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Abstract

People with mobility impairments have heterogeneous needs and abilities while moving in an urban

environment and hence they require personalized navigation instructions. Providing these instructions

requires the knowledge of urban features like curb ramps, steps or other obstacles along the way. Since

these urban features are not available from maps and change in time, crowdsourcing this information

from end-users is a scalable and promising solution. However, it is inconvenient for wheelchair users

to input data while on the move. Hence, an automatic crowdsourcing mechanism is needed.

In this contribution we present SmartWheels, a solution to detect urban features by analyzing

inertial sensors data produced by wheelchair movements. Activity recognition techniques are used to

process the sensors data stream. SmartWheels is evaluated on data collected from 17 real wheelchair

users navigating in a controlled environment (10 users) and in-the-wild (7 users). Experimental results

show that SmartWheels is a viable solution to detect urban features, in particular by applying specific

strategies based on the confidence assigned to predictions by the classifier.
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1. Introduction

Modern navigation systems compute the route depending on the user’s current mean of transport,

like car, public transportation, foot and others. However, none of the most common navigation

systems offers specific support for users with limited mobility, like wheelchair users. Indeed, at the

time of writing the only form of support available regards information about accessibility in public5

transportation and it is limited to major cities. While this is surely a useful service, it is clearly an

insufficient solution for the overall mobility problem that wheelchair users are facing [1].

A major problem, that emerged during an interview with twelve wheelchair users living in Milan

(Italy), is that a person moving on a wheelchair does not know in advance which obstacles she/he

will face along a route. For example, even if curb ramps are commonly available at intersections,10

sometimes they can be missing or damaged. According to interviewed users, these problems are so
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frequent and their effects are so frustrating that they declare to be reluctant to move along unknown

routes.

To address these issues we are currently developing the Moving Wheels navigation system that aims

at supporting the mobility of people with disabilities by guiding them on routes that are personalized15

according to their needs. For example, the system will compute a route where curb ramps are available

at all intersections for a user moving on an electric wheelchair (it is generally impossible to climb steps

up or down with electric wheelchairs).

The problem of offering personalized navigation instructions to people with disabilities has been

addressed before in the literature (see e.g., [2, 3]), and can be adapted to this application. Moving20

Wheels addresses an additional challenge: to acquire detailed information about urban features i.e.,

architectural barriers, obstacles (e.g., a step) and accessibility elements (e.g., a curb ramp). This

paper focuses on this challenge and presents SmartWheels, a solution to automatically recognize the

presence of urban features in specific locations from the users themselves: while a user moves in the

environment on a wheelchair (e.g., climbs up a ramp) inertial sensors acquire data that can be used25

to automatically detect the urban feature (i.e., the curb ramp). SmartWheels is the essential module

of a more complex system to automatically collect and aggregate this information so that it can be

used when computing the route for other users. This is a form of data crowdsourcing that does not

require user intervention.

This paper has three main contributions. First, it presents a new research problem, motivated by30

the Moving Wheels system: the detection of urban features from wheelchair movements. Second, it

illustrates the technical solution to recognize urban features that includes data acquisition, labeling,

features extraction, and classification with a supervised machine learning technique. Third, the paper

presents an extensive experimental evaluation of the proposed technique on data acquired from 17

subjects with motion disabilities both in an outdoor controlled environment (10 subjects) and in35

the wild (7 subjects). Results show that it is possible to reliably recognize urban features from

data collected in the controlled environment. The recognition is more challenging for the dataset

collected in the wild, but we show that the automatic detection process can still be very useful in the

crowdsourcing process, by applying specific strategies based on the confidence assigned to predictions

by the classifier.40

2. The Moving Wheels system

Moving Wheels is a context-aware assistive navigation system being developed by the EveryWare

Lab in Milan with two main objectives: first, to provide navigation instructions to people with disabil-

ities, guiding them along routes that are personalized according to their abilities. To compute these

routes, Moving Wheels needs detailed information not only about the road network but also about45

the urban features that can prevent the user from moving along the route (e.g., steps) or, vice-versa,
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can enable him/her to reach the destination (e.g., curb ramps). The acquisition of this information is

the second objective of Moving Wheels.

The user interacts with Moving Wheel through a mobile client that is similar to a traditional

navigation app and that guides end-users from a start position (generally their current position) to a50

target destination. This application has a main difference with respect to other solutions: it allows end-

users to finely tune preferences concerning classes of urban features depending on their (dis)abilities.

For each class, the user can specify whether the urban features in that class should be avoided or not.

A third option is available as well: “avoid if possible” means that the user is able to deal with that

urban feature, but this costs some effort. Consider the following example:55

• small-step-up: avoid if possible

• small-step-down: no problem

• medium-step-up: avoid

• medium-step-down: avoid if possible

The above preferences capture the fact that the user is unable (or not willing) to climb up steps60

of medium height. Vice versa, descending a short step is not a problem for this user. Also, the user

would prefer to avoid to climb down steps of medium height and to climb up short steps.

The Moving Wheels web service computes the route when required by the mobile app. While

doing this, Moving Wheels will avoid all urban features marked as “avoid” and will try to balance the

route length with the number of urban features marked as “avoid if possible”. For example, consider65

two alternative routes: one is 200m long with one urban feature marked as “avoid if possible” while

the other is 1.5km with no urban features marked as “avoid if possible”. In this case, the system

will automatically suggest the former route, as it is much shorter. In other cases, the system may

automatically suggest a slightly longer route, if it has fewer features marked as “avoid if possible”.

When there is not a stark difference between two or more routes, the system asks the user to select70

his/her preferred route.

On the server-side, Moving Wheels represents the road network as a directed graph in which

each edge is labeled with the urban features that the user encounters by moving along that edge, as

exemplified in Figure 1.

A major challenge in Moving Wheels is to acquire knowledge about the relevant urban features75

(e.g., steps, ramps), which is needed to populate the graph. We are currently considering these sources:

• existing geo-referenced data stores, including public (e.g., traffic lights from open street map)

and private ones (list of curbs ramps from the municipality);

• data annotated by human actors, such as employees, volunteers or end-users, that visit a place

either physically or virtually (e.g., looking at Google street view images);80

3



Sidewalk

Road A B

medium
ramp
down

medium
step
up

;

A B
( (

Figure 1: Road network representation

• data automatically extracted from geo-spatial image databases (e.g., Google street view), adopt-

ing computer-vision techniques, similarly to those proposed in [4].

Each of these solutions has advantages and limitations with respect to a number of factors, includ-

ing cost (e.g., manual annotation by employees can be costly), scalability (e.g., acquiring data from

different municipalities incurs into scalability issues), reliability (e.g, the technique proposed in [4]85

correctly identifies 93% of zebra crossings), maintenance (i.e., data need to be periodically updated)

and types of urban features that can be detected (e.g., some features, like zebra crossings, are easier

to detect with computer vision, while others, like the inclination of a curb ramp, are harder to detect).

