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Abstract 

The growing capacity to handle vast amounts of data, combined with a shift in ser-
vice delivery models, has improved scalability and efficiency in data analytics, par-
ticularly in multi-tenant environments. Data are treated as digital products and pro-
cessed through orchestrated service-based data pipelines. However, advancements 
in data analytics do not find a counterpart in data governance techniques, leaving 
a gap in the effective management of data throughout the pipeline lifecycle. This 
gap highlights the need for innovative service-based data pipeline management 
solutions that prioritize balancing data quality and data protection. The framework 
proposed in this paper optimizes service selection and composition within service-
based data pipelines to maximize data quality while ensuring compliance with data 
protection requirements, expressed as access control policies. Given the NP-
hard nature of the problem, a sliding-window heuristic is defined and evaluated 
against the exhaustive approach and a baseline modeling the state of the art. Our 
results demonstrate a significant reduction in computational overhead, while maintain-
ing high data quality.

Keywords:  Access control, Big data, Data protection, Data quality, Privacy, Service-
based data pipelines

Introduction
The wide success and adoption of cloud-edge infrastructures and their intrinsic 
multitenancy radically have changed how distributed systems are developed, deployed, 
and executed, redefining IT scalability, flexibility, and efficiency. Multitenancy in 
fact enables multiple users to share resources, such as computing power, storage, and 
services, optimizing their utilization and reducing operational costs.

The increasing ability to collect and manage huge volumes of data, coupled with a 
paradigm shift in service delivery models, has also significantly enhanced scalability 
and efficiency in data analytics. Data are treated as digital products, which are managed 
and analyzed by multiple services orchestrated in pipelines. This shift is fostering the 
emergence of new platforms and environments, such as data marketplaces and data 
spaces, where data in critical domains (e.g., law enforcement, healthcare, transportation) 
can be pooled and shared to maximize data quality and trustworthiness, and distributed 
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data management systems supporting data storing, versioning, and sharing for complex 
analytics processes.1

The flip side of a scenario where service-based data pipelines orchestrate services 
selected at run time and are delivered in the cloud-edge continuum is the increased 
complexity in data governance. Data are shared and analyzed by multiple services owned 
by different providers introducing unique security challenges. On one side, the pipeline 
owner and data providers have different security requirements, access policies, and data 
sensitivity that vary according to the specific orchestrated services; on the other side, 
orchestrated services (data consumers) have different profiles that impact on the amount 
of data they can access and analyze.

Adequate measures such as encryption, access control mechanisms, and data 
anonymization techniques have been implemented to protect data against unauthorized 
access and ensure compliance with regulatory requirements such as GDPR [1] or HIPAA 
[2]. However, data quality is also crucial and must be guaranteed, as the removal or 
alteration of personally identifiable information from datasets to safeguard individuals’ 
privacy can compromise the accuracy of analytics results.

So far, all research endeavors have been mainly concentrated on exploring these two 
issues separately: on one hand, data quality, encompassing accuracy, reliability, and 
suitability, has been investigated to understand the implications in analytical contexts 
[3, 4]. On the other hand, data security and privacy focused on the protection of 
confidential information and adherence to rigorous privacy regulations [5–8]. Although 
extensively studied, these investigations often prioritize enhancing the quality, security, 
and privacy of source data rather than ensuring data quality, security, and privacy 
throughout the entire processing pipeline, or the integrity of outcomes derived from 
data.

A valid solution requires a holistic approach that integrates technological solutions, 
organizational policies, and ongoing monitoring and adaptation to emerging threats 
and regulatory changes across the entire pipeline lifecycle. The implementation of 
robust access control mechanisms or privacy techniques, ensuring that only authorized 
users can access specific datasets (or a portion thereof ) is just a mandatory but initial 
step. Additional requirements are emerging. First, data protection requirements 
should be defined at each stage of the pipeline, potentially integrating techniques like 
data masking and anonymization (e.g., k-anonymity, l-diversity, differential privacy) to 
safeguard sensitive information, thereby preserving data privacy while enabling high-
quality data sharing and analysis. Second, data lineage should be prioritized, fostering 
a comprehensive understanding and optimization of data flows and transformations 
within complex analytical ecosystems. Third, data protection and data quality 
requirements should drive the process that builds a pipeline with maximum data quality 
while addressing data protection requirements.

When evaluating a solution meeting the above criteria, the following questions 
naturally arise: 

1  https://​joinup.​ec.​europa.​eu/​colle​ction/​elise-​europ​eanlo​cation-​inter​opera​bility-​solut​ions-e-​gover​nment/​gloss​ary/​term/​
data-​marke​tplace, https://​inter​natio​nalda​taspa​ces.​org/, https://​digit​alstr​ategy.​ec.​europa.​eu/​en/​libra​ry/​staff-​worki​ng-​
docum​entda​ta-​spaces.

https://joinup.ec.europa.eu/collection/elise-europeanlocation-interoperability-solutions-e-government/glossary/term/data-marketplace
https://joinup.ec.europa.eu/collection/elise-europeanlocation-interoperability-solutions-e-government/glossary/term/data-marketplace
https://internationaldataspaces.org/
https://digitalstrategy.ec.europa.eu/en/library/staff-working-documentdata-spaces
https://digitalstrategy.ec.europa.eu/en/library/staff-working-documentdata-spaces
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1.	 How does a data protection solution affect data quality in the pipeline? How can we 
minimize this impact thus maximizing the overall data quality?

2.	 Should data protection be implemented at each pipeline step rather than filtering all 
data at the outset?

3.	 In a scenario where service-based data pipelines are built by selecting the best 
services among various candidate services, how might these choices be driven by 
quality requirements?

Based on the aforementioned considerations, we propose a data governance framework 
for service-based data pipelines. The primary objective of our framework is to support 
the selection of data processing services within the pipeline, with a central focus on 
the selection of those services that maximize data quality, while upholding security 
and privacy requirements.2 To this aim, each element of the pipeline is annotated with 
i) data protection requirements expressing transformation on data and ii) functional 
specifications on services expressing data manipulations carried out during each service 
execution. Though applicable to a generic scenario, our data governance approach 
starts from the assumption that maintaining a larger volume of data leads to higher data 
quality; as a consequence, its service selection algorithm focuses on maximizing data 
quality in terms of data completeness by retaining the maximum amount of information 
when applying data protection transformations.

The primary contributions of the paper can be summarized as follows: 1. we define 
a data governance framework that implements an algorithm for the selection of data 
processing services enriched with metadata that describe both data protection and 
functional requirements; 2. we propose a parametric heuristic tailored to address the 
computational complexity of the NP-hard service selection problem that maximizes 
the quality of data, while addressing data protection and functional requirements; 3. we 
evaluate the performance and quality of the algorithm through experiments conducted 
using a real, open dataset from the domain of law enforcement. Performance and quality 
are compared against a baseline modeling current approaches in literature.

The remainder of the paper is structured as follows: Sect.  System model and 
reference scenario presents our system model and reference scenario. Section Pipeline 
template introduces the pipeline template and describes data protection and functional 
annotations. Section  Pipeline instance describes the process of building a pipeline 
instance from a pipeline template according to our service selection algorithm. 
Section  Maximizing the pipeline instance quality introduces the quality metrics 
used in service selection and the heuristic solving the service selection problem. 
Section Experiments presents our experimental results. Section Related work discusses 
the state of the art and Sect. Conclusions and future work draws our concluding remarks 
and future work.

2  We note that the assembly of the selected services in an executable pipeline is out of the scope of this paper. However, 
our approach is agnostic to the specific executable environment.
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System model and reference scenario
We present our system model (Sect.  System model) and reference scenario 
(Sect. Reference scenario).

System model

We consider a service-based environment where a service-based data pipeline (service 
pipeline in the following) is designed to analyze data. Our service pipeline is enriched 
with metadata specifying data protection requirements and functional specifications, 
and models the data flow among component services, without posing any restrictions on 
the control flow. It is composed of the following parties:

•	 Service, software distributed by a service provider that performs a specific task;
•	 Service Pipeline, a sequence of connected services that collect, prepare, process, and 

analyze data in a structured and automated manner;
•	 Data Governance Policy, a structured set of privacy guidelines, rules, and procedures 

regulating data access, sharing, and protection;
•	 User, executing a service pipeline on the data. We assume the user is authorized 

to perform this operation, either as the data owner or as a data processor with the 
owner’s consent.

