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Abstract: Magnesium (Mg) is involved in essential cellular and physiological processes. Globally,

inadequate consumption of Mg is widespread among populations, especially those who consume

processed foods, and its homeostasis is impaired in obese individuals and type 2 diabetes patients.

Since Mg deficiency triggers oxidative stress and chronic inflammation, common features of several

frequent chronic non-communicable diseases, interest in this mineral is growing in clinical medicine

as well as in biomedicine. To date, very little is known about the role of Mg deficiency in adipose

tissue. In obesity, the increase in fat tissue leads to changes in the release of cytokines, causing

low-grade inflammation and macrophage infiltration. Hypomagnesemia in obesity can potentiate

the excessive production of reactive oxygen species, mitochondrial dysfunction, and decreased ATP

production. Importantly, Mg plays a role in regulating intracellular calcium concentration and is

involved in carbohydrate metabolism and insulin receptor activity. This narrative review aims to

consolidate existing knowledge, identify research gaps, and raise awareness of the critical role of Mg

in supporting adipose tissue metabolism and preventing oxidative stress.

Keywords: hypomagnesemia; antioxidants; calcium antagonism; low-grade chronic inflammation;

obesity

1. Introduction

Adipose tissue (AT) has historically been classified into two types: white adipose tissue
(WAT) and brown adipose tissue (BAT). In addition, recently, beige adipose tissue has been
described [1]. WAT represents most AT in adult humans and is the body’s main energy
storage. At the same time, BAT dissipates energy as a defense against cold and maintains
energy balance for the whole body. Beige adipose tissue is located within WAT but shares
similar features with BAT. WAT comprises many cell types, such as adipocytes (the most
abundant), preadipocytes, fibroblasts, stem cells, macrophages, and capillary endothelial
cells (ECs). Of note, an intense reciprocal dynamic communication exists between ECs
and adipocytes. Endothelial transfer of plasma constituents and biological signals via
secretory signaling molecules and microvesicles to the adipocytes [2] is crucial for metabolic
homeostasis. Conversely, adipocytes release various bioactive molecules that influence
endothelial function. The role of adipose tissues in modulating vascular homeostasis
is attracting more and more attention, because most blood vessels are surrounded by a
functionally specialized aggregate of AT, termed perivascular adipose tissue (PVAT). PVAT
is an established regulator of vascular function through its release of gases, such as nitric
oxide (NO) and hydrogen sulfide, and adipokines. While in physiological conditions, PVAT
is vasculo-protective, its dysregulation contributes to vascular dysfunction since it releases
inflammatory mediators that readily promote oxidative stress (OS) and the acquisition of
an inflammatory phenotype of vascular cells [3].

Magnesium (Mg) deficiency is one of the many factors involved in promoting OS
and inflammation. Globally, the intake of Mg is inadequate, and this trend is widespread
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across populations. Subclinical Mg deficiency has been observed mainly in populations
that consume processed foods, and it has also been observed in obese individuals [4]. In
obesity, the expansion of AT results in the alteration of its secretion of cytokines, initiating
a cascade of metabolic changes that favor macrophage infiltration mediated and sustained
by low-grade chronic inflammation (LGCI). Moreover, the pro-inflammatory phenotype of
hypertrophic/hyperplastic adipocytes in obesity promotes EC activation, contributing to
LGCI [2]. Proper Mg intake can directly limit OS by reducing pro-oxidants and enhancing
antioxidant capacity. It can also indirectly reduce inflammation [5,6].

We performed a literature review using MEDLINE, PubMed, EMBASE, and Web
of Science to assess the impact of Mg on OS and inflammation of AT, focusing on obese
subjects. We meticulously analyzed the full-text articles, selecting the most pertinent studies
for inclusion in this review.

2. Oxidative Stress, Inflammation, and AT Dysfunction

Our understanding of the role of reactive oxygen species (ROS) in cellular biology has
evolved considerably, revealing their role as essential regulators in the cellular signaling
network. In physiological conditions, homeostatic ROS are secondary messengers in
various intracellular signaling pathways, involving programmed cell death or necrosis,
gene expression regulation, and innate and adaptive immune responses [7]. In addition,
ROS are implicated in body weight control because they are crucial for the response of
hypothalamic neurons to fluctuations in levels of bodily metabolic fuels such as glucose,
free fatty acids, and amino acids [8].

ROS are generated during several biochemical processes, such as mitochondrial ATP
synthesis, the activity of NADPH oxidases, nitric oxide synthases (NOSs) and microsomal
cytochrome P450 oxidases, Fenton reaction, peroxisomal β-oxidation, prostaglandin syn-
thesis, and others [9]. However, mitochondria are the main source of cellular ROS [10].
The rate of ROS production by isolated mitochondria is dependent on the metabolic state
and is inversely related to the coupling between the respiratory chain and ATP synthe-
sis [11,12]. Adipocytes adapt to dynamic changes in ROS levels and use them as second
messengers. As an example, hydrogen peroxide has been found to mimic the action of
insulin in adipocytes [9].

ROS accumulation directly contributes to the pathophysiology of several chronic
inflammatory diseases, causing lipid peroxidation, DNA damage, protein oxidation, irre-
versible mitochondrial damage, inadequate ATP production, and indirectly, activating the
nuclear factor-κB (NF-κB) pathway and, therefore, inflammation [13]. Inflammation and
oxidative stress are two related processes: one can promote the other, leading to a toxic
feedback system. A rich antioxidant arsenal tightly regulates ROS production. The body’s
antioxidant defenses include a variety of water-soluble and fat-soluble compounds, such
as enzymes, proteins, glutathione, urate, vitamins C and E, and beta-carotene, which work
together to neutralize the effects of pro-oxidants. Antioxidant enzymes include catalase
(CAT), glutathione reductase (GR), thioredoxin reductase (TrxR), heme oxygenase-1 (HO-1),
superoxide dismutase (SOD), glutathione peroxidase (GPx), peroxiredoxin (Prx), paraox-
onases (PON), and NAD(P)H: quinone oxidoreductase 1 (NQO1). However, the prolonged
and uncontrolled production of ROS can overcome the body’s antioxidant defense system,
generating OS. In obesity, systemic OS is due to excessive superoxide generation from nicoti-
namide adenine dinucleotide phosphate (NADPH) oxidase (NOX), uncoupled endothelial
nitric oxide synthase (eNOS), and reduced antioxidant defense [4]. Exposure to OS can lead
to the damage of proteins by promoting their carbonylation. This process is an irreversible
non-enzymatic modification that can cause protein dysfunction and aggregation. In the
case of obesity, higher levels of carbonylated proteins appear to be linked to mitochondrial
dysfunction in adipocytes, which may be relevant to the development of insulin resistance
(IR) and type 2 diabetes [9].