This contribution focuses on crowdsourcing data from end-users (i.e., people with disabilities). This

approach has many advantages: it is scalable, inexpensive, and it keeps information up to date. Since90

our studies revealed that these users are not really keen to manually enter data or have difficulties

doing so, in this paper we show how Moving wheels aims at collecting data about urban features

with no or limited end-user intervention. For example, pedestrian crossings can be detected from the

camera (e.g., a wearable one) and acoustic traffic signals can be detected from the microphone. In

this contribution, we focus on urban features that can be detected with inertial sensors mounted on a95

wheelchair, which include ramps and uneven roads.

3. Problem analysis

The analysis of the Moving Wheels system was conducted in two main phases. An informal

interview was conducted in 2018 with two sets of users: those using an electric wheelchair and those

using a traditional one. The interviews were aimed at better understanding the mobility problems of100

wheelchair users. The interviews revealed that current navigation systems are only partially useful

for this target population because they do not provide crucial information, like architectural barriers,

and more generally obstacles for wheelchair users. In the second phase we conducted semi-structured

interviews with the participants involved in the data collection process (see Section 5). It emerges that

all the subjects agree that a navigation app specifically designed for people with disabilities would105

encourage them to go outside more frequently and to follow new routes. However, only one person
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(a) Electric wheelchair (b) Self-propelled tradi-
tional wheelchair

(c) Electric-propelled traditional
wheelchair

Figure 2: Wheelchairs: types, propulsion modes and sensors position.

ever tried one of these navigation apps reporting that “it did not work”. This is due to the fact

that navigation systems specifically designed for people with disabilities only cover small geographic

areas and, outside of these areas, they basically provide the same functions as traditional navigation

systems.110

Overall, these two analysis phases motivate the need for the Moving Wheels system and also

provided relevant domain-dependant knowledge. In the following, we report the results from the

analysis that are relevant for this contribution.

3.1. Mobility

There are basically two classes of wheelchairs used for urban mobility2: electric and traditional115

ones. The latter can be propelled in three ways: (a) self-propelled when the user sitting on the

wheelchair uses his/her arms to move the wheels, (b) attendant-propelled, when a caregiver pushes

the wheelchair and (c) electric-propelled in which an electric device is attached to the wheelchair to

provide motion. Figure 2 shows some examples of wheelchairs.

Note that an electric wheelchair is different from an electric-propelled traditional one: in the former,120

the motion system (motor, batteries, commands) is integrated into the wheelchair, while in the latter

the electric device is external and can be attached when needed. Generally, electric wheelchairs

are used by people who are not able to use a traditional wheelchair (e.g., tetraplegic people), while

traditional wheelchairs are used by people who are able to use a self-propelled traditional wheelchair

and that possibly attach an external electric device when needed (e.g., when they need to cover large125

distances).

The ability to move in an urban environment and to face obstacles strongly depends on the

wheelchair type, on how it is propelled and on the user’s abilities. For example, climbing up a steep

ramp is generally not a problem with an electric wheelchair, while it can be hard for a self-propelled

one if the user is not well trained. Vice versa, climbing up a step can be impossible with an electric130

2A number of other models are used for indoor use (e.g., in the hospitals), sport and outdoor.
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Figure 3: Sensor data acquired from a smartphone stored in a bag.

wheelchair, while it is generally easier with an electric-propelled traditional wheelchair, or with a

self-propelled wheelchair if the user is well trained.

In this paper, we focus on detecting urban features from self-propelled traditional wheelchairs. We

believe that the methodology and technique we propose in this paper can be easily adapted to the

other cases.135

3.2. Sensor data acquisition

Since smartphones include inertial sensors, they could be considered as a data source. For this

reason, during the interview we asked the participants where they usually keep their smartphone

while moving on the wheelchair. It emerges that there are heterogeneous habits: some people using

an electric wheelchair have a holder (like the tablet in the red circle in Figure 2a), vice versa a common140

choice among traditional wheelchair users is to store the smartphone in a bag positioned on the rear

side of the wheelchair back.

Our preliminary results show that when the smartphone is not firmly attached to the wheelchair

frame (e.g., when it is stored in the bag) the collected inertial data is noisy and recognition is harder.

For example, consider Figure 3 that shows accelerometer data recorded by a smartphone stored in145

a bag while the user is moving on a smooth surface. We can observe that, while the user is only

accelerating along the frontal direction, spikes are observable on all three axes. This is due to the fact

that the bag keeps swinging and the smartphone inside the bag moves and rotates in all directions.

For this reason, the technique proposed in this contribution is designed to use data from sensors

whose movements reflect the user’s or the wheelchair’s movements. In particular, we consider three150

types of sensing devices: standalone inertial units (see Figure 4), smartphones and smartwatches.

In Section 5 we specify how we positioned these devices during data acquisition. We believe that

the experiments with standalone inertial units are significant since we expect that similar sensing

capabilities may be easily integrated into next-generation wheelchairs [5], possibly enabling other

kinds of applications.155

6



Figure 4: A standalone inertial unit is slightly larger than a coin.

3.3. The urban features of interest

The main focus of the interviews was to understand the challenges that arise when moving with a

wheelchair in an urban environment. The following environmental features emerged to be relevant:

• steps: their height and whether they should be climbed up or down;

• ramps: their inclination and whether they should be climbed up or down;160

• pavement: whether it is flat or inclined (up or down and how much) and whether the surface is

smooth, asphalt or dirt road;

• uneven roads: potholes and their height;

• movement aids: like lifts and stairlift.

• tramway tracks.165

up downM LH up down ...

M LH M LH M LH M LH

uneven	road step ramp turnabout plain ascending descending

still obstacle gait

root

tramway	tracks

HS LD ...HS LDAS D

Figure 5: Labels’ hierarchy as emerging from the analysis. H=High, M=Medium, L=Low, S=Smooth, A=Asphalt,
D=Dirt road, LS=Low and Smooth, etc.

Based on the observations emerging from the interviews we derived the hierarchical set of labels

shown in Figure 5. Each label corresponds to a user’s action that discloses the presence of an urban

feature. For example, obstacle-step-up-M3 indicates that the user climbed up a step of medium

3Henceforth we omit the action label (i.e., the root node) when no confusion arises.
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height. By knowing the user’s position and direction at that time we can recognize the urban feature

(the step), its characteristics (medium height) and its orientation (whether it should be climbed up or170

down when following the same route as the user). Two labels are exceptions as they do not disclose an

urban feature: still and turnabout. The former indicates that the user is not moving, so there is no

urban feature to detect. The latter instead does not disclose an exact urban feature but can be used

to infer that the user cannot overcome an obstacle and hence can lead to infer a generic accessibility

issues when the same behaviour is observed by several users in the same location.175

In Figure 5 the first level of labels contains: obstacle, gait, movement aid and still. Obstacle

represents events with a short temporal duration (intuitively between a fraction of a second and few

seconds) while the other events have a longer duration. We discretize steps heights, roads unevenness

as well as ramps inclination into three classes (high, medium, low).

