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Abstract
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fundamental drivers are included in the estimation. This allows us to contribute to the literature

of large Bayesian VARs by using well-known time series models in a large dimension for the matrix

of coefficients. Based on novel Bayesian techniques, we exploit the importance of both Gaussian

and non-Gaussian error terms in stochastic volatility. We find that using regressors as fuel prices,

forecasted demand and forecasted renewable energy is essential to properly capture the volatility of

these prices. Moreover, we show that the time-varying volatility models outperform the constant

volatility models in both the in-sample model-fit and the out-of-sample forecasting performance.
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1 Introduction

Electricity is a non- or partially storable commodity, it must be produced when and where

demanded. The impossibility to store economically electricity and the variability introduced into

the system by new regulations and the imperfect predictability of fundamental drivers are sources

of uncertainties reflected in electricity prices and their volatility. Knittel and Roberts (2005) and

Escribano et al. (2011) provide a detailed overview of all stylized facts of electricity prices, like

multiple seasonality, mean reversion, short-lived spikes (or sudden jumps in prices), and high

volatility. These characteristics do originate from the convex supply curve, the price inelastic

demand in the short-run, and the limited storability of electricity.

In recent years, worldwide energy policies have supported, and they are still fostering, green

generation to reduce carbon emissions and mitigate climate change. The increasing share of

electricity generated from renewable energy sources (RES) has a twofold effect. On one hand,

the equilibrium price is lowered because RES, entering the supply curve before other more costly

technologies, shift the supply curve towards the right. And, prices can become negative when

extremely high RES generation is coupled with low levels of demand, as in Germany. On the

other hand, RES (as wind, solar, and hydro to less extent) add complexity to the market because

they are variable, intermittent, and not easily predictable since they are strictly related to weather

conditions. If the wind blows and/or the sun shines, green and economic generation satisfies the

demand, and electricity prices are low (or negative); otherwise, demanded electricity is covered

with more expensive thermal conventional plants running with fossil fuels.

Obviously, uncertainties affect also the demand and its forecasts. Indeed, it is known that

demand reacts non linearly to temperature, as emphasized by Henley and Peirson (1997) and

more recently by Damm et al. (2017). Consequently, there are recent and increasing concerns

about demand and supply varying over time with greater uncertainty and, then, amplifying the

electricity price features and volatility patterns.

The vast majority of the literature on electricity prices has considered univariate models for

individual hours of the day with possible time–varying volatility patterns, asymmetries, and shocks

induced by fundamental drivers. Koopman et al. (2007), Huurman et al. (2012), Gianfreda

and Grossi (2012), Paraschiv et al. (2014), Ketterer (2014), Frömmel et al. (2014), Chan and

Grant (2016), Erdogdu (2016), Ciarreta and Zarraga (2016), Jeon and Taylor (2016) and Laporta

et al. (2018), among many others, implement univariate GARCH–type specifications for individual
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hourly or daily averaged price series. Only a few papers have considered cross-time dependencies.

For instance, Maciejowska and Nowotarski (2016) and Ziel (2016) observe that prices for early

morning hours depend more on the latest information than on information contained at the same

hour of the previous day. This is an indication of cross-hourly dependence among prices which

raises doubts about cross-relations in the volatility dynamics: we aim at exploring this issue

employing Bayesian VAR models. Other proper multivariate specifications have been explored

by Bauwens et al. (2013), Efimova and Serletis (2014) and Raviv et al. (2015). However, closer

to our approach is the analysis undertaken by Kostrzewski and Kostrzewska (2019) on the PJM

market. They compare univariate Bayesian stochastic volatility models with a double exponential

distribution of jumps and exogenous variables with non-Bayesian ones, and specifications with and

without exogenous variables as indicators for jumps, special days (that is Mondays, Saturdays,

and Sundays), the minimum hourly price observed over the previous day, and finally temperatures

- the latter ones being a proper exogenous variable. Instead, we adopt a multivariate setting in

which true exogenous variables are related to both demand and supply curves. Specifically, we

test the effects of uncertain forecasted demand levels (produced accounting also for temperatures,

as it will be described later), uncertain forecasted renewable power generated from both wind

and solar photovoltaic units, and additionally fossil fuel prices. To the best of our knowledge, the

analysis of multivariate models with time-varying volatility for electricity prices, demand, RES, and

fossil fuels has not been deeply investigated and we aim at filling this gap by adopting Bayesian

approaches. This contribution is an extension of Gianfreda et al. (2020) by adding stochastic

volatility and then contributing to the limited results on multivariate volatility models. In that

paper, the authors compare several univariate and multivariate frequentist and Bayesian models

augmented with fundamental variables (demand, RES, fossil fuels, and seasonality) to predict

hourly day-ahead electricity prices. Therefore, following Gianfreda et al. (2020), we consider

Bayesian Vector Autoregressive (BVAR) representations since better forecasting performances

emerge from multivariate models given the larger information contained, as suggested by Stock

and Watson (2002).

The availability of large electricity data sets referring to market system information allows

scholars and researchers to implement models previously used for macroeconometrics, see Mumtaz

and Zanetti (2015); Huber and Feldkircher (2019); Koop et al. (2019); Huber et al. (2020); Chan

(2020a) among others.
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The most challenging aspect for the use of multivariate time series models is the amount of

information available and this feature is actually needed to include all relevant information in

modelling and forecasting electricity prices. It is well-known that they show strong dependencies

from their past values (given the highly repetitive nature of electricity auctions underlying the

determination of these prices) and strong seasonality that from demand is transferred into prices.

Indeed, demand is heavily influenced by industrial activities with different dynamics over days of

the week and months of the year. Hence, modelling these hourly prices, their past values (observed

on one, two, and seven days before), seasonality, exogenous variables for supply (that is RES and

fossil fuels) and demand requires the handling of a matrix of coefficients of size (162× 24), given

the 24 hourly prices with 3 lags, 12 monthly dummies, two dummies for Saturdays and Sundays

and one dummy for holidays, plus hourly (forecasted) demand and RES (wind and solar), and 3

fossil fuels (coal, gas, and CO2).

One can state that traditional factor models are successfully used to handle large datasets,

however, the recent literature in large Bayesian Vector Autoregressive models (VAR) has provided

valid and important alternatives. In the macroeconomic literature (Mumtaz and Zanetti, 2013;

Clark and Ravazzolo, 2015; Carriero et al., 2016; Chiu et al., 2017; Carriero et al., 2019; Chan,

2020a), the use of time-varying volatility is known to improve the full sample analysis by capturing

the peak and booms and also to improve the forecasting accuracy.

The large dimensionality of time-varying volatility models applied to electricity hourly data1

can result in sizeable estimation errors. To mitigate this, we follow recent macroeconomic literature

and apply Bayesian estimation techniques. Contrarily to what happens in the macroeconomic

analysis, we do not encounter any ordering problem in the lower triangular matrix of the structural

VAR since we have a strong time dependence due to the natural ordering of consecutive hours.

From the computational and operational point of view, Carriero et al. (2019) and Chan (2020a)

have recently developed Bayesian estimation methods for VARs with stochastic volatility that allow

reducing the computational timing when the number of coefficients increases. Therefore, following

the specification in Chan and Eisenstat (2018) and Cross et al. (2020), we use a Bayesian VAR

with stochastic volatility for capturing the movements of the volatility in the electricity prices.

Differently from Chan (2020a), we do not assume a stochastic volatility component constant across

the variables, but we assume that the time-varying volatility changes across hours. Moreover, as

1We remember that our models require to estimate a (24× 24) time-varying covariance matrix.
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anticipated and differently from Carriero et al. (2019) and Cross et al. (2020), we do not have any

ordering problems in the estimation, because our variables follow the consecutive time dependence

structure of the 24 hours in a day.

The main finding in our paper refers to the importance of modeling multivariate time-varying

volatility in the variation of the electricity prices and, in particular, the fact that the assumption of

constant volatility on average overestimates the time-varying volatility over time, thus leading to

imprecise estimation. Moreover, the inclusion of the fat tail error term in the stochastic volatility

produces further improvements across central hours, where the estimation of different degrees of

freedom is important. These findings are based on three explicative countries (Germany, Italy

and Denmark) characterized by high RES penetration in the considered years during which all

relevant forecasts are available to us. When forecasting German, Italian and Danish electricity

prices from 2018 to 2019, we find evidence of strong improvements once forecasted demand and

renewable energy sources are included in the analysis with respect to the baseline model with only

a lag representation of the response variable. Furthermore, if we include time-varying volatility

in the form of Gaussian or Student-t distributions, we observe strong improvements in Germany,

Denmark and moderate improvements in Italy. These results are consistent in both point and

density forecasting, and also when focusing on quantile density forecasting for tail comparisons.

Indeed, we additionally contribute to the literature of density forecasting in Panagiotelis

and Smith (2008), Huurman et al. (2012), Jónsson et al. (2014), Gianfreda and Bunn (2018)

and Gianfreda et al. (2020) by comparing several density metrics. Differently from Kostrzewski

and Kostrzewska (2019) who use unconditional and conditional coverage tests together with the

Diebold-Mariano tests, we assess the density forecasts through the continuous ranked probability

scores (CRPS), their quantile-weighted variants as the averaged center quantiles (CQ-CRPS), and

the averaged right and left tails quantiles (RQ-CRPS and LQ-CRPS). As argued by Gianfreda and

Bunn (2018), price asymmetries induced by wind generation are significant and attention should

be paid to their modeling. The presence of a fat tail in the stochastic volatility is particularly

emphasized in Germany during the central hours and across the different considered metrics. This

phenomenon is particularly evident in this market since prices are free to fluctuate from a floor price

of -500 e/MWh to a cap price of 3000e/MWh, whereas in other countries the floor is generally

set to zero.