In obesity, AT expands by a combination of an increase in adipocyte size and number.
There may be a difference in the rates of growth between AT and vascularity, leading to
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reduced blood flow in the area. This can create an oxygen gradient and cause a relatively
low-oxygen environment in the growing AT [14]. Research has shown that this hypoxia
can alter the expression and release of adipokines in human adipocytes because of an
increased expression of the hypoxia-inducible factor 1 alpha [15] and intracellular calcium
(Ca) concentration oscillations [14]. Increased intracellular Ca concentration regulates the
hypoxia-induced release of leptin, vascular endothelial growth factor, and interleukin (IL)-6,
while the release of adiponectin is NF-κB-dependent.

These adipokines are pro-oxidant and pro-inflammatory, except adiponectin. In
normal-weight individuals, small adipocytes effectively store fatty acids as triglycerides
(TG). Excessive caloric intake can lead to an overload of the metabolic system, causing an
increase in TG storage and the enlargement of adipocytes. In addition, OS in the WAT
disturbs its redox balance and impacts its function by impairing adipogenesis, inducing IR,
and causing adipocyte hypertrophy [9] (Figure 1).
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Figure 1. Relationships between AT dysfunction, oxidative stress, inflammation, and insulin resis-
tance in obesity. LGCI: low-grade chronic inflammation; OS: oxidative stress; IR: insulin resistance;
↑: increase.

Hypertrophic adipocytes exhibit a decreased density of insulin receptors and an
elevated level of β-3 adrenergic receptors. This facilitates the migration of monocytes
to the visceral adipose stroma, initiating a proinflammatory cycle between adipocytes
and monocytes, causing tissue dysfunction and contributing to obesity-related inflamma-
tion and comorbidities [16]. Physiologically, monocytes reach the adipose tissue during
development, become resident AT macrophages, and regulate the metabolic activity of
adipocytes and their precursors to maintain AT homeostasis and efficient function. Impor-
tantly, they display an anti-inflammatory M2 phenotype [17]. On the contrary, in obese
individuals, AT macrophages tend to polarize to a pro-inflammatory M1 phenotype. M1
macrophages release chemokines, such as monocyte chemoattractant protein-1 (MCP-1),
and pro-inflammatory cytokines, such as IL-1β, IL-6, and tumor necrosis factor-α (TNF-α),
contributing to LGCI [18]. These cytokines not only promote their local proliferation but
also recruit more macrophages and retain them in the AT to the point that the proportion
of macrophages significantly increases in the adipose tissue of obese people [19]. Obesity-
related metabolic inflammation in AT gradually impacts other organs through lipid and
inflammatory mediators. The surplus of circulating TG and free fatty acids causes an
accumulation of activated lipids in the muscle, disrupting functions such as mitochondrial
oxidative phosphorylation and insulin-stimulated glucose transport, ultimately leading
to peripheral IR and further potentiating OS [18]. In addition, nutrient overload alters AT
metabolism towards increased lipid accumulation and glycolytic ATP synthesis in con-
junction with decreased mitochondrial biogenesis. Overeating also activates inflammatory
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responses in the liver, skeletal muscle, pancreas, and hypothalamus, thus contributing to
diminished insulin sensitivity and systemic IR in obese individuals [4]. In obesity, IR is of-
ten associated with hyperinsulinemia, increased visceral adiposity, metabolic dyslipidemia
with high TG levels, low HDL cholesterol levels, and hypertension, features collectively
referred to as metabolic syndrome (MetS). The cluster of conditions defining MetS increases
the risk of coronary heart disease and type 2 diabetes [4].

3. Mg

Mg is a mineral macro-element that functions as a crucial signaling element and
metabolite in cell physiology [20,21]. Mg participates in metabolizing lipids, proteins,
carbohydrates, and nucleic acids [22]. Mg also mitigates the effects of OS and maintains cell
membrane stability [23]. At the organ level, Mg is essential to maintain proper bone density
and glucose tolerance, especially in diabetic patients, to relieve neurological and psychiatric
disorders, to regulate blood pressure, to prevent ischemic heart disease and strokes, and
to maintain an adequate skeletal muscular mass, principally in the elderly [22,24]. Mg
should be consumed following the appropriate dietary recommendations to maintain
these physiological functions. The recommended dietary allowance (RDA) for Mg in the
USA is 310–320 and 410–420 mg per day for females and males, respectively, while in
Europe, the European Food Safety Authority (EFSA) recommends 300 and 350 mg per
day for women and men, respectively [24]. Globally, the reduction in dietary Mg intake is
mainly due to (i) the effect of global warming that reduces Mg amounts in crops; (ii) the
impact of cereals’ milling that drastically reduces Mg content in the grains (e.g., whole
wheat flour 120 mg/100 g to refined wheat flour 20 mg/100 g of product); and (iii) the
change in the dietary pattern of the global population from diets rich in vegetables, whole
grains, fruit, and nuts rich in Mg to a Western dietary pattern rich in refined grains, sugars,
saturated fats, additives and poor in veggies and fruits [24]. Mg dietary intake decreases
with the increasing westernization of the dietary pattern worldwide. Beyond dietary
intake, pre-existing pathological conditions (such as impaired gastrointestinal absorption,
inflammatory bowel disease, colon cancer, and gastric bypass), diabetes mellitus, renal
disorders and hydro-electrolyte imbalances, genetic factors, alcohol abuse, and the use
of certain medications result in chronic Mg deficiency [25–31]. Aging is a significant risk
factor for Mg deficiency. Despite stable Mg requirements across age groups [32,33], older
adults do not consume enough Mg, regardless of gender and race [34]. Furthermore,
aging reduces the efficiency of Mg absorption and active renal reabsorption [33]. In older
adults, an imbalance in Mg can lead to greater susceptibility to age-related diseases like
cardiovascular disease and diabetes but may also contribute to the aging process itself [35].
This is not surprising considering that Mg deficiency causes OS, which is one of the
hallmarks of aging [36].

