𝜄 = −𝜏.

One can easily see that this holds on smooth fibers, where we have

[𝛼]
𝜄

⟼ [−𝛼]
𝜏

⟼ [−𝛼 + 𝜏]
𝜄

⟼ [𝛼 − 𝜏].

As smooth fibers are dense, the relation extends to 𝑋. In particular,

𝜄2𝜏 = (𝜄◦𝜏)◦(𝜄◦𝜏) = (𝜄◦𝜏◦𝜄)◦𝜏 = (−𝜏)◦(𝜏) = Id𝑋 .

Therefore, 𝜄𝜏 is an involution.
The fact that 𝜏 is not a square implies that 𝜄𝜏 does not fix any section (see [8, Remarks 1.11 and

1.12]). We call 𝜄𝜏 a twisted real structure, where 𝜏 is the twist. We denote by Σ𝜏 the fixed point set
of 𝜄𝜏. We also denote by 𝜋𝜏 ∶ Σ𝜏 → 𝐵 the map given by the restriction of 𝑓. Also in this case 𝜋𝜏 is
generically an 2𝑛 to 1 covering.

3.3 A long exact sequence

Let us restrict to the 3-dimensional case 𝑛 = 3. We describe the long exact sequence that was
found in [6] relating the ℤ2-cohomology of Σ with the cohomology of 𝑋. Consider the projection
𝜋 ∶ Σ → 𝐵. In particular, as the preimage by 𝜋 of a point in 𝐵 is finite, we have that the Leray
spectral sequence of 𝜋 is quite simple and

𝐻𝑞(Σ, 𝐺) ≅ 𝐻𝑞(𝐵, 𝜋∗𝐺).
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14 of 35 MATESSI

We restrict to the case 𝐺 = ℤ2. In [6], the following result is proved

Lemma 3.1. There exists a short exact sequence of sheaves on 𝐵:

0⟶ 𝑅1𝑓∗ℤ2 ⊕ ℤ2 ⊕ ℤ2 ⟶ 𝜋∗ℤ2 ⟶ 𝑅2𝑓∗ℤ2 ⟶ 0. (8)

Proof. Let us consider the same sheaves restricted to 𝐵0. Notice that for every 𝑏 ∈ 𝐵0, we have

𝜋−1(𝑏) = 1

2
Λ∗ mod Λ∗

≅ Λ∗ ⊗ ℤ2

.

In particular, it is a subgroup of the fiber 𝑓−1(𝑏) isomorphic to ℤ3
2
. On the other hand, the stalk of

𝜋∗ℤ2 at 𝑏 is canonically identified with

(𝜋∗ℤ2)𝑏 = Maps(𝜋−1(𝑏), ℤ2).

Moreover, we have isomorphisms (4) for ℤ2 coefficients

(𝑅1𝑓∗ℤ2)𝑏 = Λ⊗ ℤ2,

(𝑅2𝑓∗ℤ2)𝑏 ≅

2⋀
Λ⊗ ℤ2.

(9)

Notice that (𝑅1𝑓∗ℤ2)𝑏 is the space of linear maps from 𝜋−1(𝑏) to ℤ2, so it injects in (𝜋∗ℤ2)𝑏.
Concerning the two ℤ2 summands in the left-hand side of the sequence we have

ℤ2 ⊕ ℤ2 = ⟨1⟩⊕ ⟨𝛿0⟩,
where 1 is the constant map equal to 1 and 𝛿0 is the delta function at 0 (i.e., the map that maps
0 ∈ 𝜋−1(𝑏) to 1 and everything else to 0).
From (5) and (6), we have the isomorphism

(𝑅2𝑓∗ℤ2)𝑏 ≅ Λ∗ ⊗ ℤ2 ≅ 𝜋−1(𝑏). (10)

One can identify 𝜋−1(𝑏)with the quotient of the first two groups of the above sequence by identi-
fying a nonzero point 𝑦 ∈ 𝜋−1(𝑏)with the class (in the quotient) of the map 𝛿𝑦 , the delta function
at 𝑦. □

Let us assume that 𝐵 is a homology ℤ2 sphere. Then the short exact sequence induces the long
exact sequence in cohomology:

0⟶𝐻0(𝐵, 𝑅1𝑓∗ℤ2) ⊕ (ℤ2)
2 ⟶ 𝐻0(Σ, ℤ2)⟶ 𝐻0(𝐵, 𝑅2𝑓∗ℤ2)⟶

⟶𝐻1(𝐵, 𝑅1𝑓∗ℤ2)⟶ 𝐻1(Σ, ℤ2)⟶ 𝐻1(𝐵, 𝑅2𝑓∗ℤ2)
𝛽

⟶

⟶𝐻2(𝐵, 𝑅1𝑓∗ℤ2)⟶ 𝐻2(Σ, ℤ2)⟶ 𝐻2(𝐵, 𝑅2𝑓∗ℤ2)⟶ …

(11)

The map 𝛽 ∶ 𝐻1(𝐵, 𝑅2𝑓∗ℤ2) → 𝐻2(𝐵, 𝑅1𝑓∗ℤ2) is the connecting homomorphism and it
essentially determines the cohomology of Σ.
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ON REAL CALABI–YAU THREEFOLDS TWISTED BY A SECTION 15 of 35

In particular, the following corollaries follow from the properties of the Leray spectral sequence
described in Subsection 2.7.

Corollary 3.2. If 𝐵 is a cohomology ℤ2-sphere and𝐻1(𝑋, ℤ2) and𝐻1(�̌�, ℤ2) are both zero, then Σ
has two connected components and the long exact sequence (11) splits as

0 → 𝐻1(𝐵, 𝑅1𝑓∗ℤ2) → 𝐻1(Σ, ℤ2) → 𝐻1(𝐵, 𝑅2𝑓∗ℤ2)
𝛽
→ 𝐻2(𝐵, 𝑅1𝑓∗ℤ2)

→ 𝐻2(Σ, ℤ2) → 𝐻2(𝐵, 𝑅2𝑓∗ℤ2) → 0

Corollary 3.3. Under the same hypothesis of Corollary 3.2, with the additional assumption that 𝑋
is a Calabi–Yau variety and the cohomologies of𝑋 and �̌� have no 2-torsion, we have that theℤ2 Betti
numbers of Σ satisfy

𝑏𝑞(Σ, ℤ2) ⩽ ℎ𝑞,3−𝑞(𝑋) + ℎ𝑞,𝑞(𝑋).

Indeed the hypothesis and the properties of the Leray spectral sequence imply

dim𝐻𝑝(𝐵, 𝑅𝑞𝑓∗ℤ2) = ℎ𝑝,𝑞(𝑋).

These inequalities coincide with those proved by Renaudineau–Shaw [20] for any real hyper-
surface arising from primitive patchworking in a toric variety. Notice, however, that in our case 𝑋
is not necessarily a hypersurface (see, for instance, the case of Schoen’s Calabi–Yau, [6] and [1]).

3.4 Mirror symmetry

Using the isomorphism (6), we can interpret the connecting homomorphism 𝛽 in (11) as a map
on the cohomology of the mirror �̌�:

𝛽 ∶ 𝐻1(𝐵, 𝑅1𝑓∗ℤ2) → 𝐻2(𝐵, 𝑅2𝑓∗ℤ2).

In [2], Arguz and Prince proved the following remarkable result

Theorem 3.4. The connecting homomorphism 𝛽 in the long exact sequence (11) coincides with the
squaring map

Sq ∶ 𝐻1(𝐵, 𝑅1𝑓∗ℤ2)⟶ 𝐻2(𝐵, 𝑅2𝑓∗ℤ2)

𝐷 ⟼ 𝐷2.

