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Abstract: Obesity and type 2 diabetes (T2DM) are major public health concerns associated with
serious morbidity and increased mortality. Both obesity and T2DM are strongly associated with
adiposopathy, a term that describes the pathophysiological changes of the adipose tissue. In this
review, we have highlighted adipose tissue dysfunction as a major factor in the etiology of these
conditions since it promotes chronic inflammation, dysregulated glucose homeostasis, and impaired
adipogenesis, leading to the accumulation of ectopic fat and insulin resistance. This dysfunctional
state can be effectively ameliorated by the loss of at least 15% of body weight, that is correlated
with better glycemic control, decreased likelihood of cardiometabolic disease, and an improvement
in overall quality of life. Weight loss can be achieved through lifestyle modifications (healthy diet,
regular physical activity) and pharmacotherapy. In this review, we summarized different effective
management strategies to address weight loss, such as bariatric surgery and several classes of drugs,
namely metformin, GLP-1 receptor agonists, amylin analogs, and SGLT2 inhibitors. These drugs act
by targeting various mechanisms involved in the pathophysiology of obesity and T2DM, and they
have been shown to induce significant weight loss and improve glycemic control in obese individuals
with T2DM.
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1. Background

Nowadays, the role of insulin and its influences are continuously gaining attention
since metabolic disorders have reached global pandemic proportions. In fact, insulin
resistance (IR) is clinically associated with several metabolic disorders, including glucose
intolerance, dyslipidemia, hyperuricemia, and hypertension. Hence, there is an urgent
need to establish the mechanisms of IR and possible pharmacological treatments for these
metabolic conditions.

Beside being correlated to different metabolic syndromes, IR is also one of the major
underlying mechanisms responsible for type 2 diabetes mellitus (T2DM), which consists of
an array of multiple and complex disorders characterized by hyperglycemia and resulting
from the combination of different metabolic and homeostatic disturbances that are sustained
over time. Despite significant investments in clinical care, research, and public health
interventions, T2DM is on the rise, and there does not appear to be any sign of a reduction
in the rate of increase. Nearly 90% of the reported 537 million cases of diabetes worldwide
suffer from T2DM, and these numbers are expected to rise to 783 million by 2045 [1]. Indeed,
with the growing demand for more effective antidiabetic drugs, medicinal chemistry has
made significant synthetic efforts towards the development of new drugs [2–4]. The main
goal is to develop molecules that can specifically target systems involved in the metabolism
of glucose, such as hepatic glucose synthesis, insulin signaling pathways, and glucose
transporters. New understandings regarding the pathophysiological mechanisms of T2DM
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and diabetes led to the identification of new targets, which increased the development of
new single-target antidiabetic drugs. Nonetheless, the potential of multi-target compounds
has also been explored to treat these metabolic diseases [5,6].

As just mentioned, IR characterized the pathophysiology of T2DM, which results
in early hyperinsulinemia and a steady loss in the ability of pancreatic cells to make
insulin. Prolonged suboptimal glycemic control increases the risk of both microvascular
(i.e., retinopathy, neuropathy, and nephropathy) and macrovascular complications (i.e.,
cardiovascular disease). However, despite being recognized as a complex disease, T2DM
is diagnosed solely on persistently elevated levels of glycemia or glycated hemoglobin
(HbA1c).

In this scenario, in order to develop new drugs for the treatment of this chronic
disease, diabetes-related research has been largely focused on glycemic values and vascular
complications. These goals have been major challenges since the early 90s, so much so
that the combined progress of public health measures (i.e., awareness about modifiable
risk factors and improved access to interventions) and the availability of new therapies
contributed to the reduction of rates of major lower limb amputations and mortality from
vascular causes [7].

Notwithstanding the encouraging outcomes, newer lines of evidence point to a shift
in management trends and the rise of obesity as a novel treatment target.

Obesity is a metabolic disease and seems to be correlated with the rising burden of
T2DM [8,9]. As a matter of fact, more than 80% of people who suffer from T2DM are
classified as overweight or obese [10]. These two pathologies are deeply interconnected
since they share many pathophysiological mechanisms, including IR, ectopic adiposity,
inflammation, and β-cell dysfunction.

