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BACKGROUND: The clinical care process for people with prediabetes starts with lifestyle intervention, often escalating to more
intense treatment due to the low success rate of the first-line intervention. Clinicians lack clear guidelines on which patients would
benefit from early treatment with more intensive therapeutic options, so we aimed to develop an algorithm to early identify non-
responders to lifestyle intervention for prediabetes.
METHOD: Several statistical and machine learning algorithms were screened with internal cross-validation on the basis of accuracy
and discrimination ability to correctly classify patients that would fail to normalize fasting glycemia within one year of being
prescribed a lifestyle intervention, solely based on the first examination measurements.
RESULT: Of the many screened algorithm, only a random forest model performed with sufficient accuracy to exceed the historical
failure rate of patients within our center, with an accuracy of 0.689 (CI 0.669, 0.710) and an AUROC of 0.687 (CI 0.673, 0.701).
CONCLUSIONS: This study showcases the ability of machine learning models to provide useful insight in clinical practice leveraging
knowledge contained in routinely collected data.

European Journal of Clinical Nutrition; https://doi.org/10.1038/s41430-024-01495-9

INTRODUCTION
People with prediabetes have abnormal glucose metabolism while
not meeting the criteria for diabetes [1]. As they are often
characterized by abdominal obesity, screening is recommended
for all adults with a body mass index indicative of overweight or
obesity and with one or more risk factors. Diagnosis is made with
fasting glucose levels between 100 and 125 mg/dL and/or and 2 h
glucose levels between 140 to 199 mg/dL during a 75 g oral
glucose tolerance test [2].
After diagnosis, therapy focuses on normalization of fasting

glycemia through body weight management, physical activity,
and/or hypoglycemic medications. There are no clear guidelines
between choosing lifestyle behavior change or pharmacological
interventions and the intensity of treatment is often escalated once
a more conservative approach has proven to be not conclusive [3].
Big data and artificial intelligence may provide insight

in situations where guidelines lack a clear course of action.
Leveraging data and outcomes collected in everyday clinical
practice with traditional or more recent tools may inform the
clinician of the probability of success of alternative treatments
based on site- and population-specific historical success rate. Also,
combining the formalized knowledge contained in guidelines with
“learnt context-specific knowledge” may constitute a promising
strategy to deal with transparency and explainability issues arising
with the use of new artificial intelligence algorithms [4].

Considering the lack of clear guidelines and the high rate of
failure of more conservative approaches, we aimed to develop an
algorithm to early identify non-responders to lifestyle intervention
for prediabetes.

METHODS
Sources of data and participants
The database used for developing the predictive algorithm was the
International Center for the Assessment of Nutritional Status (ICANS,
University of Milan, Milan, Italy) database, which contains data of a large
ongoing open-cohort nutritional study. As part of the protocol of the study,
all patients at baseline receive a full nutritional assessment, they are
prescribed a lifestyle intervention and eventually also a pharmacological
intervention, and a follow-up examination is scheduled. At follow-up, a more
limited number of parameters are routinely collected to evaluate changes in
weight, body composition, and laboratory exams. For the development of
the algorithm, all patients with prediabetes enrolled between 2009 and the
beginning of 2019 were included. The complete database include 18.973
baseline observations, and a total of 45.148 follow-up observations. In this
study we have included a total of 59 variables from the database.
Patients included in this study were self-referring patients seeking a

weight loss program, mainly resident in Milan or nearby cities, with a new
or recent diagnosis of prediabetes. Eligibility criteria were: age ≥18 years;
not pregnant and not nursing; no condition severely limiting movements
and physical activity; no severe cardiovascular, neurological, endocrine, or
psychiatric disorder; prescribed only a lifestyle intervention. The lifestyle
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intervention consisted of an hypocaloric omnivorous diet, with macro- and
micronutrient levels set according to the Italian recommended daily
allowances [5], and with a Mediterranean pattern; physical activity
recommendation were also provided according to the WHO physical
activity guidelines [6].
The study complied with the principles established by the Declaration of

Helsinki, and written informed consent was obtained by each subject. The
ethical committee of the University of Milan (n. 6/2019) approved the
study procedures.