Also, strenuous physical activity can lead to Mg deficiency [37]. This factor should be
considered when determining the appropriate Mg levels for active individuals. Exercise
triggers a shift in Mg within the body tissues to support metabolic demands. Mg transits
between plasma, adipocytes, and skeletal muscle during and post aerobic workouts. The
extent of movement depends on cell energy level production. Following exercise, Mg moves
back to the bloodstream from tissues by drawing from bone, muscle, and adipose tissue.
Although tubular reabsorption mechanisms act to minimize urinary losses of Mg, post-
workout urine Mg excretion rises. These changes affect Mg levels in various body fluids and
tissues. Inadequate Mg intake, especially for athletes, can impair performance and worsen
exercise effects [37]. As with all essential nutrients, Mg deficiency can be corrected by
increasing Mg intake through diet and/or supplementation. To correct hypomagnesemia,
supplementation of 250 to 600 mg per day of Mg, preferably in the form of organic Mg salts
due to their higher bioavailability, is useful [18]. Even better, an increase in dietary Mg can
help correct hypomagnesemia [24]. As an example, Mg enteric absorption from almonds
is much higher compared to that from Mg supplements [38]. Accordingly, adolescents’
adherence to the Mediterranean diet, which is high in Mg, increases Mg levels and helps
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prevent obesity [39]. In addition, an Mg food source is more effective than supplements in
decreasing all-cause mortality [40].

4. Mg Deficiency, Inflammation, and Oxidative Stress

Mg deficiency causes excessive production of ROS, mainly due to mitochondrial
dysfunction, abnormal calcium homeostasis, and activation of the renin-angiotensin-
aldosterone system [6] (Figure 2). Furthermore, the antioxidant defense system is impaired,
and ATP synthase is downregulated, causing a decrease in ATP production (Figure 1). In
AT, Mg regulates intracellular Ca concentration by blocking the opening of the L-type Ca
channel, which is controlled by the Mg-binding sites. The excess of intracellular Ca, in turn,
results in the activation of Ca-dependent processes such as the release of inflammatory cy-
tokines and activation of NOX by phosphorylation of protein kinase C (PKC), activation of
NOS and calcium-dependent calmodulin complex, and hence increased OS [41] (Figure 2).

                   
 

                           
                         
                         

                               
ff                

             
                     
               

                         
                           
                         

                           
                         
                         
                       
   

 
                           
                     

                 
                       

                     
           

                         
                   

                             
                         

                       
   β                     

                     
                           

                       
                             

                         
                           

Figure 2. The main cellular mechanisms of Mg’s preventive action against oxidative stress. Mg defi-
ciency leads to oxidative stress by causing mitochondrial dysfunction, abnormal calcium homeostasis,
eNOS uncoupling, Renin-Angiotensin-Aldosterone System activation, and changes in transcription
and translation processes. Ca: Calcium; DMT2: Diabetes Mellitus type 2; eNOS, Endothelial Nitric
Oxide Synthase; OS: Oxidative Stress; NOX: NADPH oxidase; RAAS: Renin-Angiotensin-Aldosterone
System; ↑: increase; ↓: decrease.

Intracellular Mg also acts as an essential cofactor of several enzymes involved in
carbohydrate metabolism, regulating the activity of those that catalyze phosphorylation
reactions and acting as part of the Mg–ATP complex, necessary for the action of enzymes
that participate in glycolysis. Thus, the appropriate Mg concentration is essential for the
tyrosine kinase activity of the insulin receptor and, therefore, for the autophosphorylation
of the β subunit of this receptor and phosphorylation of its substrates [42].

The glutathione system constitutes the primary mechanism for mitigating OS within
the body. Its activity is closely related to the redox state of other low-molecular-weight
thiols, such as cysteine, cysteine-glycine, and homocysteine. This system operates at both
intracellular and plasma levels, and the redox state of the plasma pool is in equilibrium
with that of the intracellular pool. Glutathione is the primary intracellular antioxidant.
It can be released from tissue, contributing to maintaining other thiols in the reduced
form. The reducing power of water-soluble thiols is necessary to keep some fat-soluble
antioxidants (such as vitamin E and coenzyme Q) in their active, reduced form. Mg is an
obligatory cofactor in glutathione synthesis and all biosynthetic reactions involving ATP.
Additionally, hypomagnesemia contributes to a reduction in the expression and activity of
antioxidant enzymes (such as GPx, SOD, and CAT), leading to a decrease in cell and tissue
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concentrations of antioxidants and an increase in the production of the ROS hydrogen
peroxide and superoxide anion by inflammatory cells [23].

The production of antioxidants, the expression of anti-oxidative enzymes, and AT
metabolism have been reported to be regulated by circadian rhythms [43]. The circadian
rhythm generally fluctuates in a daily cycle of about 24 h, a period of light and dark, in
response to abiotic and biotic factors. The circadian clock is a network of molecular clocks in
central and peripheral tissues that orchestrates biological processes in adapting to everyday
environmental changes. The central circadian clock is in the hypothalamic suprachiasmatic
nuclei, while the peripheral clocks are in other tissues, including the kidney, liver, blood
vessels, and AT [43]. Accumulating data from both human and experimental animal
models suggest that AT function and OS have an innate connection with the intrinsic
biological clock [43]. Interestingly, daily Mg fluxes regulate cellular timekeeping and
energy balance [44].