Notice that if 𝐵 is a ℤ2 homology sphere and 𝐻1(𝑋, ℤ2) = 𝐻1(�̌�, ℤ2) = 0, then
𝐻𝑝(𝐵, 𝑅𝑝𝑓∗ℤ2) ≅ 𝐻2𝑝(�̌�, ℤ2). The map 𝛽 in this case is the squaring with respect to the
usual cup product in cohomology.
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16 of 35 MATESSI

4 SHORT EXACT SEQUENCES

Our first goal is to generalize the short exact sequence (8) to the case of twisted real structures.
We will prove the following result

Theorem 4.1. There exist sheaves 1
𝜏 and 

2
𝜏 over 𝐵 and a short exact sequence

0⟶ 1
𝜏 ⟶ 𝜋𝜏∗ℤ2 ⟶ 2

𝜏 ⟶ 0, (12)

such that 1
𝜏 and 

2
𝜏 are related to the topology of 𝑋 by the following short exact sequences

0⟶ ℤ2 ⟶ 1
𝜏 ⟶ 𝑅1𝑓∗ℤ2 ⟶ 0, (13)

0⟶ 𝑅2𝑓∗ℤ2 ⟶ 2
𝜏 ⟶ ℤ2 ⟶ 0. (14)

4.1 Classification of Lagrangian sections

The Lagrangian sections of 𝑓 ∶ 𝑋 → 𝐵 are classified, up toHamiltonian equivalence, by the group
𝐻1(𝐵, 𝑗∗Λ

∗). Let us sketch how to associate a class in 𝐻1(𝐵, 𝑗∗Λ
∗) to every Lagrangian section 𝜏

(for more details, see [9, Theorem 3.6] or [10, Theorem 2.4]). We assume, as in [8], that 𝜏 coincides
with the zero section in a neighborhood of a negative fiber. Let 𝐵# be the complement, inside 𝐵,
of the set of negative vertices and let Crit(𝑓) ⊆ 𝑋 be the set of critical points of 𝑓. Define

𝑋# = 𝑓−1(𝐵#) − Crit 𝑓.

It follows from the analysis in [10] or [7, section 5], that there is a short exact sequence

0 → 𝑗∗Λ
∗ → 𝑇∗𝐵# → 𝑋# → 0.

This essentially means that the local monodromy invariant elements of Λ∗ and angle coordi-
nates on the fibers extend over the discriminant. Take some good covering {𝑈𝑖}𝑖∈𝐼 of 𝐵. We can
assume that each𝑈𝑖 contains at most one vertex and double intersections𝑈𝑖 ∩ 𝑈𝑗 contain no ver-
tices. Let 𝜏 be a Lagrangian section. If 𝑈𝑖 does not contain a negative vertex consider 𝜏|𝑈𝑖

∶ 𝑈𝑖 →

𝑇∗𝑈𝑖∕𝑗∗Λ
∗. As 𝑈𝑖 is homeomorphic to a 3-ball, we can find a Lagrangian lift �̃�𝑈𝑖

∶ 𝑈𝑖 → 𝑇∗𝑈𝑖 of
𝜏|𝑈𝑖

. If 𝑈𝑖 contains a negative vertex, then we can assume that 𝜏|𝑈𝑖
is the zero section. We can

therefore define �̃�|𝑈𝑖
= 0. Then, as 𝜏 is a global section, we must have that on overlaps 𝑈𝑖 ∩ 𝑈𝑘

�̃�𝑈𝑖
− �̃�𝑈𝑘

∈ 𝑗∗Λ
∗.

Therefore, to the section 𝜏 we can associate the Cech 1-cocycle {𝑈𝑖 ∩ 𝑈𝑘, �̃�𝑈𝑖
− �̃�𝑈𝑘

} giving a class
in 𝐻1(𝐵, 𝑗∗Λ

∗), which we continue to denote by 𝜏. It can be shown that any class can be repre-
sented by a Lagrangian section and that two Lagrangian sections represent the same class if and
only if they are Hamiltonian isotopic.
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ON REAL CALABI–YAU THREEFOLDS TWISTED BY A SECTION 17 of 35

4.2 Local description of 𝚺𝝉

Given the above local description of a Lagrangian section 𝜏, it is easy to describe the involution 𝜄𝜏
locally. We will do this away from singularities, that is, when 𝑈𝑖 ∩ Δ = ∅. Indeed

𝜄𝜏 ∶ 𝑇
∗𝑈𝑖∕Λ

∗ → 𝑇∗𝑈𝑖∕Λ
∗

[𝛼] ↦ [−(𝛼 + �̃�𝑈𝑖
)]
,

where 𝛼 is a 1-form and [⋅] denotes the class in the quotient by Λ∗. Then, locally, we have

Σ𝜏|𝑈𝑖 = −
�̃�𝑈𝑖
2
+ 1

2
Λ∗ mod Λ∗.

In particular, the fiber 𝜋−1𝜏 (𝑏) has the structure of an affine space modeled on Λ∗ ⊗ ℤ2.

4.3 The sheaves 𝟏
𝝉
and 𝟐

𝝉

The sheaf 1
𝜏 is easily described. Its stalks over 𝑏 ∈ 𝐵0 are the affine maps 𝜋−1(𝑏) → ℤ2, which

embed inside 𝜋𝜏∗ℤ2. Moreover, on 𝐵0, we have an obvious sequence

0⟶ ℤ2 ⟶ 1
𝜏 ⟶ Λ⊗ℤ2 ⟶ 0,

where the left-hand side is the inclusion of the constantmaps,while the right-hand side is given by
taking the linear part of an affinemap. If we push this sequence forward by 𝑗 ∶ 𝐵0 → 𝐵 andwe use
simplicity, we get the sequence (13). By definition,2

𝜏 is the quotient of the inclusion
1
𝜏 → 𝜋𝜏∗ℤ2.

4.4 Proof of Theorem 4.1

Let 𝑆 be an affine space modeled on a ℤ2-vector space 𝑉 of dimension 3. Let 𝐿1
𝑆
= Af f (𝑆) be the

space of affine functions on 𝑆. Let 𝐿2
𝑆
be the quotient betweenMaps(𝑆, ℤ2) and 𝐿1𝑆 . Given a subset

𝐴 ⊂ 𝑆, let 𝛿𝐴 denote the function which is 1 on 𝐴 and 0 elsewhere and by [𝛿𝐴] the class of 𝛿𝐴
in 𝐿2

𝑆
. An affine function on 𝑆 is of the type 𝛿𝑊 or 1 + 𝛿𝑊 for some affine subspace 𝑊 ⊆ 𝑆 of

codimension 1 or 0. It is not hard prove that 𝐿2
𝑆
is generated by the elements of type [𝛿𝑍], where

𝑍 ⊂ 𝑆 is either a line or a point. Moreover, given two lines 𝑍1 and 𝑍2, then [𝛿𝑍1] = [𝛿𝑍2] if and
only if 𝑍1 and 𝑍2 are parallel. We then have an exact sequence

0 → 𝑉 → 𝐿2
𝑆
→ ℤ2 → 0, (15)

where a vector 𝑣 ∈ 𝑉 is mapped to [𝛿𝑍𝑣 ], where 𝑍𝑣 is a line with direction 𝑣 if 𝑣 ≠ 0 or the empty
set if 𝑣 = 0. Let 𝑣, 𝑤 ∈ 𝑉 be linearly independent. Then we can assume that 𝑍𝑣, 𝑍𝑤 and 𝑍𝑣+𝑤 are
three coplanar lines intersecting at one point. In particular,

𝛿𝑍𝑣+𝑤 + 𝛿𝑍𝑣 + 𝛿𝑍𝑤 = 𝛿𝑊,

where𝑊 is the plane containing the three lines. This implies that

[𝛿𝑍𝑣+𝑤 ] = [𝛿𝑍𝑣 ] + [𝛿𝑍𝑤].
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18 of 35 MATESSI

The same equality holds if 𝑣 and 𝑤 are linearly dependent. In particular, the first map in (15) is
linear. The quotient of 𝐿2

𝑆
by 𝑉 is ℤ2 and it is generated by the class of [𝛿𝑞] where 𝑞 is a point in

𝑆. Given 𝑏 ∈ 𝐵0, let 𝑆 = 𝜋−1𝜏 (𝑏). As we said, 𝑆 is an affine space modeled on Λ∗ ⊗ ℤ2. Using the
isomorphism (𝑅2𝑓∗ℤ2)𝑏 ≅ Λ∗ ⊗ ℤ2 (see (9) and (10)), the sequence (15) becomes the sequence
(14).

4.5 The 2-dimensional case

If 𝐵 is 2-dimensional (hence the affine base of a K3 surface), then we only have the sheaf 1
𝜏 of

affine maps inside 𝜋∗ℤ2 that satisfies (13) and

0⟶ 1
𝜏 ⟶ 𝜋∗ℤ2 ⟶ ℤ2 ⟶ 0. (16)

This follows from the fact that if 𝑆 is an affine space over ℤ2 of dimension 2 then we have

0 → Aff (𝑆) → Maps(𝑆, ℤ2) → ℤ2 → 0,

where ℤ2 is generated by [𝛿𝑞], with 𝑞 ∈ 𝑆.

