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Abstract: Traditional cardiovascular (CV) risk factors (RFs) and coronary artery disease (CAD)
do not always show a direct correlation. We investigated the metabolic differences in a cohort of
patients with a high CV risk profile who developed, or did not develop, among those enrolled in the
Coronary Atherosclerosis in Outlier Subjects: Protective and Novel Individual Risk Factors Evaluation
(CAPIRE) study. We studied 112 subjects with a high CV risk profile, subdividing them according
to the presence (CAD/High-RFs) or absence of CAD (No-CAD/High-RFs), assessed by computed
tomography angiography. The metabolic differences between the two groups were identified by
gas chromatography-mass spectrometry. Characteristic patterns and specific metabolites emerged
for each of the two phenotypic groups: high concentrations of pyruvic acid, pipecolic acid, p-cresol,
3-aminoisobutyric acid, isoleucine, glyceric acid, lactic acid, sucrose, phosphoric acid, trimethylamine-
N-oxide, 3-hydroxy-3-methylglutaric acid, erythritol, 3-hydroxybutyric acid, glucose, leucine, and
glutamic acid; and low concentrations of cholesterol, hypoxanthine, glycerol-3-P, and cysteine in the
CAD/High-RFs group vs the No-CAD/High-RFs group. Our results show the existence of different
metabolic profiles between patients who develop CAD and those who do not, despite comparable
high CV risk profiles. A specific cluster of metabolites, rather than a single marker, appears to be able
to identify novel predisposing or protective mechanisms towards CAD beyond classic CVRFs.

Keywords: coronary artery diseases; atherosclerosis; cardiovascular risk factors; metabolomics

1. Introduction

A risk factor (RF) is a specific condition, behavior or biological substrate statistically
associated with a disease and shown to contribute to its pathogenesis, development or
accelerated course. The Framingham Heart Study first investigated cardiovascular (CV)
RFs, finding epidemiological relationships between cigarette smoking, blood pressure and
cholesterol levels and the incidence of coronary artery disease (CAD) [1]. Nonetheless,
seventy years later, CV disease (CVD) is still a major problem, causing disability and
premature death around the world.
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The latter consideration suggests that additional and unknown mechanisms may
act independently of CVRFs or modulate the pathophysiological response to traditional
CVRFs. Accordingly, despite the well known genetic influence on the development of
CAD, as demonstrated by its high rate of inheritance (40–50%) [2,3], CAD cannot simply be
considered as the expression of a transmitted predisposition, but, rather, as the result of
multiple factors and genetic, epigenetic and environmental/behavioral interactions.

The local microenvironment, resulting from the interplay between arterial mechanics,
matrix remodeling, and lipid deposition, is able to modulate susceptibility to atherosclerosis
development and progression. Furthermore, microenvironmental stimuli can affect other
aspects of the microenvironment through collective adaptation. Our previous results
have already shown that the metabolic profile of healthy coronary arteries is different
from that of vessels affected by atherosclerosis, and that, in this setting, the metabolic
fingerprint of microvascular dysfunction is distinguishable from that of stenotic disease,
despite comparable cardiovascular risk factors [4].

The Coronary Atherosclerosis in Outlier Subjects: Protective and Novel Individual Risk
Factors Evaluation (CAPIRE) study aimed to improve the knowledge of these interactions
and, for this purpose, compared imaging and biochemical variables across four mutually
exclusive phenotypes, defined by the presence/absence of CAD and RFs [5].

Metabolomics is a scientific tool recently applied to cardiology, which identifies and
quantifies large numbers of metabolites in biological samples, providing immediate func-
tional information.

We previously investigated the functional-metabolic correlations of CAD, CVRFs,
both or neither in a 2 × 2 phenotypic observational study [6]. Characteristic patterns and
specific metabolic pathways were revealed in each phenotypic group of our patients, which
included patients with or without CAD and with or without traditional CVRFs (ranging
from CAD with high-risk profile to no CAD in the presence of multiple traditional CV
RFs). In this study, we aimed to compare the metabolic fingerprint that characterizes
and differentiates patients who, despite an equally high risk of CV, developed or did not
develop CAD, thereby solving this unanswered medical question.