•	 Dataset, the data target of the service pipeline. We assume all data are ready for 
analysis, that is, they underwent a preparatory phase addressing issues such as 
missing values, outliers, and formatting discrepancies.

A service pipeline is a graph formally defined as follows.

Definition 1  (Service Pipeline) A Service Pipeline is as a direct acyclic graph G(V ,E ), 
where V  is a set of vertices and E is a set of edges connecting two vertices vi,vk∈ V  . The 
graph has a root ( • ) vertex vr∈ V  , a vertex vi∈ VS for each service si , an additional ver-
tex vf∈ V  for each parallel ( ⊕ ) structure modeling the contemporary execution (fork) of 
services.

Modeling the pipeline as a directed acyclic graph ensures a sound representation of its 
data flow. This standard approach to representing workflows, including service pipelines, 
closely mirrors real-world systems.

We note that V  ={vr,vf }∪ VS , with vertices vf  modeling branching for parallel structures, 
and root vr possibly representing the orchestrator. To simplify the explanation and 
maintain clarity, we model alternative execution paths as distinct service pipelines, rather 
than embedding alternative structures within a single pipeline. This representation 
is equivalent to having alternative structures within a single pipeline, as each distinct 
pipeline corresponds to one possible execution path. By separating these paths into 
individual pipelines, we avoid the additional complexity of modeling alternatives within 
the same structure, while fully capturing all execution possibilities. We refer to the 
service pipeline annotated with both functional and non-functional requirements, as the 
pipeline template. It acts as a skeleton, specifying both the structure of the pipeline, 
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that is, the chosen sequence of desired services, and the functional and non-functional 
requirements for each component service. We note that, in our multi-tenant cloud-
based ecosystem, each element within the pipeline may have a catalog of candidate 
services. A pipeline template is then instantiated in a pipeline instance by selecting the 
most suitable candidates from the pipeline template.

This process involves retrieving a set of compatible services for each vertex in the 
template, ensuring that each service meets the functional requirements and aligns with 
the policies specified in the template. Since we also consider security policies that may 
necessitate security and privacy-aware data transformations, compatible services are 
ranked based on their capacity to fulfill the policy while preserving the maximum amount 
of information (data quality in this paper). Indeed, our data governance approach, while 
applicable to a generic scenario, operates under the assumption that preserving a greater 
quantity of data is correlated with enhanced data quality, a principle that reflects many 
real-world scenarios [9, 10]. However, we acknowledge that this assumption may not 
universally apply and remain open to exploring alternative solutions in future endeavors. 
The best service is then selected to instantiate the corresponding component service in 
the template. Upon selecting the most suitable service for each component service in 
the pipeline template, the pipeline instance is completed and ready to be compiled in an 
executable pipeline.

Reference scenario

Our approach targets application domains involving sensitive data, such as Personally 
Identifiable Information (PII), that must be securely shared and protected across diverse 
and complex analytical processes involving multiple stakeholders. It is applicable across 
industrial use cases based on cloud-edge infrastructures, where data from third-party 
(IoT) devices are injected and shared via the cloud, as well as in data ecosystems across 
sectors such as healthcare, finance, law enforcement, and justice.

Our reference scenario draws on commonly used dataspaces, such as dataspace on 
public administration, focusing specifically on the law enforcement domain. Using 
open data, we selected a scenario that includes real sensitive records of individuals 
detained in Connecticut Department of Correction facilities while awaiting trial.3 
Various stakeholders may use these data for different objectives: public health agencies 
to monitor inmate health trends, judicial bodies to track case processing efficiency, 
advocacy groups to identify disparities in detention, policymakers to analyze the 
impacts on the criminal justice system, social services to prepare post-release support, 
researchers to study the broader social effects of pre-trial detention, and correctional 
departments to compare admission trends across facilities.

To streamline the use case, we focused on a subset of this real-world scenario, 
envisioning three Department of Correction (DOC) partners—Connecticut, New York, 
and New Hampshire—sharing data according to their privacy policies. In this scenario, 
a user from the Connecticut DOC seeks to compare admission trends in Connecticut’s 
facilities with those in New York and New Hampshire to evaluate, for instance, possible 

3  https://​data.​ct.​gov/​Public-​Safety/​Accus​ed-​Pre-​Trial-​Inmat​es-​in-​Corre​ction​al-​Facil​iti/​b674-​jy6w.

https://data.ct.gov/Public-Safety/Accused-Pre-Trial-Inmates-in-Correctional-Faciliti/b674-jy6w
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discrimination and unfair treatment of individuals awaiting trial. Additionally, the policy 
requires that all service execution remains within the Connecticut DOC environment, 
mandating data protection measures if data transmission extends beyond Connecticut’s 
borders.

Our reference scenario aligns with the latest regulations on data governance (e.g., the 
European AI Data Governance Act4) and artificial intelligence (e.g., the EU AI Act5). 
In particular, the EU AI Act identifies law enforcement and administration of justice 
as high-risk domains where proper data governance, risk management, and quality 
management systems must be employed in AI training and operation following the 
requirements on data quality and protection set in this paper.

Table  1 presents a sample of the adopted dataset. Each row represents an inmate; 
each column includes the following attributes: date of download, a unique identifier, last 
entry date, race, gender, age of the individual, the bound value, offense, entry facility, and 
detainer. To serve the objectives of our study, we extended this dataset by introducing 
randomly generated first and last names.

The user’s objective aligns with the predefined service pipeline in Fig. 1 that orches-
trates the following sequence of operations: (i) Data fetching, including the download 
of the dataset from other states; (ii) Data preparation, including data merging, clean-
ing, and anonymization; (iii) Data analysis, including statistical measures like average, 
median, and clustering-based statistics; (iv) Data storage, including the storage of the 
results; (v) Data visualization, including the visualization of the results.

Pipeline template
Our approach integrates data protection and data management into the service pipeline 
using annotations. To this aim, we extend the service pipeline in Definition 1 with: i) data 
protection annotations that express transformations on data, ensuring compliance with 
data protection requirements, ii) functional annotations that express data manipulations 
carried out during service execution. These annotations enable the implementation of 
an advanced data lineage, tracking the entire data lifecycle by monitoring changes that 
result from functional service execution and data protection requirements.

In the following, we first introduce the annotated service pipeline, called pipeline 
template (Sect.  Pipeline template definition). We then present both functional 
annotations (Sect. Functional annotations) and data protection annotations (Sect. Data 
protection annotation), providing an example of a pipeline template in the context of the 
reference scenario in Sect. Reference scenario.

Pipeline template definition

Given the service pipeline in Definition 1, we use annotations to express data protection 
requirements and functional requirements on the services to be integrated into the pipe-
line. Each service vertex in the service pipeline is labeled with two mapping functions 
forming a pipeline template: i) an annotation function � :VS → P that associates a set of 
data protection requirements to be enforced on data, in the form of policies p ∈ P , with 

4  https://​digit​al-​strat​egy.​ec.​europa.​eu/​en/​polic​ies/​data-​gover​nance-​act).
5  https://​digit​al-​strat​egy.​ec.​europa.​eu/​en/​polic​ies/​regul​atory-​frame​work-​ai.

https://digital-strategy.ec.europa.eu/en/policies/data-governance-act
https://digital-strategy.ec.europa.eu/en/policies/regulatory-framework-ai
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each vertex vi∈ VS ; ii) an annotation function γ :VS → F  that associates a functional ser-
vice description Fi ∈ F  with each vertex vi∈ VS.

The template is formally defined as follows.

Definition 2  (Pipeline Template) Given a service pipeline G ( V ,E ), a Pipeline Tem-
plate G� ,γ (V ,E, � , γ ) is a direct acyclic graph extended with two annotation functions: 
1. Data Protection Annotation �  that assigns a label �  (vi ) to each vertex vi ∈ VS . Label 
� (vi ) corresponds to a set Pi of policies pj to be satisfied by service si represented by vi ; 2. 
Functional Annotation γ that assigns a label γ (vi ) to each vertex vi ∈ VS . Label γ (vi ) cor-
responds to the functional description Fi of service si represented by vi.

We note that, at this stage, the template is not yet linked to any service. We also note 
that policies pj ∈ Pi in �  (vi ) are combined using logical OR, meaning that the access 
decision is positive if at least one policy pj evaluates to true.