The paper proceeds as follows. Section 2 describes the electricity market and data used. The
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methodology is described in Section 3 together with details on the estimation process. Results are

presented in Section 4, which also contains the recursive out-of-sample forecasting performance

of the Bayesian VAR models with stochastic volatility. Finally, Section 5 concludes and briefly

discusses some future research directions.

2 Electricity Market: Prices and Drivers

Electricity is a commodity traded in wholesale markets, generally organized in different sequential

sessions: from the day-ahead and intra-day to the balancing ones.

On a voluntary basis, bids to buy and offers to sell electricity are submitted in the day-ahead

session for each hour of the following day, in pairs of prices and quantities by both consumption

units and generators. This session opens several days in advance and closes at noon on the day

before physical delivery. Then, individual bids are aggregated and supply offers are ordered giving

the priority of dispatch to more efficient and less polluting units, characterized by lower marginal

costs. Hence, wind, solar, and in general all renewable energy plants enter the supply curve before

more costly thermal conventional or nuclear units; this is the so-called ‘merit order criterion’.

Subsequently, the equilibrium price is computed hourly under a cost minimising objective function

and it is identified by the intersection of the aggregated curves of supply and demand. These 24

prices are often called day-ahead, forward, or auction prices because they are determined one day

before delivery on the day-ahead market; and we refer to day-ahead and spot interchangeably.

Electricity prices are prone to the microstructural features of the market, and so influenced by

installed capacity, by the international dynamics of fossil fuel prices (in varying proportions related

to the shares of thermal technologies in the generation mix), plant maintenance and outages,

interconnections with foreign markets, and weather conditions influencing both demand and RES

forecasts. Indeed, the intra-day sessions, taking place after the day-ahead market, allow all units

to modify their day-ahead plans, since for instance sudden outages and/or changing weather

conditions (among many other factors) may affect generators’ planned schedules of production

and consumers’ forecasted consumption.

Finally, the balancing markets represent the last sessions where only generators with the

required degree of flexibility are allowed to act, and where system security, grid stability, and

the instantaneous match between demand and supply are granted by the transmission system

operator. The prices determined on these sessions are proper real-time prices (usually called
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‘balancing’ prices) and are regulated by different pricing mechanisms2; we would like to emphasize

that we are not considering these prices but only the day-ahead ones.

Uncertainties affecting the supply curve are mainly concerning the intermittent production from

renewable energy sources, the international movements of fossil fuel prices, and technical operations

of plants and of the whole electricity system. Among these, the penetration of renewables represents

the major source of uncertainty. Given their increasing shares through the years, electricity

markets have become more and more weather dependent and prices are exposed to atmospheric

conditions. Then also climate change is going to influence future price dynamics and exacerbate

price variability. Weather conditions are fundamental factors influencing wind and solar generation,

but also electricity demand, then focussing on the understanding of price volatility is becoming

crucial in these markets for the management of operational risks and hedging strategies. Accurate

price forecasts accounting for time-dependent volatility are then essentials in determining the

amount of risk to cover.

To this aim, we consider the following fundamental data: day-ahead prices, forecasted demand,

forecasted wind and solar PV generation, and fossil fuel prices. Specifically, we refer to three3

European countries characterized by high penetration of renewables and different generation mixes,

these are Germany, Italy and Denmark.

2.1 Data Description and Preliminary Analysis

Hourly day-ahead auction prices are directly collected from the corresponding power exchanges: the

European Energy Exchange EEX for Germany4, the Gestore dei Mercati Energetici GME for Italy5,

considering the single national Italian price (prezzo unico nazionale, PUN); and, the NordPool for

Denmark6. These hourly electricity prices are quoted in e/MWh and have a daily frequency.

They have been pre-processed for time-clock changes to exclude the 25th hour in October and to

interpolate the missing 24th hour in March; hence, there are no missing observations. Their forward

nature is important in understanding the right timing and the need for forecasted demand, wind,

and solar quantities. Indeed, market operators run their forecasting models on day t to obtain a

set of 24 prices (and quantities for delivery on the following day t+ 1) to be submitted before the

2Additional details and further insights on balancing prices can be found in Gianfreda et al. (2018) and Gianfreda
et al. (2019).

3Please note that availability of forecasts may be an issue, hence this influenced our selection of studied countries.
4Precisely, we had access to the ftp from www.eex.com thanks to the Europe Energy
5http://www.mercatoelettrico.org
6http://www.nordpoolgroup.com
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closure of the market (around noon of the same day t). Then, the information available refers

to the same day t as far as the forecasted quantities are concerned (for demand, wind and solar),

but also to the previous day t− 1 when the settlement prices for fossil fuels are determined (and

plant capacities are declared).

Therefore, hourly forecasted quantities are collected from Refinitiv. In detail, we use values

forecasted by the operational weather model provided by the European Centre for Medium-Range

Weather Forecast, EC. This model runs at midnight and updates from 05.40 a.m. to 06.55 a.m.,

hence providing the latest information available to market operators to prepare their bidding

strategy to be submitted to the day-ahead market by noon. In case of missing or unavailable

forecasts for a specific model (as for the Italian market), we adopted this strategy to reconstruct

the full required series: when the forecasts from the EC model running at midnight (its acronym

is ECop00) were not available, we replaced missing observations by those produced by other

forecasting models according to their time of publication. In details, at the second step of

replacement, we considered the forecasts provided by the Global Forecast System (GFS) running

an ensemble model at midnight (that is GFSen00), alternatively in case of further missing

observations we used the results of the operational model that was still running at midnight

(that is GFSop00), and, if necessary, we use the same replacement scheme using respectively

GFSen18, GFSop18, ECen12, according to the time of publication of their results. At the end

of the process, minimal residual missing observations (at the beginning of the Italian sample)

were replaced with interpolated values. The two weather models differ in terms of randomness

and resolution. The operational model is a deterministic model with high resolution and no

involved randomness, whereas the ensemble model is a probabilistic model with lower resolution

but with random variations of the initial weather conditions. Therefore, the latter one simulates

more weather instability by considering different weather scenarios.

The forecasted series of solar power production show an additional problem: they exhibit a block

structure of null values in hours early in the mornings and late in the evenings, creating collinearity

issues. Therefore, following Gianfreda et al. (2020), we have pre-processed these series using a

linear transformation7. As fossil fuel prices are concerned, we use the settlement prices for coal (as

for the Intercontinental Exchange API2 cost, insurance, and freight Amsterdam, Rotterdam and

7Draws from a Uniform distribution are generated and then added to the original zero values to obtain small numbers.
This results in having (column) blocks of very small values close to but different from zero, instead of having (column)
blocks of zeros.
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Antwerp, with ticker LMCYSPT), natural gas (as for the one month forward ICE UK8, with ticker

NATBGAS) and CO2 (as for the EEX-EU CO2 Emissions E/EUA in e, with ticker EEXEUAS),

downloaded from Datastream and all converted in e/MWh using the WMR&DS exchange rates

from US$ to Euros ( with ticker USEURSP) and from GBP to Euro ( with ticker UKEURSP).

They have a daily frequency and so a constant structure over the 24 hours; missing weekends and

holidays have been interpolated. Finally, we use monthly and dummy variables for calendar and

weekend seasonality, disentangling between Saturdays, Sundays and holidays.

Given that extreme prices affect price variability and that these spikes represent peculiar

characteristics of the electricity markets incorporating important information (as arbitrage

opportunities from a day–ahead trading perspective), we maintain them in our series9, differently

from Weron (2006) and Afanasyev and Fedorova (2019). Moreover, following Karakatsani and

Bunn (2010) and Paraschiv et al. (2014), to avoid masking statistical price properties and volatility

dynamics that we want to capture and model, we use price levels and not logarithmic prices as

in Conejo et al. (2005), Garcia et al. (2005), Weron and Misiorek (2008), Bordignon et al. (2013)

among others.

To summarize, we use hourly data for prices, forecasted demand, wind, and solar PV generation,

together with repeated daily data (across the 24 hours) for fossil fuel prices from 01 January

2016 to 31 December 2019. Figure 1 shows the sample distributions of electricity prices, with

high variability (outside the upper and lower quartiles) with different degrees across the three

considered markets. We can observe outliers varying between ±200 e/MWh in Germany; between

zero and 150e/MWh in Italy and between -50 e/MWh and 150e/MWh in Denmark. The sample

distributions of forecasted demand, wind, and solar PV are reported in Figure 2. The historical

evolution of prices and drivers is presented in the supplementary material, since the intra-daily

dynamics help more in understanding the degree of uncertainties in demand and RES levels and

show how their connected variability can influence hourly prices, with peculiar dynamics across

the 24 hours and with stronger combined effects (of high variability in demand, wind, and solar)

in peak hours. All together suggests the importance of considering fat-tailed and asymmetric

distributions.