2. Results

No significant differences were found between the two groups in terms of anthropo-
metric and clinical data (Table 1) or used drugs, except for acetylsalicylic acid (Table 2).

Table 1. Demographic, anthropometric, and clinical data of the study population. Data are reported
as mean ± SD for continuous variables and as numbers of affected/group sample.

CAD/High-RF
(Case, N = 56)

No-CAD/High-RF
(Control, N = 56)

Age 61.8 ± 6.8 60.9 ± 7.5

M/F 34/22 34/22

Height (cm) 167.95 ± 8.75 167.61 ± 8.53

Weight (kg) 79.40 ± 15.08 76.98 ± 13.68

BMI (Kg/m2) 22.59 ± 5.51 21.95 ± 5.66

Abdominal circumference (cm) 100.04 ± 12.90 97.17 ± 11.60

CAD family history 34/56 34/56

Hypertension 52/56 53/56

Hypercholesterolemia 54/56 52/56

Diabetes mellitus 20/56 17/56

Tobacco 33/56 24/56

No CV-RFs 0/56 0/56
BMI: body mass index; CAD: coronary artery disease; CV-RFs: cardiovascular risk factors.
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Table 2. Drugs use in the study population.

CAD/High-RF
(Case, N = 56)

No-CAD/High-RF
(Control, N = 56)

No therapy 11/56 24/56 *

β-Blockers 10/56 16/56

ACE inhibitors 15/56 10/56

ARBs 8/56 13/56

CCB—dihydropyridines 5/51 3/53

CCB—no dihydropyridines 2/54 2/54

Diuretics 7/56 7/56

Potassium-sparing diuretics 0/56 0/56

Other antihypertensive drugs 0/56 0/56

Antiarrhythmic drugs 0/56 1/56

ASA 22/56 11/56 *

Clopidogrel 1/56 0/56

Statins 21/56 13/56

Other hypolipidemic drugs 1/56 5/56

Insulin 0/56 0/56

Other hypoglycemic drugs 5/56 7/56

Allopurinol 0/56 0/56
ACE: angiotensin-converting enzyme; ARBs: Angiotensin Receptor blockers; CCB: calcium channel blockers;
ASA: acetyl salicylic acid. * p < 0.05 vs. CAD/High-RF.

We performed an OPLS-DA between CAD/high-RF subjects and no-CAD/high-RF
subjects, observing a clear clustering that suggested the existence of different metabolic
profiles and involved pathways (Figure 1). The R2 and Q2 values and the p-value of the
corresponding analysis were: R2X: 0.417, R2Y: 0.744, Q2: 0.271, p-value: 0.013.
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Figure 1. OPLS-DA score plot: the predictive (x-axis) and orthogonal (y-axis) components. Separation
of classes is maximized along the predictive component, while the orthogonal component accounts for
intra-class variability. Group 1 (green dots): no-CAD/high-RF vs. Group 4 (red dots): CAD/high-RF.
The variable importance in projection (VIP) scores allowed further identification of the metabolites
responsible for the separation between the two phenotypic groups.
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In detail, the CAD/high-RF group was characterized by high concentrations of pyru-
vic acid, pipecolic acid, p-cresol, 3-aminoisobutyric acid, isoleucine, glyceric acid, lac-
tic acid, sucrose, phosphoric acid, trimethylamine-N-oxide, 3-hydroxy-3-methylglutaric
acid, erythritol, 3-hydroxybutyric acid, glucose, leucine, and glutamic acid; and by low
concentrations of cholesterol, hypoxanthine, glycerol-3-P, and cysteine compared to the
no-CAD/high-RF group (Table 3).