Data protection annotation

Data Protection Annotation �   expresses data protection requirements in the form of 
access control policies. We consider an attribute-based access control model that offers 
flexible fine-grained authorization and adapts its standard key components to address 
the unique characteristics of a big data environment. Access requirements are expressed 
in the form of policy conditions that are defined as follows.

Definition 3  (Policy Condition) A Policy Condition pc is a Boolean expression of the 
form (attr_name op attr_value), with op∈{<,>,=, =,≤,≥ }, attr_name an attribute label, and 
attr_value the corresponding attribute value.

Built on policy conditions, an access control policy is then defined as follows.

Fig. 1  Service pipeline in the reference scenario
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Definition 4  (Policy) A policy p∈ P is 5-uple <subj, obj, act, env, TP > that specifies 
who (subject) can access what (object) with action (action), in a specific context (environ-
ment) and under specific obligations (data transformation).

More in detail, subject subj specifies a service si issuing an access request to perform 
an action on an object. It is a set { pci } of Policy Conditions as defined in Definition 3. For 
instance, (classifier=“SVM”) specifies a service providing an SVM classifier. We note that 
subj can also specify conditions on the service owner (e.g., owner_location=“EU”) and 
the service user (e.g., service_user_role=“DOC Director”).

Object obj defines the data governed by the access policy. It is a set { pci } of Policy 
Conditions on the object’s attributes. For instance, {(type=“dataset”), (region=“CT”)} 
refers to an object of type dataset whose region is Connecticut.

Action act specifies the operations that can be performed within a big data 
environment, from traditional atomic operations on databases (e.g., CRUD operations) 
to coarser operations, such as an Apache Spark Direct Acyclic Graph (DAG), Hadoop 
MapReduce, an analytics function call, and an analytics pipeline.

Environment env defines a set of conditions on contextual attributes, such as time 
of the day, location, IP address, risk level, weather condition, holiday/workday, and 
emergency. It is a set { pci } of Policy Conditions as defined in Definition 3. For instance, 
(time=“night”) refers to a policy that is applicable only at night.

Data Transformation TPdefines a set of security and privacy-aware transformations 
on obj that must be enforced before any access to data is given. Transformations focus 
on data protection, as well as on compliance with regulations and standards, in addition 
to simple format conversions. For instance, let us define three transformations that can 
be applied to the dataset in Table 1, each performing different levels of anonymization: i) 
level l0 ( tp0 ): no anonymization; ii) level l1 ( tp1 ): partial anonymization with only first and 
last name being anonymized; iii) level l2 ( tp2 ): full anonymization with first name, last 
name, identifier, and age being anonymized.

Access control policies pj ∈ Pi annotating a vertex vi in a pipeline template G� ,γ specify 
the data protection requirements that a candidate service must fulfill to be selected in 
the pipeline instance. Section Pipeline instance describes the selection process and the 
pipeline instance generation.

Functional annotations

A proper data management approach must track functional data manipulations across 
the entire pipeline execution, defining the functional requirements of each service 
operating on data. To this aim, each vertex vi∈ VS is annotated with a label γ  (vi ), 
corresponding to the functional description Fi of the service si represented by vi . Fi 
describes the functional requirements, such as API, inputs, and expected outputs. It also 
specifies a set TF of data transformation functions tfi  , which can be triggered during the 
execution of the corresponding service si.

Function tfi  ∈ TF can be: i) an empty function tfǫ  that applies no transformation 
or processing on the data; ii) an additive function tfa that expands the amount of data 
received, for example, by integrating data from other sources; iii) a transformation 
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function tft  that transforms some records in the dataset without altering the domain; iv) 
a transformation function tfd (out of the scope of this work) that changes the domain of 
the data.

For simplicity but with no loss of generality, we assume that all candidate services meet 
functional annotation F  and that TF = tf  . As a consequence, all candidate services apply 
the same transformation to the data during the pipeline execution.

Example 3.1  (Pipeline Template) Let us consider the reference scenario introduced 
in Sect. Reference scenario. Figure 2c presents an example of a pipeline template consist-
ing of five stages, each one annotated with a policy in Table 2a and corresponding data 
transformations in Table 2b.

The first stage in Fig. 2c consists of three parallel vertices v1 , v2 , v3 for data collection. 
Data protection annotations � (v1 ), � (v2 ), � (v3 ) refer to policy p0 in Fig. 2a with an empty 
transformation tp0 in Fig. 2b. Functional requirements F1 , F2 , F3 prescribe a URI as input 
and the corresponding dataset as output.

The second stage in Fig. 2c consists of vertex v4 , merging the three datasets obtained 
at the first stage. Data protection annotation � (v4 ) refers to policies p1 and p2 in Fig. 2a, 
which apply different data transformations depending on the relation between the 
dataset and the service owner.

If the service owner is also the dataset owner (i.e., (service_owner = dataset_owner) ), 
the dataset is not anonymized ( tp0 ). If the service owner is a partner of the dataset owner 
(i.e., (service_owner = partner(dataset_owner)) ), the dataset is anonymized at level1 
( tp1 ). If the service owner has no partner relationship with the dataset owner, no policy 
applies. Functional requirement F4 prescribes n datasets as input and the merged dataset 
as output.

Fig. 2  Anonymization policies (a) and data transformations (b) Pipeline Template Example (c)
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The third stage in Fig. 2c consists of vertex v5 for data analysis. Data protection anno-
tation �  (v5 ) refers to policies p1 and p2 in Fig. 2a, as for the second stage. Functional 
requirement F5 prescribes a dataset as input and the results of the data analysis as 
output.

The fourth stage in Fig. 2c consists of vertex v6 , managing data storage. Data protection 
annotation �  (v6 ) refers to policies p3 and p4 in Fig.  2a, which apply different data 
transformations depending on the relation between the dataset and the service region. 
If the service region is the dataset origin (condition (service_region = dataset_origin) in 
p3 ), the dataset is anonymized at level l0 ( t

p
0 ). If the service region is in a partner region 

(condition ( service_region={“NY”,“NH”}) in p4 ), the dataset is anonymized at level l1 ( t
p
1 ). 

Functional requirement F7 prescribes a dataset as input and the URI of the stored data 
as output.

The last stage in Fig. 2c consists of vertex v7 , responsible for data visualization. Data 
protection annotation �  (v7 ) refers to policies p5 and p6 in Fig.  2a, which anonymize 
data according to the environment where the service is executed. A risky environment is 
defined as a region outside the owner or partner facility. If the environment is risky ( p5 ), 
the data are anonymized at level r0 ( t

p
3 ). If the environment is not risky ( p6 ), the data are 

anonymized at level r1 ( t
p
4 ). Functional requirement F8 prescribes a dataset as input and a 

data visualization interface (possibly in the form of a JSON file) as output.

Pipeline instance
A Pipeline Instance G′(V ′,E, � ) instantiates a Pipeline Template G� ,γ (V ,E, � , γ ) 
by selecting and composing services according to data protection and functional 
annotations in the template. It is formally defined as follows.

Definition 5  (Pipeline Instance) Let G� ,γ (V ,E, � , γ ) be a pipeline template, a Pipeline 
Instance G′(V ′,E, � ) is an isomorphic directed acyclic graph where: i) v′r = vr ; ii) for each 
vertex vf  modeling a parallel structure, there exists a corresponding vertex v′f  ; iii) for 
each vi ∈ VS annotated with policy Pi (label � (vi )) and functional description Fi (label γ (vi
)), there exists a corresponding vertex v′i∈ V ′

S instantiated with a service s′i , such that: 

1)	 s′i satisfies data protection annotation � (vi ) in G� ,γ (V ,E, � , γ );
2)	 s′i satisfies functional annotation γ (vi ) in G� ,γ (V ,E, � , γ ).

Condition 1 requires that each selected service s′i satisfies the policy requirements Pi of 
the corresponding vertex vi in the Pipeline Template, whereas Condition 2 is needed to 
preserve the process functionality, as it simply states that each service s′i must satisfy the 
functional requirements Fi of the corresponding vertex vi in the Pipeline Template.

