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The amount of work that can be extracted from a quantum system can be increased by exploiting
the information obtained from a measurement performed on a correlated ancillary system. The
concept of daemonic ergotropy has been introduced to properly describe and quantify this work
extraction enhancement in the quantum regime. We here explore the application of this idea in
the context of continuously-monitored open quantum systems, where information is gained by mea-
suring the environment interacting with the energy-storing quantum device. We first show that
the corresponding daemonic ergotropy takes values between the ergotropy and the energy of the
corresponding unconditional state. The upper bound is achieved by assuming an initial pure state
and a perfectly efficient projective measurement on the environment, independently of the kind of
measurement performed. On the other hand, if the measurement is inefficient or the initial state is
mixed, the daemonic ergotropy is generally dependent on the measurement strategy. This scenario
is investigated via a paradigmatic example of an open quantum battery: a two-level atom driven
by a classical field and whose spontaneously emitted photons are continuously monitored via either
homodyne, heterodyne, or photo-detection.

I. INTRODUCTION

The field of quantum thermodynamics aims to extend
the laws of classical thermodynamics to the quantum
regime [1]. One of its main goals is to understand the
limits of work extraction from a quantum system, which
has both fundamental and practical implications. Al-
lahverdyan et al. [2] introduced the concept of ergotropy,
as the maximum amount of work that can be extracted
from a quantum state through unitary dynamics.

Extracting work from a quantum state is extremely
useful in the context of quantum batteries (QBs), energy-
storing devices that follow the laws of quantum me-
chanics during charging and discharging processes. Re-
search on QBs has then focused on exploring quantum
enhancements in the charging process [3–23] and vari-
ous implementations have been proposed, including sin-
gle qubits, collective spins, and quantum harmonic os-
cillators [6, 12, 24–26]. Recent experiments have shown
promising results in realizing a quantum-enhanced QB
[27–30].

The analysis of open quantum batteries (OQBs), that
is QBs in an open quantum system scenario, is crucial to
discuss and guarantee their real-world implementation.
Research on OQBs has focused so far on studying the ef-
fect of different environmental models [31–35] and devis-
ing quantum control strategies to counteract the impact
of noise [19, 36–41]. We here want to address the situa-
tion where some information leaking to the environment
can be recovered via continuous measurements [42, 43],
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FIG. 1. Pictorial representation of a continuously-monitored
quantum battery: a coherent drive supplies energy with in-
tensity α to a two-level atom (green) which is spontaneously
emitting into its environment with rate κ. The emitted field
is continuously monitored via a detector with efficiency η.

and then exploited for enhancing the work extraction
protocol (see Fig. 1). Since the paradigmatic example
of Maxwell’s demon, it is well known that acquiring in-
formation via a measurement effectively brings a system
out of equilibrium and allows to extract useful work via
conditional operations [44]. This idea was then brought
to the quantum realm, also highlighting the relationship
between extractable work and quantum correlations [45–
56]. Francica et al. introduced the concept of daemonic
ergotropy [52], as the maximum average work that can be
extracted from a quantum system via unitary operations
by exploiting the information obtained by measuring a
correlated ancilla.

Continuously-monitored open quantum systems [42,
43] have been extensively studied from a theoretical point
of view, mainly for feedback-assisted quantum state en-
gineering protocols [57–73] and for quantum estimation
purposes [74–91]; more recently their quantum ther-
modynamics properties have been also analyzed, being
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a paradigmatic example of out-of-equilibrium quantum
systems [89, 92–103]. Remarkably, the possibility of ob-
serving single trajectories has been now experimentally
shown in different platforms, such as superconducting
circuits [104–107], optomechanical [108, 109] and hy-
brid [110] systems. Recently, feedback protocols able
to cool mechanical oscillators have also been demon-
strated [111–113].

From a fundamental point of view, during its evolu-
tion, an open quantum system is correlated to the envi-
ronment; for this reason, being able to measure the envi-
ronment makes this scenario the ideal playground where
to investigate the properties of the daemonic ergotropy
both for its fundamental aspects, but also for its possible
practical implementation in OQBs.

In this paper we derive the general properties of the
daemonic ergotropy in open quantum systems and we
apply them to the simplest example of an OQB, that is
a two-level atom driven via a classical field and spon-
taneously emitting photons into its electromagnetic en-
vironment. We show that the daemonic ergotropy of a
continuously-monitored system surpasses the ergotropy
of the unconditional state and, with perfectly efficient
measurements, can even reach the energy of the uncondi-
tional state. We then discuss the performance of different
types of measurements with non-unit efficiency.

The manuscript is organized as follows: in Sec. II we
review the concept of daemonic ergotropy and present
our first results. In Sec. III we extend the concept of dae-
monic ergotropy to continuously-monitored open quan-
tum systems, along with some general results that apply
in this scenario. In Sec. IV we discuss these in a minimal
example of an open quantum battery: a two level system
driven by a classical field and whose spontaneous emitted
photons are continuously monitored. Finally, in Sec. V,
we give our conclusions and propose further outlooks.