Table 3. List of the most significant metabolites, obtained by multivariate statistical analysis, discrim-
inating patients with CAD/high-RFs from no-CAD/high-RF subjects.

Metabolite Trend in CAD/High-RFs VIP Value

Pyruvic acid ↑ 3.09

Pipecolic acid ↑ 2.44

p-Cresol ↑ 2.37

3-Aminoisobutyric acid ↑ 2.28

Isoleucine ↑ 2.18

Cholesterol ↓ 1.96

Lactic acid ↑ 1.64

Sucrose ↑ 1.63

Hypoxanthine ↓ 1.51

Phosphoric acid ↑ 1.39

Trimethylamine-N-oxide ↑ 1.27

3-hydroxy-3-methylglutaric acid ↑ 1.14

Erythritol ↑ 1.12

3-hydroxybutyric acid ↑ 1.09

Glycerol-3-P ↓ 1.08

Glucose ↑ 1.03

Leucine ↑ 1.01

Cysteine ↓ 1.00

Glutamic acid ↑ 1.00

3. Discussion

In this study, we focused on patients with high-risk CV profiles, with or without
widespread CAD. The metabolomic analysis revealed specific metabolic fingerprints asso-
ciated with each of the two phenotypes.

Some intermediates of the glycolysis pathways were found to be the major contribu-
tors to the cluster differences between the CAD/high-RF and no-CAD/high-RF groups,
indicating a significant alteration of energy metabolism. Pyruvic acid, an intermediate
in anaerobic glycolysis, appeared as the most significant metabolite in the comparison
between the two patient groups. Lactic acid, which was in turn increased in CAD/high-RF
patients, is a known marker of impaired energy metabolism in CAD [7], as a result of
an impaired ability of the mitochondria to process pyruvic acid. Glycerol-3-phosphate,
produced at the intersection of glucose and fat metabolism, the availability of which reg-
ulates energy and intermediate metabolism, exhibited a low serum concentration in the
CAD/high-RF group.

Taken together, these findings denote a dysfunctional state of glucose oxidation,
cellular redox and ATP production, gluconeogenesis, fatty acid esterification towards
glycerolipids synthesis, and fatty acid oxidation [8].

Two other sugars, glucose and sucrose, were highly represented in the CAD/high-RF
group. On the one hand, the direct and independent relationship between hyperglycemia
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and CVD, through the activation of multiple atherogenic mechanisms, is well known [9].
Furthermore, sucrose has been linked to the development of CAD, while data from the
Coronary Artery Risk Development in Young Adults (CARDIA) study showed an inverse
association between increased dietary sucrose intake and HDL cholesterol concentra-
tions [10].

The ketone body 3-hydroxybutyrate, an important metabolite in ensuring ATP genera-
tion, was higher in the CAD/High-RF group. This molecule carries out cardioprotection
in pathophysiological circumstances, primarily heart failure, providing an auxiliary fuel
source and improving mitochondrial energetics [11]. Its increase in patients with CAD
validates the hypothesis of their impaired energy metabolism.

Leucine and isoleucine, two branched-chain amino acids (BCAA), were highly repre-
sented when comparing CAD/high-RFs to no-CAD/high-RFs. The well known relation-
ships between sugars and CAD mentioned above have implied the underestimation of
the role of amino acids in the development and progression of CAD [12]. Conversely, a
recent cohort study including incident CVD cases demonstrated a significant association of
baseline leucine or isoleucine concentrations with higher CVD risk, after adjustment for
potential confounders [13]. Furthermore, the results of a long-term (18.6 years of follow-up)
prospective observational cohort of women, free of CVD at baseline, confirmed the positive
association of total BCAA with CVD incidence [14].