5 THE CONNECTING HOMOMORPHISM

Also in this section, we assume we are in dimension 𝑛 = 3. The sequence (12) gives the long exact
sequence in cohomology

0⟶𝐻0(𝐵,1
𝜏)⟶ 𝐻0(Σ𝜏, ℤ

2)⟶ 𝐻0(𝐵,2
𝜏)⟶

𝐻1(𝐵,1
𝜏)⟶ 𝐻1(Σ𝜏, ℤ

2)⟶ 𝐻1(𝐵,2
𝜏)

𝛽
⟶

𝐻2(𝐵,1
𝜏)⟶ 𝐻2(Σ𝜏, ℤ2)⟶ 𝐻2(𝐵,2

𝜏)⟶ …

(17)

Combining this with the maps induced by the sequences (13) and (14), we obtain the diagram

(18)

where 𝛽′ is obtained by composition.
Using the isomorphisms (6), we interpret 𝛽′ as a map on the cohomology of the mirror

𝛽′ ∶ 𝐻1(𝐵, 𝑅1𝑓∗ℤ2) → 𝐻2(𝐵, 𝑅2𝑓∗ℤ2).

As explained in Subsection 4.1, the twist 𝜏 is a class in𝐻1(𝐵, 𝑗∗Λ
∗). Notice that

𝐻1(𝐵, 𝑗∗Λ
∗) = 𝐻1(𝐵, 𝑅1𝑓∗ℤ).
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ON REAL CALABI–YAU THREEFOLDS TWISTED BY A SECTION 19 of 35

This allows us to interpret 𝜏 as the class of a line bundle 𝐿𝜏 on �̌� (indeed, it is conjectured that
Lagrangian sections are mirror to line bundles). The assumption that 𝜏 is not a square (see Sub-
section 3.2) implies that 𝐿𝜏 is not zero after reduction modulo two. Therefore, our assumption is
that the twist 𝜏 is such that the mirror line bundle 𝐿𝜏 satisfies

0 ≠ 𝐿𝜏 ∈ 𝐻1(𝐵, 𝑅1𝑓∗ℤ2).

We can now state our main result

Theorem 5.1. The map 𝛽′ ∶ 𝐻1(𝐵, 𝑅1𝑓∗ℤ2) → 𝐻2(𝐵, 𝑅2𝑓∗ℤ2), related to the connecting homo-
morphism in the long exact sequence (17) via diagram (18), coincides with the map

𝑆𝜏 ∶ 𝐻
1(𝐵, 𝑅1𝑓∗ℤ2)⟶ 𝐻2(𝐵, 𝑅2𝑓∗ℤ2)

𝐷 ⟼ 𝐷2 + 𝐷𝐿𝜏

Proof. The proof is similar to the proof of [2, Theorem 3.4]. Fix an open covering𝔘 = {𝑖}𝑖∈𝐼 that
is Leray for all the sheaves and such that all triple intersections do not intersect the discriminant
Δ. We will denote multiple intersections of open sets by

𝑈𝑖0,…,𝑖𝑘
= 𝑈𝑖0

∩ … ∩ 𝑈𝑖𝑘
.

The cup product in Cech cohomology has the following description. Let 𝛼 ∈ 𝐻𝑝(𝐵,) and 𝛽 ∈

𝐻𝑞(𝐵,) then the cup product 𝛼 ∪ 𝛽 ∈ 𝐻𝑝+𝑞(𝐵, ⊗𝐺) is represented by the cochain

(𝛼 ∪ 𝛽)𝑖0…𝑖𝑝+𝑞 =

𝑝+𝑞∑
𝑟=0

𝛼𝑖𝑟,…,𝑖𝑟+𝑝 ⊗ 𝛽𝑖𝑟+𝑝,…,𝑖𝑟+𝑝+𝑞 ,

where we have chosen cocycles representing 𝛼 and 𝛽. The indices in this formula should be
interpreted cyclically.
In the following, when we take a local section ofΛ∗ ⊗ ℤ2 and denote it by 𝜆, we will mean that

𝜆 ∈ Λ∗ reduced mod 2, that is, 𝜆 will be short for 𝜆 ⊗ 1. On the other hand, we can also identify

Λ∗ ⊗ ℤ2 =
1

2
Λ∗ mod Λ∗

and therefore we may identify 𝜆 with the point 1

2
𝜆 in the fiber 𝑓−1(𝑏). Take a class 𝐷 ∈

𝐻1(𝐵, 𝑅1𝑓∗ℤ2) represented by a 1-cycle {𝑈𝑖𝑗, 𝐷𝑖𝑗}. The twisting cycle 𝐿𝜏 ∈ 𝐻1(𝐵, 𝑅1𝑓∗ℤ2) is rep-
resented by {𝑈𝑖𝑗, 𝜏𝑖𝑗} as described in Subsection 4.1. The product 𝐷2 + 𝐷𝐿𝜏 is then represented by
the 2-cycle

(𝐷2 + 𝐷𝐿𝜏)𝑖𝑗𝑘 = 𝐷𝑖𝑗∧(𝐷𝑗𝑘 + 𝜏𝑗𝑘) + 𝐷𝑗𝑘 ∧ (𝐷𝑘𝑖 + 𝜏𝑘𝑖)

+ 𝐷𝑘𝑖 ∧ (𝐷𝑖𝑗 + 𝜏𝑖𝑗).

We now compare this cycle with 𝛽′(𝐷). First, we need to view 𝐷 as a class in 𝐻1(𝐵,2
𝜏). As

described in Subsection 4.4, {𝑈𝑖𝑗, 𝐷𝑖𝑗} is sent to the cycle �̄� = {𝑈𝑖𝑗, [𝛿𝑍𝐷𝑖𝑗
]}, where 𝑍𝐷𝑖𝑗 is a line

with direction𝐷𝑖𝑗 if𝐷𝑖𝑗 ≠ 0 or the empty set if𝐷𝑖𝑗 = 0. Now we need a cochain Γ ∈ 𝐶1(𝔘, 𝜋𝜏∗ℤ2)

representing �̄�. Using the local description of Σ𝜏|𝑈𝑖
given in Subsection 4.2, we can represent 𝑍𝐷𝑖𝑗
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20 of 35 MATESSI

as the line through the point −�̃�𝑖
2
and direction 𝐷𝑖𝑗 . Therefore, we lift [𝛿𝑍𝐷𝑖𝑗 ] to the map

Γ𝑖𝑗 = 𝛿𝑍𝐷𝑖𝑗
= 𝛿

−
�̃�𝑖
2

+ 𝛿
−
�̃�𝑖+𝐷𝑖𝑗

2

.

Then we consider 𝜕Γ ∈ 𝐶2(𝔘, 𝜋𝜏∗ℤ2). On 𝑈𝑖𝑗𝑘 we have

(𝜕Γ)𝑖𝑗𝑘 = 𝛿𝑍𝐷𝑖𝑗
+ 𝛿𝑍𝐷𝑗𝑘

+ 𝛿𝑍𝐷𝑘𝑖
=

= 𝛿
−
�̃�𝑖
2

+ 𝛿
−
�̃�𝑖+𝐷𝑖𝑗

2

+ 𝛿
−
�̃�𝑗

2

+ 𝛿
−
�̃�𝑗+𝐷𝑗𝑘

2

+ 𝛿
−
�̃�𝑘
2

+ 𝛿
−
�̃�𝑘+𝐷𝑘𝑖

2

. (19)

The next steps consist first in describing (𝜕Γ)𝑖𝑗𝑘 as an affine function 𝛼𝑖𝑗𝑘 on 𝜋−1𝜏 (𝑏). Thus, giving
a cycle 𝛼 ∈ 𝐻2(𝐵,1

𝜏). Notice that 𝛽(�̄�) = 𝛼. Then we need to take the linear part 𝛽𝑖𝑗𝑘 = Lin(𝛼𝑖𝑗𝑘)

so that 𝛽′(𝐷) = {𝑈𝑖𝑗𝑘, 𝛽𝑖𝑗𝑘}. Then we compare 𝛽𝑖𝑗𝑘 with (𝐷2 + 𝐷𝐿𝜏)𝑖𝑗𝑘.
Let us identify 𝜋−1𝜏 (𝑏) with the vector space 𝑉 = Λ∗ ⊗ ℤ2 by declaring the point −

�̃�𝑖
2
to be the

origin. Moreover, let us denote by 𝑍0, 𝑍1, 𝑍2, respectively, the sets 𝑍𝐷𝑖𝑗 , 𝑍𝐷𝑗𝑘 and 𝑍𝐷𝑘𝑖 . Let

𝑒1 = 𝐷𝑗𝑘, 𝑒2 = 𝐷𝑘𝑖, 𝑓1 = 𝜏𝑖𝑗, 𝑓2 = 𝜏𝑘𝑖.