Recent studies have demonstrated that obesity leads to increased OS in both humans
and animals [45]. The level of OS in the body was found to be directly associated with fat
mass in both humans and rodents [46]. In obese individuals, markers of mitochondrial OS,
such as protein carbonyls, lipid peroxidation products including malondialdehyde, and
production of ROS, were elevated in AT [47]. Considering the various properties of Mg
that contribute to maintaining metabolic and redox balance in AT, an adequate level of Mg
in this tissue can prevent OS and its effects on obesity.

5. Role of Mg in Adipose Tissue: Preclinical Evidence

Mg deficiency in rodents contributes to accelerated catabolism, partly by generating
insulin resistance, but the metabolic phenotype analysis has not been disclosed [48–50].
Controversies exist about the effect of an Mg-deficient diet on body mass. In some studies,
Mg dietary restriction had no impact on body mass and adiposity index [49,50], while in
others, a decrease in body mass was reported because of total lean body mass decrease
without changes in total body fat. These findings were attributed to reduced appetite and
decreased food consumption [51,52].

Table 1 summarizes the preclinical evidence on the role of Mg in AT.
An interesting study has highlighted how age affects AT in either Mg-deficient rats

or those supplemented with Mg [53]. In rats fed a standard diet, the significant increase
in AT weight observed during aging was related to a rise in both the size and number of
adipocytes. In young rats, Mg deficiency did not change the size of the adipocytes but
increased their number (30% more than the standard diet or supplementation), suggesting
that a low Mg status contributes to improving the lipid storage capacity of AT. In aged rats,
a Mg-deficient diet led to relative hypotrophy of adipocytes, counterbalanced by the rise in
their number. In brief, inadequate Mg intake affected the size and number of fat cells in
both young and aged rats.

Notably, Mg restriction abrogates weight gain in rats exposed to a sucrose-rich diet,
mainly because de novo lipogenesis is reduced under Mg deficiency [54,55]. In this ex-
perimental model, low Mg intake exacerbates OS in sucrose-fed rats, leading to increased
oxidative damage to unsaturated lipids in membranes and amino acids in proteins [55].
In parallel, the activities of the SOD, glutathione-S-transferase, and catalase decline con-
siderably in animals under a low Mg/sucrose-rich diet [56]. Moreover, a low dietary
Mg intake prevents high-fat diet-induced obesity in mice by enhancing the expression of
genes involved in β oxidation and by elevating Ucp1 levels in BAT, with the consequent
increased thermogenesis [57]. The two events are linked to elevated β3-adrenergic receptor
expression in WAT and BAT.

Mg intake must be adequate from the early stages of development. Maternal Mg
deficiency in mice irreversibly increases the visceral adiposity of the offspring, which
shows higher expression of fatty acid synthase and fatty acyl transport protein 1, liver, and
adipose tissue together with increased levels of plasma TNF-α [58].
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Interesting hints about the complex role of Mg in the AT derive from Mg trans-
porter/channel knock-out mice (Figure 3). Transient receptor potential ion channel for
melastatin (TRPM) 6, a kinase-coupled ion channel, is essential in the intestine for main-
taining organismal Mg levels, while its closest relative, TRPM7, is considered indispensable
for cellular Mg homeostasis. TRPM6−/− mice, which develop severe hypomagnesemia be-
cause of deficient intestinal Mg uptake, are entirely devoid of abdominal and subcutaneous
fat depots and present clear signs of catabolic metabolism [48]. In obese mice, pharmacolog-
ical inhibition of TRPM7 reduces body weight by reducing the adipose mass and prevents
insulin resistance (Figure 3). Of particular interest is the finding that the percentage of
macrophage in WAT is significantly reduced, and this correlates with the downregulation
of the pro-inflammatory cytokines IL1β and IL6 and the chemokine MCP-1 [59].
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Figure 3. A summary of the effects of inhibiting certain Mg transporters/channels in mice.
TRPM: transient receptor potential ion channels for melastatin; MRS2: mitochondrial RNA splicing 2;
mMg: mitochondrial Mg; ↓: decrease; ↑: increase.

Similarly, serum levels of TNF-α, IL-6, IL-1β, and MCP-1 were upregulated in obese
mice and reduced by the conditional knock-out of TRPM7 in the AT [60]. These results
point to TRPM7 as the link between obesity and inflammation. Indeed, since low Mg
upregulates TRPM7, many of the effects of Mg deficiency, including inflammation and
OS, can be attributed to increased TRPM7 and the activation of its kinase domain [60]. A
positive feedback loop exists between OS levels and TRPM7’s expression and function.
Elevated OS increases TRPM7 expression [61,62], while TRPM7 overexpression induces
the accumulation of intracellular ROS and inflammation [63,64]. In addition, since the
promoter region of TRPM7 contains binding sites for NF-κB, LGCI upregulates TRPM7 [59].

Mitochondria are central to health and disease [65]. They are involved in cell metabolism
and regulate ion homeostasis, cell growth, redox status, and cell signaling. Moreover,
they are intracellular Mg stores [66]. Mg, pivotal for protein and ATP synthesis and
various metabolic pathways, enters the mitochondria through the Mitochondrial RNA
Splicing 2 (MRS2) channel anchored to the inner mitochondrial membrane [67]. MRS2−/−

mice on a Western diet do not gain weight and show enhanced mitochondrial activity
and increased BAT [68]. Accordingly, the knockdown of MRS2 in human cells leads to
decreased mitochondrial uptake of Mg and metabolic reprogramming [69].
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Table 1. Preclinical evidence on the role of Mg in adipose tissue.