Some studies, both in animal models and in humans, support our data, suggesting
at least a partial explanation for the different evolution towards CAD of our two groups
of subjects, with similarly high CV risk profiles, but different BCAA concentrations. The
study by Li et al., using a mouse model of impaired BCAA catabolism, showed that BCAA
accumulation selectively disrupts the utilization of mitochondrial pyruvate through the
inhibition of pyruvate dehydrogenase complex (PDH) activity. This results in significant
decreases in glucose uptake and oxidation, glycogen content and protein glycosylation,
thus making the heart vulnerable to ischemia-reperfusion injury [15]. On the other hand,
in a matched-pair case-control study Yang RY et al. demonstrated that BCAAs are signifi-
cantly correlated with the development of CAD, independent of diabetes, hypertension,
dyslipidemia, and body mass index [16].

Another amino acid that we found to be elevated in CAD/high-RF patients was
pipecolic acid, a molecule originating from the lysine degradation pathway, possibly from
intestinal bacterial enzyme metabolism. A recent study showed an association of lysine
with CVD risk, but not with pipecolic acid [17]. Conversely, this molecule has been found to
be elevated in diabetic corneas, suggesting a specific role in diabetes-induced diseases [18].

A further interesting result was the identification in the no-CAD/High-RF group
of an elevated concentration of cysteine, a non-essential amino acid synthesized from
methionine [19]. Cysteine is a powerful antioxidant capable of trapping reactive oxygen
species (ROS) through sulfur residue, which determines disulfide bonds between two
cysteine residues [19]. The increased presence of this amino acid in no-CAD/high-RF
subjects can, therefore, be interpreted as a contrast to oxidative stress, in the presence of
risk factors [20] and, ultimately, a form of protection against the development of CAD.

A recent accumulation of evidence suggests that alterations in the gut microbiome
could play a role in CVD, with emphasis on heart failure and CAD [21]. In our study,
CAD/high-RF patients exhibited high plasma concentrations of two gut microbiota-related
metabolites, p-cresol and trimethylamine N-oxide (TMAO).

P-cresol is a methylphenol produced from tyrosine by the enteric pathogen, Clostrid-
ium difficile. In atherosclerosis-prone mice, p-cresol treatment activates macrophage mi-
cropinocytosis, leading to increased LDL uptake and higher hepatic/aortic fat deposits [22],
prerequisites for a specific contribution to greater CV risk. P-cresol could also contribute
to atherogenesis and thrombosis through the induction of ROS and cytotoxicity, and
the production of inflammation/atherosclerosis-related modulators in endothelial and
mononuclear cells [23].
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TMAO is generated by gut microbes that, in anaerobic conditions, metabolize diet-
derived molecules (choline, betaine, L-carnitine) to generate trimethylamine (TMA), which
is converted to TMAO in the liver. Several studies have indicated a correlation between
plasma TMAO levels and the risk of CAD. In particular, TMAO has been shown to (a)
promote platelet reactivity; (b) potentially play a pro-thrombotic role; (c) cause vascular
inflammation and activate inflammasomes; (d) worsen heart failure and chronic renal
failure, causing a secondary increase in p-cresol; and (e) reduce the antiplatelet effect
of acetylsalicylic acid [24–27]. In addition, prospective cohort studies have shown that
increased plasma TMAO levels predict an elevated risk of major adverse CV events, such
as myocardial infarction, stroke or death [28].

Unexpectedly, hypoxanthine and cholesterol, emblematic substances related to high
CV risk, were less represented in the CAD/high-RF group. In our opinion, this apparent
paradox can be explained by the more intensive control of CVRFs in the presence of CAD,
as also suggested by the significantly higher intake of acetylsalicylic acid by these patients.

Overall, the results of this study demonstrate a distinct metabolic fingerprint in pa-
tients who develop CAD compared to those who remain free of CAD, despite a comparable
CV risk profile. A cluster of specific metabolites, rather than the quantity of a single
marker, seems to identify predisposing or, rather, protective mechanisms towards CAD,
beyond classic CVRFs. These findings are in line with the hypothesis that the activity
of “macro” CVRFs (hypertension, hypercholesterolemia, smoking, etc.) is modulated by
micro-environmental (probably both genetically determined and acquired) factors able to
address the development, or non-development, of atherosclerotic plaques.