4. Automatic detection technique180

In order to recognize the urban features of interest, we use machine learning techniques, adapting to

our specific domain an approach widely used for sensor-based human activity recognition. The current

implementation of our method relies on batch learning: data are first acquired from wheelchair users,

then manually annotated with the ground truth, and finally used to train a supervised classifier. Once

the recognition model is trained, our system can detect wheelchair users’ actions in real-time.185

In the following, we describe the main steps of the data management process necessary for the

classification task.

4.1. Data pre-processing

The user’s wheelchair is equipped with several devices, placed in different positions, each acquiring

data from various inertial sensors. Data acquired from these sensors is pre-processed in three main190

steps: data cleaning, fusion and segmentation.

A common technique for data cleaning is data smoothing, which aims at reducing the intrinsic noise

of inertial sensor measurements [6]. Many techniques have been adopted in the literature (e.g., median

filter). However, in our domain it emerged that data smoothing actually decreases the recognition

rate. We believe that the reason is that some obstacles are crossed in a short time and they result in195

peaks in sensor measurements. Smoothing those peaks removes important information that is needed

to correctly detect obstacles.

Data fusion consists of temporally aligning the data streams originated by each sensor. This

is achieved by acquiring sensor data from a single gateway (e.g., a smartphone in our case) and

timestamping the data with the gateway clock.200

After data fusion, sensor data is segmented using a temporal sliding window approach. The

application of this method is influenced by two parameters: window temporal length l in seconds, and
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windows overlap factor o in percentage. Banos et al. [7] observe that sliding windows is the most widely

employed segmentation technique due to its simplicity and efficiency but it is not always suitable for the

detection of sporadic activities (like obstacles). This suggests that dynamic segmentation techniques205

(like the ones proposed by Zameni et al. [8]) could yield better results. However, one limitation of

dynamic segmentation techniques is that they have significantly higher computational costs, while we

intend to run our system in real-time on resource-constrained devices. In Section 6 we show that our

technique leads to results close to those obtained with a perfect segmentation. Hence, in our setting

we expect dynamic techniques to have a minor effect on recognition rate that does not balance the210

increased computational cost.

4.2. Segments labeling

The wheelchair movements (or activities) that we need to detect have different duration, from

a fraction of a second for obstacles to several tens of seconds, for gait or still. Figure 6 shows an

example: a step is performed between two gait activities.215

GROUND TRUTH 

SEGMENTED DATA MAJORITY APPROACH
 

 

SEGMENTED DATA PRIORITY APPROACH

STEP GAIT GAIT 

GAIT GAIT GAIT 

GAIT STEP GAIT 

Figure 6: Labelling approaches

As usual for supervised learning approaches, we faced the problem of how to assign a ground

truth label to each segment. A possibility is to use very short segments so that each one temporally

overlaps a single activity. However, as we experimentally show, using very short segments results in

poor classification quality. On the other hand, by using longer segments a user may perform more

than one activity during a single segment, as shown in Figure 6 (see the second segment in the second220

and third lines). In this case, a solution is to label a segment according to the prevalent activity for

that segment (the one that is performed more than any other during the segment duration). We call

this the majority approach and an example of its application is shown in Figure 6.

The majority approach turned out not to be effective in our domain since obstacles are generally

crossed in a very short time (e.g., half a second). Indeed, since segments have a length in the order225

of seconds, none of them is labeled as an obstacle (as in Figure 6). To address this issue we adopt a

priority labeling approach. The intuition is that obstacles are particularly relevant in our domain, so

we give them a higher priority when labeling a segment: if a segment overlaps with an obstacle at least

for a given percentage p of the segment length, then we label the segment as obstacle, independently

from the other labels. This is shown in Figure 6: the second segment has an overlap of 25% with a230

step (a type of obstacle), so, assuming p = 25%, the segment is labelled with step. In Section 6 we
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show how different values of p impact on the performance and we show that priority outperforms the

majority approach.

4.3. Feature Extraction

From each segment, we extract several statistical features that are widely adopted in the literature235

for activity recognition from inertial sensors [9]. In particular, we use the following 46 features for

each 3-axis inertial sensor:

• For each axis: minimum, maximum, difference between maximum and minimum, mean, standard

deviation, variance, median, root mean square, kurtosis, skewness, zero crossing rate, number of

peaks and energy ;240

• For each pair of axis: Pearson correlation and coefficient cross correlation

• For all axes of a given sensor: magnitude.

4.4. Data balancing

Data balancing through undersampling and oversampling is often necessary when the annotated

dataset is unbalanced, and this is our case too. Indeed, especially in our dataset collected in the245

wild, obstacles are sparse in the urban environment, and they are usually crossed in a very short

time. On the other hand, wheelchair users will likely follow a flat path for most of the time, actually

avoiding obstacles when possible. Hence, it is necessary to balance the support values of urban features

in the training set. For this reason, we apply a well-known technique combining oversampling and

undersampling [10]. The technique is organized in three main steps.250

First, the labeled feature vectors extracted from the training set are analyzed to determine which

classes are considered as minority (i.e., poorly represented) and which ones as majority (i.e., with a

high support value with respect to other classes).

Then, we apply the SMOTE method to generate, for each feature vector fv labeled with a minority

class c, sc synthetic feature vectors [11]. Choosing an optimal value of sc for each class c is not trivial:255

a high value of sc leads to a training set with too many synthetic data, which may lead to overfitting;

on the other hand, a low value of sc may not be sufficient to properly balance the dataset. Our

approach consists in choosing sc considering the support value of c in the dataset: the less the class is

represented and the higher the sc. Each synthetic feature vector is computed considering the u nearest

feature vectors with respect to fv. A high u leads to low variability in synthetic feature vectors with260

respect to the existing ones, while a low u may lead to unrealistic synthetic feature vectors.

Finally, we downsample the majority classes using the Edited Nearest Neighbor (ENN) method [10].

In particular, for each feature vector fv we compute its k neighbors. If fv is labeled with a majority

class while the neighbors are not, fv is removed from the training set. Otherwise, if fv is labeled with
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a minority class while the k neighbors are labeled with a majority class, the k neighbors are removed265

from the training set. Again, a high value of k may lead to underfitting (i.e., removing too many

samples of the majority classes), while a low value of k may not be enough to properly balance the

dataset.