The cocycle condition implies 𝐷𝑖𝑗 = 𝑒1 + 𝑒2 and 𝜏𝑗𝑘 = 𝑓1 + 𝑓2. It is then easy to see that

𝛼𝑖𝑗𝑘 = (𝜕Γ)𝑖𝑗𝑘 = 𝛿𝑍0 + 𝛿𝑍1 + 𝛿𝑍2 =

= 𝛿0 + 𝛿𝑒1+𝑒2

+ 𝛿𝑓1 + 𝛿𝑓1+𝑒1

+ 𝛿𝑓2 + 𝛿𝑓2+𝑒2

.

On the other hand, we have

(𝐷2 + 𝐷𝐿𝜏)𝑖𝑗𝑘 = (𝑒1 + 𝑒2) ∧ (𝑒1 + 𝑓1 + 𝑓2) + 𝑒1 ∧ (𝑒2 + 𝑓2)+

+ 𝑒2 ∧ (𝑒1 + 𝑒2 + 𝑓1) =

= 𝑒1 ∧ 𝑒2 + 𝑒1 ∧ 𝑓1 + 𝑒2 ∧ 𝑓2

. (20)

We study four different cases.
Case 1: 𝑒1 and 𝑒2 are linearly dependent. If 𝑒1 = 𝑒2 = 0, then both (𝜕Γ)𝑖𝑗𝑘 and (𝐷2 + 𝐷𝐿𝜏)𝑖𝑗𝑘 are

zero, in particular they match. Otherwise we may assume w.l.o.g. that 𝑒1 = 𝑒2 ≠ 0. Then 𝑍0 = ∅

and𝑍1 and𝑍2 either coincide or are parallel. In the first case 𝑒1 and𝑓1 + 𝑓2 are linearly dependent,
therefore (𝜕Γ)𝑖𝑗𝑘 and (𝐷2 + 𝐷𝐿𝜏)𝑖𝑗𝑘 both vanish. Otherwise if 𝑍1 and 𝑍2 are parallel and distinct,
then 𝑒1 and 𝑓1 + 𝑓2 are linearly independent. In particular,

(𝐷2 + 𝐷𝐿𝜏)𝑖𝑗𝑘 = 𝑒1 ∧ (𝑓1 + 𝑓2)
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ON REAL CALABI–YAU THREEFOLDS TWISTED BY A SECTION 21 of 35

is a nonzero two form. On the other hand, 𝛼𝑖𝑗𝑘 = (𝜕Γ)𝑖𝑗𝑘 = 𝛿𝑊 , where𝑊 is the unique 2-plane
containing the two lines. In particular, 𝛼𝑖𝑗𝑘 is a nonconstant affine function. Let 𝑒3 be a third
vector so that {𝑒1, 𝑓1 + 𝑓2, 𝑒3} forms a basis of𝑉. Let {𝑒∗1 , 𝑒

∗
2
, 𝑒∗
3
} form the dual basis of𝑉∗ = Λ⊗ ℤ2.

Taking the linear part of 𝛼𝑖𝑗𝑘 we have

𝛽𝑖𝑗𝑘 = Lin(𝛼𝑖𝑗𝑘) = 𝑒∗3 .

Consider Ω = 𝑒1 ∧ (𝑓1 + 𝑓2) ∧ 𝑒3, which coincides with the global 3-form on 𝐵. Contracting Ω
with 𝑒∗

3
gives precisely 𝑒1 ∧ (𝑓1 + 𝑓2). Therefore, after applying the isomorphism (6) we have

𝛽𝑖𝑗𝑘 = (𝐷2 + 𝐷𝐿𝜏)𝑖𝑗𝑘.

We now assume 𝑒1 and 𝑒2 are linearly independent. Let 𝑒3 be a third vector so that {𝑒1, 𝑒2, 𝑒3}
form a basis of 𝑉 and let {𝑒∗

1
, 𝑒∗
2
, 𝑒∗
3
} be the dual basis of 𝑉∗ = Λ⊗ ℤ2. As above Ω = 𝑒1 ∧ 𝑒2 ∧ 𝑒3

coincides with the global three form on 𝐵. We discuss the following three cases.
Case 2: 𝑍0, 𝑍1, 𝑍2 are coplanar and pass through the same point. In this case, 𝛼𝑖𝑗𝑘 = (𝜕Γ)𝑖𝑗𝑘 =

𝛿𝑊 , where𝑊 is the unique plane containing the three lines. We have

𝛽𝑖𝑗𝑘 = Lin(𝛼𝑖𝑗𝑘) = 𝑒∗3 .

Let 𝑞 be the common point of the three lines. We must have 𝑞 = 0 or 𝑞 = 𝑒1 + 𝑒2. Notice that
𝑓𝑗 = 𝑞 + 𝜖𝑗𝑒𝑗 , where 𝜖𝑗 = 1, 0. Then

(𝐷2 + 𝐷𝐿𝜏)𝑖𝑗𝑘 = 𝑒1 ∧ 𝑒2 + (𝑒1 + 𝑒2) ∧ 𝑞 = 𝑒1 ∧ 𝑒2.

As contractingΩwith 𝑒∗
3
gives 𝑒1 ∧ 𝑒2, we have 𝛽𝑖𝑗𝑘 = (𝐷2 + 𝐷𝐿𝜏)𝑖𝑗𝑘.

Case 3: 𝑍0, 𝑍1, 𝑍2 are coplanar and intersect pairwise at three different points. In this case, 𝛼𝑖𝑗𝑘 =
0. Let 𝑞 = 𝑍0 ∩ 𝑍1. Then 𝑓1 = 𝑞 + 𝜖1𝑒1 and 𝑓2 = 𝑞 + 𝑒1 + 𝜖2𝑒2. Therefore,

(𝐷2 + 𝐷𝐿𝜏)𝑖𝑗𝑘 = 𝑒1 ∧ 𝑒2 + 𝑒1 ∧ 𝑞 + 𝑒2 ∧ (𝑞 + 𝑒1) = (𝑒1 + 𝑒2) ∧ 𝑞 = 0,

so that 𝛽𝑖𝑗𝑘 = (𝐷2 + 𝐷𝐿𝜏)𝑖𝑗𝑘.
Case 4: 𝑍1, 𝑍2 are coplanar and 𝑍0 is disjoint from 𝑍1 and 𝑍2. Let 𝑞 = 𝑍1 ∩ 𝑍2. We must have

that 𝑞 is linearly independent from 𝑒1 and 𝑒2, therefore we may assume that 𝑒3 = 𝑞. We have that
𝛼𝑖𝑗𝑘 = 𝛿𝑊 , where𝑊 is the unique 2-plane containing 𝑍0 and the points 𝑒1 + 𝑒3 and 𝑒2 + 𝑒3. It can
be easily seen that

𝛽𝑖𝑗𝑘 = Lin(𝛼𝑖𝑗𝑘) = 𝑒∗1 + 𝑒∗2 + 𝑒∗3

On the other hand, we have 𝑓𝑗 = 𝑒3 + 𝜖𝑗𝑒𝑗 , which gives

(𝐷2 + 𝐷𝐿𝜏)𝑖𝑗𝑘 = 𝑒1 ∧ 𝑒2 + 𝑒1 ∧ 𝑒3 + 𝑒2 ∧ 𝑒3.