The metabolic pathways that characterize each of the two groups, attributable to
genetic heritage and/or to environmental/behavioral aspects, may contribute casually
or be only the mirror of a complex interaction between traditional systemic CVRFs and
molecular/local responses. In either case, specific metabolites appear to signal the atten-
uation, or even the prevention, of CAD (e.g., cysteine) or, conversely, the exacerbation or
progression of the disease (e.g., BCAA, TMAO etc.), thus confirming the results of our
preliminary study, carried out on coronary blood [4], that allowed us to distinguish healthy
from stenosis-diseased or microvascular-impaired coronary arteries.

The current study is not intended to be exhaustive or conclusive but, rather, as a
hypothesis-generating document capable of stimulating further research to elucidate indi-
vidual susceptibility to CAD development. Data obtained from this kind (both clinical and
“omic”) of investigation could help to improve our understanding of the natural history
of atherosclerotic disease, but a complete understanding of the interplay between all the
involved factors will require larger studies and the extensive use of integrated (clinical,
metabolomic, genomic) approaches.

In this way, our results support GC-MS metabolomic analysis as a sensitive and
specific tool for comparing different phenotypic groups and, in the future, for optimizing
individual patient management and characterizing new therapeutic targets.

4. Materials and Methods
4.1. Study Population

The study population was selected among both gender subjects aged 45 to 75 years,
free of any previous ischemic heart disease, who underwent 64 slice (or superior) coronary
computed tomography angiography (CCTA) in the outpatient clinics of the 11 centers
involved in the study, because of suspected CAD. The main indications for CCTA were:
(a) uninterpretable, equivocal, or contraindicated functional stress test and (b) new-onset
chest pain syndrome at low–intermediate pre-test likelihood of CAD and (c) other indication
including preoperative evaluation before valve or noncardiac surgery, elevated risk profile,
arrhythmias, or atypical symptoms. [5]

From all the enrolled patients, on the basis of strict criteria of age (±5 years), sex
(1:1 for the case and control groups), CVRFs and presence/absence of CAD, we selected
112 subjects.
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Coronary atherosclerotic plaque was defined as any recognizable structure of the
coronary artery wall discriminated from surrounding pericardial tissue and epicardial fat;
involvement of five coronary segments was selected as the cut-off to define diffuse CAD [5].

The definitions used to express the RFs were as follows:

- Family history: History of CAD in first-degree relatives, with onset <55 years for men
and <65 years for women;

- Arterial hypertension: History of hypertension, current antihypertensive treatment,
or recent blood pressure >140/90 mmHg;

- Hypercholesterolemia: Total cholesterol >200 mg/dL or <200 mg/dL with lipid-
lowering medications

- Diabetes mellitus: Fasting plasma glucose >126 mg/dL, two-hour oral glucose toler-
ance test ≥200 mg/dL, isolated glycated hemoglobin ≥6.5%, or current use of insulin
or oral hypoglycemic agents

- Smoking: Current or abstention <1 year.

According to the aforementioned criteria, all enrolled subjects were classified as high-
RFs, given carriership of three or more RFs (>20% events at ten years), and assigned to two
predefined groups:

• Subjects with CAD in >5/16 segments according to the American Heart Association
classification and 33 CVRFs (CAD/High-RFs; cases);

• Subjects without CAD but 33 CVRFs (No-CAD/High-RFs; controls).

A peripheral venous blood sample was collected from all enrolled subjects after an
overnight fast. The specimens, destined for metabolomic analysis, were processed and
stored in a −70 ◦C freezer in a single dedicated biological bank. (SATURNE-1; Istituto di
Ricerche Farmacologiche Mario Negri, Milano, Italia) [5].

The Ethics Committee of each participating center approved the study, which was
performed according to the Helsinki Declaration. Written informed consent was obtained
before inclusion.

