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Abstract. Surface solar radiation (SSR) is an essential factor in the flow of surface energy, enabling accurate
capturing of long-term climate change and understanding of the energy balance of Earth’s atmosphere system.
However, the long-term trend estimation of SSR is subject to significant uncertainties due to the temporal in-
homogeneity and the uneven spatial distribution of in situ observations. This paper develops an observational
integrated and homogenized global terrestrial (except for Antarctica) station SSR dataset (SSRIHstation) by inte-
grating all available SSR observations, including the existing homogenized SSR results. The series is then inter-
polated in order to obtain a 5◦× 5◦ resolution gridded dataset (SSRIHgrid). On this basis, we further reconstruct
a long-term (1955–2018) global land (except for Antarctica) SSR anomaly dataset with a 5◦× 2.5◦ resolution
(SSRIH20CR) by training improved partial convolutional neural network deep-learning methods based on 20th
Century Reanalysis version 3 (20CRv3). Based on this, we analysed the global land- (except for Antarctica)
and regional-scale SSR trends and spatiotemporal variations. The reconstruction results reflect the distribution
of SSR anomalies and have high reliability in filling and reconstructing the missing values. At the global land
(except for Antarctica) scale, the decreasing trend of the SSRIH20CR (−1.276± 0.205 W m−2 per decade) is
smaller than the trend of the SSRIHgrid (−1.776± 0.230 W m−2 per decade) from 1955 to 1991. The trend of
the SSRIH20CR (0.697± 0.359 W m−2 per decade) from 1991 to 2018 is also marginally lower than that of the
SSRIHgrid (0.851± 0.410 W m−2 per decade). At the regional scale, the difference between the SSRIH20CR and
SSRIHgrid is more significant in years and areas with insufficient coverage. Asia, Africa, Europe and North Amer-
ica cause the global dimming of the SSRIH20CR, while Europe and North America drive the global brightening
of the SSRIH20CR. Spatial sampling inadequacies have largely contributed to a bias in the long-term variation of
global and regional SSR. This paper’s homogenized gridded dataset and the Artificial Intelligence reconstruction
gridded dataset (Jiao and Li, 2023) are both available at https://doi.org/10.6084/m9.figshare.21625079.v1.
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1 Introduction

Energy flows at the Earth’s surface play an essential role in
climate change and human activity and link to physical pro-
cesses such as global warming, glacier retreating, the hydro-
logical cycle and the carbon budget (Hoskins and Valdes,
1990; Peixoto et al., 1992; Trenberth and Fasullo, 2013;
Wild, 2012). As a critical factor characterizing surface en-
ergy flows, surface solar radiation (SSR) largely determines
the climatic conditions and ecological environment in which
we live. Therefore, a more accurate and comprehensive anal-
ysis of the SSR fluxes will help better understand the Earth’s
atmospheric system. In situ observations provide the most
accurate baseline data for measuring SSR. They allow for
the first time the detection of decadal changes in SSR known
as “dimming and brightening” (Wild et al., 2005), especially
considering that they cover a longer period concerning an-
other type of data, e.g. satellite data (Pfeifroth et al., 2018).
Even observational data often have uneven distribution and
missing data with respect to the satellite data, especially in
areas with complex orography (Manara et al., 2020).

The sources of in situ SSR observations are mainly col-
lected from the Global Energy Balance Archive (GEBA)
(Wild et al., 2017) and the World Radiation Data Centre
(WRDC) (Tsvetkov et al., 1995). Furthermore, other SSR
station series are obtained from the high-quality Baseline
Surface Radiation Network (BSRN) (Driemel et al., 2018)
and the data centres of individual national hydrometeorolog-
ical services. However, two issues still need to be addressed:
(1) the inhomogeneity of station data resulting from station
relocations and instrumentation changes severely impacting
the climate change assessment. For the regions with a rel-
atively high density of stations, like Europe (Manara et al.,
2019, 2016; Sanchez-Lorenzo et al., 2013a, b, 2015), Japan
(Ma et al., 2022) and China (Ju et al., 2006; Wang, 2014;
Wang et al., 2015; Wang and Wild, 2016; S. Yang et al., 2018;
You et al., 2013), much previous work has redefined the de-
gree and timing of dimming and brightening by addressing
the inhomogeneity of the SSR data series. For example, in
Spain, the average annual homogenized SSR series has a sig-
nificant increasing trend (+3.9 W m−2 per decade) during the
1985–2010 period (Sanchez-Lorenzo et al., 2013a). The pe-
riod of dimming observed in Italy’s homogenized SSR series
is not apparent in the 1960s and early 1970s, when the raw
series (non-homogenized) are taken into account (Manara et
al., 2016). The direct measurements of SSR show a level
trend from 1961 to 2014 over Japan, while their homoge-
nization series display a decreasing trend (0.8–1.6 W m−2 per
decade) (Ma et al., 2022). In China, homogenization largely
eliminated the dramatic non-climatic rise of the early 1990s
and also reduced the increasing trend from 1990 to 2016
(S. Yang et al., 2018). However, most of the research was
still limited to regional scales. (2) There is the issue of limited
spatial sampling of long observational stations and their un-
even distribution, especially over areas with complex orog-