According to both point and density metrics, Gianfreda et al. (2020) recommend multivariate

8As suggested by Gianfreda et al., 2016, it represents a pure hub benchmark and can be used for all EU markets.
9 We performed a robustness check setting outliers to upper and lower thresholds, determined as in BUNN2010 by

using price sample means and three times their standard deviations. Results were qualitatively similar, hence omitted
but available on request.
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Figure 1: Sample Price Distributions for Germany (on the left), Italy (on the center) and Denmark (on the
right).
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Figure 2: Sample Distributions for Forecasted Demand (top row), Forecasted Wind (middle row) and
Forecasted Solar PV (bottom row) for Germany (on the left), Italy (on the center) and Denmark (on the
right).

models for forecasting electricity prices. Therefore, we inspect the dynamics of hourly electricity

prices in a univariate context to understand if simple and less parameterized models are more

suitable than multivariate ones. To support the multivariate formulation, we run 24 univariate

models for electricity prices yh,t for hour h observed on day t and prices observed one, two and

7 days before10 (yh,t−l with l = 1, 2, 7). Moreover, we consider monthly dummies (dk,t, where

10We follow Knittel and Roberts (2005), Weron and Misiorek (2008) and Raviv et al. (2015), who show that these
specifications provide accurate forecasts because they capture seasonal patterns in electricity prices. Then, we restrict
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d1t, . . . , d12t represent the twelve months of the year) and dummies for Saturdays, Sundays and

holidays for each country (these are indicated with d13t, d14t and d15t); thus K = 15. Regarding the

exogenous variables, we include forecasted demand (xh,t), wind (wh,t) and solar (zh,t) generation

for hour h and fundamentals prices for coal (ct−1), natural gas (gt−1) and CO2 (mt−1). Finally,

we add also the first lag of all the other remaining hours yj,t−1, formally

yh,t =

K∑
k=1

ψkdk,t+
∑

l∈{1,2,7}

φlyh,t−l+α1xh,t+α2wh,t+α3zh,t+β1ct−1+β2gt−1+β3mt−1+
∑
j 6=h

γjyj,t−1+εh,t.

(1)

Then, from the resulting 24 residual series of each model, ε̂h,t, the variance-covariance matrix

has been computed. Uncorrelated residuals make the multivariate VAR specification not necessary,

however, we find evidence of large correlations, across studied markets as emphasized by the heat

maps in Figure 3. Therefore, VAR models seem more appropriate to estimate this covariance

structure, and it could result in improved efficiency of mean equation estimates and consequently

in point and density forecast accuracy.
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Figure 3: Heat maps of the Upper Triangular Correlation Matrix for Residuals of the Univariate Model as
formulated in Eq. 1 for Germany (left), Italy (center) and Denmark (right).

3 Methodology

This section introduces first the multivariate models specification. Then, details on the estimation

procedure are presented, and finally the metrics used to assess both point and density forecasting

performances are described.

lags to t− 1, t− 2 and t− 7, corresponding to the previous day, two days before, and one week before the delivery time.
They recall first similar conditions that may have characterized the market over the same hours and similar days (like
congestions and blackouts) and, second, the demand level during the days of the week. Besides, this formulation reduces
the risk of overparameterization.
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3.1 Model Specifications: VARs with Stochastic Volatility

In this section, we outline the class of models we wish to compare. Firstly, we consider the most

general model with time-varying volatility (Chan and Eisenstat, 2018; Cross et al., 2020) and then

other models are specified as restricted versions of the general one. In particular, we highlight

the differences between a Gaussian stochastic volatility model and a fat-tail stochastic volatility

model, thus with the Student-t error term. Therefore, our multivariate specifications allow us

to compare whether features such as intermittent and unpredictable supply and variable demand

(and consequent negative prices) only increase volatility or actually change the (tail) distribution,

as suggested by Gianfreda and Bunn (2018) in their analysis of univariate time series.

Let yt = (y1t, . . . , yHt)
′ denote the (H × 1) vector of day-ahead hourly electricity prices, with

H = 24. Consider the following vector autoregressive (VAR) model with stochastic-volatility (SV):

A0yt = B1yt−1 + . . .+Bpyt−p + εt, εt ∼ N (0,Σt), (2)

where B1, . . . , Bp are the (H ×H) VAR matrix of coefficients; A0 is a (H ×H) lower triangular

matrix with ones on the diagonal and Σt is a time-varying diagonal matrix of the form Σt =

diag(exp(h1t), . . . , exp(hHt)). Following Chan and Eisenstat (2018), we reformulate the model as

follows:

yt = X̃tβ +Wtγ + εt, εt ∼ N (0,Σt), (3)

where X̃t = IH ⊗ (y′t−1, . . . ,y
′
t−p) and Wt contains the appropriate elements of yt. Regarding the

coefficients in B1, . . . , Bp and A0, we can split them in two different groups. The first group consists

of β, which is a (kβ × 1) vector containing the coefficients associated with the lagged observations,

the dummy variables and the exogenous variables. The second group contains a (kγ × 1) vector,

γ, of coefficients that characterizes the contemporaneous relations between the variables and it

consists of the free elements of A0 stacked by rows.

In particular, kγ = H(H − 1)/2, while the size of the vector of coefficients varies along the

model specifications: if we include the lagged observations, then kβ = H2p, whereas if we add a

vector of dummies denoted by dt = (d1t, . . . , dKt)
′, (with K = 15 since it includes d1t, . . . , d12t for

the twelve months, d13t, d14t and d15t for Saturdays, Sundays and holidays), then kβ = (Hp+K)H.

The model in Eq. (3) can be written in a stacked form:

yt = Xtθ + εt, εt ∼ N (0,Σt),

12



where Xt = (X̃t,Wt) and θ = (β′,γ ′) is of dimension kθ = kβ +kγ . If we assume p = 3, then there

are kθ = 2364 parameters to be estimated.

In order to complete the model specification of the VAR(p) with stochastic volatility, we

need to include the time-varying volatility in the model. Thus, we include the log-volatilities

ht = (h1t, . . . , hHt) for t = 1, . . . , T . Following Cogley and Sargent (2005), we assume that the

latent log-volatilities ht evolve according to a random walk process

ht = ht−1 + ut, ut ∼ N (0,Ω),

where ut is a vector of i.i.d. residuals, Ω = diag(σ2h1 , . . . , σ
2
hH

) and h0 is treated as a parameter to

be estimated.

As stated in Cross et al. (2020), the prior specifications for the state variance, Ω, and for the

initial state, h0, follow an independent prior distribution such as

h0 ∼ N (ah, Vh), σ2hi ∼ IG(νhi , Shi) for i = 1, . . . ,H,

where IG(·, ·) denotes an inverse Gamma distribution. Regarding the hyperparameters, we set

ah = 0, Vh = 10× IH ; νhi = 10 and Shi = 0.12(νhi − 1).

Regarding the prior distribution of the vectorized matrix of coefficients β and γ, we assume

an independent Normal prior11 specification of the form:

β ∼ N (µ
β
, V β); γ ∼ N (µ

γ
, V γ),

where µ
β
,µ

γ
are the prior means set equal to (0,0) and V β, V γ are the prior covariance matrixes set

equal to (10×Ikβ , Ikγ ). We can specify Eq. 3 in a different form by using a different representation

of the X̃t matrix. In particular, we include some exogenous variables in the VAR, which leads to

a VARX specification with stochastic volatility. The exogenous variables included in the analysis

refer to both the demand and supply curves. As far as the former one is concerned, we include

the forecasted hourly demand xt = (x1t, . . . , xHt)
′ which contains variability around the expected

levels of demand. As far as the supply is concerned, we consider fossil fuel prices, which however do

not change over the 24 hours and are determined over the previous day, and the variability induced

by the forecasted values for RES. Then, to summarize, we have included wt = (w1t, . . . , wHt)
′ for

11Please note that we have also used a shrinkage prior of the Dirichlet-Laplace form for all the components of the β
and γ in both VAR and VARX specifications. However, the results were similar to those with the Normal prior, hence
they have been omitted.
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forecasted wind generation; zt = (z1t, . . . , zHt)
′ for forecasted solar power generation; and mt−1,

gt−1 and ct−1 for CO2, gas and coal prices determined on the previous day, respectively.

From Eq 3, we redefine the matrix X̃t = IH ⊗ (y′t−1, . . . ,y
′
t−p,d

′
t,x
′
t,w

′
t, z
′
t,mt−1, gt−1, ct−1),

thus transforming Eq. 3 into a VARX(p)-SV, where kβ = (Hp+K + 3H + 3)H is the dimension

of the vector of coefficients β.

In this paper, we consider a different specification of the time-varying covariance matrix that

augments the (random walk) stochastic volatility specification to include fat tails. Thus, we

introduce a VAR(p) with stochastic volatility with a Student-t error term and we introduce

the degrees of freedom of the Student-t distribution. Differently from a strand of the literature

(see Chan, 2020a,b), we include the degrees of freedom that change with the variables, such as

electricity demand and solar power generation which show higher values during daytime. Thus,

νj > 0 depends on j = 1, . . . ,H to account for the varying dynamics across the hours.

The model specification follows Eq. (3) but the variance matrix Σt has a novel component.