Untargeted gas chromatography-mass spectrometry (GC-MS) analysis was
then performed.

4.2. Preparation

A modified version of the procedure reported by Dunn et al. was followed [29].
Plasma samples were collected in EDTA-containing tubes and stored (−80 ◦C). A total
of 400 µL of thawed plasma was transferred in Eppendorf tubes, treated with 1200 µL of
cold methanol, vortex-mixed, and centrifuged for 15 min at 14,000 rpm (16.9 G). A total of
370 µL of supernatant was transferred into glass vials and evaporated to dryness overnight
in an Eppendorf vacuum centrifuge. A total of 50 µL of a 0.24 M (20 mg/mL) solution
of methoxylamine hydrochloride in pyridine was added to each vial; the samples were
vortex-mixed and left to react for 17 h at room temperature. Next, 50 µL of N-Methyl-N-
trimethylsilyltrifluoroacetamide was added and left to react for 1 h at room temperature.
The derivatized samples were diluted with hexane (200 µL), with tetracosane (0.01 mg/mL)
as the internal standard, just before GC-MS analysis.

For the GC-MS analysis, the samples were analyzed using an Agilent 5975C interfaced
to the GC 7820 equipped with a DB-5ms column (J&W), at an injector temperature at
230 ◦C, a detector temperature at 280 ◦C, and a helium carrier gas flow rate of 1 mL/min.
The GC oven temperature program was 90 ◦C initial temperature with a 1 min hold time
and ramping at 10 ◦C/min to a final temperature of 270 ◦C with a 7 min hold time. A
total of 1 µL of the derivatized sample was injected in split (1:5) mode. After a solvent
delay of 3 min, mass spectra were acquired in full scan mode using 2.28 scans/s with a
mass range of 50–700 Amu. Each acquired chromatogram was analyzed by means of the
free software AMDIS (Automated Mass Spectral Deconvolution and Identification System;
http://chemdata.nist.gov/mass-spc/amdis, accessed on 17 January 2021), which identified
each peak through a comparison of the relative mass spectra and retention times with those

http://chemdata.nist.gov/mass-spc/amdis
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stored in an in-house made library comprising 255 metabolites. Other metabolites were
identified using NIST08 (the National Institute of Standards and Technology’s mass spectral
database) and the Golm Metabolome Database (GMD, http://gmd.mpimp-golm.mpg.de/,
accessed on 17 January 2021). Through this approach, 113 compounds were accurately
identified, while 28 other metabolites were tentatively assigned, relying on GMD and NIST
libraries. An AMDIS analysis produced an Excel data sheet that was successively subjected
to chemometric analysis.

4.3. Statistical Analysis

An orthogonal partial least square-discriminant analysis (OPLS-DA) was conducted
on SIMCA P+ 13 software (Umetrics, Umea, Sweden) and used to observe the data variance
in a supervised mode. The data analysis was preceded by Pareto scaling, which reduced
the relative importance of the large values, maintaining the overall data structure. The
quality of the model was described by cumulative modelled variation in the X matrix
R2X, cumulative modelled variation in the Y matrix R2Y, and cross-validated predictive
ability Q2 values. To assess the significance of the model, a cross-validation analysis of
variance (ANOVA) was applied. Discriminant metabolites, identified through variable
importance in projection scores from the OPLS-DA, were considered specific for differences
among phenotypic groups. In addition, a projection to latent structures regression (PLS) was
conducted on SIMCA P+13 (Umea). A p value < 0.05 was considered statistically significant.

Author Contributions: Conceptualization, M.D., M.M. and G.M.; methodology, A.N., A.P.M., D.A.,
F.A., E.F., M.M. and R.L.; validation, M.D., A.N. and C.C.D.; formal analysis, A.N.; investigation,
A.P.M., D.A., F.A., E.F. and R.L.; resources, A.P.M., D.A., F.A., E.F. and R.L.; data curation, R.L.;
writing—original draft preparation, A.N. and M.D.; writing—review and editing, G.M.; visualization,
G.M.; supervision, A.P.M., D.A., F.A., E.F., R.L. and G.M.; project administration, A.P.M.; funding
acquisition, A.P.M. All authors have read and agreed to the published version of the manuscript.