raphy. Considerable efforts have been devoted to filling in
or interpolating the missing values in climate datasets (“spa-
tial analysis”) (Collins, 1996; Erxleben et al., 2002; Scudiero
et al., 2016). The traditional spatial interpolation methods
commonly used include inverse distance weighting (Fisher
et al., 1993; Shepard, 1968), kriging (Krige, 1951) and thin-
plate splines (Bookstein, 1989). Since the 1980s, physical
parametric interpolation (Feng and Wang, 2021; Tang et al.,
2019) and Bayesian fusion schemes (Aguiar et al., 2015)
based on multi-source observational data have been widely
used with the emergence of highly accurate and relatively
precise satellite data. However, the resulting fusion datasets
cover too short a period to investigate their decadal and
multi-decadal variations and to study the underlying causes.
The spatial, temporal and spectral coverage of a single satel-
lite is limited, and multiple satellite data are therefore often
used in tandem with each other; however, such a disconti-
nuity in time and space can introduce inhomogeneity into
a dataset (Evan et al., 2007; Feng and Wang, 2021; Shao
et al., 2022). Reanalysis products are an important comple-
ment containing long-term SSR data and therefore have been
widely used in climate studies (Huang et al., 2018; Jiao et
al., 2022; Urraca et al., 2018; C. Zhou et al., 2018, 2017) due
to the dynamically consistent and spatiotemporally complete
atmospheric fields with high resolution and open access to
data. However, existing studies have shown that reanalysis
products generally overestimate multi-year mean SSR val-
ues compared to observations over land (He et al., 2021).
With the continuous development of climate system simu-
lations, model data from the Coupled Model International
Project (CMIP) have become an important resource for con-
ducting climate change research (Gates et al., 1999; Zhou
et al., 2019). Previous studies have shown that the models
used in CMIP6 overestimate the global mean SSR (He et al.,
2023; Jiao et al., 2022; Wild, 2020). The rise of deep-learning
and big-data techniques has brought about an explosion of
artificial intelligence (AI). Machine learning is increasingly
being used in spatial interpolation, such as the spatial recon-
struction of surface temperature datasets (Huang et al., 2022;
Kadow et al., 2020) or the spatial and temporal reconstruc-
tion of turbulence resolution (Fukami et al., 2021). Further-
more, it shows high accuracy and low uncertainty in repro-
ducing and predicting SSR (Leirvik and Yuan, 2021; Tang et
al., 2016; L. Yang et al., 2018; Yuan et al., 2021). However,
long-term homogenized SSR datasets with global terrestrial
coverage have yet to be developed, resulting in significant
uncertainties in assessing global SSR variation (Jiao et al.,
2022).

Therefore, developing a more homogeneous and compre-
hensive global long-term SSR climatic dataset that provides a
better benchmark for observational constraints on the global
surface energy balance and budget remains a valuable and
challenging task. This paper first homogenizes and grids the
most extensive collection of available global SSR station
observations. Then, the missing grid boxes and years are
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spatially interpolated using a convolutional neural network
(CNN) approach to obtain a globally covered land surface
SSR anomaly dataset. Finally, the reconstructed datasets are
initially analysed and evaluated. Thus, the paper is divided
into seven main sections. The data resources are introduced
in Sect. 2. Section 3 presents the data homogenization and
the CNN model reconstruction methods. The data homoge-
nization and verification are shown in Sect. 4. Section 5 gives
the AI reconstruction results. Section 6 is the availability of
the datasets. Conclusions are provided at the end of the paper.

2 Data

Nine SSR datasets are collected to derive the global SSR
variable. In particular, six datasets contain data from ob-
servational stations (Sect. 2.1): two global ground-based
measurement datasets (GEBA, WRDC) and four homoge-
nized products at the regional and country levels (Europe,
China, Japan and Italy). Three of the adopted datasets are
reanalysis data (Sect. 2.2.1): fifth-generation European Cen-
tre for Medium-Range Weather Forecasts (ECMWF) reanal-
ysis (ERA5), 20th Century Reanalysis version 3 (20CRv3)
data and the Coupled Model Intercomparison Project Phase 6
(CMIP6) historical simulation output (125). Specifically, the
ERA5 data are used to fill the data over oceans and Antarc-
tica (Sect. 3.2.1), and 20CRv3 data and CMIP6 simulations
are used for AI model training (Sect. 5.1) and reconstruction.
All are listed in Table 1.

2.1 In situ observational data

2.1.1 Global datasets

There are two main sources of raw SSR data (see Table 1):
the ETH Zurich GEBA with monthly data from 2445 glob-
ally distributed stations, starting from 1922 until 2020, and
the WRDC dataset with monthly globally distributed data
from 1136 stations since 1964. The first one is available for
download at https://geba.ethz.ch (last access: 2 July 2022).
The second one published the first SSR radiation balance
data in 1965, and its publication has been issued four times
a year since 1993 and is available for download at http:
//wrdc.mgo.rssi.ru/ (last access: July 2021).

2.1.2 National (regional) homogenized station datasets

(1) Chinese homogenized SSR dataset

The China Meteorological Radiation Fundamental Elements
Monthly Value Data Set was downloaded from http://www.
nmic.cn (last access: September 2022). The homogenized
SSR dataset in China is released by the National Meteoro-
logical Information Centre (NMIC) of the China Meteoro-
logical Administration (CMA) (S. Yang et a., 2018). The
data are available for the period between January 1950 and
December 2014, and the follow-up data are extended with

raw observations from the NMIC. They used the sunshine
duration (SSD) data from nearby stations to construct an ar-
guably better reference to identify inhomogeneities in the
SSR data. Then, a combined metadata and maximum-penalty
t-test (PMT) method was used to detect the change points.
Finally, they were adjusted by a quantile-matching (QM)
algorithm (Wang and Feng, 2013). The final homogenized
SSR station dataset was converted to gridded data using the
first difference method (FDM, Peterson et al., 1998) and is
available for download at http://www.nmic.cn (last access:
September 2022).

(2) Japanese homogenized SSR dataset

Ma et al. (2022) released a Japanese SSR homogenized
dataset in 2022 spanning the period between 1870 and 2015.
First, they homogenized SSD based on PMF (penalized max-
imal F test) and QM algorithms. They then used the homoge-
nized SSD from the previous step as a reference series, com-
bined with metadata and PMT, to detect change points. Fi-
nally, they adjusted the change points by the QM algorithm.
For more details on data descriptions, the adopted method-
ology and downloading data, see https://data.tpdc.ac.cn/
en/data/45d73756-3f5a-4d27-82a4-952e268c20e8/ (last ac-
cess: March 2022).