II. DAEMONIC ERGOTROPY

We start by recalling the definition and main proper-
ties of the ergotropy of a quantum state. Let us consider a
quantum system described by a Hamiltonian Ĥ0, where,
without losing generality, we fix its smallest eigenvalue
equal to zero. We define the ergotropy E(ϱ) of a given
quantum state ϱ describing such quantum system as the
maximum amount of work that can be extracted via uni-
tary dynamics [2]:

E(ϱ) = max
Û

[
E(ϱ)− E(ÛϱÛ†)

]
, (1)

where E(ϱ) = Tr
[
Ĥ0ϱ

]
denotes the average energy of the

quantum state ϱ. A closed formula for E(ϱ) in terms of

eigenvalues and eigenvectors of ϱ and Ĥ0 can be straight-
forwardly derived and the following main properties can
be demonstrated: i) the ergotropy is upper bounded by
the energy, and this upper bound is saturated for pure

quantum states, i.e E(|ψ⟩⟨ψ|) = E(|ψ⟩⟨ψ|); ii) ergotropy
is equal to zero E(ϱ) = 0 if and only if ϱ is a passive state,

i.e. it is diagonal in the Hamiltonian Ĥ0 eigenbasis, and
its eigenvalues do not admit energy inversion [2].
Let us now consider a bipartite quantum state ϱSA,

where the quantum system S represents our energy stor-
ing device, while A is an ancillary system. If the an-
cilla is discarded, the maximum amount of extractable
work is simply equal to E(ϱS), with ϱS = TrA[ϱ

SA]. We
now assume that a measurement is performed on the an-
cilla, described by a positive operator-valued measure-
ment (POVM) {Π̂A

a }. We can thus define the daemonic
ergotropy as the average ergotropy of the corresponding
conditional states [52]

E{Π̂A
a } =

∑
a

paE(ϱSa ) , (2)

where

pa = TrSA[ϱ
SA(1̂S ⊗ Π̂A

a )] (3)

ϱSa = TrA[ϱ
SA(1̂S ⊗ Π̂A

a )]/pa (4)

denote respectively the probability and the conditional
state corresponding to the measurement outcome a. The
ergotropy is a convex quantity in the quantum state ϱ [52,
55]; as a consequence, since ϱS =

∑
a paϱ

S
a , one obtains

that

E{Π̂A
a } ≥ E(ϱS) , (5)

that is the average work that may be extracted is in-
creased thanks to the information obtained from the
ancilla. Furthermore, the daemonic ergotropy can be
rewritten as

E{Π̂A
a } = E(ϱS)−

∑
a

pa min
Ûa

E(Ûaϱ
S
a Û

†
a) . (6)

From this formula it is then clear that, in order to achieve
the daemonic enhancement, one needs to implement a
conditional unitary evolution Ûa that depends on the
conditional state ϱSa . Furthermore, E{Π̂A

a } generally de-

pends on the specific POVM {Π̂A
a } implemented (see [55]

for a recipe to obtain the optimal POVM maximizing
E{Π̂A

a }). Before addressing the scenario of continuosly-

monitored quantum systems, we here present the first
result of our work via the following proposition.

Proposition 1. Given a bipartite system system+ancilla
prepared in an initial pure state |Ψ⟩SA, and assuming a
projective (rank-one) measurement on the ancilla {ΠA

a =
|ϕa⟩⟨ϕa|}, then

E{Π̂A
a } = E(ϱS) , (7)

that is, the daemonic ergotropy is equal to the energy of
the reduced state of the system ϱS = TrA[ϱ

SA], indepen-
dently of the measurement performed.
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Proof. In order to prove this theorem, we first observe
that the conditional state remains pure for any measure-
ment outcome, i.e. ϱSa = |ξa⟩⟨ξa|, with

|ξa⟩ =
1

√
pa

⟨ϕa|Ψ⟩SA (8)

As a consequence one has

E{Π̂A
a } =

∑
a

paE(|ξa⟩⟨ξa|)

=
∑
a

paE(|ξa⟩⟨ξa|) = E(ϱS) , (9)

where we have exploited: i) the fact that the ergotropy of
pure states is equal to their energy, ii) the linearity of the
trace, and iii) the relationship ϱS =

∑
a pa|ξa⟩⟨ξa|.

III. DAEMONIC ERGOTROPY IN
CONTINUOUSLY-MONITORED OPEN

QUANTUM SYSTEMS

We start by briefly introducing the basic notions on
continuously-monitored quantum systems and quantum
trajectories [42, 43]. We assume that our quantum sys-
tem is interacting with a Markovian environment such
that its unconditional evolution is described by a master
equation in Lindblad form

dϱunc(t)/dt = −i[Ĥs(t), ϱunc(t)] +D[ĉ]ϱunc(t) , (10)

where Ĥs(t) denotes the Hamiltonian ruling the evolution
of the system and D[ĉ]ϱ = ĉϱĉ − (ĉ†ĉϱ + ϱĉ†ĉ)/2 is the
Lindbladian superoperator [114].