Adiposity Impact on T2DM

Several studies support the benefit of a sustained loss (at least 15%) of body weight,
which exerts major benefits on T2DM-related endpoints and cardiovascular events [11].
Changing modifiable risk factors, such as diet and lifestyle, is useful for treating obesity and
preventing diabetes; however, for some people, these modifications are hard to maintain
over time. Besides the improvement of these behaviors, anti-obesity pharmacotherapies are
already available on the market. They usually provide benefit through appetite suppression
or/and by inhibiting caloric intake, although management of the diabetic phenotype while
reducing the number of side effects is still an unreached goal. In-depth characterization of
targets and pathways involved in these complex, multifaceted diseases is an essential aim
for the development of effective pharmacological agents. Thus, a promising opportunity
for drug discovery relies on innovative targets and mechanisms of action that are now
underrated. An emerging therapeutic framework is to target the adipose tissue since
obesity and T2DM share a deep connection to abnormal adiposity (Figure 1), also known
as adisopathy [12].

In more detail, white adipose tissue (WAT) is a remarkably complex organ that plays
a significant role as a key energy reservoir. However, in obese and diabetic subjects,
WAT often becomes highly dysfunctional, leading to adipocyte hypertrophy, visceral
adiposity, and ectopic fat deposition, which result in the development of cardiometabolic
syndromes [13]. Adiposity is also deeply linked to compensatory insulin secretion. This
hypersecretion leads to insulin resistance and eventually to β-cell failure and results in
a shift from the pre-diabetes stage to T2DM. As a matter of fact, adiposity and insulin
resistance are strong predictors for full-blown T2DM, as represented in Figure 2.
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Interestingly, one of the hallmarks of obesity-linked inflammation in WAT is the
increased number of macrophages, which are also involved in the development of IR [14].
In addition, among obese individuals, alterations in the polarization of macrophages are
possible, which indicates changes in the innate immune system concomitant with the
metabolic syndrome. Unhealthy WAT expansion is accompanied by a shift in the adipokine
secretory profile, which typically includes an increase in the pro-inflammatory factors,
such as TNF, interleukin-1β (IL-1β), IL-6, IL-8, and leptin, with a concomitant reduction
in the anti-inflammatory factors, such as IL-10 and adiponectin. The exact molecular
mechanism of this increased inflammatory state in IR is not completely understood, but it is
definitely multifactorial. Besides this, dysfunctional WAT may impact glucose homeostasis
via other pathways that are not directly related to inflammation: for example, macrophages
contribute to lipid homeostasis and to desensitize WAT to insulin [15,16]. As a result,
dysfunctional adipose tissue has been linked to several clinical scenarios, namely fibrosis,
hypoxia, and mitochondrial dysfunction [17].
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Besides the strong relationship between insulin resistance and obesity [18], weight
reduction always provides an advantage, whether the pathophysiology of T2DM is domi-
nated by insulin resistance or β-cell dysfunction. Losing weight may also lead to improved
metabolic and glycemic control, minimizing the overall treatment burden.

Therefore, a weight-centric, or even better, adipose-centric intervention would slow
the disease course and benefit other associated cardiovascular risk factors, preventing
long-term microvascular and macrovascular complications of T2DM [5,11].

2. Weight Loss Interventions
2.1. Overview

Determining the degree to which an individual is overweight or obese is essential
to applying the most suitable guidelines for obesity management. However, the use of
BMI-based criteria to determine eligibility for weight loss interventions is flawed because
it excludes a significant percentage of the T2DM population from treatment, particularly
those whose ethnic or racial backgrounds are more likely to develop metabolic comor-
bidities despite having a BMI below the obesity threshold [19]. In every case, successful
strategies to facilitate substantial weight loss involved multicomponent interventions com-
bining lifestyle modifications and pharmacotherapy. However, long-term maintenance of
weight loss is challenging. Weight loss that is induced by dieting often results in an early
rapid weight loss over 6 months, followed by a plateau and progressive regain over 1–3
years. The underlying reasons are unclear, although a potential explanation may lie in the
several physiological changes intrinsic to obesity, such as the appetite dysregulation in
the brain’ subcortical areas, which results in an increased drive to eat and a reduction of
energy expenditure [20]. This is particularly accentuated when environmental conditions
contribute to obesity (e.g., poor physical activity, easy access to high-caloric food).