(3) European homogenized SSR data

A homogenized dataset of European SSR stations
was developed by Sanchez-Lorenzo et al. (2015)
and is currently available for full public download at
https://doi.org/10.1002/2015JD023321. They selected the 56
longest central European SSR series available in the GEBA
dataset with data for the period between 1922 and 2012.
They adjusted them to ensure temporal homogeneity, ho-
mogenizing the data with the standard normal homogeneity
test (Alexandersson, 1986) and the Craddock test (Craddock,
1979).

(4) Italian homogenized SSR dataset

The Italian homogenized SSR datasets are those published
by Manara et al. (2019, 2016). As candidate stations to use
as reference series, they selected the 10 series located in the
same area of the series to be tested, and that series correlates
well with the test one. In particular, they tested the change
points with the Craddock test (Manara et al., 2017), and when
a break is identified by more than one reference series, the
preceding portion of the series is corrected, leaving the most
recent portion unchanged. In this way, the SSR stations were
homogenized, and then the missing values were interpolated.
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Table 1. List of information on the various types of data used in this paper.

Abbreviation Resolution Time Reference

In situ – raw GEBA (station) Monthly 1922–2020 Wild et al. (2017)
WRDC (station) Monthly 1964–2017 Tsvetkov et al. (1995)

In situ – homo China (station) Monthly 1950–2016 S. Yang et al. (2018)
Japan (station) Monthly 1870–2015 Ma et al. (2022)
Europe (station) Monthly 1922–2012 Sanchez-Lorenzo et al. (2015)
Italy (station) Monthly 1959–2016 Manara et al. (2016, 2019)

Reanalysis/model ERA5 (grid) Monthly/0.25◦× 0.25◦ 1950–2020 Hersbach et al. (2020)
20CRv3 (grid) Monthly/0.7◦× 0.7◦ 1940–2015 Slivinski et al. (2019)
CMIP6 (grid) Monthly/– 1940–2014 Eyring et al. (2016)

2.2 Other datasets

2.2.1 Reanalysis

ERA5 can be used to fill in SSR data from the oceans and
Antarctica and carry out the global reconstruction, taking
into account its high spatial resolution and the reliable per-
formance of SSR (Jiao et al., 2022; Liang et al., 2022). After
the reconstruction, we removed the data for the ocean reanal-
ysis and maintained the data only in the land area (except for
Antarctica). In addition, two SSR data products (20CRv3,
CMIP6) are used to train AI models. These are the follow-
ing.

1. ERA5 (space-filling data). ERA5 is the fifth genera-
tion of the European Centre for Medium-Range Fore-
casts reanalysis product, which currently publishes data
from 1950 to the present (Hersbach et al., 2020). In ad-
dition, ERA5 has an hourly output and an uncertainty
estimate from the ensemble. The data are based on
the Integrated Forecasting Model Cy41r2 run in 2016,
which contains a 4D-Var assimilation scheme. In ERA5,
SSR is obtained from a rapid radiation transfer model
(RRTM) (Mlawer et al., 1997). The present study uti-
lizes monthly SSR data for the period 1955–2018 from
ERA5 with a resolution of 0.25◦× 0.25◦. They can
be downloaded at https://cds.climate.copernicus.eu (last
access: July 2022).

2. 20CRv3 (data for AI model training). The 20CR project
is an effort led by the NOAA’s Physical Sciences Lab-
oratory and CIRES at the University of Colorado, sup-
ported by the Department of Energy, to produce reanal-
ysis datasets spanning the entire 20th century and much
of the 19th century (Slivinski et al., 2019). 20CR pro-
vides a comprehensive global atmospheric circulation
dataset from 1850 to 2015. Its chief motivation is to pro-
vide an observational validation dataset, with quantified
uncertainties, for assessing climate model simulations
of the 20th century. 20CR uses an ensemble filter data
assimilation method which directly estimates the most

likely state of the global atmosphere every 3 h and esti-
mates the uncertainty in that analysis. The most recent
version of this reanalysis, 20CRv3, provides 8-times
daily estimates of global tropospheric variability across
75 km grids, spanning 1836 to 2015 (with an experi-
mental extension from 1806 to 1835). The present study
uses monthly SSR data of 20CRv3 (NOAA/CIRES/-
DOE 20CR, 80 members) from 1955 to 2015. We se-
lected all 80 members of the 20CR as input (1 for eval-
uation and to test reconstruction, the other 79 for train-
ing the CNN model). The SSR of 20CRv3 has a spa-
tial resolution of 0.7◦× 0.7◦. The download is avail-
able at https://portal.nersc.gov/archive/home/projects/
incite11/ (last access: May 2022).

2.2.2 CMIP6 model output

3. CMIP6 model output (data for AI model training). The
Coupled Model Intercomparison Project, driven by the
World Climate Research Program, is now in its sixth
phase. Specifically, CMIP6 is considered the current
state-of-the-art way of producing future climate simu-
lations, including predicting future SSR based on dif-
ferent climate scenarios (W. Zhou et al., 2018). It pro-
vides an important resource for studying current and fu-
ture climate change (Eyring et al., 2016). The histor-
ical simulations of CMIP6 are designed to reproduce
observed climate and climate change constrained by ra-
diative forcing. CMIP6 historical simulation spans be-
tween 1850 and 2014. In this study, we selected 125
members out of a total of 507 members from several
CMIP6 large-ensemble models (with more than 10 re-
alizations and runs) with high correlation coefficients
with observations as input to train and validate the CNN
model (1 for evaluation and to test reconstruction, the
other 124 for training the CNN model). We selected the
monthly downward shortwave radiation from 1955 to
2014 (see Table S1 in the Supplement). The data can be
downloaded at https://esgf-node.llnl.gov/search/cmip6
(last access: July 2022).
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3 Methods

3.1 Data quality control (QC) and homogenization

The SSR data homogenization method is only applied to the
two non-homogenized in situ observation datasets (GEBA
and WRDC). The QC and homogenization flowchart (Fig. 1)
is divided into three steps: (1) QC; (2) homogenization; and
(3) integration and consolidation.