If one assumes that the environment is continuously
monitored, the system evolution will be described by
a stochastic master equation (SME) for the conditional
state ϱc(t), which is typically referred to as a quantum
trajectory. In general it is always true that

ϱunc(t) =
∑
traj

ptraj ϱc(t), (11)

where ptraj denotes the probability of each quantum
trajectory ϱc(t). Different measurement strategies will
correspond to different unravelling of the unconditional
master equation (10), that is to different SMEs for the
conditional state ϱc(t) and, mathematically speaking, to
different convex combinations for the unconditional state
ϱunc(t). We will later consider the most paradigmatic ex-
amples of such unravellings, corresponding to the scenar-
ios where the environment is continuously-monitored via
either photo-detection (PD), homodyne-detection (HoD)
or heterodyne-detection (HeD). The explicit formulas for
the corresponding SMEs can be found in appendix A. Re-
markably, while we here focus on Markovian open quan-
tum systems described by a Lindblad master equation
(10), all the results that follow apply whenever one can

write the unconditional state as a mixture of trajectories
as of (11), including monitored quantum systems exhibit-
ing non-Markovian behaviour.
Besides the kind of detection performed on the en-

vironment, such unravellings are characterized by their
measurement efficiency η, that comprehensively quanti-
fies the portion of the environment that is accessible and
the efficiency of the detector. In particular, we recall
that for η = 1, that is when one assumes that the en-
vironment is fully accessible and measurable via a pro-
jective (rank-one) measurement, and for an initial pure
state for the system, one can prove that the evolution
can be described via a stochastic Schrödinger equation,
and the conditional state remains pure during the whole
dynamics [42, 43]. We can now present one of the main
results via the following proposition:

Proposition 2. Given an open quantum system, whose
charging process is described by a (possibly time-

dependent) Hamiltonian Ĥs(t), and whose environment
can be continuously monitored with efficiency η, the cor-
responding daemonic ergotropy

Eunr,η(t) =
∑
a

ptrajE(ϱc(t)) (12)

is bounded as

E(ϱunc(t)) ≤ Eunr,η(t) ≤ E(ϱunc(t)) . (13)

The upper bound can be achieved in the presence of
Markovian environment, whenever the system is initially
prepared in a pure state and the monitoring is performed
with unit efficiency η = 1, independently of the kind of
unravelling, i.e.

Eunr,η=1(t) = E(ϱunc(t)). . (14)

Proof. The first inequality in Eq. (13) is a generalization
of Eq. (5), applied to (11). Similarly the upper bound is
a consequence of Eq. (6), while the fact that the upper
bound can be achieved for unravellings of pure states
follows straightforwardly from Prop. 1.

In the following, we show that as a corollary, the in-
equality above can be trivially extended to the case where
ergotropies and energies are rescaled by the evolution
time t, and thus in terms of figure of merits characterizing
the charging power of the protocol.

A. Average power of continuously-monitored
quantum batteries

Let us assume that the state of the quantum battery
at the beginning of the charging process is initially in
a pure state (ϱ0 = |ψ0⟩⟨ψ0|) , and a charging protocol
evolve the system from a time t = 0 to t = τ . We can
use the definitions of energy (E), ergotropy (E) and dae-
monic ergotropy (E{Π̂A

a }) introduced in the manuscript,



4

to define respectively the average power (P ), the average
ergotropic power (P) and the average daemonic power
(P{Π̂A

a }) as follows:

P (ϱ(τ)) =
E(ϱ(τ))− E(ϱ0)

τ
(15)

P(ϱ(τ)) =
E(ϱ(τ))− E(ϱ0)

τ
(16)

P{Π̂A
a }(τ) =

E{Π̂A
a }(ϱ(τ))− E(ϱ0)

τ
(17)

We can thus formulate the following corollary, that can
be easily proven starting from Prop. 2 of the manuscript.

Corollary 1. Given an open quantum system, whose
charging process is described by a (possibly time-

dependent) Hamiltonian Ĥs(t), and whose environ-
ment can be continuously monitored with efficiency η,
the corresponding average daemonic power Punr,η(t) =∑

a ptrajP(ϱc(t)) is bounded as

P(ϱunc(t)) ≤ Punr,η(t) ≤ P (ϱunc(t)) . (18)

The upper bound can be achieved in the presence of
Markovian environment, whenever the system is initially
prepared in a pure state and the monitoring is performed
with unit efficiency η = 1, independently of the kind of
unravelling, i.e.