2.2. Bariatric Surgery

Another effective opportunity lies in bariatric surgery, also known as metabolic surgery.
The growing consensus that bariatric surgery is an enduring treatment for obese patients is
reflected in the rise in the number of procedures. Moreover, bariatric surgery is supported
as an anti-diabetic intervention for people with T2DM and obesity by the International
Diabetes Federation and the American Diabetes Association [21,22]. Indeed, multiple
studies demonstrated the efficacy of bariatric surgery in improving glucose homeostasis
and reducing the need for glucose-lowering medications [23]. As a matter of fact, weight-
loss surgery also leads to improvements in micro- and macro-comorbidities of T2DM,
namely hypertension and concentrations of triglycerides, LDL, and HDL cholesterol. These
effects are induced by alterations in gastrointestinal hormone secretory patterns that control
appetite, which impact eating habits through the gut-brain axis and may also directly
reduce blood sugar levels [21]. Bariatric surgery has a significant potential to lead a T2DM
subject into remission, which is defined as a normal HbA1c value without glucose-lowering
medications for at least three months [20,21]. This is due to the combination between
weight loss-dependent and weight loss-independent effects on glucose metabolism [24,25].
Additionally, people who undergo bariatric surgery have a lower risk of being diagnosed
with T2DM 15 years after their procedure than patients who do not [26].

The four most common bariatric operations performed worldwide are laparoscopic
sleeve gastrectomy, laparoscopic Roux-en-Y gastric bypass, laparoscopic adjustable gastric
banding, and duodenal switch. Among these surgeries, new research indicates that the
bypass technique may result in better long-lasting weight reduction and glycemic manage-
ment, while the sleeve procedure is linked to fewer reoperations [27]. However, these are all
invasive procedures and are not without risks. Some of the most common adverse effects of
bariatric surgery include postoperative surgical complications, micronutrient deficiencies,
gastro-esophageal reflux (for sleeve gastrectomy), hernias and ulcers (for gastric bypass),
and slippage and pouch dilatation (for adjustable gastric banding).
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2.3. Pharmacotherapy for Chronic Weight Management

Until now, there are no available pharmacotherapies that are able to replicate such re-
sults; still, several agents have received regulatory authorities’ approval for chronic weight
management (Table 1). Currently, only three are approved for chronic weight management:
orlistat (Xenical®) Montgomery, AL, USA, liraglutide (Saxenda®) Bagsvaerd, Denmark,
and semaglutide (Wegovy®) Bagsværd, Denmark. Orlistat is an inhibitor of gastrointestinal
lipase, and it is able to reduce the absorption of ingested fat by approximately 30% [28]. As
a result, the undigested fat is eliminated in the stool, which can lead to side effects such as
stomach cramps, diarrhea, and flatulence. While the last two are GLP1 receptor agonists
(GLP1RA), which work by decreasing appetite and increasing feelings of fullness. They are
a synthetic version of GLP1, a hormone released by the body after eating. By mimicking
GLP1 and binding to its receptors in the brain, they elicit the above mentioned beneficial
effects. They also slow the emptying of the stomach, which can also prolong the feeling of
fullness [29]. These drugs are usually prescribed for individuals with a body mass index
(BMI) of 30 or more, or for individuals with a BMI of 27 or more who also have other
health conditions such as diabetes or high blood pressure. Furthermore, the FDA has ap-
proved some combination therapies for obesity treatment, such as phentermine/topiramate
(Qsymia® Campbell, CA, USA) [30] and bupropion/naltrexone (Mysimba® San Diego, CA,
USA) [31]. The former one is a combination of an appetite suppressant (phentermine) and
an anti-seizure medication that also affects appetite and satiety to help with weight loss
(topiramate). While the latter is a combination of two drugs that have been FDA-approved
for the treatment of depression (bupropion) and addiction (naltrexone).