Funding: The study is promoted by GISSI Group (ANMCO, Mario Negri Institute and Heart Care
Foundation Onlus). The sponsor of the study is the Heart Care Foundation Onlus, an independent
non-profit institution. The study is partially supported by an unrestricted grant by Ferrero Spa and
from the contributions collected by the Heart Care Foundation Onlus, in the years 2009 and 2010,
from the fundraising campaigns “Accendi il tuo cuore”.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki, and approved by the Ethics Committee of Centro Cardiologico Monzino—IEO (protocol
code S159/410—Date 16 July 2010).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Data supporting the findings of this study are available upon reason-
able request to CAPIRE Steering Committee.

Conflicts of Interest: Roberto Latini, Marco Magnoni, Daniele Andreini, Martino Deidda, Antonio
Noto, Christian Cadeddu Dessalvi and Giuseppe Mercuro have no conflict of interest to report.
Felicita Andreotti reports receiving consultancy/speaker fees, outside the present work, from Amgen,
Bayer, B-I, BMS/Pfizer and Daiichi Sankyo; Aldo P. Maggioni reports receiving fees, outside the
present work, from Bayer, Fresenius, Novartis for participation in study committees; Eleuterio
Ferrannini reports receiving consultancy/speaker fees, outside the present work, from Boehringer
Ingelheim, Lilly&Co., AstraZeneca, and Sanofi.

Appendix A

Steering Committee
A. Maseri † (Chairman; Firenze), D. Andreini (Milano), S. Berti (Massa), M. Canestrari

(Fano), G. Casolo (Lido di Camaiore), D. Gabrielli (Roma), R. Latini (Milano), M. Magnoni
(Milano), P. Marraccini (Pisa), T. Moccetti (Lugano), M.G. Modena (Modena)

Coordinating Center: A.P. Maggioni, M. Gorini, F. Bianchini, I. Cangioli, A. Lorimer
(Centro Studi ANMCO Firenze)
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Imaging Core Laboratory: D. Andreini, G. Pontone, E. Conte (Centro Cardiologico
Monzino Milano)

Centralized biobank and biomarker core laboratory: D. Novelli, F. Gaspari, S. Ferrari,
A. Cannata, N. Stucchi, M. Fois, R. Bernasconi, G. Balconi (Istituto Mario Negri, Milano and
Bergamo), T. Vago, T. Letizia (Ospedale Luigi Sacco, Milano), B. Bottazzi, R. Leone (Istituto
Clinico Humanitas, Rozzano).

Central ECG Reading: I. Suliman (Centro Studi ANMCO, Firenze)
Psychologists CRF Group: M. Sommaruga † (IRCCS Salvatore Maugeri Unità di

Psicologia, Milano), P. Gremigni (Dipartimento di Psicologia Università di Bologna)
Participating Centers and Investigators
Fano, Ospedale S Croce (R. Olivieri); Fermo, Ospedale Civile A. Murri (L. Pennacchi-

etti); Lido di Camaiore, Nuovo Ospedale Versilia (M. Magnacca); Lugano, Cardiocentro
Ticino (M.G. Rossi, E. Pasotti, T. Moccetti); Massa, FTGM - Stabilimento di Massa (A.
Clemente); Milano, Centro Cardiologico Monzino (D. Andreini, G. Pontone, S. Mushtaq);
Modena, Ospedale Policlinico (E. Mauro, G. Boriani); Parma, AOU. di Parma (F. Pigazzani);
Pisa, AOU Pisana (L. Faggioni); Pisa, FTGM—Stabilimento di Pisa (M. Ciardetti); Udine,
AOU SM della Misericordia (M. Puppato)
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