Punr,η=1(t) = P (ϱunc(t)) . (19)

We have thus proved that, as expected, the extractable
work and power can be increased in an open quantum sys-
tem if one obtains some information by monitoring the
environment. Remarkably, the maximum daemonic er-
gotropy is equal to the unconditional energy and can be
achieved via unit efficiency monitoring, independently of
the measurement strategy. In the following we will rather
investigate what happens in the more practical and ex-
perimentally relevant scenario of monitoring with non-
unit efficiency, where a hierarchy between the different
unravellings is established.

IV. A CONTINUOUSLY-MONITORED OPEN
QUANTUM BATTERY

We now consider the paradigmatic example of an OQB,
that is a two-level atom characterized by a Hamiltonian
Ĥ0 = (ω0/2)(σ̂z + 1), driven by a resonant classical field
of intensity α, which acts as a charger, and spontaneously
emitting with rate κ (see Fig. 1). In interaction picture

with respect to Ĥ0, the evolution of the system is de-
scribed by a Markovian master equation of the form (10),
where the Hamiltonian ruling the evolution and the jump
operator respectively read Ĥs = ασ̂x and ĉ =

√
κσ−, i.e.

dϱunc(t)

dt
= −iα[σ̂x, ϱunc(t)] + κD[σ̂−]ϱunc(t) . (20)
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HoD y , 0.4

HeD, 0.4

PD, 0.4
Eunc(t)

unc(t)

FIG. 2. Daemonic ergotropies Eunr,η(t) as a function of time
for different unravellings (HoD with photocurrents monitoring
either σ̂x or σ̂y, HeD and PD) with α/κ = 1, η = 0.4 and
averaged over n = 5×104 trajectories. Black and gray dashed
lines correspond respectively to the ergotropy and energy of
the unconditional state. The different daemonic ergotropies
lie as expected between these two lines, with HeD and σ̂x-HoD
giving the larger values of extractable work. The upper and
the lower bounds would be saturated for all the unravellings
in the case of respectively perfect monitoring (η = 1) and no-
monitoring (η = 0).

An analytical solution can be obtained for ϱunc(t) and
we report here the corresponding steady-state values of
energy and ergotropy

Ess
unc/ω0 =

4α2

8α2 + κ
, (21)

E ss
unc/ω0 =

κ

2

(√
16α2 + κ2 − κ

8α2 + κ2

)
, (22)

where we have exploited the following formula for the
ergotropy of a qubit state

E(ϱ) = E(ϱ) +
ω0

2

√
2µ(ϱ)− 1, (23)

in terms of energy and purity µ(ϱ) = Tr
[
ϱ2
]
. One ob-

serves that the steady state energy Ess
unc grows monotoni-

cally as a function of α/κ and asymptotically reaches the
value Ess

unc,max = ω0/2 in the limit of large driving. Op-
positely, the steady-state ergotropy E ss

unc presents a max-
imum at

α/κ =

√
(1 +

√
2)/8 , (24)

where it reaches its peak value

E ss
unc,max = ω0(

√
2− 1)/2 . (25)
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If we now assume that a photo-counting detector is
able to measure the spontaneously emitted photons with
efficiency η, the dynamics of the conditional states ϱc(t)
is described by a SME of the form (A2); in particular
the statistics of the corresponding Poissonian increment
is univocally identified by its average value

E[dNt] = ηκ⟨σ̂+σ̂−⟩tdt , (26)

and thus depends on the average value of σ̂z (we remind

that σ̂+σ̂− = (σ̂z + 1̂2)/2).
If one rather considers a homodyne detection on the

emitted field, one has a SME of the form (A3), where in
particular the continuous homodyne photo-current reads

dyt =
√
ηκ⟨σ̂−eiϕ + σ̂+e

−iϕ⟩t dt+ dWt , (27)

=
√
ηκ⟨cosϕσ̂x + sinϕσ̂y⟩t dt+ dWt , (28)

where ϕ corresponds to the homodyne phase. In par-
ticular for ϕ = 0 and ϕ = π/2 one has photocurrents
depending respectively to the average values of σ̂x and
σ̂y.
Heterodyne detection on the environment leads to a

similar SME, as can be indeed thought and implemented
as a double homodyne, measuring orthogonal quadra-
tures with half efficiency. As a consequence one gets
a SME of the form (A4) where the two photocurrents
depend on σ̂x and σ̂y as

dy
(1)
t =

√
ηκ

2
⟨σ̂x⟩t dt+ dW

(1)
t , (29)

dy
(2)
t =

√
ηκ

2
⟨σ̂y⟩t dt+ dW

(2)
t . (30)

We will denote with EPD,η, EHoD,η and EHeD,η the dae-
monic ergotropies corresponding to continuous monitor-
ing of the fluorescence field due to the atomic sponta-
neous emission via respectively PD, HoD and HeD with
efficiency η.

According to Prop 2, we know that for unravellings
of pure states with η = 1, one obtains Eunr,η=1(t) =
E(ϱunc(t)), that is, the energy of the unconditional state
can be fully extracted via conditional unitary operations
for all the possible detection strategies.