3.1.1 QC

The QC of SSR data includes the following steps.

1. Simple integration is integration of the GEBA (2445)
and WRDC (1136) datasets, removing stations with no
data and leaving 2681 stations.

2. Removing duplicate stations. (a) For stations with simi-
lar latitude and longitude, we consider two stations with
totally identical latitude and longitude to be the same
station. (b) For stations less than 10 km apart, we aver-
aged the duplicate stations in these a and b cases. (c) For
special duplicate stations, we stitched together data of
the duplicate stations based on metadata from the CMA.

3. Remove stations, years or months for which a climatic
analysis cannot be established: we remove stations with
records of less than 10 years and values more than 3
times (3σ criterion, Olanow and Koller, 1998) the stan-
dard deviation of the SSR anomalies.

4. Candidate stations (487) with a record length greater
than 15 years in the period 1971–2000 are selected. We
added stations (715) with more than 10 years of SSR
records to increase the number of available stations for a
better homogenization of the candidate stations (Fig. 2).

3.1.2 Station series homogenization

This paper uses the RHtestV4 software package to test and
adjust the SSR station data for homogeneity (http://etccdi.
pacificclimate.org/software.shtmlm last access: July 2021)
(Wang and Feng, 2013). The package is based on the empir-
ical penalty functions PMF (Wang, 2008a) and PMT (Wang,
2008b; Wang et al., 2007) for the homogenization test. It
takes into account the lag-1 autocorrelation of the time series.
It embeds a multiple linear regression algorithm to signifi-
cantly reduce the problem of an unbalanced distribution of
pseudo-identification rates and test efficacy. Also, RHtestV4
uses the QM algorithm (Vincent et al., 2012; Wang et al.,
2010) and mean adjustments to adjust the identified change
points.

The specific steps are as follows.

1. Building the reference series

a. We processed the data from all station series (715)
into the annual first difference (FD) series ei (Eq. 1)
(Peterson et al., 1998).

b. We calculated the correlation of the annual FD se-
ries between the series from the potential reference
pool and the candidate stations.

c. We calculated the distance between the potential
reference pool stations and candidate stations.

d. We selected potential stations according to the cor-
relation coefficient (CC>= 0.6) between the se-
ries from potential reference pool and candidate sta-
tions. The potential stations also satisfy the limits in
distances (<= 500 km) between the potential pool
stations and candidate stations.

e. We obtain the reference FD series (Re) based on
the m potential reference series (Pei) and the CCs
(ci) between the potential reference series (Pei) and
candidate station series (Eq. 2).

f. The synthesized reference FD series (Re) (Eq. 2),
plus the average of all potential reference series
(R), yields the final annual reference series (R)
(Eq. 3).

Pei = xi − xi+1 i = 1,2, . . .,n− 1 (1)

Re=
∑m
i=1Pei · c2

i∑m
i=1c

2
i

(2)

R = Re+R (3)

xi is the raw observational station SSR in the year
i, Re is the final reference series, Pei is the poten-
tial reference series, and ci is the CC between the
potential reference series and the candidate station
series.

2. Testing and adjusting the candidate series

The homogenization test algorithm used in this paper is
the PMT. This method is a reference series-dependent
test for a normalized candidate series. It assumes that
the linear trend of the time series is zero and uses the
degree of mean deviation at different points in the se-
ries to find change points. Furthermore, it eliminates
the effect of different sample lengths on the test re-
sults. At the same time, the method introduces an em-
pirical penalty factor, which effectively improves de-
tection. We used the PMT to test the homogeneity of
the candidate series based on the reference series es-
tablished in (1). We then adjusted the statistically sig-
nificant (p > 0.05) change points obtained using the
mean adjustment method (p > 0.05). We homogenized
the monthly series for 66 stations (see Fig. S1 in the
Supplement).
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Figure 1. Flowchart of quality control (QC) (first step), homogenization (second step) and integration (third step).

Figure 2. Spatial distribution of candidate stations (“*”) and added
stations (“+”). The different colour bars represent the length of the
station record in months.

3.1.3 Integration and consolidation

As can be seen from Fig. 1, the candidate stations (487) are
relatively sparse. To better adapt deep-learning methods for
the dataset reconstruction later, we adjusted, added and in-
tegrated station series based on the results of homogenized
data from other scholars. (1) We added stations with more
than 10-year overall (1955–2018) records but no more than
15 years during the 1971–2000 period and removed those sta-
tions that were clearly inhomogeneous (25) and some years
of station (3). (2) We subsequently integrated monthly SSR
series for 116 stations based on the results of homogenization

Figure 3. Spatial distribution of stations after homogenization
(unit months). Different colours represent the length of the station
records in months.

from other scholars: China (56), Japan (8), Europe (2) and
Italy (50). After the above steps, we ended up with a homog-
enized dataset containing 944 stations (Fig. 3). The details of
the processing and classification are shown in Table S2 (see
the Supplement).