This is precisely the two formobtained by contractingΩwith 𝑒∗
1
+ 𝑒∗

2
+ 𝑒∗

3
. Therefore,𝛽𝑖𝑗𝑘 = (𝐷2 +

𝐷𝐿𝜏)𝑖𝑗𝑘 also in this case.
This concludes the proof. □
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22 of 35 MATESSI

6 CONNECTEDNESS AND BOUNDS ON BETTI NUMBERS

Wewill compute some consequences on the cohomology of Σ𝜏 with the assumption that the base
𝐵 is a homology ℤ2-sphere and that𝐻1(𝑋, ℤ2) = 𝐻1(�̌�, ℤ2) = 0. We will prove the following

Theorem 6.1. With the above assumptions, if 𝜏 is a nontrivial twist, then Σ𝜏 is connected and its
Betti numbers satisfy

𝑏1(Σ𝜏, ℤ2) ⩽ dim𝐻1(𝐵, 𝑅1𝑓∗ℤ2) + dim𝐻1(𝐵, 𝑅2𝑓∗ℤ2) − 1,

where equality holds if and only if the connecting homomorphism 𝛽 in (17) is zero. If the integral
cohomologies of 𝑋 and �̌� have no ℤ2 torsion, then

𝑏𝑞(Σ𝜏, ℤ2) ⩽ ℎ𝑞,3−𝑞(𝑋) + ℎ𝑞,𝑞(𝑋) − 1.

Notice in particular that Σ𝜏 is never maximal, in fact we have∑
𝑏𝑗(Σ𝜏, ℤ2) ⩽

∑
𝑏𝑗(𝑋, ℤ2) − 4.

When this inequality is an equality, Σ𝜏 is called an (𝑀 − 2) real variety (𝑀 stands for maximal,
see [25, section 3]).

6.1 Cohomology of 𝟐
𝝉

We prove the following

Lemma 6.2. In the hypothesis of Theorem 6.1, we have

𝐻0(𝐵,2
𝜏) = 0

𝐻1(𝐵,2
𝜏)) ≅

𝐻1(𝐵, 𝑅2𝑓∗ℤ2)⟨𝜏⟩
𝐻2(𝐵,2

𝜏) ≅ 𝐻2(𝐵, 𝑅2𝑓∗ℤ2)

𝐻3(𝐵,2
𝜏) ≅ ℤ2.

Proof. It follows from the discussion in Subsection 2.7 that

𝐻0(𝐵, 𝑅2𝑓∗ℤ2) ≅ 𝐻0(𝐵, 𝑅1𝑓∗ℤ2) = 0

𝐻3(𝐵, 𝑅2𝑓∗ℤ2) = 0.

Moreover,

𝐻0(𝐵, ℤ2) = 𝐻3(𝐵, ℤ2) = ℤ2, 𝐻1(𝐵, ℤ2) = 0
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ON REAL CALABI–YAU THREEFOLDS TWISTED BY A SECTION 23 of 35

as 𝐵 is a homology ℤ2 sphere. Hence, the long exact sequence associated to (14) splits as follows

0⟶ 𝐻0(𝐵,2
𝜏)⟶ ℤ2 ⟶𝐻1(𝐵, 𝑅2𝑓∗ℤ2)⟶ 𝐻1(𝐵,2

𝜏)⟶ 0

0⟶𝐻2(𝐵, 𝑅2𝑓∗ℤ2)⟶ 𝐻2(𝐵,2
𝜏)⟶ 0

0⟶𝐻3(𝐵,2
𝜏)⟶ ℤ2 ⟶ 0.

(21)

The last two lines give the last two statements of the lemma. In the first line we have two possi-
bilities, either 𝐻0(𝐵,2

𝜏) = 0 or 𝐻0(𝐵,2
𝜏) ≅ 𝐻0(𝐵, ℤ2) ≅ ℤ2. Let us prove that the former holds.

Take some covering𝔘 = {𝑈𝑖} over which the cycle 𝜏 and Σ𝜏 can be described as in Subsection 4.1.
Then, over each 𝑈𝑖 we have identifications

(Λ∗ ⊗ ℤ2) ⊕ ℤ2

𝜙𝑖
⟶ 2|𝑈𝑖

.

In fact for every nonzero 𝑣 ∈ (Λ∗ ⊗ ℤ2) let 𝑍𝑣 be the line with direction 𝑣 and passing through
−
�̃�𝑖
2
. Then we define

𝜙𝑖(𝑣, 𝜖) =

[
𝛿𝑍𝑣 + 𝜖𝛿

−
�̃�𝑖
2

]
.

It is then easy to check that over 𝑈𝑖𝑗

𝜙−1
𝑗
◦𝜙𝑖(𝑣, 𝜖) = (𝑣 + 𝜖𝜏𝑖𝑗, 𝜖).

Suppose by contradiction that 2
𝜏 has a nontrivial section 𝛼 that is mapped to 1 under the

homomorphism𝐻0(𝐵,2
𝜏) → ℤ2. Then, locally with the above identifications 𝜙𝑖 , we have

𝛼𝑖 = 𝛼|𝑈𝑖
= (𝑣𝑖, 1)

for some local section 𝑣𝑖 of Λ∗ ⊗ ℤ2. But as 𝛼 is a section, we must have that on 𝑈𝑖𝑗

(𝑣𝑖 + 𝜏𝑖𝑗, 1) = (𝑣𝑗, 1).

This implies that 𝜏𝑖𝑗 = 𝑣𝑗 − 𝑣𝑖 , that is, that 𝜏 is the trivial class, contradicting our assumption.
The first line of (21) becomes

0⟶ ℤ2 ⟶𝐻1(𝐵, 𝑅2𝑓∗ℤ2)⟶ 𝐻1(𝐵,2
𝜏)⟶ 0.

Wenowprove that image ofℤ2 inside𝐻1(𝐵, 𝑅2𝑓∗ℤ2) is generated by 𝜏. Given 1 ∈ ℤ2 = 𝐻0(𝐵, ℤ2),
we first lift it to a cochain 𝛾 ∈ 𝐶0(𝔘,2

𝜏). Then 𝜕𝛾 comes from a cocycle 𝜆 in𝐶1(𝔘, 𝑅2𝑓∗ℤ2)whose
class is the image of 1. We can define 𝛾 on each 𝑈𝑖 by

𝜙𝑖(𝛾𝑖) = (0, 1).

Now we have

𝜙𝑗(𝛾𝑖 − 𝛾𝑗) = 𝜙𝑖(𝛾𝑖 − 𝛾𝑗) = (𝜏𝑖𝑗, 0).

Therefore, the cocycle 𝜆 coincides with 𝜏. This proves the second isomorphism in this lemma. □
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24 of 35 MATESSI

6.2 Cohomology of 𝟏
𝝉

We can do a similar analysis of the cohomology of 1
𝜏.

Lemma 6.3. In the hypothesis of Theorem 6.1, we have that

𝐻0(𝐵,1
𝜏) = ℤ2

𝐻1(𝐵,1
𝜏) ≅ 𝐻1(𝐵, 𝑅1𝑓∗ℤ2).

Proof. Both isomorphisms follow from the long exact sequence associated to (13). □

6.3 Proof of Theorem 6.1

We apply the isomorphisms of Lemmas 6.2 and 6.3 to the long exact sequence (17). The first line
becomes

0⟶ ℤ2 ⟶𝐻0(Σ𝜏, ℤ2)⟶ 0. (22)

This proves that Σ𝜏 is connected. The rest of (17) becomes

0⟶𝐻1(𝐵, 𝑅1𝑓∗ℤ2)⟶ 𝐻1(Σ𝜏, ℤ2)⟶ 𝐻1(𝐵,2
𝜏)

𝛽
⟶

𝐻2(𝐵,1
𝜏)⟶ 𝐻2(Σ𝜏, ℤ2)⟶ 𝐻2(𝐵,2

𝜏)⟶ …,

(23)

which gives

𝑏1(Σ𝜏, ℤ2) ⩽ dim𝐻1(𝐵, 𝑅1𝑓∗ℤ2) + dim𝐻1(𝐵,2
𝜏)

= dim𝐻1(𝐵, 𝑅1𝑓∗ℤ2) + dim𝐻1(𝐵, 𝑅2𝑓∗ℤ2) − 1.

Obviously the equality holds if and only if 𝛽 = 0. If the integral cohomology of X has noℤ2 torsion
then the dimensions of the spaces on the right-hand side equal the correspondingHodge numbers.

6.4 Topology of twisted real 𝑲𝟑 surfaces

Assume that 𝐵 has dimension 2 and that it is the affine base of a 𝐾3 surface. Let Σ𝜏 be the real
twisted 𝐾3 associated to some twist 𝜏 ∈ 𝐻1(𝐵, 𝑅1𝑓∗ℤ2).

Theorem 6.4. If the twist is nontrivial, then the real twisted 𝐾3 surface Σ𝜏 is connected and has
genus 9.