Study Type of Animal Treatment
Treatment
Duration

Effects

Devaux et al. [53]
Male Sprague Dawley

young rats (YR) vs.
old rats (OR)

Diet with Mg deficiency 22 mo YR adipocytes hyperplasia; OR hypotrophy of adipocytes

Boparai et al. [55] Male Wistar rats
High sucrose (HS); low Mg

(LM); HSLM
12 wk HSLM ↑ of TBARS and PCO (plasma and liver)

Kurstjens et al. [57] Male C57BL6/J mice
normal Mg Low-fat diet

(NMLFD); NM High fat diet
(NMHFD); LMLFD; LMHFD

17 wk
LM ameliorates HFD-induced obesity, fasting glucose ↓, insulin sensitivity ↑;

absence of liver steatosis; ↑ BAT Ucp1 m-RNA expression, and higher
body temperature

Zhong et al. [59] Flox and ATKO mice HFD; TRPM7 inhibition 16 wk
ATKO have less body weight than Flox, ↓ % of macrophage in WAT, IL-1β,

IL-6, MCP-1

Madaris et al. [68] Male WT and MRS2−/− KO mice HFD; Western Diet (WD) 12 mo MRS2−/− KO in WD no weight gain and ↑ mitochondrial activity and BAT

Choudary et al. [56] Male Wistar rats LM; HS; HSLM 3 mo ↓ SOD, catalase and GST in HSLM

ATKO = adipocyte-specific TRPM7 knock-out; BAT = brown adipose tissue; GST = glutathione-S-transferase; HFD = high fat diet; HS = high sucrose; IL = interleukin; KO = knock-out;

LFD = low fat diet; LM = low Mg; MCP-1 = monocyte chemoattractive protein 1; MRS2 = mitochondrial RNA splicing 2; NM = normal Mg; OR = old rats; PCO = protein carbonyls;

SOD = superoxide dismutase; TBARS = thiobarbituric acid reactive substances; TRPM7 = transient receptor potential ion channels for melastatin; WAT = white adipose tissue;

WD = western diet; WT = wild-type; YR = young rats; ↑ = increase; ↓ = decrease; wk = weeks; mo = months.
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Very little is known about the effect of low Mg on cultured adipocytes. Mg deficiency
impairs insulin-dependent glucose metabolism in isolated rat adipocytes [70]. In mature
3T3-L1 adipocytes, Mg deficiency diminishes GLUT4 translocation and decreases glycolysis
upon insulin stimulation because of the lack of Akt activation [71]. Currently, no data are
available about redox balance and the secretion of cytokines and adipokines in Mg-deficient
adipocytes. In an in vitro model of brown adipocyte differentiation, increasing extracellular
Mg tends to enhance the expression of PR domain containing 16 (PRDM 16) and PPARγ
coactivator 1-alpha (PGC1-α), two adipogenic factors, thus suggesting the inhibition of
brown adipocyte differentiation through a calcium antagonistic effect [72].

Within the complexity and cellular heterogeneity of AT, it should also be recalled
that low Mg promotes a pro-oxidant and pro-inflammatory phenotype in endothelial
cells [73,74] (Figure 4). These data are further supported by the powerful effect of differ-
ent Mg concentrations on endothelial transcriptome [75]. Specifically, low Mg markedly
perturbs inflammatory pathways, events that adversely impact adipocyte metabolism,
insulin sensitivity, and plasticity. Moreover, Mg reduces endothelial apoptosis in rats with
preeclampsia by upregulating miR-218-5p, which targets the HMGB1 pathway, known
to be pro-inflammatory [76] (Figure 4). Macrophages are also sensitive to Mg deficiency,
which upregulates the M1 subtype markers and induces the secretion of inflammatory
cytokines [77] (Figure 4). Briefly, Mg deficiency drives all cells to promote and maintain
inflammation. The good news is that most of these detrimental effects are reversible when
Mg homeostasis is restored.
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Figure 4. Crosstalk between different cell types in AT. In adipocytes, Mg deficiency upregulates
TRMP7, which appears to elevate cytokine levels. Moreover, low Mg promotes a pro-oxidant and
pro-inflammatory phenotype in endothelial cells and induces M1 macrophage polarization, an event
associated with the increase in NOX and the release of high amounts of pro-inflammatory cytokines.
GSH: reduced glutathione; GSSG oxidized glutathione; NOX: NADPH oxidase; TRPM: transient
receptor potential ion channels for melastatin; TXNIP: Thioredoxin Interacting Protein; ↑: increase;
↓: decrease.

While Mg is known to control transcription and translation [21], an aspect that is often
neglected is its role in regulating chromatin dynamics [78]. Interestingly, Mg serves as
a cofactor for methionine adenosyl transferase 1A (MAT1A), an enzyme responsible for
producing S-adenosylmethionine (SAM). SAM is the primary methyl donor within cells
and is crucial for numerous methylation reactions, including those involving DNA and
proteins. Mg also influences the activity of enzymes that catalyze the methylation and
demethylation of DNA, such as DNA methyltransferases (DNMTs) [79] and ten-eleven
translocation (TET) enzymes [80]. Therefore, Mg emerges as a mineral linked to epigenetics,
as demonstrated in pregnant rats, where Mg deficiency induces metabolic complications
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in their offspring by altering cytosine methylation in the promoter region of the hepatic
hydroxysteroid dehydrogenase-2 gene [81], which contributes to fatty acid metabolism [82].
Recently, a proper intake of Mg has been proposed as a beneficial measure to prevent
epigenetic changes that lead to impaired cardiovascular function [83]. At this point, a
question arises: since epigenetic signatures are potentially reversible, are the reversible
effects observed in vitro upon restoration of Mg homeostasis due to epigenetic regulation?
More research is needed to find a proper answer. Understanding DNA methylation patterns
in response to Mg is crucial for enhancing knowledge of potential prevention strategies by
modifying nutritional status in at-risk populations.

6. Mg, Oxidative Stress, and Inflammation: Clinical Evidence

A search for articles on Mg and OS in AT or obesity resulted in a limited number
of clinical studies investigating the role of Mg in preventing the generation of OS and
inflammation in obese individuals. Some studies evaluated the links between Mg and
anthropometric indices. Toprak et al. show that supplementing obese hypomagnesemic
individuals (BMI > 30) with Mg oxide (365 mg die) for 3 months normalizes magnesemia,
ameliorates metabolic profiles, and reduces waist circumference [84]. Indeed, a recent
systematic review and meta-analysis of clinical trials concluded that Mg supplementation
is associated with lower waist circumference only in obese subjects [85]. These results
are in accordance with the data from the Mexican National Health and Nutrition Survey
(ENSANUT), showing that increased dietary Mg intake is linked to lower body mass index
and waist circumference [86]. On the contrary, higher Mg intake was not associated with
differences in anthropometric indices in Iranian adults [87]. Of interest, increased fat mass
is linked to lower Mg levels also in childhood obesity, suggesting that adipose tissue plays
a crucial role in maintaining Mg balance [88]. Similar results were recently obtained in
189 Mexican schoolchildren [89].