Table 1. Weight loss drugs.

Drug Company Dose,
Administration Approval Mode of Action Weight Loss

(Placebo/Drug)

Orlistat
(Xenical®)

Roche
Pharmaceuticals 120 mg, TTD 1999–present

(EU, USA)

Inhibitor of
gastrointestinal

lipase

−6.1% to −10.2%
[32]

Liraglutide
(Saxenda®)

Novo
Nordisk

with titration
3.0 mg OD

2014–present
(EU, USA) GLP1R agonist −2.6% to −8%

[33]
Semaglutide
(Wegovy®)

Novo
Nordisk 2.4 mg, OW 2021–present

(EU, USA) GLP1R agonist −2.4% to −14.9%
[34]

Phentermine/
Topiramate
(Qsymia®)

Vivus with titration
15 mg/92 mg, OD

2012–present
(USA)

Central
norepinephrine

release

−1.2% to −9.3%
(dose-dependent)

[30,35]

Bupropion/
Naltrexone

(Mysimba®)

Orexigen
Therapeutics 360 mg/32 mg, TD 2014–present

(EU, USA)

Increased central
norepinephrine and

dopamine and opioid
receptor antagonist

−1.3% to −6.1%
(dose-dependent)

[36]

TD, twice daily; TTD, three times daily; OD, once daily; OW, once weekly.

3. Management of T2DM and Obesity

Besides these obesity pharmacotherapies, several glucose-lowering agents that are
FDA-approved for the treatment of T2DM have been recognized to promote weight loss
(Table 2). These include biguanides (metformin), GLP1R agonists, amylin analogs, and
sodium-glucose cotransporter 2 (SGLT2) inhibitors [37].
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Table 2. Profiles of T2DM therapy.

Metformin DPP-IVi GLP1RA SGLT-2i TZD SU and GLN Pramlintide
Hypoglycemia Neutral Neutral Neutral Neutral Neutral Mild/Moderate Neutral

Weight Slight Loss Neutral Loss Loss Gain Gain Loss

Renal/GU
Dose adjustment is necessary

(except linagliptin)
Effective in
Reducing

albuminuria

Not indicated for eGFR <45
mL/min/1.73 m2

Neutral
More Hypo Risk

NeutralContraindicated if eGFR <30
mL/min/1.73 m2

Exenatide not indicated CrCl <30 Genital Mycotic infection

Possible benefit of Liraglutide Possible benefit of
Empagliflozin

GI Moderate Neutral Moderate Neutral Neutral Neutral Moderate

Cardiac Neutral

Moderate
risk for

CHF Possible ASCVD risk Neutral
Possible increase in
hospitalization with

alogliptin and saxagliptin

Liraglutide
Prevents

MACE events

Empagliflozin reduce
CV mortality
Canagliflozin

reduce MACE events May reduce
stroke risk

Bone Neutral Neutral Neutral Mild Fracture Risk Neutral Neutral Neutral

Ketoacidosis Neutral Neutral Neutral DKA can occur in various
Stress settings Neutral Neutral Neutral

DPP-IVi, Dipeptidyl Peptidase-IV inhibitor; TZD, Thiazolidinedione; SU, Sulfonylurea; GLN, Glinide; GI, Gastrointestinal; GU, Genitourinary; eGFR, Estimated Glomerular Filtration

Rate; CrCl, Creatinine Clearance; MACE, Major Adverse Cardiac Events; DKA, Diabetic ketoacidosis; CV, Cardiovascular; CHF, congestive heart failure; ASCVD, atherosclerotic
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3.1. Biguanides