Proof. We use the sheaf 1
𝜏 with the properties described in Subsection 4.5. The long exact

sequence associated to (16) splits as

0⟶𝐻0(𝐵,1
𝜏)⟶ 𝐻0(Σ𝜏, ℤ2)⟶ ℤ2

𝛼
⟶

⟶𝐻1(𝐵,1
𝜏)⟶ 𝐻1(Σ𝜏, ℤ2)⟶ 0,
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ON REAL CALABI–YAU THREEFOLDS TWISTED BY A SECTION 25 of 35

and

0⟶ 𝐻2(𝐵,1
𝜏)⟶ 𝐻2(Σ𝜏, ℤ2)⟶ ℤ2 ⟶ 0.

The sequence (13) gives that𝐻0(𝐵,1
𝜏) ≅ ℤ2 and

0⟶ 𝐻1(𝐵,1
𝜏)⟶ 𝐻1(𝐵, 𝑅1𝑓∗ℤ2)⟶ ℤ2 ⟶𝐻2(𝐵,1

𝜏)⟶ 0.

Let us prove that the homomorphism𝛼 in the first sequence is injective if and only if 𝜏 is nontrivial.
The argument is similar to the proof of Lemma 6.2. Take some covering𝔘 = {𝑈𝑖} over which the
cycle 𝜏 and Σ𝜏 can be described as in Subsection 4.1. Then, over each 𝑈𝑖 we have identifications

1
𝜏|𝑈𝑖

𝜙𝑖
⟶ (Λ⊗ ℤ2) ⊕ ℤ2,

which map an affine function 𝛽 on Σ𝜏|𝑈𝑖
to (𝑣𝛽, 𝜖𝛽), where 𝑣𝛽 is the linear part of 𝛽 and 𝜖𝛽 =

𝛽(−�̃�𝑈𝑖
∕2). It is easy to show that

𝜙𝑗◦𝜙
−1
𝑖
(𝑣, 𝜖) = (𝑣, 𝜖 + 𝑣(𝜏𝑖𝑗)).

Using the mirror symmetry isomorphism (6), the twist 𝜏 has a mirror �̌� ∈ 𝐻1(𝐵, 𝑅1𝑓∗ℤ2),
which is represented by {�̌�𝑖𝑗}, where �̌�𝑖𝑗 ∈ (Λ ⊗ ℤ2)𝑈𝑖𝑗

is obtained by contracting 𝜏𝑖𝑗 with a global
integral 2-form.
The generator 1 of ℤ2 (i.e., the last term in the sequence (16)) can be represented on each𝑈𝑖 as

[𝛿
−
�̃�𝑈𝑖
2

]. Then one can check that 𝛼(1) is represented by the 1-cycle {(�̌�𝑖𝑗, 1)}. This cycle is nonzero

if and only if 𝜏 is nonzero. Now the statement follows from the above sequences, where we use
the fact that dim𝐻1(𝐵, 𝑅1𝑓∗ℤ2) = 20. □

7 THE RENAUDINEAU–SHAW SPECTRAL SEQUENCE

We will compare our results with the work [20] by Renaudineau and Shaw, where they construct
a spectral sequence computing the Betti numbers of real hypersurfaces in toric varieties arising
from primitive patchworking. In their case, they consider the 𝑛-dimensional tropical hypersur-
face 𝑋, corresponding to the complex hypersurface ℂ𝑋, and they compute the homology with ℤ2

coefficients of the real hypersurface ℝ𝑋.

7.1 The results of Renaudineau–Shaw

The patchworking data (i.e., the choice of signs) are encoded in a cosheaf  of ℤ2 modules over
𝑋, called the sign cosheaf. Its homology satisfies 𝐻𝑞(𝑋,) = 𝐻𝑞(ℝ𝑋,ℤ2). Then they construct a
filtration of 

0 = 𝑛+1 ⊂ 𝑛 ⊂ … ⊂ 0 = 
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26 of 35 MATESSI

by cosheaves whose quotients

𝑝 =
𝑝

𝑝+1

are aℤ2 version of the cosheaves defined by Itenberg, Katzarkov,Mikhalkin, and Zharkov (IKMZ)
in [18]. The tropical homology groups of 𝑋 are defined as𝐻𝑞(𝑋,𝑝). The above filtration induces
a spectral sequence, converging to the homology of ℝ𝑋, whose first page is given by 𝐸1𝑞,𝑝 =

𝐻𝑞(𝑋,𝑝). The boundary morphisms are maps 𝜕 ∶ 𝐻𝑞+1(𝑋,𝑝) → 𝐻𝑞(𝑋,𝑝+1). In the original
definition of [18], the cosheaves 𝑝 are defined over ℚ and in this case IKMZ prove that

dim(𝐻𝑞(𝑋,𝑝)) = ℎ𝑝,𝑞(ℂ𝑋).

Under the assumption that the integral tropical homology of 𝑋 has no torsion, the spectral
sequence implies that

𝑏𝑞(ℝ𝑋,ℤ2) ⩽

{
ℎ𝑞,𝑞(ℂ𝑋) if 𝑞 = 𝑛∕2,

ℎ𝑞,𝑛−𝑞(ℂ𝑋) + ℎ𝑞,𝑞(ℂ𝑋) otherwise.
. (24)

It follows from [3] that indeed these inequalities hold when the ambient toric variety is smooth.
This proves a generalization of the Itenberg conjecture [17]. Renaudineau and Shaw also prove
thatℝ𝑋 is maximal if and only if the spectral sequence degenerates at the first page, that is, if and
only if all the boundary maps vanish. They conjecture that the spectral sequence degenerates at
the second page.

7.2 Comparison with our case

In our case,𝐵 plays the role of the tropical variety𝑋 and the sheaf𝜋𝜏∗ℤ2 is the replacement for the
sign cosheaf  . Notice that we use a sheaf because we compute cohomology, instead of homology.
Let us define a filtration of𝜋𝜏∗ℤ2 analogous to the one described above. Let𝑉 be an𝑛-dimensional
ℤ2-vector space and let 𝑆𝑉 = Maps(𝑉, ℤ2).We define the subspace𝐾𝑝 ⊂ 𝑆𝑉 as the set ofmaps that
can be defined by a polynomial on 𝑉 of degree less or equal to 𝑝. Then 𝐾0 ≅ ℤ2 is given by the
constant maps, 𝐾1 is the space of affine maps and it can be shown that 𝐾𝑛 = 𝑆𝑉 . Therefore, we
have a filtration

0 ⊂ 𝐾0 ⊂ 𝐾1 ⊂ … . ⊂ 𝐾𝑛 = 𝑆𝑉

It can be shown (e.g., compare with [20, section 4]) that

𝐾𝑝∕𝐾𝑝−1 ≅

𝑝⋀
𝑉∗.

If 𝑉 is an affine space instead of a vector-space, choosing a point 𝑉 as the origin turns it into a
vector space and thus we can still define the filtration onMaps(𝑉, ℤ2). It can be shown that this
filtration is independent of the chosen point.
We have seen that at a smooth point 𝑏 ∈ 𝐵0, 𝜋−1𝜏 (𝑏) is an affine space modeled onΛ∗

𝑏
⊗ ℤ2 and

therefore we can define a filtration by sheaves on 𝜋𝜏∗ℤ2, as (𝜋𝜏∗ℤ2)𝑏 = Maps(𝜋−1𝜏 (𝑏), ℤ2):

0 ⊂ 1 ⊂ 2 ⊂ … ⊂ 𝑛 = 𝜋𝜏∗ℤ2.
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ON REAL CALABI–YAU THREEFOLDS TWISTED BY A SECTION 27 of 35

Let us denote

𝑝 = 𝑝∕𝑝−1.

Then we have

𝑝 ≅

𝑝⋀
Λ = 𝑅𝑝𝑓∗ℤ2,

where the last equality follows from (4). Therefore, the sheaves 𝑅𝑝𝑓∗ℤ2 play the same role
as the cosheaves 𝑝 in the Renaudineau–Shaw sequence. The above filtration induces a spec-
tral sequence computing the cohomology of Σ𝜏. The first page is 𝐸1𝑞,𝑝 = 𝐻𝑞(𝐵, 𝑅𝑝𝑓∗ℤ2) and the
boundary maps are

𝜕𝜏 ∶ 𝐻
𝑞(𝐵, 𝑅𝑝+1𝑓∗ℤ2) → 𝐻𝑞+1(𝐵, 𝑅𝑝𝑓∗ℤ2)

Let us now compare this spectral sequence with our sequences. We restrict to the case 𝑛 = 3,
so that3 = 𝜋𝜏∗ℤ2. Notice that by definition

1
𝜏 = 1.