Outcome and predictors
The outcome was normalization of glycemia within 1 year of starting the
lifestyle intervention (dichotomous, fasting glucose <100mg/dL).
A total of 59 predictor variables were used in the analysis:

● demographic data: age, sex, education, occupation, marital status
● anthropometry: height, weight, arm length, arm circumference, wrist

circumference, waist circumference, biceps skinfold, triceps skinfold,
subscapular skinfold, suprailiac skinfold, arm muscle area, arm fat area,
body density, fat mass, fat free mass

● bioimpedance analysis: intracellular water, extracellular water
● abdominal ultrasound: sternum subcutaneous adipose tissue, sternum

visceral adipose tissue, abdomen subcutaneous adipose tissue, abdo-
men visceral adipose tissue

● indirect calorimetry: oxygen consumption, carbon dioxide production,
respiratory quotient, resting energy expenditure

● medical history: family status, menstruation, pregnancies, diet status,
diet history, physical activity, smoking, pharmacological treatments,
clinical signs, weight history

● vital signs: heart rate, systolic pressure, diastolic_pressure
● blood and urine exams: white blood cell count, red blood cell count,

hemoglobin, mean corpuscular volume, glucose, total cholesterol, HDL
cholesterol, LDL cholesterol, triglycerides, glutamic-pyruvic transami-
nase, glutamic-oxaloacetic transaminase, gamma-glutamyl transferase,
thyroid stimulating hormone, creatinine, uric acid, urea

Statistical and machine learning analysis methods
All eligible patients at time of study were included, determining the
sample size (no a priori calculations were made).
For algorithms requiring complete data, we imputed missing data in the

pre-processing phase using k-nearest neighbors imputation (Gower’s
distance, number of neighbors= 5).
Maximum predictive strength was sought through optimization of the

correct classification fraction (CCF) and the receiver operating character-
istic area under the curve (AUROC). Between accuracy and discrimination
ability, accuracy was selected as the most relevant metric in the clinical
settings (ie. maximization of the CCF).

Several statistical and machine learning models were compared using
10-fold cross-validation resampling. For models requiring tuning para-
meters, a grid made of several combinations of tuning parameters was
tested via 10-fold cross-validation.
Prior to model selection, per-model preprocessing steps were defined in

order to guarantee the best predictive ability for the specific model. To
capture uncertainty about non-deterministic data manipulation, all
preprocessing steps were repeated in each cross-validation fold.
Principal component analysis (PCA) was employed as an optional

preprocessing step aimed to reduce the dimensionality of the dataset. In
these cases, PCA was used to transform the set of predictors in a reduced
number of predictors designed to capture the maximum amount of
information in the original variables. A potential benefit of this approach,
other than the dimensionality reduction, is the production of statistically
independent predictors that can ameliorate the problem of inter-variables
correlations in the dataset.
The following models were evaluated :

● logistic regression
● linear discriminant analysis
● quadratic discriminant analysis
● naive Bayes, tuned for kernel smoothness, and Laplace correction
● K-nearest neighbour, tuned for number of nearest neighbors, and

distance weighting function, Minkowski distance order
● ridge regression and LASSO, tuned for the amount of regularization, and

the proportion of LASSO penalty
● decision trees, tuned for tree depth, minimal node size, and cost-

complexity parameter
● bagged trees, tuned for the cost/complexity parameter used by CART

models, the maximum depth of a tree, the minimum number of data
points in a node that are required for the node to be split further, and
a cost value to assign to the class corresponding to the first factor level

● random forest, tuned for number randomly selected predictors,
number of trees, and minimal node size

● boosted trees, tuned for tree depth, the number trees, the learning rate,
the number randomly selected predictors, the minimal node size, the
minimum loss reduction, the proportion observations sampled, and
the number iterations before stopping

● linear support vector machine, tuned for cost, and insensitivity margin
● single layer neural network, tuned for the number of hidden units, the

amount of regularization, and the number of epochs

Sensitivity, specificity, positive predictive value, and negative predictive
value, were calculated for the best model as: Sensitivity =TP/(TP+ FN),
Specificity =TN/(TN+ FP), positive predictive value= TP/(TP+ FP), nega-
tive predictive value= TN/(TN+ FN), where FN, false negative; FP, false
positive; TN, true negative; TP, true positive.
All statistical analysis was performed with R 4.1.1 [7]. Model preprocessing,

tuning, resampling, and fitting were performed with the addition of the
Tidymodels package to R (for algorithm-specific packages see the appendix).

RESULTS
Participants
A total of 734 patients were selected for this study, Fig. 1 reports a
complete flow diagram for study participants.
Table 1 reports patients characteristics in the overall sample,

and by sex. The historical fraction of patient glycemia within 1 year
of starting the lifestyle intervention in this sample was 0.68.