We then define a pipeline instantiation function that takes as input a Pipeline 
Template G� ,γ (V ,E, � , γ ) and a set Sc of candidate services, and returns as output 
a Pipeline Instance G′(V ′,E, � ) . We note that Sc is partitioned in different sets of 
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services Sci  , one for each vertex vi∈ VS . Recall from Sect. Functional annotations that 
all candidate services meet the functional annotation in the template, meaning that 
Condition 2 in Definition 5 is satisfied for all candidate services.

The pseudocode of the pipeline instantiation process is presented in Fig.  3. The 
Pipeline Instance is generated by traversing the Pipeline Template with a breadth-first 
search algorithm (line 4–10), starting from the root vertex vr . Then, for each vertex vf  
in the pipeline template, the corresponding vertex v′f  is generated (line 5). Finally, for 
each vertex vi∈ VS , a two-step approach is executed as follows.

1.	 Filtering Algorithm—It checks whether profile prf j of each candidate service sj ∈ Sci  
satisfies at least one policy in Pi (line 16). If yes, service sj is compatible, otherwise 
it is discarded (line 17). The filtering algorithm finally returns a subset S′i ⊆ Sci  of 
compatible services for each vertex vi∈ VS (line 19).

2.	 Selection Algorithm—The selection algorithm selects one service s′i for each set S′i of 
compatible services, which instantiates the corresponding vertex v′i ∈ V ′ (line 8–9). 

Fig. 3  Pseudocode of the pipeline instantiation process
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There are many ways of choosing s′i , Sect. Maximizing the pipeline instance quality 
presents our approach based on the maximization of data quality Q.

When all vertices vi ∈ V  in G� ,γ have been visited, the Pipeline Instance G′ is generated 
(line 11), with a service instance s′i for each v′i∈ V ′ . Vertex v′i is annotated with policies 
in Pi according to � , because policies in Pi are evaluated and enforced at runtime, only 
when the pipeline instance is triggered and before any service is executed. When policy 
evaluation returns true, data transformation TP ∈ Pi is applied, otherwise a default 
transformation that removes all data is applied.

Example 4.1  (Pipeline Instance)

Let us consider a subset { v5 , v6 , v7 } of the pipeline template G� ,γ in Example 3.1.

As presented in Table  2a, each vertex is labeled with policies (column Vertex→
Policy) and is associated with different candidate services (column Candidate) and 
corresponding profile (column Profile). The filtering algorithm matches each candidate 
service profile against the policies annotating the corresponding vertex (Table  2). It 
returns the set of services whose profile satisfies a policy (column Filtering): i) for 
vertex v5 , the filtering algorithm produces the set S1 = {s51, s52} . Assuming that the 
dataset owner is “CT”, the service profile of s51 matches p1 and s52 ’s one matches p2 . 
For s53 , there is no policy match and, thus, it is discarded; ii) for vertex v6 , the filtering 
algorithm returns the set S′2 = {s62, s63} . Assuming that the dataset region is “CT”, the 
service profile of s62 matches p5 and the one of s63 matches p6 . For s61 , there is no policy 
match and, thus, it is discarded; iii) for vertex v7 , the filtering algorithm returns the set 
S′3 = {s71, s72} . Since policy p7 matches against any subject, the filtering algorithm keeps 
all services.

For each vertex v′i , we select a matching service s′j from S′i and incorporate it into a 
valid instance. For instance, we select s51 for v5 ; s62 for v6 , and s71 for v7 as depicted in 
Table 2a (column instance). We note that to move from a valid to an optimal instance, it 
is mandatory to evaluate candidate services based on specific quality metrics that reflect 
their impact on data quality, as discussed in the following of this paper.

Maximizing the Pipeline Instance Quality
Our goal is to generate a pipeline instance with maximum quality, addressing data pro-
tection requirements throughout the pipeline execution. To this aim, we first discuss 
the quality metrics used to measure and monitor data quality, which guide the genera-
tion of the pipeline instance with maximum quality. Then, we prove that the problem 
of generating a pipeline instance with maximum quality is NP-hard (Sect. NP-hardness 
of the max-quality pipeline instantiation problem). Finally, we introduce a parametric 
heuristic (Sect.  Heuristic) designed to tackle the computational complexity associated 
with enumerating all possible combinations within a given set. The main objective of 
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the heuristic is to approximate the optimal path for service interactions and transforma-
tions, especially within the realm of complex pipelines consisting of numerous vertices 
and candidate services. Our focus extends beyond identifying optimal combinations to 
include an understanding of the quality changes introduced during the transformation 
processes.

Quality metrics

Ensuring data quality is mandatory to implement service-based data pipelines that 
provide accurate results and decision-making along the whole pipeline execution. 
Different definition of quality exists (e.g., [3, 4]) according to different dimensions 
such as completeness, timeliness, and accuracy, to name but a few. Quality metrics 
measure the data quality preserved at each step of the pipeline according to the selected 
quality dimensions, and can be classified as quantitative or qualitative. Quantitative 
metrics monitor the amount of data lost during data transformations to model the 
quality difference between datasets X and Y  . Qualitative metrics evaluate changes in 
the properties of datasets X and Y  . For instance, qualitative metrics can measure the 
changes in the statistical distribution of the two datasets.

It is important to note that providing a comprehensive taxonomy of all possible 
dimensions and metrics is beyond the scope of this paper. In our future work, we will 
examine the conceptual and practical aspects of classifying and defining relevant quality 
metrics, such as timeliness and consistency, as well as their impact on our methodology.

Table 2  Instance example

(a) Valid Instance example

Vertex→Policy Candidate Profile Filtering Instance

v5 → p1,p2 s51 service_owner = “CT” ✓ ✓
s52 service_owner = “NY” ✓ ✗
s53 service_owner = “CA” ✗ ✗

v6 → p3,p4 s61 service_region = “CA” ✗ ✗
s62 service_region = “CT” ✓ ✓
s63 service_region = “NY” ✓ ✗

v7 → p5,p6 s71 visualization_location = “CT_FACILITY” ✓ ✓
s72 visualization_location = “CLOUD” ✓ ✗

(b) Best Quality Instance example

Candidate Ranking

s51 1

s52 2

s53 –

s61 –

s62 1

s63 2

s71 1

s72 2
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Quantitative metric

We propose a quantitative metric MJ based on the Jaccard coefficient that assesses the 
similarity between two datasets. The Jaccard coefficient is defined as follows [11]:

where X and Y are two datasets of the same size.
The coefficient is calculated by dividing the cardinality of the intersection of two 

datasets by the cardinality of their union. It ranges from 0 to 1, with 0 indicating no 
similarity (minimum quality) and 1 indicating complete similarity (maximum quality) 
between the datasets. It has several advantages. Unlike other similarity measures, such 
as Euclidean distance, it is not affected by the magnitude of the values in the dataset. It is 
suitable for datasets with categorical variables or nominal data, where the values do not 
have a meaningful numerical interpretation.

Metric MJ extends the Jaccard coefficient with weights that model the importance of 
each element in the dataset as follows:

where xi ∈ X ( yi ∈ Y, resp.) is the i-th feature of dataset X (Y, resp.), and wi the weight 
modeling the importance of the i-th feature.

It is computed by dividing the cardinality of the intersection of two datasets by the 
cardinality of their union, weighted by the importance of each feature in the datasets. It 
provides a more accurate measure of similarity.

Qualitative metric

We propose a qualitative metric MJSD based on the Jensen-Shannon Divergence (JSD) 
that assesses the similarity (distance) between the probability distributions of two 
datasets.

JSD is a symmetrized version of the KL divergence [12] and is applicable to a pair of 
statistical distributions only. It is defined as follows:

where X and Y are two distributions of the same size, and M =0.5*(X+Y) is the average 
distribution. JSD incorporates both the KL divergence from X to M and from Y to M.

To make JSD applicable to datasets, where each feature in the dataset has its 
own statistical distribution, metric MJSD applies JSD to each column of the dataset. 
The obtained results are then aggregated using a weighted average, thus enabling 
the prioritization of important features that can be lost during the policy-driven 
transformation in Sect. Maximizing the pipeline instance quality, as follows:

J (X ,Y ) =
|X ∩ Y |

|X ∪ Y |

MJ (X ,Y ) =

∑n
i=1 wi(xi ∩ yi)∑n
i=1 wi(xi ∪ yi)

JSD(X ,Y ) =
1

2
(KL(X ||M)+ KL(Y ||M))

MJSD = 1−

n∑

i=1

wi · JSD(xi, yi)
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where 
∑n

i=1 wi = 1 and each JSD(xi, yi) accounts for the Jensen-Shannon Divergence 
computed for the i-th feature in datasets X and Y. It ranges from 0 to 1, with 0 indicating 
no similarity (minimum quality) and 1 indicating complete similarity (maximum quality) 
between the datasets.
MJSD provides a weighted measure of similarity, which is symmetric and accounts 

for the contribution from both datasets and specific features. It can compare the 
similarity of the two datasets, providing a symmetric and normalized measure that 
considers the overall data distributions.