Moreover, the sequence (12) defining 2
𝜏 implies that

2
𝜏 = 3∕1.

The sequence (13) is the sequence

0 → 0 → 1 → 1 → 0

defining 1. The sequence (14) corresponds to

0 → 2 → 3∕1 → 3 → 0. (25)

It is not difficult to show that the homomorphism 𝛽′ defined in (18) coincides with the corre-
sponding boundary map from the spectral sequence. Moreover, the connecting homomorphism

𝐻0(𝐵,3) → 𝐻1(𝐵,2)

from sequence (25) is also a boundary map from the spectral sequence and it is equivalent to the
connecting homomorphism

ℤ2 → 𝐻1(𝐵, 𝑅2𝑓∗ℤ2)

from (14). In particular, Lemma 6.2 shows that, with the given hypothesis, this map is always
injective when the twist 𝜏 is nontrivial. Therefore, in the hypothesis of Section 6, the spectral
sequence never degenerates at the first page when 𝜏 is nontrivial.
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28 of 35 MATESSI

7.3 Mirror symmetry

Let us now consider mirror symmetry. Applying the isomorphism (6), the boundary homomor-
phisms for the first page of the spectral sequence become

𝜕𝜏 ∶ 𝐻
𝑞(𝐵, 𝑅𝑛−𝑝−1𝑓∗ℤ2) → 𝐻𝑞+1(𝐵, 𝑅𝑛−𝑝𝑓∗ℤ2).

When 𝑛 = 3, Theorem 5.1 and Lemma 6.2 explicitly describe these homomorphisms in the cases
(𝑞, 𝑝) = (1, 1) and (𝑞, 𝑝) = (0, 2).

Question. Can we explicitly describe these homomorphisms for all 𝑛, 𝑝 and 𝑞?

For instance, in three dimensions, there is one more case to compute in order to determine
the spectral sequence, that is, (𝑞, 𝑝) = (2, 0). In fact, if the boundary map in this case is injective,
then the spectral sequence degenerates at the second page. We were not able to find an explicit
description of this case.

8 A CONNECTED (𝑴 − 𝟐)-REAL QUINTIC

In the case of the quintic threefold, with the torus fibration described by Gross in [11], Arguz–
Prince [2] computed the cohomology of the untwisted real quintic (i.e., 𝐿𝜏 = 0). They found that
the map 𝛽 has rank 73, and hence that 𝑏1(Σ) = 29. In particular, the untwisted real quintic is
not maximal. As also the twisted quintics are not maximal, as proved in Section 6, none of the
real quintics constructed in this way is maximal. The highest possible value of 𝑏1 for our twisted
real Calabi–Yau’s is when 𝛽𝜏 = 0. In this case, as proved in Section 6, the real Calabi–Yau is an
(𝑀 − 2)-real variety. We prove the following.

Theorem 8.1. There exists a connected (𝑀 − 2) real twisted quintic Σ𝜏. In particular,

𝑏1(Σ𝜏, ℤ2) = 101.

We will prove this by finding a divisor 𝐿 in the mirror quintic �̌� such that

𝐷2 + 𝐷𝐿 = 0 ∀𝐷 ∈ 𝐻2(�̌�, ℤ2). (26)

8.1 The mirror quintic

Consider the same simplex 𝑃 as in Subsection 2.4, that is, the one with vertices

𝑉0 = (−1,−1, − 1, −1), 𝑉1 = (4, −1, −1, −1), 𝑉2 = (−1, 4, −1, −1),

𝑉3 = (−1,−1, 4, −1), 𝑉4 = (−1,−1, −1, 4).

It is a reflexive polytope with the origin as its only interior integral point. The fan whose cones
are the cones over the faces of 𝑃 gives a singular toric variety �̌�𝑃. We can resolve �̌�𝑃 by taking
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ON REAL CALABI–YAU THREEFOLDS TWISTED BY A SECTION 29 of 35

F IGURE 5 Triangulation of 2-dimensional faces.

a unimodular regular subdivision of the boundary 𝜕𝑃 and take the associated fan, which gives a
smooth toric variety �̌�. The mirror quintic �̌� is a smooth anti-canonical divisor in �̌�. Let us take,
as in Gross [11], a subdivision of 𝜕𝑃 which on 2-dimensional faces looks like Figure 5.

8.2 Divisors in the mirror quintic

Each vertex in the subdivision of 𝜕𝑃 corresponds to a one dimensional cone of the fan, hence
to a toric divisor in �̌�. The divisors corresponding to vertices inside 2-dimensional faces of 𝜕𝑃
are precisely the ones that have nontrivial intersection with the mirror quintic �̌�, therefore they
correspond to nonzero divisors in �̌�. Gross shows that these divisors generate 𝐻2(�̌�, ℤ), and
hence also𝐻2(�̌�, ℤ2) (see [11, Lemma 4.3]). With some abuse of notation, we denote by 𝑉0,… , 𝑉4

also the divisors corresponding to the vertices of 𝜕𝑃. Moreover, we denote by 𝐸𝓁
𝑖𝑗
the divisor

corresponding to the 𝓁th interior vertex along the edge from 𝑉𝑖 to 𝑉𝑗 , where interior vertices
of edges are numbered as in Figure 5. The divisors in the interior of the 2-face with vertices
𝑉𝑖 , 𝑉𝑗 , and 𝑉𝑘, numbered as in Figure 5, are denoted by 𝐹𝓁

𝑖𝑗𝑘
. In [11, Proposition 4.2], Gross

also computes triple intersection numbers 𝐷1𝐷2𝐷3 between these divisors. We report here the
mod 2 version.

Proposition 8.2 [11, Proposition 4.2]. The mod 2 triple intersection numbers between the above
divisors in �̌� are as follows.

(1) (𝑉𝑖)
3 = (𝐸𝓁

𝑖𝑗
)3 = 1 and (𝐹𝓁

𝑖𝑗𝑘
)3 = 0.

(2) Given two distinct divisors 𝐷1 and 𝐷2 lying on the same 2-face, then (𝐷1)
2𝐷2 = 1 if and only if

𝐷1 and 𝐷2 are connected by one edge in the graph depicted in Figure 6.
(3) Given three distinct divisors 𝐷1, 𝐷2, 𝐷3 lying on the same 2-face, then 𝐷1𝐷2𝐷3 = 1 if and only if

they are vertices of a two simplex in Figure 5.

All other triple intersections are zero.
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30 of 35 MATESSI

F IGURE 6 Triple intersection graph.

Let 𝑆 be the set of all divisors of type𝑉𝑖 ,𝐸𝓁
𝑖𝑗
or𝐹𝓁

𝑖𝑗𝑘
. A general divisor in𝐻2(�̌�, ℤ2) can bewritten

as

𝐿 =
∑
𝐷∈𝑆

𝜖𝐷𝐷,

where 𝜖𝐷 ∈ ℤ2. We can obviously view 𝐿 as a subset of 𝑆, where 𝐷 ∈ 𝐿 if and only if 𝜖𝐷 = 1. We
have that 𝐿 satisfies (26) if and only if

𝐷2
1𝐷2 = 𝐿𝐷1𝐷2, ∀𝐷1, 𝐷2 ∈ 𝑆.

8.3 Local configurations

It follows from Proposition 8.2 that if 𝐷1 and 𝐷2 do not belong to the same 2-face then 𝐷2
1
𝐷2 =

𝐿𝐷1𝐷2 = 0. We now consider the following cases (and subcases).

(1) 𝐷1 and 𝐷2 lie in the same 2-face but not in the same edge of 𝜕𝑃.
(1.1) 𝐷1 ≠ 𝐷2 and they are connected by an edge of the subdivision.
(1.2) 𝐷1 ≠ 𝐷2 and they are not connected by an edge of the subdivision.
(1.3) 𝐷1 = 𝐷2 and it is in the interior of a 2-face.