Model development and screening
Model screening results are shown in Fig. 2. Machine learning models
based on decision trees (in particular boosted trees and random forest)
were the best performing models, producing models with both
relatively high CCF and AUROC. PCA was generally not useful in
improving the predictive ability of these models. Comparing the
accuracy results with the historical probability of event, random forest
models were the only ones able to exceed a naive classifier that
assumes that all patients would experience the event.

Model performance
The model reached an accuracy of 0.689 (CI 0.669, 0.710) and an
AUROC of 0.687 (CI 0.673, 0.701). The sensitivity and specificity

Fig. 1 Flow diagram for study participants.
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values for the best model were 0.877 (CI 0.851, 0.903) and 0.28 (CI
0.203, 0.357), while the positive and negative predictive values of
the best model were 0.721 (CI 0.7, 0.743) and 0.514 (CI 0.433,
0.596). Variable importance analysis is presented in Figure Fig. 3
and Fig. 4.

DISCUSSION
In this paper we aimed to identify the highest predictive algorithm
for early detection of non-responders to lifestyle intervention
among patients with prediabetes. After screening several statis-
tical and machine learning algorithms, we found that a machine
learning algorithm, and specifically a random forest model,
performed best in internal validation.
Christodoulou et al. [8] compared performance of traditional

(logistic regression) methods to machine learning for clinical
prediction models and found no evidence of superior perfor-
mance of machine learning over logistic regression. In this study
logistic regression ranked 6th and 4th in the accuracy and

discrimination ranking respectively. Moreover, the best model
obtained an accuracy of 0.689 (CI 0.669, 0.710), which exceeded
the historical rate of failure within our center. This is a
fundamental and unique characteristic of the best model, and a
necessary condition for its usefulness in clinical practice. An
algorithm not exceeding the historical rate of failure would not
beat a naive classifier that would assume that all patients would
experience the event, and as such would not be more accurate
then assigning by the default all patients to a more intensive
treatment scheme. Only an algorithm that is more accurate than
this naive classifier has the capability of improving the clinical
success rate while conserving resources.
The best model obtained an AUROC of 0.687 (CI 0.673, 0.701),

and while this shows only a moderate discrimination ability, the
majority of non-responders were correctly detected and may
have been treated more intensively from the beginning, possibly
lowering the probability of failure to normalize fasting glucose.
The algorithm also shows a tendency to include almost half of
true responders among non-responders. While this may not be

Table 1. Patients characteristics at baseline.

Characteristic N Overall, N= 734a Responder, N= 235a Non responder, N= 499a

Age (years) 734 59 (51, 66) 58 (49, 65) 59 (53, 67)

Sex 734

Female 376 (51%) 118 (50%) 258 (52%)

Male 358 (49%) 117 (50%) 241 (48%)

Married 734 492 (67%) 155 (66%) 337 (68%)

Working 734 368 (50%) 125 (53%) 243 (49%)

With higher degree 734 232 (32%) 78 (33%) 154 (31%)

In menopause 376 253 (67%) 72 (61%) 181 (70%)

Previous diets 734 412 (56%) 130 (55%) 282 (57%)

Physically active 734 210 (29%) 74 (31%) 136 (27%)

Smoker 734 386 (53%) 127 (54%) 259 (52%)

Familiarity with diabetes 734 216 (29%) 67 (29%) 149 (30%)

Weight (kg) 733 91 (80, 104) 89 (79, 103) 92 (80, 104)

Height (cm) 733 167 (159, 174) 166 (160, 175) 167 (159, 173)

Body mass index (kg/m²) 733 32.7 (29.3, 36.6) 32.4 (28.4, 35.7) 32.8 (29.6, 37.2)

Waist circumference (cm) 733 110 (101, 120) 108 (98, 119) 110 (102, 120)

Arm muscle area (cm²) 715 59 (47, 69) 58 (46, 69) 59 (48, 69)

Body fat fraction of total body weight, as % 633 41.3 (36.7, 45.1) 40.7 (36.2, 44.4) 41.6 (37.1, 45.5)

Total body water (L) 628 40 (34, 49) 41 (34, 49) 40 (34, 48)

Extra-cellular water (L) 628 15.5 (12.8, 18.5) 15.6 (12.9, 18.6) 15.4 (12.8, 18.4)

Intra-cellular water (L) 628 24.9 (20.6, 30.1) 24.9 (20.7, 30.4) 24.9 (20.6, 29.8)

Abdomen subcutaneous fat thickness (cm) 609 2.52 (1.81, 3.34) 2.63 (1.90, 3.29) 2.43 (1.80, 3.35)