Pipeline quality

Metrics MJ  and MJSD contribute to the calculation of the pipeline quality Q as follows.

Definition 6  (Pipeline Quality) Given a metric M ∈ {MJ ,MJSD } modeling data quality, 
the pipeline quality Q is equal to 

∑|S|
i=1Mij , with Mij the value of the quality metric com-

puted at each vertex v′i∈ V ′
S of the pipeline instance G′ with respect to the service instance 

s′j , with 1 ≤ j < |Sci |.

We also use the notation Qij , with Qij = Mij , to specify the quality at vertex v′i∈ V ′
S of 

G′ for service s′j.

NP‑hardness of the max‑quality pipeline instantiation problem

The process of computing a pipeline instance (Definition 5) with maximum quality Q 
can be formally defined as follows.

Definition 7  (Max-Quality Problem) Given a pipeline template G� ,γ and a set Sc of 
candidate services, find a max-quality pipeline instance G′ such that:

•	 G′ satisfies conditions in Definition 5,
•	  ∃ a pipeline instance G′′ that satisfies conditions in Definition 5 and such that quality 

Q ( G′′)>Q ( G′ ), where Q ( · ) is the pipeline quality in Definition 6.

The Max-Quality problem is a combinatorial selection problem and is NP-hard, as 
stated by Theorem  5.1. However, while the overall problem is NP-hard, the filtering 
step of the process, is solvable in polynomial time. It can be done by iterating over each 
vertex and each service, checking if the service matches the vertex policy. This process 
takes polynomial time complexity O(|VS | ∗ |S|).

Theorem 5.1  The Max-Quality problem is NP-Hard.

Proof  The proof is a reduction from the multiple-choice knapsack problem (MCKP), a 
classified NP-hard combinatorial optimization problem, which is a generalization of the 
simple knapsack problem (KP) [13]. In the MCKP problem, there are t mutually disjoint 
classes N1,N2, . . . ,Nt of items to pack in some knapsack of capacity C, class Ni having 
size ni . Each item j ∈ Ni has a profit pij and a weight wij ; the problem is to choose one 
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item from each class such that the profit sum is maximized without having the weight 
sum exceed C.

The MCKP can be reduced to the Max-Quality Pipeline Instantiation Process in 
polynomial time, with N1,N2, . . . ,Nt corresponding to the sets of compatible services 
Sc1, S

c
2, . . . , S

c
u , with t = u and ni also the size of each set Sci  . The profit pij of item j ∈ 

Ni corresponds to quality Qij computed for each candidate service sj ∈ Sci  , while wij 
is uniformly 1 (thus, C is always equal to the cardinality of VC ). It is evident that the 
solution to one problem is also the solution to the other (and vice versa). Since the 
reduction can be done in polynomial time, the Max-Quality problem is also NP-hard. 	
� �

Example 5.1  (Max-quality pipeline instance) We extend Example 4.1 with the selec-
tion algorithm in Sect. Pipeline instance built on pipeline quality Q. The selection algo-
rithm is applied to the set S′∗ of compatible services and returns three service rankings, 
one for each vertex v4 , v5 , v6 , according to quality metric MJ measuring the amount of 
preserved data after anonymization. The ranking is presented in Table 2b, according to 
the transformation function in the corresponding policies. We assume that the more 
restrictive the transformation function (i.e., it anonymizes more data), the lower is the 
service position in the ranking. For example, s11 is ranked first because it anonymizes 
less data than s12 and s13 , that is, Q11 Q12 and Q11 Q13 . The same applies to the ranking 
of s22 and s23 . The ranking of s31 and s32 is affected by the environment state at the time 
of the ranking. For example, if the environment where the visualization is performed is 
a CT facility, then s31 is ranked first and s32 second because the facility is considered less 
risky than the cloud, and Q31 Q32.

Heuristic

We design and implement a heuristic algorithm built on a sliding window for comput-
ing the pipeline instance maximizing quality Q. At each iteration i, a window of size 
|w| selects a subset of vertices in the pipeline template G� ,γ (V ,E, � , γ ) , from vertices 
at depth i to vertices at depth |w| +i− 1. Service filtering and selection in Sect. Pipeline 
instance are then executed to maximize quality Qw in window w. The heuristic returns 
as output the list of services instantiating all vertices at depth i. The sliding window w is 
then shifted by 1 (i.e., i = i+1), and the filtering and selection process is executed until 
|w| +i− 1 is equal to length l (max depth) of G� ,γ (V ,E, � , γ ) , that is, the sliding window 
reaches the end of the template. In the latter case, the heuristic instantiates all remain-
ing vertices and returns the pipeline instance G′ . This strategy ensures that only services 
with low information loss are selected at each step, maximizing the pipeline quality Q.

The pseudocode of the heuristic algorithm is presented in Fig.  4. The function 
SlidingWindowHeuristic implements our heuristic; it takes the pipeline template 
G� ,γ (V ,E, � , γ ) and the window size |w| as input and returns the pipeline instance 
G′ and corresponding metric M as output. The function SlidingWindowHeuristic 
retrieves the optimal service combination composing G′ , considering the candidate 
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services associated with each vertex in G� ,γ (V ,E, � , γ ) and the constraints (policies) in 
verticesList.

It iterates all sliding windows w step 1 until the end of the pipeline template is reached 
(for cycle in line 2). Adding the service(s) selected at step i to G′ by the function 
SelectService (defined in line 10).

The function SelectService takes as input index i representing the starting depth of 
the window and the corresponding window size |w| . It initializes the best combination 
of services to empty (line 11). It iterates through all possible combinations of services in 
the window using the Cartesian product of the service lists (for cycle in lines 13–16). If 
the current combination has quality metric M(G′

w ) higher than the best quality metric 
M(G∗

w ), the current combination G′
w updates the best combination G∗

w (lines 14–15).
The function SelectService then checks whether it is processing the last window (line 

18). If yes, it returns the best combination G∗
w (line 19). Otherwise, it returns the first 

service in the best combination G∗
w (line 21).

Within each window, the function SlidingWindowHeuristic finally iterates through 
the selected services to calculate the total quality metric M (for cycle in lines 6–8). This 
metric is updated by summing the quality metrics of the selected services. The function 
concludes by returning the best pipeline instance G′ and the corresponding quality 
metric M (line 9).

Fig. 4  Pseudocode of the sliding window heuristic algorithm



Page 19 of 34Polimeno et al. Journal of Big Data           (2025) 12:62 	

Experiments
We experimentally evaluated the performance and quality of our methodology 
(heuristic algorithm in Sect. Heuristic), and compared it against the exhaustive approach 
in Sect. NP-hardness of the max-quality pipeline instantiation problem and our baseline 
modeling solutions in the state of the art in Sect. Testing infrastructure and experimental 
settings. In the following, Sect. Testing infrastructure and experimental settings presents 
the simulator and experimental settings used in our experiments; Sect.  Performance 
analyses the performance of our solution in terms of execution time; Sect.  Quality 
discusses the quality of the best pipeline instance generated by our solution according to 
the metrics MJ and MJSD in Sect. 5.1.

Testing infrastructure and experimental settings

Our testing infrastructure is a Swift-based simulator of a service-based ecosystem, 
including service execution, selection, and composition. The simulator first defines 
the pipeline template as a sequence of l vertices, with l the length of the pipeline 
template, and defines the size |w| of the sliding window, such that |w| ≤ l . We recall that 
alternative vertices are modeled in different pipeline templates, while parallel vertices 
are not considered in our experiments since they only add a fixed execution time that is 
negligible and does not affect the performance and quality of our solution. Each vertex 
is associated with a (set of ) policy that applies a filtering transformation that removes a 
given percentage of data.