(2) 𝐷1 and 𝐷2 lie inside the same edge.
(2.1) 𝐷1 = 𝐷2.
(2.2) 𝐷1 ≠ 𝐷2 and they are connected by an edge in the graph of Figure 6.
(2.3) 𝐷1 ≠ 𝐷2 and they are not connected by an edge in the graph of Figure 6.

We now see how in the above cases the condition 𝐷2
1
𝐷2 = 𝐿𝐷1𝐷2 imposes certain local

configurations on 𝐿.

Case 1.1. Let 𝐷3 and 𝐷4 be the other vertices of the two simplices that contain the edge from 𝐷1

to 𝐷2 as in Figure 7. Then, using Proposition 6, we have

𝐷2
1𝐷2 = 1 and 𝐿𝐷1𝐷2 =

4∑
𝑗=1

𝜖𝐷𝑗 .

Therefore, we have𝐷2
1
𝐷2 = 𝐿𝐷1𝐷2 if and only if only an odd number of the vertices𝐷1, 𝐷2, 𝐷3, 𝐷4

belong to 𝐿.
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ON REAL CALABI–YAU THREEFOLDS TWISTED BY A SECTION 31 of 35

F IGURE 7 If 𝐷1 and 𝐷2 are on the same 2-face and are connected by an edge, then only an odd number of
the 𝐷1, 𝐷2, 𝐷3, 𝐷4 can be in 𝐿.

F IGURE 8 If 𝐷1 = 𝐷2 is in the interior of a 2-face, then an even number of the 𝐷3, … , 𝐷8 can be in 𝐿.

Case 1.2. It is easy to see that in this case, both 𝐷2
1
𝐷2 and 𝐿𝐷1𝐷2 are always zero.

Case 1.3. If 𝐷1 = 𝐷2 and it is in the interior of a 2-faces of 𝜕𝑃, then 𝐷2
1
𝐷2 = 𝐷3

1
= 0. On the other

hand,

𝐿𝐷2
1 =

8∑
𝑗=3

𝜖𝐷𝑗 ,

where 𝐷3,… , 𝐷8 are the six vertices adjacent to 𝐷1.
Therefore, in this case, 𝐷2

1
𝐷2 = 𝐿𝐷1𝐷2 if and only if an even number of the 𝐷3,… , 𝐷8 belong to

𝐿 (see Figure 8).

Case 2.1. If 𝐷1 = 𝐷2 and it lies on an edge of 𝜕𝑃, then 𝐷2
1
𝐷2 = 𝐷3

1
= 1. Let 𝑆𝐷1 be the subset of 𝑆

consisting of𝐷1 and of all the vertices that are connected to𝐷1 via an edge of the graph in Figure 6
for some 2-face containing 𝐷1. For example, if 𝐷1 is of type 𝑉𝑗 , that is, it is a vertex of 𝜕𝑃, then
𝑆𝐷1 contains five elements, otherwise if 𝐷1 is in the interior of an edge, 𝑆𝐷1 will contain eight
elements. Then we have

𝐿𝐷1𝐷2 = 𝐿𝐷2
1 =

∑
𝐷∈𝑆𝐷1

𝜖𝐷.

Therefore, in this case 𝐷2
1
𝐷2 = 𝐿𝐷1𝐷2 if and only if 𝑆𝐷1 ∩ 𝐿 contains an odd number

of elements.

Case 2.2. Let 𝐷1 ≠ 𝐷2 belong to some edge of 𝜕𝑃 and assume they are connected by an edge in
the graph of Figure 6 (e.g., 𝐷1 = 𝐸2

𝑖𝑗
and 𝐷2 = 𝐸3

𝑖𝑗
). Let 𝑆𝐷1𝐷2 be the subset of 𝑆 consisting of 𝐷1,
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32 of 35 MATESSI

F IGURE 9 The “empty” face and the “arrow”.

𝐷2 and the vertices 𝐷 such that 𝐷1, 𝐷2 and 𝐷 are vertices of a 2-simplex of the subdivision. In
particular, 𝑆𝐷1𝐷2 contains five elements. Then we have 𝐷

2
1
𝐷2 = 1 and

𝐿𝐷1𝐷2 =
∑

𝐷∈𝑆𝐷1𝐷2

𝜖𝐷.

Therefore, in this case𝐷2
1
𝐷2 = 𝐿𝐷1𝐷2 if and only if 𝑆𝐷1𝐷2 ∩ 𝐿 contains an oddnumber of elements.

Case 2.3. Let 𝐷1 ≠ 𝐷2 belong to some edge of 𝜕𝑃 and assume they are not connected by an edge
in the graph of Figure 6. We have two possibilities: either 𝐷1 and 𝐷2 are not adjacent (e.g., 𝐷1 =

𝐸2
𝑖𝑗
and 𝐷2 = 𝐸4

𝑖𝑗
) or they are adjacent but the edge between them is not part of the graph in

Figure 6 (e.g., 𝐷1 = 𝐸1
𝑖𝑗
and 𝐷2 = 𝐸2

𝑖𝑗
). In both cases we have 𝐷2

1
𝐷2 = 0. Let 𝑆𝐷1𝐷2 be the subset of

𝑆 consisting of the vertices𝐷 such that𝐷1, 𝐷2 and𝐷 are vertices of a 2-simplex of the subdivision.
Obviously 𝑆𝐷1𝐷2 is empty in the first case and consists of three elements in the second case. Then

𝐿𝐷1𝐷2 =
∑

𝐷∈𝑆𝐷1𝐷2

𝜖𝐷.

Therefore, in this case 𝐷2
1
𝐷2 = 𝐿𝐷1𝐷2 if and only if 𝑆𝐷1𝐷2 ∩ 𝐿 contains an even number

of elements.

8.4 Proof of Theorem 8.1

In Figure 9, we give two examples of a 2-face and divisor 𝐿 (the dotted “red” vertices) such that
all interior edges satisfy the configurations of Case 1.1 and all interior vertices satisfy the config-
urations of Case 1.3. We call the picture on the left an “empty face” (because its edges are empty)
and the one on the right the “arrow” and we also depict their symbols. The arrows, in the symbol
for the arrow, correspond to nonempty edges and they point toward the vertex that lies in 𝐿.
In Figure 10, we give two examples of a neighborhood of an edge of 𝜕𝑃 and a divisor 𝐿 such

that every vertex of the edge satisfies the configurations of Case 2.1 and every edge satisfies the
configurations of either Case 2.2 or Case 2.3. As each edge of 𝜕𝑃 is contained in three 2-faces,
we have glued together three copies (blue, black and red) of the graph in Figure 6 along an edge.
Notice that the configuration on the left can be obtained by gluing three copies of an “arrow”
along a nonempty edge. The configuration on right can be obtained by gluing two copies of an
“empty” face and one copy of an “arrow”, along their empty edges.
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F IGURE 10 Two configurations along an edge.

F IGURE 11 A global configuration with empty faces and arrows.

Figure 11 describes a global example of a divisor 𝐿 ∈ 𝐻2(�̌�, ℤ2) satisfying 𝐷2 + 𝐿𝐷 = 0 for all
𝐷 ∈ 𝐻2(�̌�, ℤ2). We have depicted the graph formed by the edges of 𝜕𝑃. Each triple of vertices
corresponds to a 2-face of 𝜕𝑃 and this 2-faces is either an “empty” face or an “arrow” depending
on whether the decoration of the edges matches the corresponding symbols. It is clear that all
nonempty edges will satisfy the configuration on the left in Figure 10 and all empty edges will
satisfy the configuration on the right.

8.5 The twisted real mirror quintic

Let �̌� be the mirror of the quintic. We study the topology of a twisted real mirror quintic in �̌�,
which we denote by Σ̌𝜏. In this case,

𝐻1(𝐵, 𝑅1𝑓∗ℤ2) ≅ (ℤ2)
101 and 𝐻1(𝐵, 𝑅2𝑓∗ℤ2) ≅ ℤ2.

In the untwisted case, Σ̌has two connected components and it follows from the result of Arguz and
Prince that 𝑏1(Σ̌0) = 101 (see [2, Example 4.10]). As𝐻1(𝐵, 𝑅1𝑓∗ℤ2) ≅ ℤ2, there is only one twisted
real mirror quintic Σ̌𝜏. It follows from Lemmas 6.2 and 6.3 that 𝐻1(𝐵,2

𝜏) = 0 and 𝐻1(𝐵,1
𝜏) =

(ℤ2)
101. Then, sequence (17) implies

𝑏1(Σ𝜏) = 101.
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