The VAR(p)-tSV is given by

yt = X̃tβ +Wtγ + εt, εt ∼ N (0,diag(exp(h1t)/λ1t, . . . , exp(hHt)/λHt)),

ht = ht−1 + ut, ut ∼ N (0,diag(σ2h1 , . . . , σ
2
hH

)), (4)

where λjt ∼ IG(νj/2, νj/2) for every t and j = 1, . . . ,H. We consider two different options

on the degree of freedom of the fat tail component. In the first one, the degrees of freedom νj

are parameters to be estimated for each variable, thus we assume a Uniform prior for νj , i.e.

νj ∼ U(0, ν), where we fix ν equal to 50; while in the second case, we fix the degrees of freedom

νj = 5 to ensure fat tails12.

As for the Gaussian stochastic volatility model, we consider a specification with exogenous

variables also for the case with fat tails. Thus, we have a different specification of X̃t =

IH ⊗ (y′t−1, . . . ,y
′
t−p,d

′
t,x
′
t,w

′
t, z
′
t,mt−1, gt−1, ct−1) and we can define a VARX(p)-tSV model to

be used in the in-sample estimation and in the forecasting exercise.

As anticipated, we do not encounter any ordering problems in the lower triangular matrix A0

as instead in Carriero et al. (2019); Cross et al. (2020). In fact, in our analysis, we have a strong

time dependence due to the 24-hour consecutive specification, and the variable ordering in the

12The choice of νj equal to 5 is due to the posterior mean over the 24 hours of the degrees of freedom estimated in the
VARX-tSV model.
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VAR-SV and VAR-tSV model will not affect the in-sample analysis and the relative forecasting

performance of the models. We remember that the 24 hourly prices are set jointly the day before

delivery, this implies that the set of 24 hourly prices has to be submitted jointly to the system

operator. This is a technical market requirement for the functioning of the system.

For comparison, we consider also a constant variance model, thus a VAR(p) and a VARX(p),

where the error term is distributed with a constant covariance matrix Σt = Σ. As far as the prior

assumption is concerned, we use the usual Bayesian prior specification for the covariance matrix

and we consider an inverse Wishart distribution, IW (ν0,Ψ0), where ν0 are the prior degrees of

freedom and Ψ0 is the prior scale matrix. A summary of the models used is presented in Table 1.

Models Description

VAR with Gaussian constant volatility
VARX with Gaussian constant volatility
VAR-SV with Gaussian stochastic volatility
VARX-SV with Gaussian stochastic volatility
VAR-tSV with stochastic volatility and t innovations (estimated νj)
VARX-tSV with stochastic volatility and t innovations (estimated νj)
VAR-tSVν with stochastic volatility and t innovations (fixed ν = νj = 5)
VARX-tSVν with stochastic volatility and t innovations (fixed ν = νj = 5)

Table 1: List of Competing Bayesian VAR Models.

3.2 Estimation Procedure

Recalling that hourly prices with a reduced 7-lag structure are considered, with abuse of notation

we use p = 3 to denote the maximum number of lags in the remainder of the article. Thus, to

further inspect the effect of fat tails, we have investigated the differences between estimating or

fixing the degrees of freedom at the same value for all the 24 hours.

Regarding the estimation method, we refer the reader to the usual Bayesian literature. In

particular, the joint posterior distributions are not available in closed form, thus we need to

apply a Markov Chain Monte Carlo (MCMC) method based on a Gibbs sampling and draw each

parameter from its posterior full conditional distribution. For the VAR model with stochastic

volatility (VAR-SV), the Gibbs sampler could be summarized through the following steps:

1. sample β from its posterior full conditional distribution;

2. sample γ from it posterior full conditional distribution given the other parameters;

3. sample the path hi,0, . . . , hi,T for each i = 1, . . . H by sampling each hj,t from its posterior

full conditional distribution;
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4. sample σ2hi for each i = 1 . . . H from its posterior full conditional distribution.

Whereas for the VAR model with Student-t distribution, we need to add the following two steps

for the degrees of freedom:

5. sample λi,t for each i = 1, . . . ,H and t = 1, . . . , T from its posterior full conditional

distribution;

6. sample νi for each i = 1, . . . ,H using an independent Metropolis-Hastings step as in Chan

and Hsiao (2014). The proposal distribution is a Gaussian N (ν̂,K−1), where ν̂ is the mode

of the log-posterior density and K is the negative Hessian evaluated at the mode.

In order to check which is the best model across the variety of models estimated, we adopt

two criteria for the comparison of Bayesian models, which will be used to compare the estimation

performances of the models. In particular, we apply the deviance information criterion (DIC)

introduced in the seminal paper by Spiegelhalter et al. (2002), which is defined as the sum of the

posterior mean deviance and the effective number of parameters. Hence, it indicates a tradeoff

between the model fit and its complexity; see Chan and Eisenstat (2018) for a more detailed

discussion. In addition, we implement the Bayes Factor and the relative ratio with respect to a

benchmark model, that is the VAR model. The Bayes factor selects the model that it is more

likely to have occurred given the observed data.

As far as computational times are concerned, they generally range from 60 seconds for the

simplest model to less than 8 minutes for more complex ones; further details are provided in the

supplementary material.

3.3 Assessment of the Forecasting Performance

In order to assess the goodness of our forecasts, we adopt point and density metrics which are

described in this section. As a point forecast measure, we apply the root-mean-square errors for

each of the hourly prices (RMSEh), as well as the RMSEs for the daily average (RMSEAvg) and

for the average restricted only to the central peak hours from 8 a.m. to 8 p.m. (RMSEPAvg).

Specifically, they are computed as follows

RMSEh =

√√√√ 1

T −R

T−1∑
t=R

(
ŷh,t+1|t − yh,t+1

)2
,
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where T is the number of observations, R is the length of the rolling window and ŷh,t+1|t are the

individual hourly price forecasts, and

RMSEAvg =
1

24

24∑
h=1

RMSEh and finally RMSEPAvg =
1

13

20∑
h=8

RMSEh. (5)

On the other hand, we evaluate density forecasts by using the average continuous ranked

probability score (CRPS) and the quantile CRPS (Gneiting and Raftery, 2007; Gneiting and

Ranjan, 2011).13 These measures have advantages over the log score, in particular, they reward

better the values from the predictive density that are close to - but not equal to - the outcome,

and they are less sensitive to outliers. The CRPS is defined as the lower the number the better

the score, and it is given by

CRPSh,t(yh,t+1) =

∫ ∞
−∞

(F (z)− I{yh,t+1 ≤ z})2 dz = Ef |Yh,t+1 − yh,t+1| − 0.5Ef |Yh,t+1 − Y ′h,t+1|,

(6)

where F denotes the cumulative distribution function associated with the predictive density f ,

I{yh,t+1 ≤ z} denotes an indicator function taking the value 1 if yh,t+1 ≤ z and 0 otherwise, and

Yh,t+1 and Y ′h,t+1 are independent random draws from the posterior predictive density.

Regarding the quantile CRPS, the quantile-weighted versions of the continuous ranked

probability score is defined as:

Sh,t(yh,t+1) =

∫ 1

0
QSα

(
F−1(α), yh,t+1

)
ω(α)dα, (7)

where QSα
(
F−1(α), yh,t+1

)
is the quantile score defined as

QSα
(
F−1(α), yh,t+1

)
= 2

(
I{yh,t+1 ≤ F−1(α)} − α

) (
F−1(α)− yh,t+1

)
with F−1(α) the quantile forecast and α ∈ (0, 1). When ω(α) = 1, we have an uniform weight,

thus an unweighted continuous ranked probability score.

In order to put the emphasis on the centre or on the tails of the distribution, the nonnegative

weight function can assume different specifications on the unit interval ω(α). In particular,

ω(α) = α(1 − α) focusses on the centre, whereas ω(α) = (2α − 1)2 puts more emphasis on

13Our analysis focuses mainly on relative model performance. We have also investigated absolute performance via
probability integral transforms (PITS). Models with stochastic volatility and exogenous variables are well calibrated.
Results are available upon request.
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the tails. Moreover, the emphasis on the right and left tails can be denoted by ω(α) = α2 and

ω(α) = (1−α)2, respectively. And in what follows, we indicate the average center quantile CRPS

with CQ-CRPS, the average right tail quantile CRPS with RQ-CRPS, and the average left tail

quantile CRPS with LQ-CRPS, respectively. As for the RMSE, we can compute the averages for

the CRPS, CQ-CRPS, RQ-CRPS and LQ-CRPS over the 24 hours and over the peak hours on day

t + 1. We report the RMSEs, average CRPS, and average quantile CRPSs for the baseline VAR

model with constant volatility, whereas for the other VAR models we report the ratios between

the computed metric of the current model over the computed metric of the baseline VAR model.

Then, entries of less than 1 indicate that the given current model yields forecasts more accurate

than those provided by the baseline.