The simulator then starts the instantiation process. At each step i, it selects the sub-
set { vi,. . .,v|w|+i−1 } of vertices with their corresponding candidate services, and gen-
erates all possible service combinations. The simulator calculates quality Q for all 
combinations and instantiates vi with service s′i from the optimal combination with 
maximum Q. The window is shifted by 1 (i.e., i=i+1), and the instantiation process 
restarts. When the sliding window reaches the end of the pipeline template, that is, 
v|w|+i−1 = vl , the simulator computes the optimal service combination and instantiates 
the remaining vertices with the corresponding services. Figure 5 shows an example of 
a simulator execution with i = 2 and |w| = 3. Subset { v2,v3,v4 } is selected, all combina-
tions generated, and corresponding quality Q calculated. Optimal service combina-
tion { s′11,s

′
22,s

′
31 } is retrieved and v′2 in the pipeline instance instantiated with s′11.

The simulator defines dependencies between filtering transformations made 
by candidate services at consecutive vertices of the pipeline template. To this aim, 
it assigns a dependency rate to each service si modeling the amount of the filtering 
transformation done at si that overlaps the one at si−1 . For example, let us consider 
the pairs of services ( s11,s21 ) and ( s11,s22 ) with the following configurations: i) service 
s11 introduces a filtering transformation that removes the 20% of the dataset, ii) 
service s21 introduces a filtering transformation that removes 10% of the dataset 
and has dependency rate equal to 1, meaning that the filtering transformation made 
by s21 completely overlaps the one made by s11 , iii) service s22 introduces a filtering 
transformation that removes 5% of the dataset and has dependency rate equal to 
0.5, meaning that the filtering transformation made by s22 overlaps half of the one 
made by s11 . Jaccard Metric MJ21 =0.8 at service s21 ; MJ22 =0.775 at s22 , showing how 
dependencies can affect the pipeline quality and, in turn, the instantiation process.
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Our simulator also supports the comparison of the performance and quality of 
our sliding-window heuristic with i) a baseline modeling solutions in the state of 
the art and ii) the exhaustive approach (i.e., the theoretical optimum). We modeled 
our baseline as a greedy approach that, for each node of the service pipeline, selects 
the best service that maximizes the data quality, while addressing data protection 
requirements in annotation � . The reason is that, to the best of our knowledge, 
existing (industry) solutions and standards do not support service-based data 
pipelines and are therefore unable to instantiate the service pipeline according to the 
pipeline structure and service dependencies. We therefore defined our baseline as 
the sliding window heuristic configured with window size |w|=1. We implemented 
the exhaustive approach calculating the theoretical optimum as the sliding window 
heuristic configured with window size |w|=l, to illustrate the potential efficiency of 
our heuristics within realistic computational limits.

Table  3 outlines the parameters and corresponding values used in our experimental 
evaluation. Parameter Window Size |w|, varying from 1 to 7, models different 
configurations of our heuristic including our baseline and the exhaustive approach. 
Parameter Pipeline Template Length l, varying from 3 to 7, models the depth of the 
pipeline template as the number of vertices composed in a sequence. Parameter Number 
of Candidate Services, varying from 2 to 7, models the number of alternative services 
at each vertex of the pipeline template. Parameter Filtering Configuration considers two 
representative filtering transformations: wide removing a percentage of data in [0.2,1] 
and average in [0.5,0.8]. Parameter Metric considers two quality metrics: quantitative 
( MJ ) and qualitative ( MJSD).

Our experiments have been run on a virtual machine equipped with an Intel(R) 
Xeon(R) CPU E5-2620 v4 @ 2.10GHz CPU and 32GB RAM. Each experiment was 
repeated 10 times and the results averaged to improve the reliability of findings.

Fig. 5  Execution example of the sliding window heuristic using l = 5, |Sc | = 3, |w| = 3 at i = 1 step



Page 21 of 34Polimeno et al. Journal of Big Data           (2025) 12:62 	

Performance

We first measured the performance (execution time) of our exhaustive, baseline, and 
heuristic solutions by varying the pipeline template length l in [3, 7] and the number 
of candidate services |Sc| in [2, 7]. Figure  6 presents our results. The exhaustive 
approach can provide the optimal solution for all settings, but its execution time grows 
exponentially with the pipeline length and number of candidate services, making it 
impractical for large instances. For |w| from 1 to 3 (step 1), we observed a substantial 
reduction in execution time, with the heuristic always able to produce an instance 
in less than ≈ 2.7× 105ms . The worst heuristic performance (l=7, |Sc|=7, |w|=6) is 
≈ 3.8× 107ms , one order of magnitude lower than the corresponding exhaustive 
performance (l=7, |Sc|=7, |w|=7) ≈ 1.35× 108ms . As expected, the baseline (i.e., our 
heuristic with |w| = 1) shows the best performance in all settings.

Quality

We evaluated the quality of our heuristic algorithm with different |w| comparing its 
results with the baseline and, where possible, with the optimal solution retrieved by 
executing the exhaustive approach. The quality Q of the heuristic has been normalized 
between 0 and 1 by dividing it by the quality Q∗ retrieved by the exhaustive approach.

We run our experiments varying: i) pipeline template length l in [3, 7], ii) the window 
size |w| in [1,l], and iii) the number of candidate services |Sc| in [2, 7]. Each vertex is 
associated with a (set of ) policy that applies filtering configuration wide (removing a 
percentage of data in [0.2, 1]) or average (removing a percentage of data in [0.5, 0.8]).

Figures 7 and 8 present our quality results using metric MJ in Sect. Quality metrics for 
configurations wide and average, respectively. In general, we observe that the quality of 
our heuristic approach increases as the window size increases, providing a quality com-
parable to the exhaustive approach when the window size |w| approaches the length l of 
the pipeline template.

When considering configuration wide (Fig.  7), the baseline ( |w|=1) provides good 
results on average (0.71, 0.90), while showing substantial quality oscillations in specific 
runs: between 0.882 and 0.970 for pipeline template length l=3, 0.810 and 0.942 for l=4, 
0.580 and 0.853 for l=5, 0.682 and 0.943 for l=6, 0.596 and 0.821 for l=7. This same trend 
emerges when the window size is l/2, while it starts approaching the optimum when the 
window size is ≥ l/2. For instance, when |w|=l-1, the quality varies between 0.957 and 1.0 

Table 3  Experimental parameters

Parameter Values

Window size |w| 1, 2, 3, 4, 5, 6, 7

Pipeline template length l 3, 4, 5, 6, 7

Number of candidate services |Sc | 2, 3, 4, 5, 6, 7

Filtering configuration Wide, average

Metric Quantitative ( MJ ), 
qualitative ( MJSD)
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for l=3, 0.982 and 1.0 for l=4, 0.986 and 0.998 for l=5, 0.977 and 1.0 for l=6, 0.996 and 
1.0 for l=7.

When considering configuration average (Fig.  8), the heuristic algorithm still pro-
vides good results, limiting the quality oscillations observed for configuration wide and 
approaching the quality of the exhaustive also for lower window sizes. The baseline ( |w|
=1) provides good results on average (from 0.842 to 0.944), as well as in specific runs: 
between 0.927 and 0.978 for l=3, 0.903 and 0.962 for l=4, 0.840 and 0.915 for l=5, 0.815 
and 0.934 for l=6, 0.721 and 0.935 for l=7. When |w|=l-1, the quality varies between 
0.980 and 1.0 for l=3, 0.978 and 1.0 for l=4, 0.954 and 1 for l=5, 0.987 and 1.0 for l=6, 
0.990 and 1.0 for l=7.

Figures 9 and 10 present our quality results using metric MJSD in Sect. Quality metrics 
for configurations wide and average, respectively.

Fig. 6  Evaluation of performance using the Qualitative Metric in Configuration average. Each figure shows 
the execution time (in milliseconds) as a function of the number of candidate services |Sc|, for different values 
of the window size |w|, varying  pipeline template length in: (a) l=3, (b) l=4, (c) l=5, (d) l=6, (e) l=7. 
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When considering configuration wide (Fig.  9), the baseline ( |w|=1) provides good 
results on average (0.92, 0.97), limiting oscillations observed with metric MJ  ; for 
instance, the quality varies between 0.951 and 0.989 for l=3, 0.941 and 0.988 for l=4, 
0.919 and 0.974 for l=5, 0.911 and 0.971 for l=6, 0.877 and 0.924 for l=7. The worst 
quality results are obtained with the baseline, while the oscillations are negligible 
when the window size is >2. For instance, when |w|=l-2, the quality varies between, 
0.982 and 0.996 for l=4, 0.981 and 0.998 for l=5, 0.988 and 1.0 for l=6, 0.976 and 
0.999 for l=7. When |w|=l-1, the quality varies between 0.987 and 0.998 for l=3, 0.993 
and 1.0 for l=4, 0.985 and 0.999 for l=5, 0.997 and 1.0 for l=6, 0.995 and 1.0 for l=7.