We first consider the situation where the system is ini-
tially prepared in the ground state |0⟩, while the environ-
ment is not fully accessible and it is thus monitored with
non-unit efficiency η. We have numerically solved the
corresponding SMEs [115, 116] and evaluated the corre-
sponding daemonic ergotropy by averaging over a large
number of trajectories. In this case we find that there
is a hierarchy between the different unravellings: as one
can observe in Fig. 2, for η = 0.4 and α = κ, homo-
dyne detection with photocurrent proportional to ⟨σ̂x⟩t
(corresponding to ϕ = 0) and heterodyne detection lead
to the largest values of daemonic ergotropy, while photo-
detection is the least performing strategy. The results
presented in this plot are quite general: in all our numer-
ical simulations we find that, as regards HoD, EHoD,η=1(t)

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
/

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ss un
r,

/
0

                                                                                        ss
HoD x , 0.1
ss
HoD y , 0.1
ss
HeD, 0.1
ss
PD, 0.1

ss
unc 

Ess
unc
ss
HoD x , 0.7

ss
HoD x , 0.7
ss
HoD y , 0.7
ss
HeD, 0.7
ss
PD, 0.7

ss
unc 

Ess
unc
ss
HoD x , 0.7

FIG. 3. Steady-state daemonic ergotropy E ss
unr,η for the

different unravellings (HoD with photocurrents monitoring
either σ̂x or σ̂y, HeD, PD) as a function of α and for η = 0.1
(dashed-dotted) and η = 0.7 (dashed) (number of trajectories
n = 5 × 104). Also in this case HeD and σ̂x-HoD yield
the largest values. Black and gray solid lines correspond
respectively to ergotropy and energy of the unconditional
steady-state, that is to the lower and upper bound for the
daemonic ergotropies, that would be obtained for respectively
no-monitoring (η = 0) or perfect monitoring (η = 1).

is maximized (minimized) for ϕ = 0 (ϕ = π/2), that is
for a σ̂x-dependent (σ̂y-dependent) photocurrent. Fur-
thermore, in the whole range of parameters we have ex-
plored, σ̂x-HoD and HeD generally yield very similar val-
ues of daemonic ergotropy. The same behavior can be
indeed observed if we focus on the steady-state prop-
erties as shown in Fig. 3, where steady-state daemonic
ergotropies E ss

unr,η for the different unravellings are plot-
ted as a function of α and for two different values of
η. From the figure one can clearly observe the hierar-
chy existing between the different strategies, and how,
by increasing the monitoring efficiency, the daemonic er-
gotropy can reach values, approaching the unconditional
energy Ess

unc in the limit of η = 1. Finally, in Fig. 4
we consider the other scenario where different unravel-
lings lead to different daemonic ergotropies, that is when
the environment is monitored with unit efficiency, but
the initial state is mixed. In particular, we consider the
maximally mixed state ϱ0 = 1̂/2 as initial state and we
plot Eunr,η(t) as a function of time. We observe that at
steady state all the unravellings lead to the same value of
daemonic ergotropy, equal to the corresponding uncon-
ditional energy: the monitoring will eventually purify all
the trajectories and thus one falls back into the scenario
described in Prop. 2. However, different unravellings lead
to a different purification speed, an effect that has been
widely discussed in the literature [117–122]. With respect
to the scenarios described in these works, we here have
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2 2

Eunc(t), (0) = |0 0|
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2 2
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FIG. 4. Daemonic ergotropy Eunr,η(t) as a function of time
for different unravellings (HoD with photocurrents monitor-
ing either σ̂x or σ̂y, HeD, PD) with α/κ = 0.4, η = 1 and
by considering the maximally mixed state ρ0 = 1̂/2 as ini-
tial state (number of trajectories n = 5 × 104). Black and
gray lines correspond respectively to ergotropy and energy of
the unconditional state when initial states are the maximally
mixed state (dashed) and the ground state (dotted).

a non-trivial system Hamiltonian Ĥs ruling the dynam-
ics, and a fixed jump operator ĉ =

√
κσ̂−, representing

the interaction between system and environment. Re-
markably, at small times we find that the purification
speed of HeD and, in the second instance, HoD (almost
independently on the phase ϕ) allows to achieve values
of daemonic ergotropy evidently larger than the max-
imum daemonic ergotropy obtainable by starting from
a ground state, whose upper bound (the unconditional
energy represented as a dotted-gray line in Fig. 4) can
be interpreted as the amount of energy injected into the
system by the driving laser; we can thus conclude that
in monitoring-enhanced battery charging protocols, the
effects of purification may be more efficient than pure
energy injection at small times. On the other hand we
also observe that PD still yields the lowest values of dae-
monic ergotropy in the transient leading to steady-state,
and for small times the enhancement due to the moni-
toring respect to the unconditional ergotropy is almost
negligible.