Metformin, represented in Figure 3, is the sole FDA-licensed antihyperglycemic med-
ication in this pharmacological family, and its introduction drastically improved T2DM
management. It helps to lower blood sugar levels by increasing insulin sensitivity and
reducing the amount of glucose produced by the liver. Although metformin was intro-
duced into clinical use notwithstanding its cellular mechanisms, over the last few years its
complex modes of action have been better defined.
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Metformin works by inhibiting mitochondrial glycerophosphate dehydrogenase, indirectly
activating adenosine monophosphate-activated protein kinase (AMPK), and lowering cytosolic
dihydroxyacetone phosphate while increasing the cytosolic NADH/NAD ratio [24]. As a result
of its high levels in the intestine, metformin increases glucose metabolism through glycolysis,
and an excessive amount of lactate is produced in intestinal epithelial cells. Lactate is then
converted to glucose in hepatocytes, creating an ineffective intestinal-liver cycle that increases
energy expenditure [25]. Metformin accumulation in the gastrointestinal tract can affect not just
epithelial brush border metabolism but also the altered microbiota composition of patients with
T2DM, resulting in decreased serum lipopolysaccharides (LPS) levels, reduced inflammation,
and improved insulin sensitivity [26].

Studies also show that metformin promotes weight loss and decreases food intake.
This is justified by the AMPK-dependent effect in the brain, where metformin suppresses
orexigenic peptides, neuropeptide Y, and agouti-related proteins, while the decrease in
food intake is due to an increase in the expression of the leptin receptor gene in the arcuate
nucleus to reduce central leptin sensitivity [27].

Additionally, chronical metformin treatment increases growth differentiation factor 15
(GDF15) and GLP1 levels, two key mediators of metformin-induced weight loss [27,28].
Metformin has also been shown to improve body composition in T2DM patients since
it reduces visceral fat mass and abdominal subcutaneous fat [29]. Unfortunately, even
though metformin may lead to some weight loss, the amount lost is far less than the
amount desired.

According to the Diabetes Prevention Study (DPP), which is the largest study to show
the weight benefits of metformin, the average weight reduction after one year on the
medicine is only 2.1 kg [30]. In 2 years of follow-up, the level of weight loss was substan-
tially associated with adherence, with highly adherent patients experiencing an average
3.5% reduction in body mass, while low adherence was associated with weight-neutral
status. Waist circumference was similarly influenced, with a lower weight circumference
being correlated with the degree of adherence.

Given the safety and tolerability of metformin, as well as its mild weight-loss effect, the
FDA has not approved metformin as a weight-loss agent. Nevertheless, it is currently and
commonly used off-label in individuals who are at high risk for metabolic problems and
who cannot tolerate alternative therapies. As a matter of fact, the 2016 American Association
of Clinical Endocrinologists (AACE) guidelines on obesity management recommend the use
of metformin (as well as acarbose and thiazolidinediones) in obese patients with evidence
of prediabetes or insulin intolerance that does not respond to lifestyle medications or other
anti-obesity medications (grade A; BEL 1) [31].

3.2. GLP1 Agonist

Incretin-based therapies are a prominent approach to successfully managing obesity
and metabolic disorders such as T2DM. Patients who suffer from T2DM fail to achieve
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glycemic control due to a desensitization of incretin receptors [38–40]. Nevertheless, pre-
clinical and clinical investigations demonstrate that glycemic control can be accomplished
by medications [41,42] or weight reduction [43].

Incretin hormones include GLP1 and the glucose-dependent insulinotropic polypep-
tide hormone (GIP). These enteroendocrine hormones are released from the gut in response
to intraluminal carbohydrates and fats [6].

They act mainly on the pancreas, where they exert their insulinotropic activity. Con-
comitantly, they play a direct role in several biological pathways involved in T2DM and
obesity, such as satiety and lipolytic activity [44]. The numerous physiological effects are
due to the fact that incretin receptors are G protein-coupled receptors expressed in many
tissues, including the pancreas, brain, and gut. As a consequence, incretin hormones are
interesting targets because not only do they act on different mechanisms involved in the
pathophysiology, but they are also essential regulators of food intake and body weight.
More in detail, one of the primary actions of incretin hormones is to stimulate insulin
secretion from the pancreatic β-cells in a glucose-dependent manner, which means that
they only activate insulin production when blood glucose levels are elevated. In addition
to its effects on glucose homeostasis, incretin effects include slowing gastric emptying and
promoting satiety, which helps reduce food intake and body weight [45].