Abdomen visceral fat thickness (cm) 604 8.47 (6.25, 10.33) 7.93 (5.41, 10.01) 8.63 (6.44, 10.39)

Respiratory quotient 715 0.83 (0.79, 0.87) 0.83 (0.79, 0.88) 0.83 (0.79, 0.87)

Resting energy expenditure (kcal/die) 715 1623 (1410, 1845) 1591 (1402, 1849) 1630 (1419, 1838)

Glucose (mg/dL) 734 120 (114, 132) 116 (112, 122) 124 (116, 140)

Total cholesterol (mg/dL) 731 214 (186, 241) 214 (190, 240) 214 (184, 241)

HDL cholesterol (mg/dL) 729 50 (43, 61) 53 (45, 64) 49 (41, 59)

LDL cholesterol (mg/dL) 680 140 (116, 166) 138 (118, 166) 141 (116, 167)

Triglycerides (mg/dL) 730 125 (92, 173) 115 (85, 155) 132 (98, 181)

Aspartate transaminase (U/L) 722 21 (18, 26) 21 (18, 27) 22 (17, 26)

Alanine transaminase (U/L) 723 26 (19, 37) 26 (18, 38) 26 (19, 36)

Gamma-glutamyltransferase (U/L) 697 27 (19, 44) 27 (19, 43) 27 (19, 44)

Thyroid stimulating hormone (mUI/L) 700 1.89 (1.31, 2.71) 1.91 (1.36, 2.79) 1.88 (1.30, 2.68)
aMedian (IQR); n (%).
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clinically an issue, as in the context of prediabetes more
intensive treatments are usually safe for the patient, it may
represent an issue from an economic perspective, as resources
are allocated where they are probably not needed. Considering
that true responders are the minority of overall patients, the
slight increase in effort for false non-responders may be
worthwhile.
This study showcases the capabilities of machine learning

models when used in everyday clinical practice. It is worth
reiterating that the accuracy considerations made above single
out machine learning models as the only ones that may prove
useful in this context. On the other hand, the necessary increase in
accuracy comes at the cost of explainability of the results. Machine
learning models are notorious for working as a “black box”,
generating outputs without explaining how it arrived at those
outputs. In this case, the best model was a machine learning
model of the “decision trees and tree ensembles” family, that are
among the best candidates to provide some explanation of their
internal working, giving at least the possibility to quantify the
importance of each variable included in the model. Here
“importance” is a measure of improvement (eg. in accuracy)

when the variable is included in calculation of the output. While
such a measure of “importance” can provide some insight in
which variables may explain most of the prediction, a direct
inference is not possible due to the nature of the study. The fact
that biochemical parameters represented the most important
domain in the variable importance ranking may reflect the
importance of phenotyping patients with prediabetes beyond
glucose tolerance status. Indeed the blood lipid profile and liver
enzymes were among the most important variables and may have
signaled disease progression and co-morbidities to the model.
The clinician role remains paramount in the deployment of

these algorithms in clinical practice, as they should be viewed as
one of the tools that the clinician uses to make the decisions
that actually form the therapeutic plan, and not as decision
makers themself. On the other hand, these algorithms permit to
leverage the data collected in everyday practice, synthesizing
context-specific expertise accrued in years of clinical practice.
The study has the following limitations. The algorithm uses a set

of predictors that are specific to the clinical practice of the ICANS
center and this limits the generalizability of the algorithm.
Different interventions were not evaluated. The algorithm does

Fig. 2 Comparison of accuracy (correct classification fraction, CCF) and discrimination ability (area under the ROC curve, ROC AUC) of
statistical and machine learning models in the prediction of failure to improve fasting glycemia. For each model and metric, mean and
confidence bounds (95% confidence) across resamples were computed. For each model, an alternative with and without principal component
analysis (PCA, unsupervised learning) is shown. The historical rate of patients experiencing the event is marked with a vertical dashed line.
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Fig. 3 Relative importance of predictor variables by data domain.

Fig. 4 Relative importance of predictor variables (showing only predictors with an importance values >95th percentile).
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not take into account loss to follow-up as an outcome. Self-
selection bias could have influenced the demographic character-
istics and the probability of success in our sample.
In conclusions we show that machine learning models have the

potential to predict non-responders to lifestyle intervention in
patients with prediabetes, with an accuracy sufficient to result
useful in clinical practice. Validation on new diagnosis and
complementary algorithms for different outcomes are warranted.
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