V. CONCLUSIONS

We have extended the concept of daemonic ergotropy
to the open quantum system scenario, where some in-

formation leaking into the environment can be continu-
ously monitored and exploited in order to enhance the
work extraction protocol. Our findings reveal that the
daemonic ergotropy not only surpasses the unconditional
state ergotropy, but can even reach its energy in the ideal
scenario of unit efficiency detectors. We have then dis-
cussed the simplest, but practically relevant, example of
an OQB, that is a two-level atom classically driven by an
external field acting as a charger.

Our main results (Props.1,2) require very few assump-
tions compared to the ones implied in the model of OQB
considered. In particular, they hold even for charging
protocols with time-dependent Hamiltonian [9, 10], al-
lowing one to further assess the performances of these
protocols in the case of continuous monitoring and to en-
visage more efficient quantum feedback protocols. More-
over, one can also consider trajectories describing con-
tinuously monitored open quantum systems in the pres-
ence of a non-Markovian environment; while the inter-
pretation of unravellings of non-Markovian master equa-
tion in terms of monitoring is in general not guaran-
teed [123–127], our approach can be directly pursued
in the non-Markovian setting by describing such quan-
tum conditional dynamics via continuously measured col-
lisional models [35, 100, 128].

A proof-of-principle experimental demonstration of our
results can be readily pursued in a circuit-QED platform,
where quantum trajectories corresponding to HeD of
atom fluorescence have been recently observed [105, 106].
In general our results pave the way to further inves-
tigation on the relationship between measurement en-
ergy cost and work extraction in continuously-monitored
quantum systems [129–137], and on the design of a new
generation of monitoring-enhanced and noise-resilient
quantum batteries.
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J. Goold, S. Vinjanampathy, and K. Modi, Enhancing
the Charging Power of Quantum Batteries, Physical Re-
view Letters 118, 150601 (2017).

[6] F. Campaioli, F. A. Pollock, and S. Vinjanampathy,
Quantum Batteries - Review Chapter (2018).

[7] D. Ferraro, M. Campisi, G. M. Andolina, V. Pellegrini,
and M. Polini, High-Power Collective Charging of a
Solid-State Quantum Battery, Physical Review Letters
120, 117702 (2018).

[8] G. M. Andolina, M. Keck, A. Mari, M. Campisi, V. Gio-
vannetti, and M. Polini, Extractable Work, the Role
of Correlations, and Asymptotic Freedom in Quantum
Batteries, Physical Review Letters 122, 047702 (2019).

[9] Y.-Y. Zhang, T.-R. Yang, L. Fu, and X. Wang, Power-
ful harmonic charging in a quantum battery, Physical
Review E 99, 052106 (2019).

[10] A. Crescente, M. Carrega, M. Sassetti, and D. Ferraro,
Charging and energy fluctuations of a driven quantum
battery, New Journal of Physics 22, 063057 (2020).
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[13] J.-Y. Gyhm, D. Šafránek, and D. Rosa, Quan-
tum Charging Advantage Cannot Be Extensive with-
out Global Operations, Physical Review Letters 128,
140501 (2022).

[14] S. Seah, M. Perarnau-Llobet, G. Haack, N. Brunner,
and S. Nimmrichter, Quantum Speed-Up in Collisional
Battery Charging, Physical Review Letters 127, 100601
(2021).

[15] R. Salvia, M. Perarnau-Llobet, G. Haack, N. Brun-
ner, and S. Nimmrichter, Quantum advantage in charg-
ing cavity and spin batteries by repeated interactions,
arxiv:2205.00026 [cond-mat, physics:quant-ph] (2022).

[16] G. T. Landi, Battery Charging in Collision Models with
Bayesian Risk Strategies, Entropy 23, 1627 (2021).

[17] F. Mayo and A. J. Roncaglia, Collective effects and
quantum coherence in dissipative charging of quantum
batteries, Physical Review A 105, 062203 (2022).

[18] F. Barra, Efficiency fluctuations in a quantum battery
charged by a repeated interaction process, Entropy 24,
820 (2022).

[19] R. R. Rodriguez, B. Ahmadi, G. Suarez, P. Mazurek,
S. Barzanjeh, and P. Horodecki, Optimal quantum con-
trol of charging quantum batteries, arxiv:2207.00094
[quant-ph] (2022).

[20] S.-f. Qi and J. Jing, Magnon-mediated quantum battery
under systematic errors, Physical Review A 104, 032606

(2021).
[21] A. Crescente, D. Ferraro, M. Carrega, and M. Sassetti,

Enhancing coherent energy transfer between quantum
devices via a mediator, Physical Review Research 4,
033216 (2022).

