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Abstract: The reductive cyclization of different organic nitro compounds by carbon monoxide,
catalyzed by transition metal complexes, is a very efficient and clean strategy for the synthesis of
many N-heterocycles. However, its use requires the use of autoclaves and pressurized CO lines.
In this perspective, the authors will present the results obtained in their laboratories on the use of
phenyl formate as a convenient CO surrogate, able to liberate carbon monoxide under the reaction
conditions and allowing the use of a cheap glass pressure tube as a reaction vessel. In most cases,
yields were better than those previously reported by the use of pressurized CO, proving that the use
of CO surrogates can be a viable alternative to the gaseous reagent.

Keywords: nitroarenes; nitroalkenes; indoles; carbazoles; oxazines; palladium; carbon monoxide;
co-surrogate; homogeneous catalysis; carbonylation reactions

1. Introduction

Nitrogen heterocycles are privileged structures in pharmaceutical chemistry [1] and
an enormous effort is continuously being made to improve their synthesis [2]. Among
the numerous possible synthetic approaches, the reductive cyclization of nitroarenes and
nitroalkenes by carbon monoxide, catalyzed by transition metal complexes, appears to
have some highly desirable features: (1) nitroarenes are usually the entry point for the
introduction of nitrogen-containing groups on the aromatic ring and nitroalkenes can
also be often prepared easily, e.g., by an Henry reaction; (2) carbon monoxide is cheap
with respect to virtually any other reducing agent except for dihydrogen, which however
affords anilines and not heterocyclic compounds in most cases; (3) the only stoichiometric
byproduct is CO2, which spontaneously separates from the reaction products at the end
of the reaction, thus simplifying the work-up. This is a clear advantage with respect to
reactions employing phosphites or phosphines as reductants (e.g., the classical Cadogan
reactions), whose oxidized product usually needs a chromatographic purification to be
completely eliminated; (4) selectivities in the desired heterocycles are often very high and
almost quantitative in several cases; (5) low catalyst loading is possible, up to 0.1 mol % or
even lesser in some cases [3–9]. Given these features, it may appear surprising that such a
synthetic approach has not become widespread in synthetic organic chemistry laboratories
or even in industrial practice. The main reasons for this are clearly technical: performing
these reactions requires the use of high-pressure equipment and pressurized CO lines. The
latter, in particular, are not present in the overwhelming majority of chemical laboratories.
The problem is also common to other carbonylation reactions and, in the last decade,
different solid or liquid substances able to liberate CO under the reaction conditions have
been developed. The field has been reviewed several times [10–14]. However, several of
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these so-called CO surrogates are quite expensive, highly toxic, or require the use of a
two-chamber reactor to be employed. Several years ago, we started to investigate the use
of CO surrogates in the field of reductive cyclization reactions of organic nitro compounds
and selected formate esters as reagents because they are cheap, non- or little-toxic and
because the stoichiometric byproduct, an alcohol or phenol, is unlikely to interfere with
the reaction course. In this account, our results in the field are summarized. For the
sake of completeness, it should be mentioned that other groups have also employed
Mo(CO)6 [15–17], Co2(CO)8 [18,19], and a triformate ester [20,21] as CO surrogates for
related reductive cyclization reactions of nitroarenes to give N-heterocycles.

2. Discussion
2.1. General Aspects

Before discussing the synthesis of the individual heterocycles, we need to summarize
some general trends in the reactivity of nitro compounds with CO and on the use of CO
surrogates, which have been evidenced in numerous previous studies.

1. The initial activation of the nitro compound, at least when late transition metal
catalysts are employed, is always an electron transfer from the metal to the nitro
group [22–31]. For this reason, low-valent metal complexes need to be used. However,
due to the high sensitivity of the latter, metal complexes in higher oxidation states are
often used as precatalysts, which are reduced by CO under the operating conditions.
By the same token, nitroarene and to a lesser extent nitroalkenes are suitable substrates,
but nitroalkanes have higher oxidation potentials and are unreactive in these systems.

2. Palladium, ruthenium and rhodium compounds have all been employed as catalysts,
but the best results have been obtained by the use of palladium and in the last decade
the other two metals have only rarely been used.

3. Phosphines have been used as ligands for palladium in many cases, but it has been
shown that they are oxidized to phosphine oxides during the reaction [32]. Since we
aim at developing a catalytic system that may also be applied at an industrial level, we
prefer to avoid using them. No successful use of N-heterocyclic carbenes as ligands in
this field has ever been reported. The best ligands in terms of activity and stability of
the catalytic system are phenanthroline and its substituted derivatives [33–36].