Moreover, to provide a rough gauge of whether the differences in forecast accuracy are

significant, we apply the Diebold and Mariano (1995) t-tests for equality of the average loss

to compare predictions produced by alternative models with those produced by the benchmark

model for a given horizon h14. The differences in accuracy that are statistically different from

zero are denoted with one, two, or three asterisks, corresponding to significance levels of 10%, 5%,

and 1%, respectively. The underlying p-values are based on t-statistics computed with a serial

correlation-robust variance, using the pre-whitened quadratic spectral estimator of Andrews and

Monahan (1992). Our use of the Diebold-Mariano test, with forecasts from models that are in

many cases nested, is a deliberate choice, as in Clark and Ravazzolo (2015). And, as noted by

Clark and West (2007) and Clark and McCracken (2012), this test is conservative and might result

in under-rejection of the null hypothesis of equal predictability. We report p-values based on one-

sided tests, taking the benchmark model (e.g. VAR model with constant volatility) as the null

and the other current models (e.g. VARX model with and without time-varying volatility) as the

alternative.

Finally, the Model Confidence Set procedure proposed by Hansen et al. (2011) across models for

a fixed horizon has been employed to jointly compare their predictive power without disentangling

between constant or time-varying volatility. The R package MCS detailed in Bernardi and Catania

(2016) has been used, and the differences have been tested separately for each hour and model,

repeating the full process for all three countries. Results are presented and discussed in the

following section.

14 When testing density forecasts, we use equal weights without adopting a weighting scheme, as in Amisano and
Giacomini (2007).
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4 Empirical Results

In this section, we illustrate the performance of the proposed Bayesian VAR models with different

volatility structures. We first present results based on comparisons across estimated models

assessing their performances in terms of DIC and Bayes Factor: these results based on a full

sample estimation show that the introduction of stochastic volatility fits the data substantially

better. Finally, the forecasting performances of the Bayesian VARs models are compared using

different point and density measures.

4.1 Model Comparisons

In this section, we present results for the Bayes Factor and DIC for all considered models and

studied countries. For the Bayes Factor, results are provided with respect to the baseline model

(that is the VAR model), where entries less than 1 indicate that the current model yields more

accurate estimations than those provided by the baseline model. Table 2 shows that including

time-varying volatility provides better results with respect to the benchmark model. This finding is

consistent for all countries, hence supporting the evidence of fat tails. As expected, the superiority

of the VARX-tSV model is confirmed for all countries, although with a difference: while estimating

the degrees of freedom seems the best solution for Germany and Denmark, fixing them is more

appropriate for Italy. This may be due to the zero lower bound in action in the Italian market,

where prices cannot become negative even if there is a combination of low demand and high RES

generation.

Bayes Factor VARX VARX-SV VARX-tSV VARX-tSVν

Germany 0.758 0.849 0.722 0.736
Italy 0.925 0.872 0.847 0.836
Denmark 0.846 0.949 0.819 0.862

Table 2: Bayes Factor under each model specification on the full sample size (T = 1454) for different countries.
Values less than 1 indicate that the given current model yields more accurate estimations than those provided
from the VAR model.

Moving to the second criterium of models comparison, we consider the DIC as computed in

Chan and Eisenstat (2018). In particular, we provide the posterior mean and numerical standard

errors in parentheses of the DIC computed over 20 different chains. Each chain consists of

20.000 posterior draws after a burn-in period of 5.000 iterations, while the integrated likelihood

is evaluated every 20 post burn-in draws. Results from the in-sample analysis are reported in
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Table 3. In details, and recalling that higher DIC values correspond to better fit, we observe

that this metric confirms that models with stochastic volatility are the best fitted models, whereas

models not including exogenous variables (VAR) or with constant volatility (VARX) are the worst

ones, and this is consistent for all countries. As the Bayes Factor, the VARX-tSV with fixed and

estimated degrees of freedom are found to be the best fitting models for Germany. For Italy and

Denmark, the best models are the VARX-SV immediately followed by the VARX-tSV. Overall,

this confirms the relevance of including time-varying volatility in the modelling strategy.

VAR VARX VARX-SV VARX-tSV VARX-tSVν

Germany
DIC 192693 183949 165651 164472 163362

(148.44) (53.12) (798.39) (4.01) (4.30)

Italy
DIC 176047 174590 162306 163178 162947

(90.31) (92.80) (2.92) (3.43) (2.86)

Denmark
DIC 185466 182512 155119 159940 159726

(137.02) (94.56) (280.65) (325.63) (57.32)

Table 3: The DIC estimates (numerical standard errors in parentheses) under each model specification on the
full sample size (T = 1454) for different countries.

4.2 Dynamics of the Estimated Volatility

In this section, we present the dynamics of estimated volatility over the full sample, from January

2016 to December 2019.

The comparison of estimated stochastic volatility models with the one estimated with constant

volatility for Germany is presented in Figure 4, where it is possible to observe volatility

representations changing across the 24 hours (in simple words, they are time-varying estimates

over the hours as described in Section 3). More specifically, we compare the VARX model with

constant volatility computed over 1 year centered rolling window15 (on the left), with the the

posterior means of the VARX model with stochastic volatility (middle) and those of the VARX

with fat tail stochastic volatility (on the right). Note that we left the same scale to emphasize

the difference across models.

It is interesting to observe that there are substantial changes across the hours of the days

for the latter models and, in particular, looking at the fat tail representation of the error, the

15 We follow Clark and Ravazzolo (2015) who proposed this approach and provide all technical details for
implementations on macroeconomic data.
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Figure 4: Model comparisons over all the 24 hours between the VARX computed over 1 year centred rolling
window (on the left), the VARX-SV (middle) and the VARX-tSV (on the right) estimated in Germany.
Posterior Means of the Stochastic Volatility Models are expressed in standard deviations exp (ht/2).

volatility shows high values during winters and lower values during summers recalling the calendar

seasonality for all the four studied years. The VARX model with stochastic volatility seems to be

more prone to spikes at different hours and different periods of the year. In general, the assumption

of constant volatility could therefore imprecisely estimate the time-varying pattern of volatility.

Similar results are observed for Italy and Denmark, and are available in the supplementary

material16, which also contains the comparisons of the three models across all 24 hours.

The volatility estimates from the VARX model with constant volatility are on average higher

than those estimated by the time-varying volatility models. And, to investigate this fact we

provide the number of times that the posterior means of the VARX model are higher than those

of the VARX model with stochastic volatility (first row) and (higher than) the VARX with fat tail

stochastic volatility (on the second row), respectively; see Figure 5.17 Looking at these results, the

posterior means of the VARX model are on average higher than those of VARX with fat tailed

stochastic volatility for all hours and for most of the hours excluding early hours at night when

compared to the VARX with stochastic volatility. The average of these statistics over the 24 hours

for German price is 64% in the VARX vs VARX-SV comparison, and 89% in the VARX vs VARX-

tSV comparison. For Italy, results are qualitatively similar, with a 24-hour average of 60% for the

VARX vs VARX-SV comparison, and 87% for the VARX vs VARX-tSV comparison. And for

Denmark, results show an average of 73% in the VARX versus VARX-SV comparison, and of 98%

for the VARX vs VARX-tSV comparison.

16 Furthermore, we repeated our investigations on subperiods of years (2016-2017 and 2018-2019) and on individual
years to provide an additional robustness check. These results are omitted for lack of space, but are available on request.

17When computing these statistics, we discard the initial 6-month data and the final 6-month data in order to compute
rolling volatility from the VARX model.
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Figure 5: Number of times over the adjusted full sample that the posterior means of the VARX model are
higher than those of the VARX model with stochastic volatility (first row) and than those of the VARX with
fat tail stochastic volatility (second row) for Germany (top panel), Italy (middle panel) and Denmark (bottom
panel).

In addition, Figure 6 shows the posterior means of the three specifications - VARX,18 VARX-SV

and VARX-tSV at selected hours (10, 14 and 18, that is when RES show their higher production

in connection with high levels of demand); whereas results for the other hours are provided in

the supplementary material. Model comparisons across the same hour emphasize indeed that

the posterior means of the volatility estimated with a constant volatility structure (VARX) are

higher than those with a time-varying structure (that is VARX-SV and VARX-tSV), and also

that introducing fat tails in the error term (VARX-tSV in grey lines) systematically reduces the

volatility over the considered sample and reductions are substantial especially during winters with

this phenomenon being more clearly visible at hours 10 and 18. Surprisingly and more interestingly,

the highest reductions are found at 14 when instead the economics of the energy systems suggests

the major uncertainty due to the combination of forecasts errors for demand with those for wind

and, especially, solar generation.

Thus, to further inspect the effect of fat tails, we have investigated the differences between

estimating or fixing the degrees of freedom at the same value over all the 24 hours. For the same

three hours indicated before, Figure 7 shows the values of posterior means when ν is estimated

(black lines) and when instead ν is fixed (to 3 and 5). While black and red lines for estimated

18It has been computed over 1 year centered rolling window, but we have also tested the usage of a 2 years centered
rolling window with similar results; thus, they have been omitted but are available upon request.
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Figure 6: Posterior Means of the Stochastic Volatility Models, in standard deviations exp (ht/2), observed in
Germany. Model comparisons across hours 10 (left), 14 (middle) and 18 (right) for VARX (red line), VARX-SV
(black line) and VARX-tSV (grey line).

and fixed (to 5) ν are almost perfectly overlapping at hours 10 and 18 ( as well as at hours 7-10

and 19-23 but less so for ν fixed to 3), the three dynamics decouple substantially at hour 14 (and

generally across hours 11-17) when high volatility is observed for the degrees of freedom fixed to

5 and low values occur for estimated degrees of freedom. Then, this suggests how important is

accounting for time-varying changes estimated accounting for the characteristics of the ‘current’

sample, especially for hours with greater variability. These results confirm what was already

suggested by Gianfreda and Bunn (2018) concerning the time-varying shape and tail dynamics

exhibited by hourly electricity prices, even if they were considering each hour individually. Similar

comments apply to Italy, whereas results for Denmark are a bit different given the decoupled

dynamics observed across all 24 hours (in the supplementary material). This may be due to the

different Danish generation mix.