Fig. 7  Evaluation of quality using the Quantitative Metric in configuration wide. Each figure shows the 
metric value as a function of the number of candidate services |Sc|, for different values of the window size 
|w|, varying  pipeline template length in: (a) l=3, (b) l=4, (c) l=5, (d) l=6, (e) l=7 
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When considering configuration average (Fig.  10), the baseline ( |w|=1) provides 
results similar to configuration wide. On average, quality varies from 0.920 to 0.969, 
limiting oscillations; for instance, the quality varies between 0.951 and 0.989 for l=3, 
0.942 and 0.988 for l=4, 0.919 and 0.975 for l=5, 0.912 and 0.972 for l=6, 0.878 and 
0.925 for l=7. The average configuration provides even tighter quality oscillations 
than the wide configuration. Notably, the poorest quality outcomes are observed with 
the baseline. Conversely, these oscillations become negligible when the window size 
exceeds 1 in configurations with three and four vertices, and when it exceeds 2 in 
configurations involving five, six, and seven vertices. For instance, when |w|=3, the 

Fig. 8  Evaluation of quality using the Quantitative metric in configuration average. Each figure shows the 
metric value as a function of the number of candidate services |Sc|, for different values of the window size 
|w|, varying  pipeline template length in: (a) l=3, (b) l=4, (c) l=5, (d) l=6, (e) l=7
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quality varies between 0.993 and 1 for l=4, 0.981 and 0.998 for l=5, 0.982 and 997 for 
l=6, 0.960 and 0.991 for l=7.

To conclude, our results (on average) show that the impact of the number of services 
on the retrieved quality is positive in all settings as the number of services increase, 
though negligible with respect to the impact provided by the pipeline template length 
and window size.

Fig. 9  Evaluation of quality using the Qualitative metric in configuration wide. Each figure shows the 
metric value as a function of the number of candidate services |Sc|, for different values of the window size 
|w|, varying  pipeline template length in: (a) l=3, (b) l=4, (c) l=5, (d) l=6, (e) l=7
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Discussion

The experimental results we obtained yield several valuable insights that merit further 
discussion. Three key observations emerged as follows.

Trade-off between execution time and quality As expected, the execution time 
improvement provided by our heuristic introduces a loss of quality with respect to the 
exhaustive approach. This loss causes an increase in the quality variance, especially when 
the window size ( |w| ) is small compared to the vertex count. A fine-grained tuning of 
heuristics is needed to balance computational efficiency and data quality.

Fig. 10  Evaluation of quality using the Qualitative metric in configuration average. Each figure shows the 
metric value as a function of the number of candidate services |Sc|, for different values of the window size 
|w|, varying  pipeline template length in: (a) l=3, (b) l=4, (c) l=5, (d) l=6, (e) l=7
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Impact of parameters on quality Our experiments show that the parameters listed 
in Table  3 significantly impact the quality of the pipeline, with the pipeline template 
length and the window size standing out as critical factors influencing both quality and 
performance.

Specifically, larger window sizes generally improve quality; however, there exists 
a point where the trade-off between computational cost and quality gain becomes 
suboptimal. Beyond this threshold, additional computational resources do not 
proportionately enhance data quality, as modeled by our metrics. We also note that 
lower window sizes exhibit higher instability, particularly under the wide configuration, 
where data quality varies significantly across different setups. This variation diminishes 
when larger window sizes, approximately half the length of the pipeline (e.g., |w| = l/2), 
are used, leading to more stable and consistent results.

We also note that the number of candidate services and service nodes increases the 
computation cost (performance) with a minor impact on quality (on average).

In conclusion, our results demonstrate a significant reduction in the computational 
cost, while maintaining high data quality. Further analysis is needed to explore the 
impact of additional parameters, particularly in terms of datasets modeling additional 
real-world domains, to understand their broader effects on quality. Investigating 
alternative quality metrics could also provide new insights and opportunities for 
improvement. Future experiments, as outlined in Section  9, will aim to address these 
aspects to provide a step further in the evaluation of the soundness and applicability of 
our framework on a larger scale.

Sliding window approach versus global awareness The intrinsic nature of our sliding 
window heuristic can sometimes lead to a local optimum, as the window size limits 
the candidate services for each pipeline stage to a restricted subset, which may prevent 
reaching the global optimum. This aspect is maximized when using the baseline 
representing the state of the art, where the sliding window heuristic is configured 
with a window size of |w|=1. Additionally, as dependencies between services increase, 
the likelihood of finding a sub-optimal solution rises. Our experiments show that i) 
increasing the window size helps mitigate this issue and ii) a broader decision-making 
scope becomes essential as service dependencies grow more complex.

Related work
We present an overview of the related work and a comparison with existing relevant 
tools and solutions in literature.

Data quality and data protection

Data quality is a widely studied research topic studied across various communities and 
perspectives. In the context of (big) data pipelines, data quality primarily refers to the 
extent to which (big) data meets the requirements and expectations of its intended use, 
encompassing various dimensions and characteristics to ensure the data are reliable, 
accurate, and valuable for analysis and decision-making. Specifically, accuracy denotes 
the correctness of the data, ensuring it accurately represents the real-world entities and 
events it models.



Page 28 of 34Polimeno et al. Journal of Big Data           (2025) 12:62 

With the increasing need to protect sensitive data, the notion of data quality has 
expanded to include a broader concept of accuracy, particularly in terms of the 
proximity of a sanitized value to the original value. This shift has emphasized the 
need of metrics to assess the quality of data resulting from anonymization processes. 
Differential privacy [14], k-anonymity [15], and l-diversity [16] are three distinct 
techniques used to provide data anonymization, with different protection levels and 
results on data quality. For example, differential privacy is highly effective in maintaining 
confidentiality, but the noise added can reduce data precision, impacting analytical 
accuracy, whereas k-anonymity and l-diversity generally maintain higher data quality 
than differential privacy, but they might still be unable to protect against sophisticated 
attacks. Various data quality metrics have been proposed in existing literature, including 
generalized information loss (GenILoss), discernability metric, minimal distortions, and 
average equivalence class size ( CAVG ), which may either have broad applicability or be 
tailored to specific data scenarios [17–19]. However, there is currently no metric that 
is widely accepted by the research community. The main challenge with data quality is 
its relative nature: its evaluation typically depends on the context in which the data is 
used and often involves both objective and subjective parameters [20, 21]. A common 
consideration across all contexts is that accuracy is closely related to the information loss 
resulting from the anonymization strategy: the lower the information loss, the higher the 
data quality. In our scenario, we have opted for two generic metrics rooted in data loss 
assessment (i.e., data completeness)—one quantitative and one qualitative. Nonetheless, 
our framework and heuristic are designed to be modular and flexible, accommodating 
the chosen metric.

While existing techniques have provided sound and effective solutions that guarantee 
data quality and data protection, they often unsuit to scenarios aiming to maximize data 
quality while ensuring data protection, have limited expressiveness (e.g., the definition of 
k when k-anonymity is used to protect data), are not applicable to pipelines orchestrating 
services owned by different providers. Our solution fills in the above gaps, by providing a 
framework for service-based data pipelines that support the selection of data processing 
services that maximize data quality while upholding privacy and security requirements. 
Service selection is driven by high-expressive policies, where data transformations built 
on data protection techniques (e.g., k-anonymity) are applied to data before they are 
used in the pipeline.