4.5. Urban Features Classification

In order to investigate how different classifiers impact the recognition rate, we considered different270

well-known macro-categories of machine learning algorithms: support-vector-based, tree-based, gen-

erative and neural networks. In particular, we experimented with SVM, Random Forest, Multinomial

Naive Bayes, and Multi-layer Perceptron. With the only exception of neural networks, we chose the

most representative classifier of each category, considering the activity recognition literature. We did

not consider more sophisticated deep learning classifiers since they usually require a significant amount275

of training data, which is not our case (see Section 5). As we show in the experiments, Random

Forest resulted to have the highest recognition rate.

Given that our set of labels is naturally represented as a hierarchy, we also designed and imple-

mented a hierarchical Random Forest classifier [12]. In this approach, a separate classifier is used

for each internal node of the hierarchy tree. A segment is first classified by the root classifier as280

belonging to one of the first level labels (for example it is labeled as obstacle), and then considered by

a specialized classifier in order to get a label from the second level (for example as tramway tracks),

and further descending the hierarchy until eventually being assigned a label corresponding to a leaf

(for example a high ramp). We compared this classifier with a flat version with experimental results

reported in Section 6.285

5. Data collection

In order to validate our method, we acquired two labeled datasets of urban features collected

by 17 participants with motor disabilities. During data acquisition, the participants moved by self-

propelling their own traditional wheelchair. The first dataset (called DS1 ) has been collected in a

controlled environment (i.e., an outdoor training facility for wheelchair users), while the other one290

(DS2 ) has been acquired in the wild, asking the users to follow an urban route in Milan (Italy).

Table 1 summarizes the main datasets characteristics.

From a technical point of view, DS1 differs from DS2 also in terms of the sensors being deployed.

DS1 was acquired in a previous phase of our project and only includes data from standalone iner-

tial units while DS2 also includes data acquired by the integrated sensors of a smartphone and a295

smartwatch.

During the acquisition of both datasets, we noticed a high variability of ways of crossing urban

features among different users. For instance, not all users were able to go up or down all steps (e.g.,
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Dataset 1 (DS1) Dataset 2 (DS2)

Area type Controlled environment (outdoor
training facility closed to traffic)

In the wild (urban environment
in Milan, Italy)

Number of subjects 10 7

Avg. session duration 10 min. 20 min.

Type of obstacles Steps Ramps, uneven roads, tramway
tracks

Data sources 3 standalone inertial units 3 standalone inertial units, a
smartphone and a smartwatch

Table 1: Comparison of the two datasets

going up a high step is difficult for many users). We also noticed that the speed at which wheelchair

users cross urban features is highly variable, mainly based on the participant’s physical condition.300

Annotation was performed offline, by analyzing video recordings. In order to synchronize sensor

data with video recordings, we aligned the clocks of every device with the one of the smartphone used to

record the experiments and we used an application that prints the device time on each frame4. Actual

data annotation was performed using Anvil [13], a free video annotation tool originally developed for

gesture recognition.305

For each individual, the data acquisition process includes the following steps: a) the participant

provides the informed consent, b) standalone inertial sensors are deployed on the wheelchair5 and

are set to collect accelerometer, gyroscope and magnetometer data at 25Hz; c) the participant wears

the required mobile devices (in DS2 only), d) the data collection applications are started in order to

acquire sensor data, e) the user crosses a predefined route while being video recorded.310

In the following, we provide more details about the collected datasets, describing our experimental

setup and the acquisition protocol in the details.

5.1. Dataset acquired in a controlled environment (DS1)

In the initial phase of our research, we conducted our experiments at Spazio Vita, a Non-Profit

Organization (NPO) based in Milan, Italy, that supports people with motor disabilities. This NPO315

owns an outdoor training area which includes common urban obstacles, like steps, ascents, etc. The

training area is closed to traffic, so that wheelchair users can practice moving in a simulated urban

environment without hazards. Overall, 10 wheelchair users volunteered for data collection in this

environment. As shown in Figure 7, wheelchairs were equipped with 3 standalone inertial units

attached in different positions on the wheelchair: front-left, rear-right and rear-center.320

The route consisted in going on a dirt road, going on asphalt, being still, doing turnabout, going

up and down on inclined roads with different slopes (high, medium and low), and going up and down

on steps with different heights (high, medium and low).

4http://www.timestampcamera.com/
5We used MbientLab’s MetaMotionR: https://mbientlab.com/product/metamotionr/
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Figure 7: Positions of the inertial sensors on the wheelchair

Not all urban features identified in Section 3.3 were available in the environment where we con-

ducted the experiments. In particular, the only available obstacles were the steps, while there are no325

bumps or potholes. There were indeed some ramps, but they were about 8 meters long, so we do not

classify them as obstacles, which should take a short time (e.g., a curb ramp is an obstacle) to cross,

but instead we classify them as gait-ascending or gait-descending.

In Figure 8, we show the hierarchy of urban features that we actually collected.

up down

S A DM L M LH

step

turnabout plain ascending descending

still gait

root

M L M L

fine-grained	level

mid-grained	level

coarse-grained
level

Figure 8: Hierarchy of labels in DS1. H=High, M=Medium, L=Low, S=Smooth, A=Asphalt-like, D=Dirt road.

Table 2 shows some details of the collected data. From this table, it emerges that the dataset is330

unbalanced. This is due to the fact that many users were not able to cross specific urban features (e.g.

high/medium steps) and those who were actually able could not repeat the exercise several times, as

these activities are physically demanding. Another reason for the unbalance is that the time required

to cross an obstacle like a step is often very short (e.g., half a second) compared to gait, for example.

5.2. Dataset acquired in-the-wild (DS2)335

For the acquisition of DS2 we used the same standalone inertial units as in DS1, attached to the

wheelchair in the same positions. Additionally, we also collected inertial data from a smartphone and
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Urban Feature #instances #seconds

Step down high 9 8s

Step down medium 18 14s

Step up medium 14 15s

Step up low 34 27s

Step down low 43 31s

Gait plain on dirt road 16 218s

Gait descendent medium slope 48 230s

Gait ascendant medium slope 43 248s

Gait descendent low slope 54 252s

Turnabout 119 295s

Gait ascendant low slope 53 304s

Gait plain indoor 27 362s

Still 63 628s

Gait plain on asphalt-like 368 2821s

Table 2: Urban features occurrences and duration (DS1).

a smartwatch. We asked the participants to wear the smartwatch on the wrist (see the blue circle in

Figure 2b). We aimed at positioning the smartphone where its inertial sensors could actually capture

the wheelchair movements without too much noise (e.g., a bag on the wheelchair back is not a good340

solution, as we observed in Section 3). We first attempted to use a smartphone holder (e.g., like the

one shown in Figure 2a), but it was difficult to attach it on some wheelchair models. So we opted

for a “leg-band”, an arm-band (typically used to hold the smartphone during jogging) adapted for

attaching it the user’s leg (see the yellow circle in Figure 2b). This allowed us to maintain a fixed

position of the device, reducing the noise. The smartwatch and smartphone both run custom Android345

applications to collect data from built-in inertial sensors.