Figure 7: Posterior Means of the Stochastic Volatility Models VARX-tSV - in standard deviations exp (ht/2)
- with estimated ν (black line), fixed ν = 5 (red line) and also ν = 3 (grey dashed) at hours 10 (left), 14
(centre) and 18 (right) in Germany.

When looking at the distribution of degrees of freedom ν, Figure 8 shows the posterior means

and distribution of ν over the 24 hours. The credibility intervals provide the uncertainty about
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estimated values. Results shows that uncertainty is high around hours 7-10 and 18-23, instead it

is low over hours 12-17, following the intra-daily demand profiles. In addition, in Italy uncertainty

is more pronounced over the first three hours, probably because of the strategic behaviour of hydro

units bidding on both the day-ahead and real time markets (Gianfreda et al., 2018). Reading these

results together with those reflecting the differences in using estimated or fixed degrees of freedom,

we can state that estimating or fixing the degrees of freedom does not imply dramatic changes

at certain hours; however, attention must be paid to central hours since the low uncertainty is

coupled with substantial differences between estimated or ex-ante fixed values, with the latter

ones producing substantial overestimation. Hence, we recommend a dynamic estimation better

adapting to all hours.
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Figure 8: Posterior Means (top row) and Posterior Distribution (bottom row) of the Degrees of Freedom ν
across the 24 hours for the VARX-tSV model in Germany (on the left column), Italy (in the middle) and
Denmark (on the right). The red horizontal line represents the posterior mean, whereas the blue box indicates
the 75% credibility interval.

4.3 Forecasting Results

Our results are based on a one-step ahead rolling forecasting process with a window size of two

years. Please note that the initial estimation sample goes from 1 January 2016 to 31 December

2017 and then the forecasting evaluation period starts on 1 January 2018 and ends on 31 December

2019; for a total of 731 in-sample forecasts.
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Results refer to the performances of our different multivariate models19 from the simplest one

(with lags and dummy variables, the benchmark VAR) to more complex ones including constant

or different time-varying volatility specifications as well as fundamental drivers (fuel prices and

forecasts for demand and renewable energy sources). Results for Germany, Italy and Denmark

are reported in Tables 4, 5 and 6, for a selection of hours; whereas, results for all 24 hours and

comprehensive model comparisons are provided in the supplementary material.

As expected, the forecasting performance decreases across the peak hours (that is between hour

8 and hour 20) and this is consistent with the high uncertainty affecting demand and supply levels

during daytime. Hence, the benchmark VAR models show the highest RMSEs at hours 14-16 in

Germany (around 13e/MWh); at peak hours 9-10, and 15-20 in Italy (around 8e/MWh) and

at 8-11 in Denmark (around 11e/MWh). These differences can be explained by the intra-daily

dynamics of forecasted demand and RES generation, which differ substantially across countries

because of the diverse geographical conditions affecting, for instance, solar radiation and wind

speed. Further details and comparisons of the intra-daily dynamics of demand and RES generation

are presented in Gianfreda et al. (2020) and Gianfreda et al. (2016).

The most interesting aspect addressed here is the expected forecasting improvement resulting

from accounting for volatility together with fundamental drivers (demand, RES, and fuels).

First of all, our results show that the Bayesian multivariate models with stochastic volatility

(VARX-SV) exhibit substantial improvements with respect to the the VARX and the benchmark

VARs with constant volatility. Including fundamental drivers in the modeling of price variability

increases forecast accuracy and even larger gains are obtained by extending the models to account

for time-varying volatility. When looking at the RMSE and CRPS metrics, the Model Confidence

Set shows that the VAR and VARX models are never included in the model set when predicting

German electricity prices; whereas, they may be retained at early-morning hours for Italian prices

and from late-afternoon to night hours for Danish prices.

In Germany, further improvements can be observed when we include the Student-t stochastic

volatility. Again, this occurs for both point and density metrics. Moreover, we observe no difference

between estimating the degrees of freedom or fixing them equal to an ex-ante selected value (for

instance 5) across hours. This confirms our previous findings and proves that both ways produce

19We also performed the forecasting exercise against the model proposed by Kostrzewski and Kostrzewska (2019), but
the results from our model beats the SVDEJX. These results have been omitted for lack of space, but they are available
on request.
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similar forecasting results. Therefore, practitioners can make an indifferent decision regarding

their modeling strategy, but we suggest estimating the degrees of freedom to address different

degrees of fat tails over the 24 hours. On the contrary, in Italy there is no empirical evidence

of differences between Gaussian and fat tail stochastic volatility models across the considered

forecasting measures. On one hand, this is in line with the Italian lower bound for market prices.

On the other hand, this may be due to the different levels of RES penetration observed in this

country, especially for wind. Moreover, these improvements are less evident in Denmark, where

accounting for fat tails does not provide further gains with respect to Gaussian time-varying error.

For this country, it seems that estimating the degrees of freedom provides low improvements with

respect to fixing them, due to the fact that Denmark has little variation in the estimation of ν

across hours with respect to the other countries.

Looking specifically at the metrics, the average reductions in loss function are similar for both

metrics of about 20% in Germany and Denmark, and 5% in Italy. Forecasting gains in terms of

the RMSE increase from hour 8 to the end of the day, as shown by full tables in the supplementary

material, and more clearly by the last column of Tables 4, 5 and 6. In general, the RMSEs decrease

from the VARX to the VARX-tSV across all hours, more strongly in Germany and Denmark than

in Italy. Similarly for the CRPSs, for which we observe reductions of almost 10% in Germany

and Denmark, and 5% in Italy. In Germany, the use of fat tails (Student t distribution) leads to

improvements of 20% in both metrics, while we do not observe similar reductions in Italy and

Denmark.

Considering the density forecasting and looking at the centre of distributions, results for the

CQ-CRPS show small differences between the benchmark model and the model with time-varying

volatility, of around 0.6 for Germany, 0.8 for Italy and 0.79 for Denmark.

When looking at the tails, results in terms of the average LQ-CRPS and RQ-CRPS confirm the

expected lower gains in Italy and Denmark, of about 0.8 and 0.79 with respect to the benchmark

levels for both left and right tails. As expected, we observe substantial forecasting improvements

in Germany, however and surprisingly, of the equal magnitude for both left and right tails, of

about 0.6 with respect to the benchmark levels.

As argued by Gianfreda and Bunn (2018) in their analysis on German individual hours selected

according to intra-daily profiles, wind and solar generation reduce the skewness of hourly electricity

prices, with this phenomenon being more evident at hours 12-13 because solar is at its maximum
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level. Moreover, they add that both increase the kurtosis of electricity prices at peak hour 19.

On the contrary, hour 3 shows higher volatility because more negative price spikes are observed

compared to hours 12-13 and 19.

Therefore, considering Germany and its off-peak1 prices (that is in the early morning from hour

1 to 7), lower quantiles are of most practical interest for the occurrence of down spikes. Then,

looking for instance at hour 3 we observe that the LQ-CRPS shows limited improvements when

considering constant or time-varying with Student-t volatility. This may be due to lower values

observed during off-peak1 hours than those observed in peak (8-20) and off-peak2 (21-24) hours:

there is indeed a jump in this metric from 0.413 at hour 1 to 1.158 at hour 15, which, however, still

confirms the convenience in implementing more complex models with regressors and time-varying

volatility with estimated or fixed degrees of freedom. Instead, at hours 12-13, both the high

and low quantiles are of interest and here we observe substantial and significant improvements in

both the LQ-CRPS and RQ-CRPS from the VARX-tSV when indifferently estimating or fixing ν.

Similar comments apply at hours 19-21 when the high quantiles are the most interesting ones for

the risk of high prices because RES decreases but demand is still at high levels. These comments,

however, do not apply to the Italian prices since they are affected by RES with a lower magnitude

compared to Germany and, more importantly, they are not allowed to become negative. However,

it is still interesting to observe that during peak hours the inclusion of time-varying volatility

and regressors improves both point and density metrics. See Tables 4, 5 and 6 for a sample of

hours in all three markets, whereas results for all hours are reported in the extended Tables in the

supplementary material.

5 Conclusions

Modeling day-ahead electricity prices has become extremely important for understanding the

energy system and providing empirical support to policymakers in a context where uncertainty

is progressively increasing as a consequence of changing weather conditions due to climate change.