At the same time, weight reduction may impact Mg levels. Mikalseni et al. [90] exam-
ined variations in serum Mg levels among obese individuals with and without diabetes
following weight loss from dietary modifications and bariatric surgery. A moderate weight
loss resulting from lifestyle changes caused a 5% increase in serum Mg levels in both
diabetic and non-diabetic individuals. Following bariatric surgery, Mg levels remained
stable in non-diabetic patients but continued to rise in diabetic patients. Six months after
bariatric surgery, these two groups had no significant difference in serum Mg concentration.
In obese individuals, diabetes is likely the primary cause of low Mg levels. Research
by Lecube et al. [91] revealed that 48% of diabetic individuals and 15% of non-diabetic
individuals were hypomagnesemic. There were notable negative correlations between Mg
levels and fasting blood sugar, HbA1c, HOMA-IR, and BMI. Following bariatric surgery,
serum Mg levels increased only in patients whose diabetes had resolved. However, there
was no change in Mg levels among those who did not achieve glycemic control, with no
discernible variations in weight loss outcomes between the two groups. Reduced Mg intake
and increased urinary Mg loss are significant contributors to Mg deficiency in individuals
with type 2 diabetes, while Mg absorption and retention seem to remain stable [92]. Both
hyperglycemia and hyperinsulinemia can elevate urinary Mg excretion, whereas adequate
metabolic control is linked to decreased Mg loss through urine. Mg also plays a crucial
role in the regulation of insulin signaling. The clinical manifestation of a chronic Mg defi-
ciency includes post-receptor insulin resistance, leading to decreased glucose utilization
in cells. This exacerbates the existing insulin sensitivity reduction in type 2 diabetes and
worsens hyperglycemia, potentially resulting in an elevated urinary excretion of Mg in a
self-reinforcing cycle. Another potential connection between Mg deficiency and decreased
insulin sensitivity lies in the existence of OS and LGCI, commonly prevalent in conditions
correlated with Mg deficiency, including diabetes, hypertension, metabolic syndrome, and
aging [92].

Pointing our attention to the links between impaired Mg homeostasis and inflamma-
tion, an analysis of the NHANES data from 1999–2002 on more than 10,000 adults found
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a 40% increase in elevated C-reactive protein (CRP), a hallmark of chronic inflammatory
diseases, in individuals consuming less than the RDA for Mg [93]. Subjects consuming
less than 50% of the RDA for Mg but supplementing with more than 50 mg per day
were 22% less likely to have elevated serum CRP levels compared to those not taking a
supplement [94].

Mg did not seem to exert any effect on systemic inflammatory markers, such as CRP,
MCP-1, IL-6, and adiponectin [95] in 95 overweight and obese subjects supplemented with
Mg glycinate 360 mg/die + vitamin D 1000 UI/die or only vitamin D 1000 UI/die vs.
placebo for 12 weeks. Analogously, no effects on the levels of hs-CRP, IL-6, TNFα, sICAM-1,
sVCAM-1, and E-selectin were observed in a cross-over study on 14 subjects supplemented
with Mg citrate (500 mg elemental Mg/d) for 4 weeks [96]. On the contrary, a meta-analysis
shows that Mg supplementation significantly reduces serum CRP levels [97]. Notably, the
authors suggest designing RCTs with a larger sample size and a more extended follow-up
period to give unequivocal answers [97]. More recently, a systematic review and meta-
analysis has summarized the state of the art of 17 randomized control trials investigating
the effects of Mg supplementation versus placebo on serum parameters of inflammation.
The authors concluded that Mg supplementation significantly reduced plasma C reactive
protein, fibrinogen, tartrate-resistant acid phosphatase type 5, tumor necrosis factor-ligand
superfamily member 13B, ST2 protein, and IL-1 [98].

The relation between Mg and OS has been overlooked. In a study involving 23 indi-
viduals, Mg oxide supplementation (500 mg/die) for 28 days significantly decreased DNA
oxidative damage of blood lymphocytes [99]. In a study on patients with hypertension,
potassium and Mg citrate supplement (20 meq Mg = 243 mg per day) for 4 weeks brought
a significant decrease in urinary 8-isoprostane, a stable end-product of lipid peroxidation,
compared to placebo (13.5 ± 5.7 vs. 21.1 ± 10.5 ng/mg Cr) [100]. On the contrary, a RCT
performed in women affected by polycystic ovary syndrome showed that 250 mg of Mg for
8 weeks did not produce an appreciable decrease or increase in total antioxidant capacity
(TAC), despite a reduction achieved in the waist circumference of the subjects [101]. In a
study involving children with atopic asthma, those aged 7 or younger received 200 mg of
Mg citrate, while those older than 7 received 290 mg. The study found that after 12 weeks
of treatment, there was a significant increase in reduced glutathione (GSH) concentration.
However, there were no changes in the ratio of reduced to oxidized GSH, and no effects
were observed on oxidized hemoglobin in plasma and whole blood [102]. The study con-
ducted by de Oliveira and colleagues [103] examined the impact of Mg in mitigating OS
among individuals with obesity using the levels of thiobarbituric acid-reactive substances
(TBARS) in plasma and erythrocytes as markers of OS. The findings suggest that obese
patients exhibit decreased Mg consumption in their diets, leading to hypomagnesuria as
a compensatory response. While the plasma concentration of TBARS was notably higher
in obese patients in comparison to the control group, there was no correlation between
Mg levels and OS markers. In a study by Morais and colleagues [23], it was found that
obese individuals tend to consume a low Mg diet, but this does not seem to affect their
plasma and erythrocyte Mg levels. Additionally, the average plasma TBARS concentration
was higher in obese women compared to the control group. However, it was observed
that there is a negative correlation between Mg levels in erythrocytes and plasma TBARS,
indicating the impact of Mg status on oxidative stress indicators in overweight women.