4. Aryl formates can be decomposed to CO and phenols even by weak organic bases.
Alkyl formates are cheaper, but they are activated only by very strong bases, which
would not be compatible with most reactions. Alternatively, they can be decomposed
by the action of a ruthenium-based catalytic system [37].

5. When using CO surrogates, the features of the vessel in which the reaction is per-
formed are important for the success of the reaction and for safety reasons. We have
discussed the pros and cons of different kinds of “pressure tubes” in a previous paper,
thus we will not do it here again [38].

2.2. Synthesis of Indoles from O-Nitrostyrenes

The first reaction we tried to accomplish using formate esters as CO surrogates was
the synthesis of indoles from o-nitrostyrenes (Scheme 1).
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reductive carbonylation reactions of nitroarenes [39,40] and, in the presence of phenan-
throline, it is also known to activate alkyl formates [41]. Indeed, some indole was formed
when this cluster was employed as a catalyst in the absence of any palladium compound.
However, substrate conversion was very low. Best results were obtained with a bimetallic
Ru3(CO)12/[Pd(Phen)2][BF4]2/Phen catalytic system (Phen = 1,10-phenanthroline). Yet, a
high temperature of 180 ◦C is required for efficient formate decomposition and the synthetic
results were not satisfactory, with a maximum indole yield of around 70% [42] (Conditions
A in Figure 1).

Catalysts 2021, 11, x FOR PEER REVIEW 3 of 10 
 

 

 

Scheme 1. Synthesis of indoles from o-nitrostyrenes. 

Initially, alkyl formates were attempted as CO surrogates (Scheme 1, right side). A 

palladium catalyst alone was inactive, as no formate decomposition occurs in its presence 

when a weak base is employed. Ru3(CO)12 has long been known to be a catalyst for reduc-

tive carbonylation reactions of nitroarenes [39,40] and, in the presence of phenanthroline, 

it is also known to activate alkyl formates [41]. Indeed, some indole was formed when this 

cluster was employed as a catalyst in the absence of any palladium compound. However, 

substrate conversion was very low. Best results were obtained with a bimetallic 

Ru3(CO)12/[Pd(Phen)2][BF4]2/Phen catalytic system (Phen = 1,10-phenanthroline). Yet, a 

high temperature of 180 °C is required for efficient formate decomposition and the syn-

thetic results were not satisfactory, with a maximum indole yield of around 70 % [42] 

(Conditions A in Figure 1). 

 

Figure 1. Indoles from o-nitrostyrenes. Conditions A: 0.27 mmol nitrostyrene, mol. 1 mol %
[Pd(Phen)2][BF4]2, 1 mol % Ru3(CO)12, 20 mol % Phen; mol. 40 µL (0.29 mmol) Et3N; in butyl
formate (10 mL), at 180 ◦C for 10 h. Conditions B: 0.54 mmol nitrostyrene, 1 mol % Pd(CH3CN)2Cl2,
2.5 mol % Phen, 240 µL (2.2 mmol) HCOOPh, 40 µL (0.29 mmol) Et3N, in CH3CN (10 mL), 140 ◦C
for 3 h (unless otherwise noted). Conditions C: 0.54 mmol nitrostyrene, 1 mol % Pd(CH3CN)2Cl2,
5 mol % Phen, 260 µL (2.38 mmol) HCOOPh, 100 µL (0.72 mmol) Et3N, in CH3CN + DMF (9+1 mL),
at 100 ◦C for 6 h.

The use of aryl formates, the best phenyl formate, allowed us to achieve much better
results and to employ just palladium as a catalyst, thus simplifying the catalytic system
(Scheme 1, left side). This catalytic system was subjected to two optimization rounds.
During the first one [42], the temperature was set at 140 ◦C because the rate appeared to
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be too slow at lower temperatures and substrate conversion was not complete. Almost
quantitative yields could be achieved in several cases, but substrates bearing sensitive
groups such as an aldehyde still gave unsatisfactory results (Conditions B in Figure 1).
Thus, we engaged in a second round of optimization of the reaction conditions and we
succeeded in finding a set of experimental conditions, which allow us to work at 100 ◦C
with as little as 0.2 mol % palladium and obtain good yields even for indoles bearing a
pyrrolyl or an aldehydic group [38] (Conditions C in Figure 1). Quite surprisingly, it was
found that the best single reaction solvent is CH3CN, but the use of a 9:1 CH3CN/DMF
mixture gave even better results.