GLP1 also exerts several cardiovascular effects, including improving endothelial
function and reducing blood pressure. Moreover, GLP1 inhibits glucagon production from
pancreatic α-cells, which helps lower hepatic glucose production and enhance peripheral
glucose absorption [46]. The net effect of these actions is lower blood glucose levels.

Unlike GLP1, GIP may stimulate glucagon secretion at lower glucose levels and
promote lipid synthesis and storage in adipose tissue, which can increase fat accumulation
and body weight gain [47]. This has led to controversy about the potential role of GIP in
the development of drugs for obesity and related metabolic disorders.

However, the administration of GIP receptor (GIPR) agonists (both central and periph-
eral) is reported to lead to a reduction in caloric intake and body weight [48,49]. The reason
may lie in the fact that solely GIP receptors (GIPR) are expressed in WAT [50], and GIPR
agonism has been reported to improve the ability of adipocytes to acutely clear dietary
triglycerides by directly activating GIPR on adipocytes, indirectly via the lipogenic action of
insulin, or through the combination of both [51]. GIP also promotes the healthy expansion
of WAT, which decreases ectopic fat accumulation in tissues such as the heart, skeletal
muscle, pancreas, and liver [52]. In addition, GIP also reduces proinflammatory immune
cell infiltration [51,53], a process that is characterized by unhealthy WAT.

Single or multitarget agents that replicate the effects of GLP1 and GIP are particu-
larly appealing in T2DM due to the improvement of glucose homeostasis combined with
weight-loss action and benefit adipose tissue health. Several GLP1RAs are approved for
the treatment of T2DM in both Europe and the United States, such as exenatide (Byetta®)
San Diego, CA, USA, albiglutide (Tanzeum®) Middlesex, UL, USA, dulaglutide (Trulicity®)
Indianapolis, IN, USA, and lixisenatide (Adlyxin®) Paris, France. Furthermore, as already
mentioned, among the approved GLP1RAs, some drugs, namely liraglutide and semaglu-
tide (Figure 4), are also approved by the FDA and EMA as weight loss medications in
individuals with a BMI of 30 or higher or a BMI of 27 or higher with a weight-related
condition such as high blood pressure, T2DM, or high cholesterol.

Liraglutide and semaglutide are both long-acting GLP1RAs that exhibit pharmacody-
namic effects for 24 h per day despite different dosing intervals and dosages. Liraglutide’s
structure possesses minor sequence alterations from the parent peptide GLP1: the differ-
ences include an Arg in position 28, instead of a Lys, and in position 20, the Lys is covalently
linked with a C16 acyl chain via a glutamoyl spacer.

The fatty acid facilitates the bond with albumin, allowing the GLP1 analog to decrease
the renal clearance and extend its duration of action [54].
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Clinical studies with liraglutide 1.8 mg have demonstrated weight reduction in people
with T2DM of up to 3.6% (3.3 kg) at 26 weeks and 4.7% (5.0 kg) at 56 weeks [29,55,56],
whereas trials with liraglutide 3.0 mg have demonstrated weight loss in patients with
obesity of between 7.9% (8.9 kg) and 8.2% (7.3 kg) at 56 weeks [33,56,57].

Moreover, obese people can lose up to 12.5 kg in total during the run-in phase of
a low-calorie diet, of which half was observed during the liraglutide 3.0 mg treatment
period [58].

The indirect impact of improved glucose management on body weight homeostasis
may be the cause of the difference in weight reduction between patients with T2DM and
subjects with obesity.

Regarding semaglutide, the peptide backbone was modified at position 8, where an
aminoisobutyric acid (Aib) was introduced instead of an Ala and an acetylated Lys26.
Structure-activity investigations proved that C18 diacid together with a γGlu and two oligo
(ethylen glycol) linkers resulted in the highest albumin affinity combined with GLP1R
potency. Clinical studies demonstrated that semaglutide has a similar safety profile to other
GLP1RAs while offering better weight reduction than liraglutide [59–61]. As a matter of
fact, semaglutide causes an approximately two-fold larger weight loss than liraglutide and
a three-fold greater weight loss than exenatide [59], even if they were not dose optimized in
the same manner. Additionally, both liraglutide and semaglutide lower the cardiovascular
risk in people with T2DM, a result that has not been seen with short-acting GLP1RAs [62].