For the collection of data in DS2 each participant was asked to move along a route of approximately

800m. The route was selected to be as short as possible (hence limiting the participants’ effort), but

including several different urban features like uneven roads, ramps and road crossings with tramway

tracks. Figure 9 shows some examples of the urban features that wheelchair users crossed during350

DS2 data acquisition.The users also crossed long ramps (at the entrance of the NPO, like the one in

Figure 9c) which we labeled as gait ascendent or gait descendent depending on the direction crossed

by the user.

(a) Uneven road: a pot-
hole

(b) A ramp (c) Gait ascending/descending

Figure 9: Examples of urban features in DS2
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Despite our effort to collect a large number of different urban features, it was impossible to collect

all those reported in Figure 5 because some of them were not available in the area (e.g., movements355

aids). Also, during the data collection process, we identified a problem with the steps: most of those

available in the area were too high and only a few participants were able to cross them upward or

downward. For these reasons, DS2 does not include all urban features we presented in Section 3.3. A

subset of the urban features collected in DS2 is shown under the obstacle node in Figure 10.

up downM L up down M

M LH M LH M L M L

stepuneven	road ramp turnabout plain ascending descending

stillobstacle gait

root

tramway	tracks

L M L

first	level

intermediate	level

leaf	level

Figure 10: DS2: Hierarchy of labels collected during experiments. M=Medium, L=Low

Table 3 shows the amount of data collected for each considered urban feature. DS2 is even more360

unbalanced with respect to DS1. This is due to the fact that obstacles are sparse in the urban

environment, and they are crossed by users in a very short time.

Urban Feature #instances #seconds

Tramway tracks 158 112s

Uneven road medium 68 136s

Gait descendent medium slope 18 228s

Turnabout 89 270s

Gait ascendant medium slope 18 279s

Ramp down 115 316s

Uneven road low 248 330s

Ramp up 125 455s

Still 74 946s

Gait plain 727 8706s

Table 3: Urban features occurrences and duration (DS2).

6. Experimental evaluation

In this section, we describe the methodology that we adopted to evaluate SmartWheel, and we

show the results on the datasets described in Section 5.365
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6.1. Evaluation methodology

For each segment, the classifier provides a probability distribution among the leaf labels in the

hierarchy (see Figures 8 and 10). We consider the label with the highest probability as the one

predicted by the classifier.

In order to evaluate the classifier, for each segment we compare the label with the highest prob-370

ability with the ground-truth, hence marking the segment as true-positive (TP), true-negative (TN),

false-positive (FP) or false-negative (FN) for each possible label. For example, if a segment is actually

ramp-up but is predicted as ramp-down, it will result in a FN for ramp-up and FP for ramp-down.

Finally, given the numbers of TP, TN, FP, FN we compute for each label the standard metrics of

precision, recall and F1-score.375

In order to reliably estimate the accuracy of our approach, we adopt a leave-one-subject-out cross-

validation method: given a dataset acquired by n participants, at each fold we use n− 1 sessions (one

for each participant) to train our model, using the remaining one to test it. We then compute the

average metrics (precision, recall, F1) among the folds.

Since we modeled urban features using a hierarchical structure, we are interested in investigating380

the quality of our classifiers at different levels of the hierarchy. Indeed, while it would be desirable to

accurately detect urban features at the finest granularity (e.g., distinguish a high, medium and low

ramp down), we are also interested in the recognition rate for coarser-grained urban features, like,

for example, whether an obstacle is present or not, or whether a ramp has been climbed up or down.

For this reason, we identify three groups of nodes in our hierarchy as shown in Figures 8 and 10:385

coarse-grained, mid-grained and fine-grained.

6.2. Results on the dataset acquired in a controlled environment (DS1)

In the following, we report the main results we achieved with DS1. We tested various classifiers

and several parameters trying to identify those yielding the best results. The configuration that gave

the best overall results for DS1 is the following:390

• a flat Random Forest classifier;

• all available sensor data (3 devices, each with accelerometer, gyroscope and magnetometer);

• a window size of l = 2sec and overlap o = 50%;

• a priority approach to segments labelling with p = 20%;

• no undersampling/oversampling395

The results obtained using the above parameters are reported in Table 4. Overall, the classifier is

reliable at the first level. At finer granularities (intermediate and leaf levels) there are large differences

among the various activities. For example, Gait-plain-asphalt-like and Gait-descending-low have F1
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scores of 0.806 and 0.290, respectively. In particular, at fine-grained level, the classifier is often not

effective in distinguishing two sibling labels. Consider for example step-down: while this label is400

recognized with high precision and recall, its child step-down-medium is not; this is due to the fact

that in about 50% of the cases step-down-medium is actually classified as step-down-low.

Granularity Class Precision Recall F1 score

Coarse-grained

Obstacle 0.893 0.814 0.851

Gait 0.978 0.986 0.981

Still 0.935 0.912 0.923

Mid-grained

Step-up 0.847 0.727 0.783

Step-down 0.892 0.847 0.869

Plain-gait 0.807 0.945 0.871

Gait-ascending 0.833 0.568 0.675

Gait-descending 0.737 0.308 0.434

Gait-turnabout 0.806 0.669 0.731

Fine-grained

Step-up-medium 0.688 0.379 0.489

Step-up-low 0.725 0.806 0.763

Step-down-high 0.737 0.737 0.737

Step-down-medium 0.500 0.371 0.426

Step-down-low 0.647 0.663 0.655

Gait-plain-smooth 0.621 0.254 0.360

Gait-plain-asphalt-like 0.709 0.935 0.806

Gait-plain-dirt-road 0.625 0.320 0.423

Gait-ascending-medium 0.803 0.677 0.735

Gait-ascending-low 0.750 0.408 0.529

Gait-descending-medium 0.590 0.385 0.466

Gait-descending-low 0.931 0.172 0.290

Table 4: Results with best configuration (DS1).

While tuning the parameters with experiments conducted with DS1 four interesting results emerged.