3.2 CNN model reconstruction methods

The CNN deep-learning model network architecture uses
a U-shaped structure similar to U-Net (Ronneberger et al.,
2015). The advantage of using this model is that (1) both
high- and low-frequency information of the picture can be re-
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tained, and when reconstructing the SSR data, not only will
the grid point information close to the missing measurement
point be considered, but information from more distant lo-
cations will be too (which may be remotely correlated with
that missing measurement point). (2) This makes the model
convergence faster and more economical in terms of compu-
tational resources. The upper part of the U-shaped structure,
which has no downsamples or a low number of downsam-
ples, represents the high-frequency information of the graph.
These sections contain much of the detail in the graph, and
the relationships between similar grid points are conveyed
by this section. The lower half of the U-shaped structure is
downsampled more often and represents the lower-frequency
information of the graph. The global radiation of a wide
range of undulations is transmitted by it, and then the in-
formation at the various levels of the U-shaped structure is
connected and transmitted through the skip connection, al-
lowing the whole network to remember all the information
of the picture very well. The model uses nearest-neighbour
upsampling in the decoding phase, and the skip links will
concatenate two feature maps and two masks as the feature
and mask inputs for the next part of the convolution layer.
The input to the last part of the convolution layer will con-
tain the original input image concatenated with the holes and
the original mask, allowing the model to replicate the gap-
free pixels. The complex and variable nature of the sea–land
boundary then has a significant impact on the reconstruction
when we reconstruct the global land SSR data. Therefore,
we use partial convolution at the image boundaries with a
suitable image padding, ensuring that the padding content at
the image boundaries is not affected by values outside the
image. The deep-learning models’ convolutional layers and
loss functions are described in the Supplement.

We further reconstruct a long-term (1955–2018) global
SSR anomaly dataset (SSRIH20CR) by using improved partial
CNN deep-learning methods based on a “perfect” dataset. A
CNN consists of three parts: a convolutional layer to reduce
the number of weights by extracting local features, a pool-
ing layer to reduce peacekeeping and prevent overfitting, and
a fully connected layer to output the desired result. In this
paper, a modified CNN is used to model the reconstruction
of the SSR data, with the convolutional layer replaced by a
partial convolution method and mask update. This method is
the latest in image restoration effects and can restore irregu-
lar holes, an advantage over other image restoration methods
that can only restore rectangular holes. Therefore, this paper
uses the modified CNN model (Kadow et al., 2020) to re-
cover the missing part of the global terrestrial SSR (except
Antarctica). The specific reconstruction steps and processes
are as in Fig. 4.

3.2.1 Data pre-processing

The homogenized station data are converted to grid box
anomalies using the climate anomalies method (CAM)

(Jones et al., 2001). CAM is a commonly used method for
converting station anomaly data to gridded data. We divide
all global areas into a 5◦× 5◦ grid, after which we calculate
the SSR anomalies (relative to 1923–2020) within the grid
box by averaging the anomalies of all the stations (at least
one station in it). If more than one site exists in the same grid
box, the record length of this grid box is the total length of
all sites in that grid box. Finally, we removed the values that
were more than 3 times the standard deviation of the SSR
anomaly time series after gridding. SSRs are all processed as
daily average anomalies, i.e. monthly anomalies divided by
30 (each month is approximated as 30 d). We multiply all the
values by 30 again when the reconstruction is complete. The
global land (except for Antarctica) distribution and coverage
of SSRs after gridding are shown in Fig. 5a, b.

As seen in Fig. 5a, the SSR is spatially sparsely distributed
across South America and Africa. As shown in Fig. 5b, SSR
coverage increased yearly from 1950 until the mid-1970s,
when it slowly decreased. In 2013, the coverage rate de-
creased sharply due to untimely data submission. Consider-
ing the SSR coverage above, we only kept the years (1955–
2018) with data coverage of more than 8 % of global land
(except for Antarctica) areas.

Comparisons show that ERA5 has a high spatial resolu-
tion and relatively reliable performance in the temporal vari-
ations and long-term trends (Liang et al., 2022; Jiao et al.,
2022). To obtain a higher data coverage and ensure that the
AI model runs well, we used the ERA5 to fill the SSR of
the homogenized global gridded SSR in the Antarctic and
ocean areas. However, if we use the SSR of ERA5 to di-
rectly fill the SSR of the homogenized global gridded SSR
(SSRIHgrid) in the Antarctic and in the ocean areas, then the
relatively weaker ocean SSR variations (variabilities, decadal
changes, trends) from ERA5 will inevitably introduce cer-
tain systematic biases in land SSR reconstruction due to the
SSRs having the lower coverage on the land. Therefore, we
designed an algorithm to avoid excessive diffusion of SSR
system bias in terrestrial areas: we first calculated the ratios
γi(i = 1,2,3, . . .,n) between the SSR from ERA5 and from
SSRIHgrid on the land in all n years. For a single grid box, the
γi have small changes and are regarded as a constant γmedian
(Eq. 4), and the γmedian vary by latitude and longitude in both
the marine and land areas. We then extrapolated the γmedian
for all the grid boxes along the land and sea boundaries. If
there is no observation there, then the adjacent ocean ERA5
SSR is used to take its place after it is adjusted according
to the differences between the SSR variations (represented
by the linear trends) for the different underlying surfaces
(Eq. 5):
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Figure 4. Flowchart of AI reconstruction.

Figure 5. (a) Spatial distribution of 5◦× 5◦ grid boxes (SSRIHgrid)
obtained by interpolating the homogenized global land (except for
Antarctica) SSR series. The different colours represent the length
(the sum of all the records) of the station record in unit years.
(b) Grid box coverage for the homogenized global land (except for
Antarctica) SSR (SSRIHgrid) except for Antarctica.

γmedian =median
(

OBSi_land

ERA5i_land

)
, (4)

OBSi_O&L (land)= ERA5i_O&L (ocean) · γmedian ·
TO

TL

i = 1,2,3,n. (5)

γmedian is the median value of the ratios of observation
(OBS) and ERA5 land SSR series. OBSi_land is the land
SSR for the year i from the SSRIHgrid in a single grid.