Besides these GLP1RAs, dual GIP/GLP1RAs have been investigated as well, such as
tirzepatide (LY3298176) [63], which is represented in Figure 5. This drug, based on the GIP
sequence and attached to a C20 diacid moiety, was developed by Eli Lilly and approved
by the FDA and EMA in 2022 for the treatment of adults with obesity or overweight with
weight-related comorbidities [64]. This strategy extends its half-life to 5 days, making a
once-weekly dosage possible. Tirzepatide showed in pre-clinical studies and clinical trials
to strongly lower glucose and to exert weight reduction benefits with side effects that are
equivalent to those of known GLP1 receptor agonists.
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In the SURPASS phase 3 clinical trial program, 5, 10, and 15 mg of Tirzepatide have
been investigated for patients suffering from T2DM. All three doses led to a larger reduction
in body weight (from 8.2% up to 11.9% for the highest dose) and an improved HbA1c value
(2–2.3% reduction) than did 1.0 mg of semaglutide (i.e., −6.1% bodyweight and −1.9%
HbA1c) over 40 weeks in addition to metformin [65].

The design of GLP1 and glucagon dual agonists has also been explored. This combina-
tion aims to take advantage of the satiety effect while balancing insulin secretion mediated
by GLP1 and glucagon’s mobilization of hepatic glucose. The most promising compound
is MEDI0832 (cotadutide), a synthetic peptide that results in side chain modification of
the primary sequence of glucagon in order to confer GLP1R activity, in addition to an
esterification with a palmitic fatty acid to facilitate albumin binding. This novel peptide is
more potent toward the GLP1R, with a 3–4 times lower efficacy at the GLP1R compared
with native GLP1, and an 8-fold lower potency at the GCGR (glucagon receptor) compared
with natural glucagon. Cotadutide is under clinical development by AstraZeneca and
is currently in Phase II of clinical studies [66]. Obese patients with T2DM who were on
metformin monotherapy showed a mean reduction of body weight equal to 5% and a
decrease in HbA1c of 1.2% with a dose of 300 mg of cotadutide [67]. Table 3 represents
several other multi-target drugs that are currently under development, such as BI 456906
(Boehringer Ingelheim, Ingelheim am Rhein, Germany), LY3305677 (Eli Lilly, Indianapolis,
IN, USA) LY3437943 (Eli Lilly, Indianapolis, IN, USA), JNJ-54729518 (J&J, New Brunswick,
NJ, USA), HM15211 (Hanmi, Seoul, Republic of Korea), NNC9204-1706 (Novo Nordisk,
Bagsværd, Denmark), Alt-801 (Altimmune, Gaithersburg, MD, USA), and G3215 (Imperial
College/Zihipp Ltd., London, UK). However, in general, this approach has not yielded
satisfactory outcomes yet.

Table 3. Current antidiabesity multitarget-drugs in development.

Drug Company Targets Sequence
Modified Phase Ref

Cotadutide Altimmune GLP1/GCGR Glucagon Phase II [67]
BI 456906 Boehringer Ingelheim GLP1/GCGR Glucagon Phase II [68]
LY3305677 Eli Lilly GLP1/GCGR OXM Phase I [69]
LY3437943 Eli Lilly GLP1/GIP/GCGR - Phase I [70]

JNJ-54729518 J&J GLP1/GCGR OXM Phase II [71]
HM15211 Hanmi GLP1/GIP/GCGR Glucagon Phase II [72]

NNC9204-1706 Novo GLP1/GIP/GCGR - Phase I [73]
Alt-801 Altimmune GLP1/GCGR GLP1 andglucagon Phase I [74]

G3215 Imperial
College/Zihipp Ltd. GLP1/GCGR OXM Phase I [71]
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3.3. Amylin Analogs