The studies collectively suggest Mg’s antioxidant and anti-inflammatory effects in
various situations. However, they are limited in number and have been conducted on a
small number of subjects. Additionally, baseline nutritional status is often not considered
in supplementation studies. Supplementation of essential nutrients like Mg has a positive
effect, especially in individuals with deficiencies (Table 2). In individuals with good
nutritional status, it probably has no effect. Therefore, further well-designed studies are
needed to elucidate the role of Mg in modulating OS in the whole body and obese AT.



Antioxidants 2024, 13, 893 12 of 17

Table 2. Clinical evidence of the effects of Mg supplementation on oxidative and inflammatory markers and insulin function.

Study Year
Type

of Trial
Mg

mg Per Day
Mg

Formulation

Timing of
Administration

(Weeks)

N◦

Subjects
Subjects’ Description Effects

Cheung et al. [87] 2022
RCT DB,
parallel

360 Mg glycinate 12 95
Healthy ow and ob

25 < BMI < 40

↑ in Vit D absorption and ↓ systolic
BP, no effects on IL-6; MCP-1,

adiponectin, and CRP

Toprak et al. [76] 2017
RCT DB,
parallel

365 Mg oxide 12 128
Hypomagnesemic, pre-diabetic, ob

with mild-to-moderate CKD

↓ of IR; HOMA-IR; HbA1c; insulin;
WC and UA with an ↑ albumin and

serum Mg level

Chacko et al. [88] 2011
RCT DB,

cross-over
500 Mg citrate 4 14 Healthy ow BMI > 25

↓ fasting C-peptide and insulin; no
effects on inflammatory markers

Petrovic’ et al. [91] 2016 CT, parallel 500 Mg oxide 4 23
Young male rugby student vs.

sedentary student
↓ DNA oxidative damage in

lymphocyte

Vongpatanasin
et al. [92]

2016
RCT DB,

cross-over
243

Potassium Mg
citrate

4 30 Pre- or hypertensive subjects ↓ of urinary 8-isoprostane

Mousavi et al. [93] 2021
RCT DB,
parallel

250 Mg oxide 8 84 PCOS women BMI < 35 No effect on TAC, ↓ CRP

Bede et al. [94] 2008
RCT DB,
parallel

200–290 Mg citrate 12 40 Children with atopic asthma ↑ GSH, no effect on GSH/GSSG

BP = Blood Pressure; BMI = Body mass index; CKD = Chronic kidney disease; CRP = C-Reactive Protein; DB = Double Blind; HbA1c = Hemoglobin A1C; HOMA-IR = homeostatic

model assessment for insulin resistance; GSH = reduced glutathione; GSSG = oxidized glutathione; IL-6 = Interleukin 6; IR = Insulin Resistance; MCP-1 = Monocyte Chemoattractant

Protein-1; Mg = magnesium; ob = obese; ow = over-weight; PCOS = polycystic ovarian syndrome; RCT = Randomized Controlled Trial; TAC = total antioxidant capacity; UA = Uric Acid;

WC = Waist Circumference; ↑ = increase; ↓ = decrease.
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7. Conclusions and Future Directions

In this narrative literature review, we highlight the role of Mg in regulating AT
metabolism and its potential impact on preventing OS and LGCI in AT and obesity. This
preventive action of Mg is primarily attributed to its role in maintaining mitochondrial
function, supporting antioxidant defenses, and acting as a calcium antagonist. Neverthe-
less, despite extensive research in major databases, we found limited studies that directly
or indirectly investigate these topics at preclinical and clinical levels. Studies should be
conducted on the contribution of Mg in regulating adipogenesis and in modulating the
function of adipocytes challenged with inflammatory cytokines and/or unbalanced levels
of adipokines. New insights could be gained from omics studies conducted both in vivo
and in vitro. This knowledge can contribute to the development of innovative treatment
strategies to maintain health and prevent diseases (Figure 5). We hope that this review will
inspire future research to delve deeper into the role of Mg in regulating metabolism and
ROS production in AT.
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Figure 5. Biomedical research on Mg’s potential impact on health and disease prevention. Data from
studies on the interaction between different cell types and between the various organs might result in
the identification of biomarkers and strategies to prevent AT dysfunction and, in general, diseases.

Author Contributions: Conceptualization, R.C. and J.A.M.; writing—original draft preparation, R.C.,
M.D.P., G.P. and J.A.M.; writing—review and editing, R.C., M.D.P., G.P. and J.A.M.; supervision, R.C.
and J.A.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

adipose tissue (AT); brown adipose tissue (BAT); body mass index (BMI); calcium (Ca); cat-alase
(CAT); C-reactive protein (CRP); endothelial cells (ECs); endothelial nitric oxide synthase (eNOS); Eu-
ropean Food Safety Authority (EFSA); fatty acid synthase (FAS); fatty acyl transport protein 1 (FATP
1); glutathione (GSH); glutathione peroxidase (GPx); glutathione reductase (GR); heme oxygenase-1
(HO-1); insulin resistance (IR); interleukin (IL); low-grade chronic inflammation (LGCI); magnesium
(Mg); mitochondrial RNA splicing 2 (MRS2); monocyte chemoattractant pro-tein-1 (MCP-1); NADPH
oxidase (NOX); NAD(P)H: quinone oxidoreductase 1 (NQO1); nitric oxide synthase (NOS); nuclear
factor-κB (NF-κB); oxidative stress (OS); paraoxonases (PON); perivascular adipose tissue (PVAT);
peroxiredoxin (Prx); PPARγ coactivator 1-alpha (PGC1-α); PR domain containing 16 (PRDM 16);
protein kinase C (PKC); reactive oxygen species (ROS); recommended dietary allowance (RDA);
superoxide dismutase (SOD); thiobarbituric acid-reactive substances (TBARS); thioredoxin reductase



Antioxidants 2024, 13, 893 14 of 17

(TrxR); Total Antioxidant Capacity (TAC); transient receptor po-tential ion channels for melastatin
(TRPM); triglycerides (TG); tumor necrosis factor-α (TNF-α); white adipose tissue (WAT).