In this regard, appropriate models may also produce useful forecasts, which help market operators

plan their generation schedules while accounting for (and then adapting to) the imperfect

predictability of both demand and RES generation. This is also extremely relevant for the

transmission system operators who must guarantee the continuous balance between demand and

supply. In this framework, we address the less explored issue of multivariate models in which
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Table 4: Forecasting Metrics for Germany. Note that real values are used for the Bayesian VAR model, and

ratios for all the other models

Hour 1 4 7 10 13 16 19 22 Avg Avg8−20

RMSE
VAR 5.017 6.842 9.519 11.432 11.946 13.409 11.556 10.097 8.162 10.827
VARX 1.099 0.933 0.831∗∗ 0.773∗∗∗ 0.760∗∗∗ 0.753∗∗∗ 0.754∗∗∗ 0.676∗∗∗ 0.730 0.710
VARX-SV 1.048 0.885∗∗∗ 0.760∗∗∗ 0.704∗∗∗ 0.700∗∗∗ 0.707∗∗∗ 0.698∗∗∗ 0.679∗∗∗ 0.668 0.652
VARX-tSV 1.035 0.881∗∗∗ 0.748∗∗∗ 0.690∗∗∗ 0.682∗∗∗ 0.707∗∗∗ 0.693∗∗∗ 0.675∗∗∗ 0.664 0.645
VARX-tSV (ν = 5) 1.039 0.878∗∗∗ 0.747∗∗∗ 0.693∗∗∗ 0.678∗∗∗ 0.702∗∗∗ 0.695∗∗∗ 0.679∗∗∗ 0.662 0.644

CRPS
VAR 2.548 3.438 4.747 5.822 6.123 6.696 6.015 5.271 4.141 5.553
VARX 1.103 0.953∗ 0.855∗∗∗ 0.772∗∗∗ 0.751∗∗∗ 0.742∗∗∗ 0.749∗∗∗ 0.682∗∗∗ 0.732 0.707
VARX-SV 1.034 0.867∗∗∗ 0.751∗∗∗ 0.681∗∗∗ 0.686∗∗∗ 0.669∗∗∗ 0.667∗∗∗ 0.646∗∗∗ 0.645 0.626
VARX-tSV 0.996 0.846∗∗∗ 0.724∗∗∗ 0.660∗∗∗ 0.642∗∗∗ 0.640∗∗∗ 0.660∗∗∗ 0.644∗∗∗ 0.627 0.605
VARX-tSV (ν = 5) 1.002 0.847∗∗∗ 0.724∗∗∗ 0.664∗∗∗ 0.642∗∗∗ 0.640∗∗∗ 0.658∗∗∗ 0.642∗∗∗ 0.627 0.605

CQ-CRPS
VAR 0.248 0.335 0.463 0.570 0.601 0.654 0.590 0.518 0.405 0.544
VARX 1.104 0.961∗∗ 0.863∗∗∗ 0.775∗∗∗ 0.754∗∗∗ 0.743∗∗∗ 0.751∗∗∗ 0.683∗∗∗ 0.733 0.706
VARX-SV 1.040 0.874∗∗∗ 0.755∗∗∗ 0.685∗∗∗ 0.687∗∗∗ 0.666∗∗∗ 0.669∗∗∗ 0.647∗∗∗ 0.647 0.626
VARX-tSV 1.001 0.850∗∗∗ 0.725∗∗∗ 0.662∗∗∗ 0.642∗∗∗ 0.638∗∗∗ 0.661∗∗∗ 0.646∗∗∗ 0.628 0.605
VARX-tSV (ν = 5) 1.007 0.852∗∗∗ 0.726∗∗∗ 0.667∗∗∗ 0.644∗∗∗ 0.639∗∗∗ 0.661∗∗∗ 0.644∗∗∗ 0.629 0.606

RQ-CRPS
VAR 0.388 0.503 0.732 0.907 0.930 0.997 0.937 0.782 0.629 0.852
VARX 1.163 0.997 0.864∗∗∗ 0.779∗∗∗ 0.751∗∗∗ 0.760∗∗∗ 0.757∗∗∗ 0.705∗∗∗ 0.747 0.716
VARX-SV 1.038 0.883∗∗∗ 0.746∗∗∗ 0.682∗∗∗ 0.687∗∗∗ 0.668∗∗∗ 0.677∗∗∗ 0.661∗∗∗ 0.642 0.624
VARX-tSV 0.986 0.839∗∗∗ 0.710∗∗∗ 0.656∗∗∗ 0.633∗∗∗ 0.633∗∗∗ 0.671∗∗∗ 0.660∗∗∗ 0.617 0.599
VARX-tSV (ν = 5) 0.998 0.845∗∗∗ 0.710∗∗∗ 0.659∗∗∗ 0.633∗∗∗ 0.633∗∗∗ 0.671∗∗∗ 0.658∗∗∗ 0.617 0.599

LQ-CRPS
VAR 0.415 0.580 0.763 0.923 0.993 1.112 0.951 0.872 0.673 0.893
VARX 1.046 0.905∗∗∗ 0.837∗∗∗ 0.760∗∗∗ 0.745∗∗∗ 0.722∗∗∗ 0.737∗∗∗ 0.658∗∗∗ 0.714 0.697
VARX-SV 1.026 0.845∗∗∗ 0.754∗∗∗ 0.677∗∗∗ 0.684∗∗∗ 0.672∗∗∗ 0.654∗∗∗ 0.628∗∗∗ 0.634 0.611
VARX-tSV 0.999 0.848∗∗∗ 0.735∗∗∗ 0.662∗∗∗ 0.647∗∗∗ 0.647∗∗∗ 0.646∗∗∗ 0.628∗∗∗ 0.634 0.611
VARX-tSV (ν = 5) 0.999 0.843∗∗∗ 0.735∗∗∗ 0.664∗∗∗ 0.648∗∗∗ 0.646∗∗∗ 0.644∗∗∗ 0.626∗∗∗ 0.633 0.610

Notes:
1 Please refer to Section 3 for the details on models. The ‘X’ indicates models with exogenous variables. All forecasts are
produced with a one-step-ahead rolling window process.
2 ∗∗∗, ∗∗ and ∗ indicate that ratios are significantly different from 1 at 1%, 5% and 10%, according to the Diebold-Mariano test.
3 Grey cells indicate models that belong to the Superior Set of Models delivered by MCS procedure at confidence level 10%.
4 Results with a fixed ν = 3 are similar with those obtained with ν = 5, thus they have been omitted but are available in the
supplementary material.

volatility dynamics are included. We have questioned whether the inclusion of a constant or a

time-varying volatility structure can better detect the movements of electricity prices in three

European countries, namely Germany, Italy and Denmark. Thus, we propose high dimensional

VAR models with different stochastic volatility representations in which fundamental drivers are

included as exogenous variables, these are forecasted demand, forecasted renewable energy sources,

and fuels. In particular, we assume that the time-varying volatility changes across hours and drives
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Table 5: Forecasting Metrics for Italy. Note that real values are used for the Bayesian VAR model, and ratios

for all the other models

Hour 1 4 7 10 13 16 19 22 Avg Avg8−20

RMSE
VAR 4.421 5.270 5.868 8.545 6.905 8.613 8.551 6.266 5.095 6.983
VARX 1.031 1.021 0.974 0.894∗∗∗ 0.911∗∗∗ 0.876∗∗∗ 0.982 0.964 0.945 0.890
VARX-SV 1.016 1.019 0.954 0.844∗∗∗ 0.886∗∗∗ 0.841∗∗∗ 0.896∗∗∗ 0.901∗∗∗ 0.898 0.841
VARX-tSV 1.002 1.019 0.952 0.856∗∗∗ 0.891∗∗∗ 0.850∗∗∗ 0.903∗∗∗ 0.896∗∗∗ 0.902 0.850
VARX-tSV (ν = 5) 1.001 1.021 0.950 0.851∗∗∗ 0.886∗∗∗ 0.847∗∗∗ 0.898∗∗∗ 0.893∗∗∗ 0.898 0.845

CRPS
VAR 2.441 2.928 3.094 4.553 3.665 4.572 4.593 3.409 2.754 3.760
VARX 1.037 1.019 0.991 0.901∗∗∗ 0.897∗∗∗ 0.878∗∗∗ 0.979 0.963∗ 0.953 0.892
VARX-SV 1.018 0.999 0.957∗∗ 0.837∗∗∗ 0.867∗∗∗ 0.827∗∗∗ 0.875∗∗∗ 0.874∗∗∗ 0.892 0.829
VARX-tSV 0.999 0.999 0.957∗∗ 0.843∗∗∗ 0.863∗∗∗ 0.831∗∗∗ 0.878∗∗∗ 0.870∗∗∗ 0.894 0.832
VARX-tSV (ν = 5) 0.999 0.998 0.955∗∗ 0.837∗∗∗ 0.858∗∗∗ 0.828∗∗∗ 0.872∗∗∗ 0.868∗∗∗ 0.892 0.828

CQ-CRPS
VAR 0.241 0.290 0.304 0.448 0.360 0.450 0.453 0.337 0.272 0.370
VARX 1.038 1.017 0.992 0.909∗∗∗ 0.897∗∗∗ 0.882∗∗∗ 0.981 0.964∗∗ 0.955 0.896
VARX-SV 1.021 1.005 0.965∗∗∗ 0.844∗∗∗ 0.870∗∗∗ 0.830∗∗∗ 0.875∗∗∗ 0.878∗∗∗ 0.898 0.834
VARX-tSV 1.004 1.004 0.965∗∗∗ 0.848∗∗∗ 0.865∗∗∗ 0.832∗∗∗ 0.877∗∗∗ 0.873∗∗∗ 0.900 0.836
VARX-tSV (ν = 5) 1.003 1.003 0.962∗∗∗ 0.844∗∗∗ 0.860∗∗∗ 0.829∗∗∗ 0.873∗∗∗ 0.871∗∗∗ 0.897 0.832