First, segment length and the labelling approach strongly impacts on the results. Figure 11a shows

that, by using the majority approach, the F1 score for obstacles rapidly decreases when the segment405

length is longer than 0.5s. Instead, using the priority approach, the classifier performs better when the

segments have a length between 1.75 and 3.25 seconds. The second interesting result is that parame-

ter p (see Section 4) strongly affects the obstacle detection rate (see Figure 11b) and best results are

obtained with values between 0% and 25%. Third, the classifier provides best results when data from

all standalone inertial units is used, but using a single unit only marginally affects the results (see410

Figure 11c). Finally, the comparison among various classifier shows that flat random forest provides

the best result, in term of average F1-score (see Figure 11d). Given the hierarchical structure of our

labels, we expected a hierarchical classifier to outperform the others, but actually hierarchical Random

Forest resulted to have almost the same performance (but slightly worse) than the flat version. The

same holds for Multinomial Naive Bayes. Two classifiers provide clearly worse results: support vector415

machines and multi-layer perceptron. We believe that this is due to the relatively small training set.

The results also showed that applying data balancing methods on this dataset was counterproduc-

tive. We believe that this may be due to the very small number of samples of the minority class (i.e.,
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(d) Classifiers (RF=flat random forest,
HRF=hierarchical random forest, MNB=multinomial
naive bayes, MLP=multi-layer perceptron,
SVM=support vector machine).

Figure 11: Effects of parameters and alternative configurations (DS1).

the step). Hence, oversampling this class leads to unreliable synthetic feature vectors which degraded

the recognition rate.420

6.3. Results on the dataset acquired in the wild (DS2) considering standalone inertial units only

In order to fairly compare the results obtained on DS1 and DS2, we first analyze the results

obtained on DS2 by considering data from the standalone inertial units only. The configuration that

gave the best overall results for DS2 is the following:

• a flat Random Forest classifier;425

• 3 standalone inertial units;

• a window size of l = 3sec and overlap o = 50%;

• a priority approach to segments labeling with p = 20%

• oversampling with SMOTE parameter u = 5 and undersampling with ENN parameter k = 3

Table 5 shows the results obtained with the above parameters. Overall, we observe a reduced430

recognition rate with respect to the results previously shown for DS1. There are three possible

motivations for this: first, DS2 is obtained by a lower number of participants. Second, the recognition

task in the wild is intrinsically harder because there is higher variability in the collected data. For

18



example, crossing the tramway track at different locations can generate substantially different inertial

movements. Third, we observed that participants develop skills in limiting the impact of obstacles435

on the wheelchair movements. For example, when asked to move over an uneven road they select the

route that minimizes their effort hence avoiding as much as possible the obstacle itself (this was not

possible in the controlled environment). The result is that obstacles are harder to distinguish among

themselves and with other actions (e.g., gait-plain).

Granularity Class Precision Recall F1 score

Coarse-grained

Obstacle 0.540 0.717 0.616

Gait 0.905 0.825 0.863

Still 0.827 0.848 0.837

Mid-grained

Plain gait 0.866 0.778 0.820

Gait ascending 0.829 0.578 0.681

Gait descending 0.641 0.497 0.560

Turnabout 0.526 0.746 0.616

Tramway tracks 0.451 0.728 0.557

Uneven road 0.456 0.668 0.542

Ramp 0.430 0.501 0.463

Fine-grained

Ramp down 0.307 0.394 0.345

Ramp up 0.422 0.453 0.437

Uneven road low 0.305 0.538 0.389

Uneven road medium 0.227 0.142 0.175

Table 5: Results with the best configuration (DS2)

Most parameters have an impact on the classifier performance similar to what observed for DS1.440

For example, Figure 12a shows that the priority approach outperforms the majority one, and that the

best results are achieved with segments of length between 2 and 6 seconds, while for longer segments

the classifier is less reliable in recognizing the obstacles. Also, the comparison among different classifier

provided the same result as with DS1: the classifier showing better performance (in terms of F1-score)

is flat Random Forest (see Figure 12c).445

There is one major difference between the configuration yielding the best results with DS1 and DS2:

the use of data balancing techniques. Figure 12b shows the impact of the data balancing techniques

using DS2. Using either oversampling and undersampling techniques improve on average by 8% and

13%, respectively. Using both techniques the improvement is even larger, with an average F1 gain of

15%.450

6.4. Impact of data collected from smartphone and smartwatch

As described in Section 5, DS2 also contains inertial data collected from a smartphone and a

smartwatch. We conducted a set of experiments to investigate the recognition accuracy of our classifier

when data is collected by sensors on these devices. Figure 13 shows F1 score at the coarse-grained level

for different combinations of device. We can observe that using the smartphone only, the accuracy is455

only marginally affected.
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Figure 12: Effects of parameters (DS2).
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Figure 13: Coarse-grained level average F1 score using different device combinations (SIU = standalone inertial units,
SP = smartphone, SW = smartwatch).

This is in line with what we observed in Section 6.2: collecting inertial data from a single sensor,

only marginally decreases the classifier reliability. This also confirms that placing the smartphone on

the user’s leg is a practical solution, as inertial sensors positioned here actually capture the wheelchair

movements. Indeed, Table 6 shows that the recognition rate obtained by using only the smartphone is460

just slightly worse than the one reached by considering only standalone inertial sensors (see Table 5).

The average loss of F1 at the coarse-grained level is 4%, while at the mid-grained level is 10%.
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By contrast, much lower F1 scores are obtained from the smartwatch. Our intuition is that, being

positioned on the wrist, the smartwatch does not reliably capture the wheelchair movements. To

support this intuition, during the experiments we also observed that many users did not only move465

their arms and hands to control the wheelchair, but also to adjust their position on the wheelchair,

to cover their mouth while coughing, etc... Clearly, all these movements add noise to the collected

inertial data.

The noisy data acquired by the smartwatch also impact when this device is used in addition with

other devices: when the smartwatch is paired with the standalone inertial units, the smartphone or470

both, it does not improve the classifier reliability and, instead, for some urban features, it actually

decreases the value of F1 score.

Granularity Class Precision Recall F1 score

Coarse-grained

Obstacle 0.491 0.660 0.563

Gait 0.886 0.803 0.842

Still 0.792 0.826 0.809

Mid-grained

Plain gait 0.838 0.749 0.791

Gait ascending 0.602 0.302 0.403

Gait descending 0.563 0.503 0.531

Turnabout 0.503 0.723 0.593

Tramway tracks 0.312 0.636 0.418

Uneven road 0.395 0.410 0.402

Ramp 0.356 0.512 0.421

Fine-grained

Ramp down 0.146 0.245 0.182

Ramp up 0.363 0.456 0.406

Uneven road low 0.272 0.305 0.287

Uneven road medium 0.242 0.194 0.215

Table 6: Results obtained using the smartphone (DS2).