The main synthetic results are reported in Figure 1, where the yields obtained under
different conditions are also compared. It should be noted that, whenever a comparison
is possible, the obtained yields are in most cases higher than the best previously reported
yields for the same reaction employing pressurized CO as a reductant.

Notably, when two nitro groups are present in the substrate in the ortho and para
position with respect to the vinyl group, a selective reaction of the ortho group could be
achieved, suggesting that the double bond coordinates to the metal. Indeed, the para nitro
group should be more reactive if only steric effects were present, as happens in the case
of 2,4-dinitrotoluene [43]. Moreover, when a double cyclization is possible, the reaction
could be stopped at the first step or run to completion simply by changing the reaction
time. Only in a few cases the reaction failed to yield an isolable indole, and in each case
there is an explanation for that. For example, a free amino group on the aryl ring was not
tolerated because anilines easily react with nitroarenes under similar reaction conditions to
give diarylureas [44,45].

2.3. Synthesis of Indoles from β-Nitrostyrenes

The reactions described in the previous paragraph are very selective, but the syn-
thesis of the starting o-nitrostyrene is not always high yielding. In some cases, synthe-
sizing a β-nitrostyrene, where the nitro group is on the olefin moiety, is more straightfor-
ward. Moreover, when indoles polysubstituted at the phenyl ring are targeted, the use
of β-nitrostyrenes as substrates allows the replacement of two functional groups (nitro
and vinyl) with just one. Reductive cyclization of β-nitrostyrenes was first reported by
Dong [46], but only for the more reactive α-aryl-β-nitrostyrenes. We later were able to
extend the reaction to substrates lacking the second aryl ring [47] and even to the synthesis
of thienopyrroles [48] from thienyl-substituted nitroalkenes and to that of pyrroles from
nitrodienes [49]. We thus decided to test the use of phenyl formate as a CO surrogate for
this reaction (Scheme 2).
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Scheme 2. Synthesis of indoles from β-nitrostyrenes.

Despite some effort in optimizing the experimental conditions, only fair yields could
be obtained in the case of β-nitrostyrenes lacking any substituent in the alpha posi-
tion [50]. Investigation of the reasons for this failure revealed that bases catalyze the
oligo/polymerization of the nitrostyrene itself and this reaction occurs at a competitive rate
with respect to the cyclization. The only partially successful solution was to increase the
phenyl formate amount so that the higher generated CO pressure accelerates the cyclization
reaction with respect to polymerization. However, the amount of formate can be increased
only to a small extent not to exceed the safety pressure limits of the employed apparatus
(ca. 10 bar). Retrospectively, the cyclization of β-nitrostyrenes is the reaction that needed
the highest CO pressures to obtain good results [47] among those here investigated and the
reason is clearly the same.
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Better results were obtained with the more reactive and less prone to polymerization
α-aryl-β-nitrostyrenes. The substrate scope is shown in Figure 2.
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Figure 2. Synthesis of indoles from β-nitrostyrenes. Experimental conditions: 0.54 mmol nitrostyrene,
1 mol % PdCl2(CH3CN)2, 5 mol % Phen, 260 µL PhOC(O)H, 120 µL Et3N, in CH3CN (10 mL) at
140 ◦C for 4 h.

2.4. Synthesis of 3,6-dihydro-2H-[1,2]-oxazines from Nitroarenes and Conjugated Dienes

Free nitrosoarenes quickly react with conjugated dienes in a hetero Diels-Alder reaction
to give 3,6-dihydro-2H-[1,2]-oxazines [51–53]. However, the synthesis of nitrosoarenes is
not straightforward and nitrosoarenes themselves are not indefinitely stable molecules if
stored in the air at room temperature. Trapping of nitrosoarenes intermediately formed
during the reduction of nitroarenes is an effective strategy to synthesize oxazines [54,55].
The experimental conditions initially optimized for the synthesis of indoles using phenyl
formate as a CO surrogate proved to also be suitable for the synthesis of oxazines [56].

The synthetic results are shown in Figure 3. Excellent results were obtained in many
cases. The reaction only failed when the nitroarene bears strongly electron-donating
substituents (e.g., a para-methoxy group), because in these cases, the corresponding ni-
trosoarene is a poor dienophile, or when both the terminal positions of the diene are
substituted (e.g., 1,4-diphenylbutadiene), because in this case, the formation of the oxazine
is reversible at high temperature.