[22] F. Mazzoncini, V. Cavina, G. M. Andolina, P. A. Erd-
man, and V. Giovannetti, Optimal Control Methods
for Quantum Batteries, Physical Review A 107, 032218
(2023).
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[36] A. C. Santos, B. Çakmak, S. Campbell, and N. T. Zin-
ner, Stable adiabatic quantum batteries, Physical Re-
view E 100, 032107 (2019).

https://doi.org/10.1209/epl/i2004-10101-2
https://doi.org/10.1103/PhysRevE.87.042123
https://doi.org/10.1088/1367-2630/17/7/075015
https://doi.org/10.1103/PhysRevLett.118.150601
https://doi.org/10.1103/PhysRevLett.118.150601
https://doi.org/10.48550/arXiv.1805.05507
https://doi.org/10.1103/PhysRevLett.120.117702
https://doi.org/10.1103/PhysRevLett.120.117702
https://doi.org/10.1103/PhysRevLett.122.047702
https://doi.org/10.1103/PhysRevE.99.052106
https://doi.org/10.1103/PhysRevE.99.052106
https://doi.org/10.1088/1367-2630/ab91fc
https://doi.org/10.1103/PhysRevResearch.2.023113
https://doi.org/10.1103/PhysRevResearch.2.023113
https://doi.org/10.1103/PhysRevLett.125.236402
https://doi.org/10.1103/PhysRevLett.125.236402
https://doi.org/10.1103/PhysRevLett.128.140501
https://doi.org/10.1103/PhysRevLett.128.140501
https://doi.org/10.1103/PhysRevLett.127.100601
https://doi.org/10.1103/PhysRevLett.127.100601
https://arxiv.org/abs/2205.00026
https://doi.org/10.3390/e23121627
https://doi.org/10.1103/PhysRevA.105.062203
https://doi.org/10.3390/e24060820
https://doi.org/10.3390/e24060820
https://arxiv.org/abs/2207.00094
https://arxiv.org/abs/2207.00094
https://doi.org/10.1103/PhysRevA.104.032606
https://doi.org/10.1103/PhysRevA.104.032606
https://doi.org/10.1103/PhysRevResearch.4.033216
https://doi.org/10.1103/PhysRevResearch.4.033216
https://doi.org/10.1103/PhysRevA.107.032218
https://doi.org/10.1103/PhysRevA.107.032218
https://arxiv.org/abs/2301.09408
https://doi.org/10.1103/PhysRevB.98.205423
https://doi.org/10.1007/JHEP11(2020)067
https://doi.org/10.1007/JHEP11(2020)067
https://doi.org/10.1088/2058-9565/ac8829
https://doi.org/10.1088/2058-9565/ac8829
https://doi.org/10.1088/2058-9565/ac8444
https://doi.org/10.1088/2058-9565/ac8444
https://doi.org/10.1126/sciadv.abk3160
https://doi.org/10.1126/sciadv.abk3160
https://doi.org/10.1103/PhysRevA.106.042601
https://arxiv.org/abs/2202.01109
https://arxiv.org/abs/2202.01109
https://doi.org/10.1103/PhysRevB.99.035421
https://doi.org/10.1103/PhysRevB.99.035421
https://doi.org/10.1103/PhysRevE.104.054117
https://doi.org/10.1103/PhysRevE.104.054117
https://doi.org/10.1088/1367-2630/abaa01
https://doi.org/10.1088/1367-2630/abaa01
https://doi.org/10.1088/1367-2630/ab9ee2
https://doi.org/10.1088/1367-2630/ab9ee2
https://doi.org/10.1088/2058-9565/accca4
https://doi.org/10.1103/PhysRevE.100.032107
https://doi.org/10.1103/PhysRevE.100.032107


8

[37] J. Q. Quach and W. J. Munro, Using Dark States to
Charge and Stabilize Open Quantum Batteries, Physi-
cal Review Applied 14, 024092 (2020).

[38] S. Gherardini, F. Campaioli, F. Caruso, and F. C.
Binder, Stabilizing open quantum batteries by sequen-
tial measurements, Physical Review Research 2, 013095
(2020).

[39] M. T. Mitchison, J. Goold, and J. Prior, Charging a
quantum battery with linear feedback control, Quantum
5, 500 (2021).

[40] Y. Yao and X. Q. Shao, Optimal charging of open spin-
chain quantum batteries via homodyne-based feedback
control, Physical Review E 106, 014138 (2022).

[41] K. Koshihara and K. Yuasa, Quantum ergotropy and
quantum feedback control, Physical Review E 107,
064109 (2023).

[42] H. M. Wiseman and G. J. Milburn, Quantum Measure-
ment and Control (Cambridge University Press, Cam-
bridge, 2009).

[43] K. Jacobs, Quantum Measurement Theory and its Ap-
plications (Cambridge University Press, Cambridge,
2014).

[44] K. Maruyama, F. Nori, and V. Vedral, Colloquium: The
physics of Maxwell’s demon and information, Reviews
of Modern Physics 81, 1 (2009).

[45] S. Lloyd, Quantum-mechanical Maxwell’s demon, Phys-
ical Review A 56, 3374 (1997).

[46] J. Oppenheim, M. Horodecki, P. Horodecki, and
R. Horodecki, Thermodynamical Approach to Quanti-
fying Quantum Correlations, Physical Review Letters
89, 180402 (2002).