6.5. Evaluation of the segmentation strategy

In our approach, we use a fixed-size sliding window segmentation approach. While this approach

is common in the activity recognition literature, it is questionable whether it is suitable for urban475

feature detection. Indeed, obstacles have a very short duration with respect to other activities like

gait plain. Hence, dynamic segmentation techniques, like the one proposed in [8], could be more

appropriate to tackle this problem. However, such techniques are significantly more expensive from

the computational point of view, so a trade-off is required between computational performance and

classification reliability.480

In order to investigate this problem, we define as the perfect segmentation the one generating a

single segment for each instance of urban feature/action in the ground-truth. This is depicted in

Figure 14 where perfect segmentation is compared with the sliding windows approach. Intuitively, this

segmentation makes sure that the sensor data corresponding to the crossing of an urban feature is all

and only captured by a single segment. A dynamic segmentation strategy has a similar goal. Clearly485
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perfect segmentation cannot be implemented in a real system since it requires the knowledge of the

ground truth.

GROUND	TRUTH

SLIDING	WINDOW
(PRIORITY	APPROACH)

STEP GAITGAIT

STEP

PERFECT
SEGMENTATION

STEP GAITGAIT

GAIT GAIT STEPGAIT GAIT GAIT GAITGAIT

Figure 14: The perfect segmentation compared with sliding windows.

Table 7 compares the results of our segmentation and labeling approach with the ones obtained by

using perfect segmentation. As expected, the overall F1-score of perfect segmentation outperforms our

method. Indeed, perfect segmentation can better isolate the movements related to obstacles to let the490

classifier better discriminate urban features. This is especially true considering the mid-grained level,

where urban features like tramway-tracks and uneven road exhibit a significantly increased recognition

rate. However, from the results it also emerges that the gain in prediction quality obtained by perfect

segmentation is not as high as expected. Indeed, our method reaches F1 scores which are only slightly

worse. This means that, even using perfect segmentation, the problem of classifying urban features in495

the wild is still challenging. Note that, in order to obtain the results above, we added to each feature

vector generated from perfect segmentation an additional feature that represents the duration of its

corresponding segment.

Avg. F1 Avg. F1

Granularity Sliding windows Perfect Segmentation

Coarse-Grained 0.772 0.792

Mid-Grained 0.606 0.664

Fine-Grained 0.334 0.343

Table 7: Comparing classifier recognition rates with sliding windows and perfect segmentation (DS2)

6.6. System evaluation with k-fold cross-validation

The results presented above were obtained with leave-one-subject-out cross-validation. The ratio-500

nale for this approach is that we wanted to assess the model capability to classify data for users not

included in the training set. However, during data acquisition, we observed that wheelchair users have

very different and personal ways of crossing urban features. Hence, motivated by the well-known effec-

tiveness of using personalized activity recognition models [14], in this section we evaluate SmartWheels

with k-fold cross-validation so that the training and test sets include data from the same users. This505

evaluation is representative of the hypothetical setting in which SmartWheels, in the first phase of

deployment, requires the user to manually provide some labels (e.g., through active learning).
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In the following, we report the results of k-fold cross-validation on dataset DS2. We set the number

of folds k = 7 (as the number of users in DS2), so that the size of the training set is approximately

the same as for the leave-one-subject-out cross-validation. We performed a grid search to find the best510

hyper-parameters using the smartphone as the sensing device. The configuration that gave the best

results is the following:

• a flat Random Forest classifier;

• a windows size of l = 8sec and overlap o = 75%;

• a priority approach to segments labeling with p = 0%;515

• oversampling with SMOTE parameter u = 3 and undersampling with ENN parameter k = 2.

The results are shown in Table 8. With this form of evaluation SmartWheels achieves better results

(in terms of precision, recall and F1 score) for all labels in all granularity levels (compare Table 8 with

Table 6).

Granularity Class Precision Recall F1 score

Coarse-grained

Obstacle 0.80 0.883 0.84

Gait 0.92 0.856 0.886

Still 0.88 0.916 0.90

Mid-grained

Plain gait 0.916 0.792 0.85

Gait ascending 0.807 0.93 0.863

Gait descending 0.797 0.904 0.85

Turnabout 0.645 0.882 0.745

Tramway tracks 0.745 0.741 0.743

Uneven road 0.74 0.90 0.81

Ramp 0.76 0.80 0.78

Fine-grained

Ramp down 0.65 0.704 0.677

Ramp up 0.722 0.734 0.73

Uneven road low 0.654 0.856 0.741

Uneven road medium 0.787 0.733 0.76

Table 8: Results obtained using the smartphone with k-fold cross validation (DS2).

Looking closely at the results, we can appreciate that the recognition rate of obstacles at the520

coarse-grained level is improved by 28%. Most importantly, the overall results at the fine-grained level

increased, on average, by 43% and at the mid-grained level by 30%.

Hence, we expect that our system could potentially benefit by adopting semi-supervised learning

techniques to automatically update the recognition model (initialized with labeled data from other

users) with examples from the same user that is using the system.525

6.7. Entropy-based prediction selection

The results shown so far in this section consider, for each segment, the classifier prediction, defined

as the label with the highest probability in the probability distribution returned by the classifier for

that segment. This is indeed a common approach to evaluate a classifier reliability. In the Moving
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Wheels system, these predictions need to be collected by a server and aggregated to infer the presence530

of an urban feature from multiple (and possibly conflicting) predictions from the same location. While

this form of data aggregation is out of the scope of this paper, there is one important aspect to note:

for each prediction, it is possible to compute a confidence level in terms of the probability distribution

entropy. The lower the entropy is, the higher is the confidence.

There are at least two possible ways to use the entropy values while collecting and aggregating the535

data in Moving Wheels. First, we may decide to crowdsource the prediction only when the entropy

value is lower than a given threshold. This can also reduce the network usage by the mobile device

running the classifier and the computational overhead on the server. Second, the prediction can be

crowdsourced together with the entropy value so that the server can use this information during data

aggregation. For example, in the case of two contrasting predictions, the server can prefer the one540

with lower entropy.

An example of the correlation between entropy and the classifier performance is shown in Figure 15.
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Figure 15: Obstacle recognition rate at mid-grained level varying the entropy threshold (DS2).

On the x-axis, the figure shows normalized entropy values. For each x value, the y-axis reports

the average precision, recall and F1-score among the segments whose probability distribution has a

normalized entropy below x. Support indicates the percentage of these samples. The figure considers545

the average values (precision, recall and F1-score) for obstacles at the mid-grained level. We can

observe that for low normalized entropy values (e.g., 0.2) perfect recognition is achieved (precision,

recall and F1-score equal 1). However, only a few segments (about 0.13%) have such a small normalized

entropy value. For larger normalized entropy values the classification performance decreases and the

support increases. For example, 18% of all obstacles at the mid-grained level have normalized entropy550

value of 0.45 or below and for these segments the F1-score is 0.74. Table 9 shows the individual results

for the three obstacles at the mid-grained level when normalized entropy is lower than 0.45.
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Class Support Precision Recall F1 score

Tramway tracks 29% 0.769 0.946 0.833

Uneven road 18% 0.750 0.757 0.754

Ramp 17% 0.594 0.846 0.698

Table 9: Results obtained with entropy threshold at 0.45 (DS2).