References

1. Chen, Y.; Pan, R.; Pfeifer, A. Fat tissues, the brite and the dark sides. Pflugers Arch. Eur. J. Physiol. 2016, 468, 1803–1807. [CrossRef]
2. Chaurasiya, V.; Nidhina Haridas, P.A.; Olkkonen, V.M. Adipocyte-endothelial cell interplay in adipose tissue physiology. Biochem.

Pharmacol. 2024, 222, 116081. [CrossRef] [PubMed]
3. Cheng, C.K.; Ding, H.; Jiang, M.; Yin, H.; Gollasch, M.; Huang, Y. Perivascular adipose tissue: Fine-tuner of vascular redox status

and inflammation. Redox Biol. 2023, 62, 102683. [CrossRef] [PubMed]
4. Zocchi, M.; Della Porta, M.; Lombardoni, F.; Scrimieri, R.; Zuccotti, G.V.; Maier, J.A.; Cazzola, R. A Potential Interplay between

HDLs and Adiponectin in Promoting Endothelial Dysfunction in Obesity. Biomedicines 2022, 10, 1344. [CrossRef] [PubMed]
5. Liu, M.; Dudley, S.C. Magnesium, Oxidative Stress, Inflammation, and Cardiovascular Disease. Antioxidants 2020, 9, 907.

[CrossRef] [PubMed]
6. Zheltova, A.A.; Kharitonova, M.V.; Iezhitsa, I.N.; Spasov, A.A. Magnesium deficiency and oxidative stress: An update. BioMedicine

2016, 6, 8–14. [CrossRef] [PubMed]
7. Schieber, M.; Chandel, N.S. ROS Function in Redox Signaling and Oxidative Stress. Curr. Biol. 2014, 24, R453. [CrossRef]

[PubMed]
8. Horvath, T.L.; Andrews, Z.B.; Diano, S. Fuel utilization by hypothalamic neurons: Roles for ROS. Trends Endocrinol. Metab. 2009,

20, 78–87. [CrossRef] [PubMed]
9. Castro, J.P.; Grune, T.; Speckmann, B. The two faces of reactive oxygen species (ROS) in adipocyte function and dysfunction. Biol.

Chem. 2016, 397, 709–724. [CrossRef] [PubMed]
10. Zhao, R.Z.; Jiang, S.; Zhang, L.; Yu, Z. Bin Mitochondrial electron transport chain, ROS generation and uncoupling. Int. J. Mol.

Med. 2019, 44, 3. [CrossRef] [PubMed]
11. Boveris, A.; Oshino, N.; Chance, B. The cellular production of hydrogen peroxide. Biochem. J. 1972, 128, 617. [CrossRef] [PubMed]
12. Nègre-Salvayre, A.; Hirtz, C.; Carrera, G.; Cazenave, R.; Troly, M.; Salvayre, R.; Pénicaud, L.; Casteilla, L. A role for uncoupling

protein-2 as a regulator of mitochondrial hydrogen peroxide generation. FASEB J. 1997, 11, 809–815. [CrossRef] [PubMed]
13. Song, P.; Zou, M.H. Roles of Reactive Oxygen Species in Physiology and Pathology. In Atherosclerosis: Risks, Mechanisms, and

Therapies; Wiley: Hoboken, NJ, USA, 2015; pp. 379–392. [CrossRef]
14. Al-Anazi, A.; Parhar, R.; Saleh, S.; Al-Hijailan, R.; Inglis, A.; Al-Jufan, M.; Bazzi, M.; Hashmi, S.; Conca, W.; Collison, K.; et al.

Intracellular calcium and NF-kB regulate hypoxia-induced leptin, VEGF, IL-6 and adiponectin secretion in human adipocytes.
Life Sci. 2018, 212, 275–284. [CrossRef] [PubMed]

15. Wang, B.; Wood, I.S.; Trayhurn, P. Dysregulation of the expression and secretion of inflammation-related adipokines by hypoxia
in human adipocytes. Pflugers Arch. Eur. J. Physiol. 2007, 455, 479–492. [CrossRef] [PubMed]

16. Li, X.; Ren, Y.; Chang, K.; Wu, W.; Griffiths, H.R.; Lu, S.; Gao, D. Adipose tissue macrophages as potential targets for obesity and
metabolic diseases. Front. Immunol. 2023, 14, 1153915. [CrossRef] [PubMed]

17. Liang, W.; Qi, Y.; Yi, H.; Mao, C.; Meng, Q.; Wang, H.; Zheng, C. The Roles of Adipose Tissue Macrophages in Human Disease.
Front. Immunol. 2022, 13, 908749. [CrossRef] [PubMed]

18. Piuri, G.; Zocchi, M.; Della Porta, M.; Ficara, V.; Manoni, M.; Zuccotti, G.V.; Pinotti, L.; Maier, J.A.; Cazzola, R. Magnesium in
Obesity, Metabolic Syndrome, and Type 2 Diabetes. Nutrients 2021, 13, 320. [CrossRef] [PubMed]

19. Chavakis, T.; Alexaki, V.I.; Ferrante, A.W. Macrophage function in adipose tissue homeostasis and metabolic inflammation. Nat.

Immunol. 2023, 24, 757–766. [CrossRef] [PubMed]
20. Trapani, V.; Rosanoff, A.; Baniasadi, S.; Barbagallo, M.; Castiglioni, S.; Guerrero-Romero, F.; Iotti, S.; Mazur, A.; Micke, O.;

Pourdowlat, G.; et al. The relevance of magnesium homeostasis in COVID-19. Eur. J. Nutr. 2022, 61, 625–636. [CrossRef] [PubMed]
21. Touyz, R.M.; Baaij, J.H.F. De Hoenderop, J.G.J. Magnesium Disorders. N. Engl. J. Med. 2024, 390, 1998–2009. [CrossRef] [PubMed]
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