ERA5i_land is the land SSR for the year i from ERA5 in
a single grid. OBSi_O&L(land) is the land SSR along the
sea–land boundary (land) for the year i from the SSRIHgrid.
ERA5i_O&L(ocean) is the ocean SSR along the sea–land
boundary for the year i from ERA5. TO is the trend of the
ERA5 SSR in ocean areas in all n years, and TL is the trend
of the ERA5 SSR in areas in all n years.

3.2.2 AI model reconstruction

We use a server (configured with processor Intel (R) Core
(TM) i7-8700 CPU @ 3.20 GHz 3.19 GHz, RAM 32G, 64-
bit OS, GPU model 516.94, NVIDIA GeForce 1080T ver-
sion, Python 3.9.12 64-bit, CUDA 10.1) for AI model train-
ing. The specific training steps are as follows.

1. A total of 768 missing-value masks (monthly masks be-
tween 1955 and 2018) were prepared for training and
validation using “1” for existing and “0” for missing
values.

2. The 20CRv3–CMIP6 training set (monthly values be-
tween 1955 and 2015/2014) and missing-value masks
are fed into the 20CR-AI and CMIP6-AI model for
training.

3. We perform 1 500 000 training sessions with an interval
of 10 000 sessions for the training output model.

Afterwards, the two AI models are validated against
the root mean squared error (RMSE) and CCs of the re-
constructed SSRs (SSR20CR/SSRCMIP6). The validation set
SSRs, and the optimal number of training cycles is 1 100 000
(see Figs. S2, S3 and S4 in the Supplement). The initial hy-
perparameters of the model are set as follows: a learning rate
of 2×10−4 and learning fine-tuning of 5×10−5. First, we set
the batch size to 16 in the first 500 000 iterations and fine-
tune it to 18 in the last 10 000 000 iterations, for a total of
1 500 000 iterations, to suppress the overfitting phenomenon
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generated during the training process. We validate the model
every 10 000 times and with early stopping if the validation
shows a decreasing trend, and the final number of training
times used is 1 100 000. Second, L2 (ridge regression) reg-
ularization is also added to regulate the loss function (see
Eq. S9 in the Supplement).

The training result models generated by the different AI
models are obtained separately for the different training sets.
The model is first used to reconstruct a reanalysis valida-
tion set with the same missing-value mask as the original
observation dataset. This is followed by a validation of the
reconstruction against the original reanalysis dataset (calcu-
lation of CC and RMSE) to understand the discrepancies in
the model reconstruction.

4 Data homogenization and verification

We homogenized the original monthly station or grid-
ded SSR time series (SSRIHstation or SSRIHgrid) using the
method in Sect. 3.1.2. We selected six continental regions,
excluding Antarctica and the Arctic, from the eight conti-
nents of the world defined by Xu et al. (2018) (Asia, Africa,
South America, Europe, North America, Australia, Antarc-
tica and the Arctic). The decreasing trend of the SSRIHgrid
is consistent with the original gridded SSR series (SSRIgrid)
during 1955–1991, while the increasing trend during 1991–
2018 is weaker. At the regional scale, the SSRIHgrid has a
generally similar variation to the SSRIgrid, and the SSRIHgrid
is usually more representative of climate change than the
SSRIgrid at individual stations.

Figure S5 (see the Supplement) illustrates the long-
term variations of global (Fig. S5a in the Supplement)
and continental land SSR (Fig. S5b in the Supplement)
from the SSRIgrid and SSRIHgrid (except for Antarctica)
during 1955–2018. The most prominent change revolves
around the adjustment around 1992: the SSR anoma-
lies were systematically adjusted upward from 1987 to
1992, while the SSR anomalies were systematically ad-
justed downward from 1993 onwards. Thus, there is
a significant decreasing trend for both the global land
SSRIgrid (−1.995± 0.251 W m−2 per decade) and global
land SSRIHgrid (−1.776± 0.230 W m−2 per decade) (except
for Antarctica) from 1955 to 1991, while the increasing
trend of the global land SSRIHgrid from 1991 to 2018 is
0.851± 0.410 W m−2 per decade, slightly smaller than the
increasing trend of the SSRIgrid (0.999± 0.504 W m−2 per
decade). It is worth noting that 1992 happened to be the
second year of the eruption of Mount Pinatubo, and the ho-
mogenized SSR data integrated in this paper may be affected
by this event. However, overall, the homogenization also has
limited effects on the global SSR variations from Fig. S5 (see
the Supplement), which is consistent with the influence of
data homogenization on a wide range of surface air tempera-
tures (Brohan et al., 2006; Xu et al., 2013).

On the regional scale, the differences between the
SSRIHgrid and SSRIgrid are more pronounced in Asia and Eu-
rope (see Fig. S5b in the Supplement). Asia’s homogenized
SSR shows that the regional average SSR has been declin-
ing significantly over the period 1958–1990; this dimming
trend mostly diminished over the period 1991–2005 and was
replaced by a brightening trend in the recent decade. The
SSRIHgrid in Asia is higher than the SSRIgrid from 1985 to
1990 and lower than the SSRIgrid from 2012 to 2015. The
SSRIHgrid shows a more moderate short-term increase in Eu-
rope from 1960 to 1980. Note also that the Australian raw
data prior to 1988 were artificially detrended because at the
time the Australia Weather Service was afraid that the in-
struments would drift. Therefore, they detrended them and
unfortunately did not store the raw data, and the SSR evolu-
tion in Australia is artificial with no trend (Wild et al., 2005).
In addition, the SSRIstation and SSRIHstation comparisons for
all 66 stations are shown in Fig. S1 (see the Supplement).