7. Related work

Several commercial solutions have been proposed to detect urban features from images (e.g., Map-

pillary6) or to support people with disabilities during navigation. Similarly to Moving Wheels, some555

of these services provide personalized routes. The main limitation of these systems is that they cover

relatively small regions; for example, Route4U 7 can only provide navigation instructions in some parts

of 5 cities/towns in Europe while Kimap8 only covers a few small towns in Italy. This shows that the

main challenge with these applications is the large scale collection of geo-referenced information, and

indeed our contribution is aimed at mitigating this problem.560

Considering the scientific literature, four main challenges have been addressed in the field of naviga-

tion for people with disabilities: (a) to compute the user’s position with high precision [15, 16, 17, 18],

(b) to compute personalized navigation instructions [2, 3], (c) to effectively convey them (e.g., to

blind users) [19, 20], and (d) to detect urban features. This last challenge has been addressed with

two different approaches: crowdsourcing and automatic detection techniques. With crowdsourcing,565

information is manually annotated by end-users or other stakeholders [21, 22, 23] as in the sidewalk

project9. A well-known problem with crowdsourcing is to motivate users to contribute since it often

requires explicit user action. This problem is addressed, among others, by Liu et al. [24] while de-

signing the WeMap system [25] that, similarly to Moving Wheels, is aimed at providing accessibility

information about routes and places. Other projects share a similar objective; In particular, several570

services allow the users to rate a Point of Interest (POI) accessibility (e.g., aXs map (www.axsmap.com)

and wheelmap (wheelmap.org)). Unfortunately, based on our study, wheelchair users are rarely will-

ing to manually insert accessibility data. As a consequence, only a small fraction of the necessary

information is provided, it is often unreliable, and it easily becomes obsolete. Consequently, these

services are rarely useful, according to the users we interviewed.575

Automatic detection of urban features can be adopted to overcome the limitations of crowdsourcing.

Computer vision techniques are effective to detect some urban features, like pedestrian crossings and

traffic lights, both from images captured by the device camera [26, 27], and from satellite images [28].

Recently, deep learning has been applied to Gooogle Street View images in order to detect accessibility

problems (e.g., damaged sidewalks or obstructions) [29]. The main limitation of these techniques is580

6www.mapillary.com
7route4u.org
8www.kimap.it
9sidewalk.umiacs.umd.edu
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that there are some features (e.g., a ramp inclination) that can be hard to detect with computer

vision but that our inertial approach can indeed detect. Hence, we believe that the two approaches

are complementary.

An alternative approach to automatically detect urban features is to process inertial data and, to

the best of our knowledge, the only solution proposed in the literature is based on data collected from585

people walking in the urban environment [30], while Moving Wheels uses data from wheelchair users.

The machine learning methods we propose and adapt to our application are well known in human

activity recognition and have been extensively studied in the literature. Supervised or semi-supervised

classification techniques are usually adopted to address this problem [9]. Several works proposed to

recognize human activities (walking, running, etc.) by analyzing data from inertial sensors found590

in commonly available mobile devices, like smartphones, smartwatches or wristbands [31, 32, 33].

However, activity recognition for wheelchair users is an application domain with its own peculiarities

that has been only partially investigated. Smart cushions have been proposed to monitor lifestyle

revealing activities for sedentary subjects (including wheelchair users) [34]. Inertial sensors have

also been used to detect simple activities to improve GPS-based localization for both pedestrian and595

wheelchair users [18]. Differently from those approaches, we rely on inertial sensors to detect activities

which in turn disclose detailed information about urban features.

A very closely related work presenting a system called WheelShare [35] appeared concurrently with

the conference version of our paper. Similarly to Moving Wheels, the general aim of WheelShare is to

design a navigation system suggesting accessible routes based on crowdsourcing data acquired from600

inertial sensors installed on wheelchairs. The work in [35] can be considered somehow complementary

to ours since it is focused on the routing and crowdsourcing problems while we focus on designing and

evaluating techniques to automatically detect urban features. Moreover, while urban features in [35]

are limited to road surfaces, we investigate the detection problem considering also steps, obstacles,

ramps, etc..605

8. Conclusion

We presented Moving Wheels, an urban navigation system for wheelchair users and we proposed

SmartWheels, a technical solution for automatic detecting urban features. Training and testing

SmartWheels required the acquisition of movement data from 17 wheelchair users in a controlled

environment and in the wild. Our experiments show that the proposed approach is indeed effective,610

in particular using data collected in the controlled environment.

While the detection problem is particularly challenging with data collected in the wild, the detec-

tion rate can still be high if the crowdsourcing process also takes into account the confidence, which

can be computed for each prediction. Another factor that highly impacts the detection rate is the

personalization of the recognition model. Indeed, the wheelchair users involved in our data acquisition615
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campaign exhibited very different and personal ways of crossing urban features. Our preliminary re-

sults using k-fold cross-validation suggest that semi-supervised learning could be particularly effective

in this domain.

Another interesting insight is that the recognition rate obtained with a single smartphone posi-

tioned on the user’s leg is only slightly lower than when three standalone inertial sensors are attached620

to the wheelchair. This suggests that the system can be used with existing technology, without the

need of smart-wheelchairs.

In the future we intend to implement the whole Moving Wheels system, including a navigation

service that computes personalized routes, and a mobile client specifically designed for people with

motion impairments that also detects urban features implementing SmartWheels. One major challenge625

is to design a system that populates a geo-referenced urban feature database by integrating the data

collected from SmartWheels with those from other data sources (e.g., urban features extracted with

computer vision techniques). The problem is particularly challenging because this system have to deal

with data that changes over time and that are possibly incorrect and approximate. One source of

possibly incorrect data is SmartWheels that, while generally reliable, does not always compute the630

correct information (like any other ML-based classification system). Higher classification accuracy

can clearly help mitigating this problem and, to achieve this, in future work we want to use the

classification’s confidence to enable semi-supervised urban feature detection, combining self-learning

and active learning. This would enable to continuously improve and personalize the classifier over

time. A second source of approximate information is the location associated to the detected urban635

features. Indeed, in addition to the intrinsic approximation due to the available location sensing

technologies (e.g., GNSS), the data-integration system will also have to deal with the fact that the

exact time when the user crosses the urban feature (e.g., gets down a ramp) is unknown. Indeed, our

technique can detect a urban feature during a time window, but the user’s location during that time

changes. There are two possible solutions to mitigate this problem: to correlate information from two640

or more consecutive windows and to use small windows. The latter is indeed the reason why, when

tuning the hyper-parameters, we opted for short windows, when this does not significantly affect the

recognition accuracy.
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