RQ-CRPS
VAR 0.392 0.444 0.482 0.723 0.585 0.730 0.717 0.546 0.426 0.592
VARX 1.015 1.036 1.010 0.914∗∗∗ 0.917∗∗∗ 0.889∗∗∗ 0.989 0.973 0.976 0.912
VARX-SV 1.006 1.013 0.976 0.855∗∗∗ 0.898∗∗∗ 0.847∗∗∗ 0.909∗∗∗ 0.886∗∗∗ 0.928 0.859
VARX-tSV 0.987 1.010 0.975 0.862∗∗∗ 0.896∗∗∗ 0.855∗∗∗ 0.908∗∗∗ 0.885∗∗∗ 0.931 0.862
VARX-tSV (ν = 5) 0.986 1.010 0.974 0.856∗∗∗ 0.890∗∗∗ 0.852∗∗∗ 0.906∗∗∗ 0.884∗∗∗ 0.929 0.860

LQ-CRPS
VAR 0.371 0.470 0.488 0.701 0.563 0.704 0.721 0.519 0.434 0.586
VARX 1.061 1.006 0.970 0.881∗∗∗ 0.874∗∗∗ 0.858∗∗∗ 0.966∗ 0.951∗∗ 0.926 0.868
VARX-SV 1.026 0.982 0.931∗∗∗ 0.813∗∗∗ 0.832∗∗∗ 0.802∗∗∗ 0.838∗∗∗ 0.859∗∗∗ 0.849 0.793
VARX-tSV 1.007 0.985 0.930∗∗∗ 0.820∗∗∗ 0.828∗∗∗ 0.804∗∗∗ 0.847∗∗∗ 0.852∗∗∗ 0.852 0.797
VARX-tSV (ν = 5) 1.008 0.984 0.927∗∗∗ 0.813∗∗∗ 0.823∗∗∗ 0.800∗∗∗ 0.837∗∗∗ 0.847∗∗∗ 0.848 0.791

Notes: Please see the notes to Table 4.

the dependence in a time-ordered structure, avoiding ordering problems as stated in the literature

(Carriero et al., 2019; Cross et al., 2020).

Using only a lagged representation of the data or adding different exogenous variables, we

find empirical evidence supporting VAR models with stochastic volatility against the conventional

VAR. Indeed, most of the gains appear to come from allowing for a time-varying stochastic

volatility rather than a constant volatility structure. In particular, the assumption of fat tails

in the error term improves the detection of time-varying volatility, during some hours of the day.

Furthermore, in a recursive forecasting exercise, we find that models with exogenous variables

show improvements in both point and density forecasts. In addition, the combined inclusion of
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Table 6: Forecasting Metrics for Denmark. Note that real values are used for the Bayesian VAR model, and

ratios for all the other models

Hour 1 4 7 10 13 16 19 22 Avg Avg8−20

RMSE
VAR 4.970 7.070 8.320 11.201 9.648 9.881 10.101 8.767 6.918 9.142
VARX 1.020 0.921 0.867∗∗∗ 0.846∗∗∗ 0.848∗∗∗ 0.809∗∗∗ 0.783∗∗∗ 0.803∗∗∗ 0.769 0.768
VARX-SV 0.980∗∗ 0.909∗∗∗ 0.840∗∗∗ 0.826∗∗∗ 0.835∗∗∗ 0.821∗∗∗ 0.793∗∗∗ 0.815∗∗∗ 0.785 0.773
VARX-tSV 0.984∗∗∗ 0.920∗∗∗ 0.841∗∗∗ 0.838∗∗∗ 0.842∗∗∗ 0.825∗∗∗ 0.811∗∗∗ 0.820∗∗∗ 0.794 0.786
VARX-tSV (ν = 5) 0.985∗∗ 0.917∗∗∗ 0.839∗∗∗ 0.831∗∗∗ 0.836∗∗∗ 0.820∗∗∗ 0.795∗∗∗ 0.817∗∗∗ 0.788 0.777

CRPS
VAR 2.438 3.566 4.228 5.712 4.909 5.061 5.425 4.509 3.601 4.764
VARX 1.048 0.961∗ 0.889∗∗∗ 0.836∗∗∗ 0.865∗∗∗ 0.832∗∗∗ 0.764∗∗∗ 0.811∗∗∗ 0.783 0.772
VARX-SV 0.971∗ 0.894∗∗∗ 0.833∗∗∗ 0.795∗∗∗ 0.850∗∗∗ 0.835∗∗∗ 0.771∗∗∗ 0.810∗∗∗ 0.778 0.765
VARX-tSV 0.939∗∗∗ 0.880∗∗∗ 0.829∗∗∗ 0.797∗∗∗ 0.834∗∗∗ 0.815∗∗∗ 0.776∗∗∗ 0.815∗∗∗ 0.777 0.767
VARX-tSV (ν = 5) 0.947∗∗∗ 0.883∗∗∗ 0.827∗∗∗ 0.791∗∗∗ 0.826∗∗∗ 0.809∗∗∗ 0.759∗∗∗ 0.807∗∗∗ 0.769 0.756

CQ-CRPS
VAR 0.237 0.345 0.411 0.558 0.478 0.492 0.534 0.440 0.351 0.465
VARX 1.055 0.970∗∗∗ 0.891∗∗∗ 0.839∗∗∗ 0.873∗∗∗ 0.842∗∗∗ 0.762∗∗∗ 0.815∗∗∗ 0.784 0.775
VARX-SV 0.964 0.891∗∗∗ 0.838∗∗∗ 0.796∗∗∗ 0.851∗∗∗ 0.838∗∗∗ 0.769∗∗∗ 0.816∗∗∗ 0.781 0.768
VARX-tSV 0.937∗∗∗ 0.878∗∗∗ 0.833∗∗∗ 0.797∗∗∗ 0.835∗∗∗ 0.820∗∗∗ 0.775∗∗∗ 0.818∗∗∗ 0.780 0.769
VARX-tSV (ν = 5) 0.945∗∗∗ 0.883∗∗∗ 0.832∗∗∗ 0.792∗∗∗ 0.830∗∗∗ 0.817∗∗∗ 0.759∗∗∗ 0.813∗∗∗ 0.774 0.760

RQ-CRPS
VAR 0.351 0.503 0.654 0.945 0.784 0.782 0.889 0.698 0.559 0.761
VARX 1.082 1.012 0.906∗∗∗ 0.835∗∗∗ 0.865∗∗∗ 0.839∗∗∗ 0.767∗∗∗ 0.823∗∗∗ 0.795 0.779
VARX-SV 1.006 0.937∗∗∗ 0.817∗∗∗ 0.788∗∗∗ 0.842∗∗∗ 0.831∗∗∗ 0.771∗∗∗ 0.797∗∗∗ 0.772 0.758
VARX-tSV 0.949∗∗∗ 0.889∗∗∗ 0.818∗∗∗ 0.798∗∗∗ 0.830∗∗∗ 0.813∗∗∗ 0.775∗∗∗ 0.813∗∗∗ 0.772 0.765
VARX-tSV (ν = 5) 0.965∗∗ 0.896∗∗∗ 0.813∗∗∗ 0.792∗∗∗ 0.817∗∗∗ 0.801∗∗∗ 0.765∗∗∗ 0.800∗∗∗ 0.762 0.753

LQ-CRPS
VAR 0.419 0.625 0.681 0.852 0.764 0.813 0.811 0.722 0.576 0.737
VARX 1.011 0.908∗∗∗ 0.868∗∗∗ 0.834∗∗∗ 0.854∗∗∗ 0.816∗∗∗ 0.761∗∗∗ 0.795∗∗∗ 0.767 0.761
VARX-SV 0.948∗∗∗ 0.862∗∗∗ 0.840∗∗∗ 0.802∗∗∗ 0.857∗∗∗ 0.839∗∗∗ 0.769∗∗∗ 0.814∗∗∗ 0.780 0.771
VARX-tSV 0.934∗∗∗ 0.878∗∗∗ 0.837∗∗∗ 0.798∗∗∗ 0.836∗∗∗ 0.814∗∗∗ 0.780∗∗∗ 0.813∗∗∗ 0.779 0.767
VARX-tSV (ν = 5) 0.933∗∗∗ 0.873∗∗∗ 0.833∗∗∗ 0.789∗∗∗ 0.831∗∗∗ 0.810∗∗∗ 0.753∗∗∗ 0.808∗∗∗ 0.770 0.754

Notes: Please see the notes to Table 4.

time-varying volatility plus exogenous variables leads to further improvements in both point and

density metrics.

In the future, it would be interesting to extend these models by including a global shrinkage

prior to both exogenous and lagged variables or, alternatively, to use different priors in all the

parameters. Besides electricity markets, these models are expected to become of extreme interest

in future applications. For instance, we have already assisted to the formation of negative interest

rates in response to financial crises and, more recently, the question of time instability has been

posed to account for sudden large drops in electricity demand and in the WTI prices, as observed

in April 2020 during the COVID-19 pandemic. Then, it has become clear that electricity prices, as

well as oil prices and interest rates, can become negative and attract the attention of all economists
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to understand their economic implications.
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