[47] W. H. Zurek, Quantum discord and Maxwell’s demons,
Physical Review A 67, 012320 (2003).

[48] K. Maruyama, F. Morikoshi, and V. Vedral, Ther-
modynamical detection of entanglement by Maxwell’s
demons, Physical Review A 71, 012108 (2005).

[49] S. W. Kim, T. Sagawa, S. De Liberato, and M. Ueda,
Quantum Szilard Engine, Physical Review Letters 106,
070401 (2011).

[50] M. Perarnau-Llobet, K. V. Hovhannisyan, M. Huber,
P. Skrzypczyk, N. Brunner, and A. Aćın, Extractable
Work from Correlations, Physical Review X 5, 041011
(2015).

[51] E. G. Brown, N. Friis, and M. Huber, Passivity and
practical work extraction using Gaussian operations,
New Journal of Physics 18, 113028 (2016).

[52] G. Francica, J. Goold, F. Plastina, and M. Paternostro,
Daemonic ergotropy: Enhanced work extraction from
quantum correlations, npj Quantum Information 3, 1
(2017).

[53] M. A. Ciampini, L. Mancino, A. Orieux, C. Vigliar,
P. Mataloni, M. Paternostro, and M. Barbieri, Experi-
mental extractable work-based multipartite separability
criteria, npj Quantum Information 3, 1 (2017).

[54] M. Brunelli, M. G. Genoni, M. Barbieri, and M. Pa-
ternostro, Detecting Gaussian entanglement via ex-
tractable work, Physical Review A 96, 062311 (2017).

[55] F. Bernards, M. Kleinmann, O. Gühne, and M. Pa-
ternostro, Daemonic Ergotropy: Generalised Measure-
ments and Multipartite Settings, Entropy 21, 771
(2019).
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Appendix A: Continuously-monitored quantum systems

In this appendix we briefly introduce the formalism behind continuously monitored quantum systems, presenting
the stochastic master equations (SMEs) corresponding to continuous photo-detection, homodyne-detection and
heterodyne-detection.

We assume that our quantum system is interacting with a Markovian environment such that its unconditional
evolution is described by a master equation in Lindblad form
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where Ĥs denotes the Hamiltonian ruling the evolution of the system and D[ĉ]ϱ = ĉϱĉ − (ĉ†ĉϱ + ϱĉ†ĉ)/2 is the
Lindbladian superoperator. We remark that we will here consider a single jump operator ĉ describing the interaction
between the system and a zero-temperature environment, but the formalism can be straightforwardly generalized to
multiple jump operators and to generic thermal environments.

We will now assess the scenario where the environment is continuously monitored. Different measurement strategies
lead to different possible evolutions of the corresponding conditional states ϱc(t), i.e. to different unravellings of the
unconditional master equation (A1). We will here consider three different measurements: photo-detection (PD),
homodyne-detection (HoD) and heterodyne-detection (HeD).

In the case of PD the evolution is described by a stochastic master equation

dϱc(t) = −i[Ĥs, ϱc(t)] dt+ (1− η)D[ĉ]ϱc(t) dt

− η

2
(ĉ†ĉϱc(t) + ϱc(t)ĉ

†ĉ) + η⟨ĉ†ĉ⟩tϱc(t) dt

+

(
ĉϱc(t)ĉ

†

⟨ĉ†ĉ⟩t
− ϱc(t)

)
dNt , (A2)

where ⟨Â⟩t = Tr
[
ϱc(t)Â

]
, η is the efficiency of the detector and dNt is a Poisson increment taking value 0 (no-click

event) or 1 (detector click event), and having average value E[dNt] = η⟨ĉ†ĉ⟩tdt.
For HoD one has the following diffusive SME

dϱc(t) = −i[Ĥs, ϱc(t)] dt+D[ĉ]ϱc(t) dt

+
√
ηH[ĉeiϕ]ϱc dWt (A3)

where H[ĉ]ϱ = ĉϱ + ϱĉ† − ⟨ĉ + ĉ†⟩tϱ, ϕ is the phase of the quadrature monitored via the homodyne, and dWt is a
Wiener increment related to the measured photocurrent dyt =

√
η⟨ĉeiϕ + ĉ†e−iϕ⟩t dt+ dWt. The unravelling for HeD

is a generalization of the HoD case, corresponding to a double-homodyne scheme leading to the SME

dϱc(t) = −i[Ĥs, ϱc(t)] dt+D[ĉ]ϱc(t) dt

+
√
η/2H[ĉ]ϱc dW

(1)
t

+
√
η/2H[iĉ]ϱc dW

(2)
t (A4)

where dW
(1)
t and dW

(2)
t are uncorrelated Wiener increments corresponding to the two photocurrents dy

(1)
t =

√
η/2 ⟨ĉ+

ĉ†⟩t dt+ dW
(1)
t and dy

(2)
t =

√
η/2 ⟨iĉ− iĉ†⟩t dt+ dW

(2)
t .