Data quality and data protection in service‑based pipelines

As organizations increasingly realize the practical benefits and significant value of big 
data, they also acknowledge the limitations of current big data ecosystems, especially 
in terms of data governance. In this context, the need for privacy-aware systems 
enforcing sensitive data protection without compromising data quality throughout 
the entire data lifecycle arises. Recently, both industry and academia have begun to 
investigate the issue, recognizing the need of new security requirements [22] and 
the importance of addressing the conflict between the need to share and the need to 
protect information [23–27], from a data governance perspective [28, 29], and, more 
in general, to ensure compliance of (big) data pipelines with generic non-functional 
requirements [30, 31].
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The pipeline template proposed in this work addresses these challenges by enabling 
to express the security policies at the right level of granularity, considering individual 
services in the pipeline. It can also be easily mapped onto specific platforms, such 
as Apache-based systems, as we have demonstrated in [32]. Table  4 provides a 
comparative analysis with relevant existing approaches, highlighting how few 
industrial solutions compare to our framework according to the following critical 
features:

•	 F1 — Service-Based Pipeline Support in the Cloud-Edge Continuum: The ability 
to effectively operate within distributed environments spanning cloud and edge 
infrastructure.

•	 F2 — Quality-Aware Service Selection Ensuring Data Protection: The capacity to 
optimize service selection processes, maintaining data quality across the pipeline and 
ensuring robust data protection measures.

•	 F3 — Framework-Agnostic Data Protection: The degree to which each solution is 
bound to specific data protection techniques.

•	 F4 — Policy Expressiveness: The degree to which each solution supports fine-
grained specification of policies or privacy measures.

According to Table  4, most competitor solutions have full support for F3, while no 
solution has full support for F2. All solutions provide partial or full support for F1 and 
F4, with F4 fully supported by just two of the competitors. Microsoft Presidio aligns 

Table 4  Comparative analysis with relevant existing approaches

Feature support is classified according to ✓(fully supported), ∼∼∼(partially supported or limited in scope), ✗ (not supported)

Solution F1 F2 F3 F4

Microsoft Presidio 
[33]

✓, can integrate 
within cloud-edge 
pipelines

∼∼∼ , focuses on data 
redaction

✓, compatible with 
diverse techniques

∼∼∼ , pre-built PII detec-
tors with configur-
able policies

Apache Ranger [34] ∼∼∼ , mostly limited to 
cloud settings

✗, provides access 
control rather than 
service optimization

✓, integrates with 
various techniques

✓; high 
expressiveness with 
fine-grained policy 
control

Google Cloud DLP 
[35]

✓, primarily within 
Google Cloud

∼∼∼ , focuses on redac-
tion and anonymi-
zation

✓, works across data 
types

∼∼∼ , flexible templates 
for data masking and 
redaction policies

AWS Macie [36] ∼∼∼ , suited for AWS 
cloud infrastructure

∼∼∼ , prioritizes data 
protection

✓, AWS-centric ∼∼∼ , supports prede-
fined PII types but 
less customizable

IBM Guardium [37] ✓, supports hybrid 
cloud and on-prem 
setups

✗, focuses on 
monitoring and 
access control

✓, adaptable to 
multiple frameworks

✓, extensive policy-
based access control 
and monitoring

Apache Sentry [38] ∼∼∼ , Hadoop ecosys-
tems

✗, static access 
control

✗, closely tied to 
Hadoop

∼∼∼ , supports column 
and row-level access 
control

Our paper ✓, suitable for cloud-
edge environments

✓, selection of 
services that 
optimize quality 
while ensuring 
protection

✓, data-protection 
techniques agnostic

✓, high 
expressiveness with 
fine-grained policy 
control
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most closely with our approach, as it supports cloud-edge integration, offers compat-
ibility with diverse techniques, and includes configurable policies for PII detection. 
However, our tool uniquely supports the optimization of data quality alongside privacy 
through a service selection feature and across the entire pipeline lifecycle. Additionally, 
unlike other solutions that are cloud-specific, our tool maintains compatibility across 
hybrid environments, addressing both cloud-edge and on-premise scenarios.

Additional solutions address individual aspects of these requirements. For example, 
several proposals address data protection by implementing robust access control on 
big data platforms. Some approaches are platform-specific, tailored to single systems 
like MongoDB or Hadoop, and leverage the native access control features of these 
platforms [39–43]. Other approaches focus on specific databases, such as NoSQL 
or graph databases, or specific types of analytical pipelines [44–46]. However, these 
solutions often rely on query rewriting mechanisms, resulting in high complexity and 
low efficiency. Some solutions are designed for specific scenarios, such as federated 
cloud environments, edge microservices, or IoT, and lack the flexibility to adapt to 
multiple contexts [47, 48]. The most similar to our approach are platform-independent 
solutions that adopt Attribute-Based Access Control (ABAC) [49] as a common 
underlying model, given its ability to support highly flexible and dynamic forms of data 
protection for business-critical data. For instance, Hu et al. [50] introduced a generalized 
access control model for big data processing frameworks that can be extended to the 
Hadoop environment. However, their work discusses the issues only from a high-level 
architectural perspective and does not offer a tangible solution or address data quality 
issues.

To conclude, the selection and composition of services, originally discussed in the 
Web service scenario, face additional challenges in the era of big data due to the volume 
and velocity of data, as well as the heterogeneity of services, domains, and hosting 
infrastructures. Despite its critical nature, security is often one of the least considered 
metrics in service selection [51]. Even when security is taken into account, it is not 
always coupled with data quality. Related work in this area includes approaches (e.g., 
[52]) where Web services are composed according to the security requirements of both 
service requestors and providers. However, the range of expressible requirements is 
limited, such as the type of encryption algorithm or authentication method (e.g., SSO), 
and data sanitization is not considered. Thus, the selection algorithm is just a matching 
rather than a ranking with respect to security metrics. Another relevant study [53] 
implements a certification-based service selection process, ranking services according to 
their certified non-functional properties and corresponding user requirements. In this 
approach, certified services are assumed to be functionally equivalent, offering the same 
functionality while meeting users’ functional requirements. The most relevant solution 
is [51], where the authors address the challenges of big service composition, with 
reference to QoS and security issues. Similarly to what we do with our pipeline template, 
they define a quality model for big services by extending the traditional QoS model of 
Web services to include “big data”-related characteristics, and Quality of Data (QoD) 
attributes, such as completeness, accuracy, and timeliness. To address security issues, in 
their model, each service is assigned an L-Severity level [54] that represents the potential 
severity of data leakages when consuming its data chunks. Their approach aims to select 
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the optimal composition plan that not only maximizes QoS and QoD attributes such as 
timeliness (TL), completeness (CP), and consistency (CS), but also minimizes L-Severity 
(LS), data sources, and communication costs.

Conclusions and future work
In distributed service pipelines, ensuring both data quality and protection presents 
numerous challenges. This paper proposed a framework specifically designed to address 
this dual concern. Our data governance model integrates robust policies and continuous 
monitoring mechanisms to effectively address data security and privacy challenges. 
Simultaneously, it ensures the maximization of data quality to support efficient and 
reliable service pipeline generation. The key point of the framework lies in its ability to 
annotate each element of the pipeline with specific data protection requirements and 
functional specifications, and then drive service pipeline construction. This method 
enhances compliance with regulatory standards and improves data quality by preserving 
maximum information across the pipeline execution. Experimental results confirmed 
the effectiveness of our sliding window heuristic in addressing the computationally 
complex NP-hard service selection problem at the basis of service pipeline construction. 
Using a realistic dataset, our experiments evaluated the framework’s ability to sustain 
high data quality while ensuring robust data protection, which is essential for pipelines 
where both data utility and privacy must coexist. The paper leaves space for future work. 
First, we will extend our methodology with a taxonomy of possible quality dimensions 
and metrics supporting the definition of multidimensional data quality. Multiple 
dimensions and metrics will be adopted and weighted according to user priorities or 
task-specific requirements to better address the inherent multidimensional nature of 
data quality. This extension will enable more sophisticated monitoring and optimization 
mechanisms throughout the entire pipeline lifecycle. Second, we will evaluate the impact 
of different datasets and larger sets of services and configurations on our methodology. 
The primary objective is to identify generalizable patterns and recurring schemes that 
transcend specific experimental settings, thereby enhancing the broader applicability of 
our findings. Third, we will evaluate our methodology in different real-world production 
scenarios with the scope of evaluating its practical usability and utility, bridging the 
gap between theoretical and practical efficiency. Moreover, we plan to explore adaptive 
techniques based on machine learning for dynamic service selection, to increase 
the stability of data quality and privacy in varying operational conditions. Finally, 
we will extend our methodology to consider service quality assessment as a means to 
complement data quality evaluation, thus enabling the development of hybrid scenarios.
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