5 AI reconstruction and comparison

5.1 Training of the AI model

We produce two (20CRv3 and CMIP6) separate training and
validation sets: we select the first member data of the re-
analysis data and the model data, respectively, as the vali-
dation set, and the remaining 79 (124) ensemble members
as the training sets, where each ensemble member included
732 (720) months of SSR data. Each validation set included
732 (720) samples, while the training sets contained 57 828
(89 280) ensemble members. All the above data, includ-
ing the in situ observations, are then resampled to monthly
anomalies of 5◦× 2.5◦. We reconstruct the SSR of 20CRv3
and CMIP6 with missing values based on the 20CRv3 and
CMIP6 datasets using the method in Sect. 3.2 and obtain
two reconstructions, SSR20CR and SSRCMIP6, respectively.
The SSR of 20CRv3 and CMIP6 with missing values uses
the SSRIHgrid mask between 1955 and 2015/2014. We com-
pare the global land (except for Antarctica) or regional an-
nual anomaly variation of SSR20CR or SSRCMIP6. The results
show that SSR20CR is significantly more consistent with the
validation set than SSRCMIP6.

Figure 6a shows that the RMSE and CC of the SSR20CR
(0.247 W m−2/0.970 W m−2) are smaller or larger than
those of the SSRCMIP6 (0.518 W m−2/0.937 W m−2) with
the original 20CR and CMIP6 dataset. The 20CR-AI model
has a better reconstruction ability for SSR on the global land
(except for Antarctica) scale. The RMSEs of the SSR20CR
(SSRCMIP6) are 1.460 (2.413) W m−2, 1.109 (1.829) W m−2,
2.219 (2.596) W m−2 and 1.286 (2.235) W m−2 in
North America, Europe, Asia and the Northern Hemi-
sphere, whereas these values are 1.116 (1.766) W m−2,
0.622 (1.602) W m−2, 1.877 (1.839) W m−2 and 0.772
(1.679) W m−2 in South America, Africa, Australia and the
Southern Hemisphere, respectively, concerning the original
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Figure 6. Reconstruction capabilities of the AI model.

20CR and CMIP6 dataset. In other words, the RMSEs
of the SSR20CR are smaller than those of the SSRCMIP6
for the original 20CR and CMIP6 dataset except for Aus-
tralia. In addition, the CCs of the SSR20CR (SSRCMIP6)
are 0.958 (0.830) W m−2, 0.958 (0.987) W m−2, 0.886
(0.669) W m−2, 0.930 (0.965) W m−2, 0.938 (0.930) W m−2,
0.943 (0.916) W m−2, 0.936 (0.875) W m−2 and 0.903
(0.822) W m−2 in North America, Europe, Asia, the North-

ern Hemisphere, South America, Africa, Australia and
the Southern Hemisphere, respectively, with respect to the
original 20CR and CMIP6 dataset. That is, the CCs of the
SSR20CR are larger than those of the SSRCMIP6 with the
original 20CR and CMIP6 dataset except for Europe.

Based on the above comparison, the higher uncertainty for
CMIP6 model output possibly biases the CMIP6-AI method.
Thus, the accuracy of the SSR20CR is higher than that of the
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SSRCMIP6 at both global land (except for Antarctica) and re-
gional scales. Therefore, we choose the reconstruction re-
sults of the 20CR-AI model as the final AI reconstruction
dataset, and subsequent analysis in the following sections is
only based on this dataset.

5.2 Comparison of the spatial and temporal variation
characteristics

We investigate the long-term trends and spatial and tem-
poral variation of the SSRIH20CR, compare the differences
between the SSRIH20CR and SSRIHgrid, and suggest that
the area and magnitude of the high and low centres of the
SSRIH20CR are the same as those of the SSRIHgrid. The re-
sults of the global land (except for Antarctica) reconstruction
are consistent with dimming and brightening; the global dim-
ming is primarily dominated by decreasing trends in Asia,
Europe, Africa and North America, whereas Europe and
North America are contributors to the increasing trends.

Figure 7 shows the spatial distribution of the SSRIHgrid
and SSRIH20CR for the 3 months (July 1960, July 1980 and
July 2000). Figure S6 (see the Supplement) displays the
spatial distribution of the annual SSRIHgrid and SSRIH20CR
from 1955 to 2018. Figure 7 also shows that the area and the
magnitude of the high and low centres in the SSRIH20CR are
the same as in the SSRIHgrid. The SSRIH20CR has mainly
positive anomalies in Africa and the Eurasian continent in
July 1960, especially in India and the Middle East. After-
wards, India showed a continuous and steady decline in SSR.
This confirms the well-known phenomenon of global dim-
ming over India (Wild et al., 2009; Soni et al., 2016, 2012;
Padma Kumari et al., 2007; Kambezidis et al., 2012). In Aus-
tralia, the SSRIH20CR is dominated by negative anomalies in
July 1980 and positive anomalies in July 1960 and July 2000.
In Greenland, the SSRIH20CR shows a large positive anomaly
during 3 months. In northern Russia, there is a high value in
July 2000. The reconstruction can better reflect the anomaly
distribution of observation information, and the grid boxes
with the missing values are infilled and reconstructed, which
has high reliability.

Figure 8 illustrates the global land (except for Antarc-
tica) annual anomaly variation and long-term trend of the
SSRIH20CR for the periods of 1955–2018, 1955–1991 and
1991–2018. Table S3 in the Supplement demonstrates the
trends of global SSR change evaluation for various data
sources on different scales. Also, we compare the differ-
ences between the SSRIH20CR and SSRIHgrid. The minimum
value of the SSRIH20CR occurred in 1991 (−2.411 W m−2).
The decreasing trend of the SSRIH20CR from 1955 to 1991
(−1.276± 0.205 W m−2 per decade) is slightly lower than
that of the SSRIHgrid (−1.776± 0.230 W m−2 per decade).
After that, the SSRIH20CR turns to an increasing trend of
0.697± 0.359 W m−2 per decade from 1991 to 2018. This
suggests that the difference between the SSRIH20CR and
SSRIHgrid may be caused by the results observed in lim-

ited data coverage (such as in Africa and North America)
(Fig. 9). After homogenization and reconstruction, the trend
(−1.276 W m−2 per decade) from 1955 to 1991 corresponds
to an overall reduction of −4.6 W m−2 over the dimming
period, while that (0.697 W m−2 per decade) from 1991 to
2018 corresponds to an overall increase of 2 W m−2 over the
brightening period. This is in amazing agreement with the
−4 W m−2 for the dimming period and the 2 W m−2 for the
brightening period based on an overall surface energy budget
assessment (Wild, 2012; see their Fig. 1). Also, similar con-
clusions (incomplete coverage of observational data leads to
an underestimation of global warming trends) have been con-
firmed in global warming research (Gulev et al., 2021; Li et
al., 2021).