When the diene is not symmetrical, a mixture of the two possible regioisomers is
obtained. Notably, the relative amounts of the two isomers were the same whether the
oxazines were obtained from a catalytic reaction starting from the nitroarene or when they
were obtained from an uncatalyzed reaction of the nitrosoarene with the diene in the same
solvent and at the same temperature. This observation strongly indicates that the formation
of the oxazine occurs outside the coordination sphere of palladium.
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Figure 3. Synthesis of oxazines from nitroarenes and conjugated dienes. Experimental conditions:
nitroarene 0.54 mmol, Pd(CH3CN)2Cl2 1 mol %, Phen 2.5 mol %, diene 4 equiv, HCOOPh 2.2 mmol,
Et3N 0.27 mmol, in CH3CN (10 mL) at 140 ◦C.

2.5. Synthesis of Carbazoles from o-Nitrobiphenyls

Cyclization of o-nitrobiphenyls to carbazoles under the reducing action of carbon
monoxide has long been known [57,58], but has been little developed with respect to the
synthesis of indoles because it usually requires harsher conditions and affords lower yields
of the desired heterocycle. Wishing to solve the problem, we decided to apply our phenyl
formate protocol to this interesting reaction. Initial attempts were disappointing and only
low yields of carbazole, accompanied by larger amounts of o-aminobiphenyl, were obtained.
However, extensive optimization of the reaction conditions allowed us to reach high yields
of the desired products [59]. Key points for success proved to be the use of DMF as a
solvent in place of acetonitrile and the substitution of triethylamine with an inorganic base,
the best Na3PO4. Employing Na2[PdCl4] as a catalyst precursor instead of PdCl2(CH3CN)2
also improved the stability of the catalytic system.

Synthetic results are shown in Figure 4.
Good results were in general obtained both when the substituent was present on

the nitro-containing ring or on the other. However, if a substituent is present in the 3’
position (meta to the nitrophenyl ring) a mixture of isomers was obtained. As for other
syntheses described in this paper, a free aldehydic group was well tolerated. Surprisingly,
the synthesis was successful even in the presence of potentially reactive groups, such as
amino and hydroxy. The presence of a free carboxylic group lowered the yield considerably,
but this carbazole can be more effectively obtained by hydrolysis of the corresponding
methyl ester, which is instead obtained in a 93% yield. The protocol could also be employed
for the synthesis of the natural products Clausine V and Mukonine. Yields are in general
higher than those previously obtained by the use of pressurized CO.
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DMF (10 mL), at 170 ◦C for 5 h.

2.6. Future Perspectives

The reactions described in this account do not exhaust the possibilities offered by
the use of phenyl formate as a CO surrogate. We already reported a single example of
reductive cyclization of an o-nitrochalcone to give a quinolone in which phenyl formate [38]
successfully replaced pressurized CO [60,61] (Scheme 3).
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An optimization and a more general investigation of this reaction have not yet been
accomplished. However, this is not the only reductive cyclization reaction that may be
amenable to be investigated and many others may be successfully performed, for which
the use of pressurized CO has been described and that are mentioned in the reviews cited
at the beginning of this paper.
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In addition, the development of different CO surrogates which do not release phenol
as a stoichiometric byproduct is a very stimulating task. Promising results have already
been obtained in our group on the use of the HCOOH/Ac2O mixture [62].

3. Conclusions

The use of CO as a reductant for nitroarenes and nitroalkenes presents many ad-
vantages from a synthetic point of view, but is operationally complex for many research
groups. In this brief account, we have presented our results on the use of formate esters as
convenient CO surrogates. In particular, phenyl formate can be activated even by weak
bases, which do not interfere with the reactions or even have a beneficial role for them.
Notably, in most cases, the isolated yield in the desired heterocycle was higher than those
previously obtained for the same reaction when gaseous CO or even other reductant had
been employed. The only exception is the cyclization of β-nitrostyrenes to indoles. The
reason is that in order to give good results, this reaction requires too high CO pressures
to be sustained by a glass pressure tube. The reason for the higher selectivity in the other
cases may reside just in a more extensive optimization of the reaction conditions, but the
slow generation of CO during the reaction may also play a role. In any case, the high
yields obtained in the other cases clearly show that the use of CO surrogates should not
necessarily be considered as a second choice when the use of pressurized CO is not possible,
but may represent the best available option in any case.
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