Figure 9 demonstrates the long-term annual anomaly vari-
ations of the SSRIH20CR in different regions and its re-
sults compared to the SSRIHgrid. Table S4 in the Sup-
plement shows the evaluation in continental and hemi-
spheric SSRIH20CR change trends on different scales. The
SSRIH20CR shows a similar annual anomaly variation to the
global land (except for Antarctica) average trend in North
America and Asia, reaches a minimum in the late 1970s or
early 1990s, and follows a moderate reversal. In Europe, the
SSRIH20CR shows a decrease (−2.180± 1.866 W m−2 per
decade) between 1963 and 1978 before turning to bright-
ening (1.081± 0.312 W m−2 per decade). In South Amer-
ica and Australia (Southern Hemisphere), the SSRIH20CR
shows no significant variation. In Africa, the SSRIH20CR has
a dimming trend (−1.506± 0.496 W m2 per decade) from
the 1950s to the 1990s, after which it remains levelled off
(0.340± 0.998 W m−2 per decade). The SSRIH20CR shows
a decreasing trend (−1.457± 0.246 W m−2 per decade) un-
til the 1990s in the Northern Hemisphere and a brightening
(0.887± 0.415 W m−2 per decade) afterwards. The annual
average anomaly variations in regions and globally show that
Asia, Africa, Europe and North America are the four contrib-
utors to the global dimming, while Europe and North Amer-
ica are two major contributors to the brightening. This is in
general agreement with the results obtained by previous ma-
chine learning (Yuan et al., 2021). In addition, the discrep-
ancy between the SSRIH20CR and SSRIHgrid is more signif-
icant in low-coverage areas (right) than in high-coverage re-
gions (left). It is particularly pronounced before 1980 and in
South America. This suggests that the limited surface obser-
vations are not representative of the continental variation in
SSR.

The sources of error in the observational dataset can be di-
vided into three types. (1) Station errors are the uncertainties
of individual station anomalies, including measurement er-
rors (which are not the focus of the considerations in this pa-
per) and errors due to homogenization. The errors due to ho-
mogenization adjustment are always approximately normally
distributed (Jones et al., 2008; see their Fig. 5 and Fig. S9 in
the Supplement) and therefore have limited impacts on the
global average SSR change (Fig. S5a, b). (2) Sampling er-
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Figure 7. Spatial distribution of the SSRIHgrid (a1–3) and SSRIH20CR (b1–3) in typical months: 1–3 are July 1960, July 1980, and July
2000, respectively.

Figure 8. Global land (except for Antarctica) time series of the annual anomaly variations’ SSR (relative to 1971–2000) before and after
reconstruction.

rors are the uncertainties in a grid box mean caused by esti-
mating the mean from a small number of point values (Jones
et al., 1997). (3) Bias error generally refers to systematic er-
rors such as urbanization, which has not been discussed here.
However, even the sum of the above errors is much smaller
than the errors due to limited data coverage (Li et al., 2010;
see their Fig. 5). So, the focus of this study is to eliminate
this kind of error through the CNN reconstruction.

6 Data availability

Both the SSRIHgrid (the homogenized monthly gridded SSR
data over 1923–2020) and the SSRIH20CR (the monthly
20CR-AI model reconstructed SSR data for 1955–2018)
are currently publicly available on the figshare website at
https://doi.org/10.6084/m9.figshare.21625079.v1 (Jiao and
Li, 2023). These datasets are also available at http://www.
gwpu.net (last access: May 2023) for free.
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Figure 9. Same as Fig. 8 but for regional annual anomaly variations.

7 Conclusions

In this study, we integrate global station observations based
on the raw observational SSRs from GEBA and WRDC,
combined with existing homogenized SSR datasets from
other scholars. Also, we homogenize the globally distributed
station data using the RHtestV4 software package. An im-
proved CNN deep-learning algorithm is subsequently used
to reconstruct the SSR anomalies. Thus, a reconstructed SSR
anomaly dataset, SSRIH20CR, is obtained based on training
sets (20CRv3) for the years 1955–2018, with a resolution of
5◦× 2.5◦. The main results are as follows.

1. The first integrated and homogenized global SSR
monthly dataset is developed, which contains 944 sta-
tions in total and covers the longest periods (from the
1920s to recent years). A 5◦× 5◦ grid box version of
the monthly SSR anomaly dataset is derived.

2. This paper develops 5◦× 2.5◦ full-coverage monthly
land (except for Antarctica) SSR anomaly reconstructed
datasets based on the above observations, using 20CRv3
to train the AI model. Comparative validations and eval-

uations show that the SSRIH20CR provides a reliable
benchmark for global SSR variations.

3. On average, the global annual SSR variations based on
the SSRIHgrid are not significantly different, except that
the increasing (brightening) trend after 1991 is a little
smaller for the latter. The short-term brightening SSR
in Europe from the 1970s to the 1980s disappears at the
regional scale. At the same time, the brightening SSR
after the 1990s in Asia slowed or was delayed.

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/essd-15-4519-2023-supplement.
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