Incretin hormones are only some of the released peptides from the gastrointestinal
system in response to food intake. Among the plethora of satiety hormones, there is amylin
(or islet amyloid polypeptide; IAPP), a 37-amino acid peptide, co-stored and co-secreted
with insulin by pancreatic islet β-cells. IAPP relays signals to the hypothalamic nuclei and
other areas of the subcortical areas of the brain, resulting in increased feelings of satiety
and fullness. In addition, IAPP plays also a major role in glucose homeostasis by slowing
gastric emptying, suppressing glucagon secretion, and exerting anorexigenic effects by
working synergistically with leptin [75]. Furthermore, although the majority of licensed
pharmacotherapies for weight control work on the hypothalamus to decrease hunger and
energy intake, several preclinical studies demonstrate that amylin decreases weight by
focusing on both the homoeostatic and hedonic areas of the brain [76,77]. Notably, in the
obesity metabolic disturbance state, amylin secretion is increased leading to a desensiti-
zation of its receptor and even a reduction in its expression [78]. However, this situation
can be recovered by improving plasma levels and gene expression of amylin mRNA and
its receptor [75]. The synthetic amylin mimetic pramlintide is an approved treatment for
diabetes (both type 1 and 2) mostly in combination with insulin. This drug promotes better
glycemic control and modest but significant weight loss (after 16 weeks the weight loss is up
to 3.7 kg after 120–240 µg of pramlintide three times a day) [79]. By contrast to pramlintide,
cagrilintide is the first amylin analog to be investigated for weight management (Figure 6).
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In a 26-week clinical study, 4.5 mg of cagrilintide (weekly dosed) achieved 7.8% mean
weight loss versus placebo. In addition, the result obtained with 3.5 mg of cagrilintide was
also greater than the 6.0% mean weight loss achieved with liraglutide at 3.0 mg [80].

Contrary to a placebo, weight loss with cagrilintide persisted for the full 26 weeks of
therapy without hitting a plateau. Similarly to the outcomes with liraglutide at 3.0 mg,
weight reductions following cagrilintide treatment were followed by an overall improve-
ment in TFEQ (Three-Factor Eating Questionnaire) scores for cognitive restraint, emotional
eating, and uncontrolled eating in the same trial. A further step along the way to identi-
fying a compound able to manage weight and glycemic targets in people with T2DM has
been to evaluate the combination between 2.4 mg of semaglutide (GLP1RA) and different
doses of cagrilintide (1.2, 2.4, and 4.5 mg). The concomitant treatment of cagrilintide and
semaglutide, in comparison to semaglutide alone, provided effective weight loss (15.4%
up to 17.1%). Furthermore, glycemic control was improved regardless of the cagrilintide
dose [81].
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3.4. SGLT-2 Inhibitors

Other glucose-lowering agents with weight-loss propriety are the sodium-glucose
cotransporter 2 inhibitors (SGLT-2i). At the moment, there are several SGLT-2i available on
the market namely, canagliflozin, dapagliflozin, empagliflozin, and ertugliflozin (Figure 7),
or in development.
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This class of small molecules is characterized by an insulin-independent mechanism
and normalizes glycemia by avoiding the reuptake of filtered glucose in the kidney. In
addition to the common primary outcome of glycemic control, this mechanism of action
leads to further beneficial effects such as a reduction in blood pressure and weight [82,83].
Several clinical trials have been conducted on different SGLT-2i for the treatment of T2DM,
and the decrease in weight occurs quickly within the first weeks of treatment, then it
becomes more gradual [84]. The weight loss observed with SGLT-2 inhibitors is primarily
caused by glycosuria, which leads to both energy and water loss via osmotic diuresis [85,86].
In T2DM patients treated with SGLT2i, 50 to 85 g of glucose are excreted daily, values close
to those of healthy individuals that represent around 50% of the glucose-filtered load [87].
Interestingly, meta-analysis also points out a change in body composition: after 16 weeks on
ipragliflozin, 50 to 70% of the total weight loss was from body fat, while 15 to 35% was from
water weight [84,88,89]. In addition, a shift in metabolic processes was also demonstrated
in T2DM subjects, where the inhibition of SGLT-2 is associated with increments in glucagon
release and stimulation of lipid oxidation and lipolysis. Other physiological changes that
could be responsible for weight loss include increased glucagon/insulin ratios that first
cause the liver’s glycogen stores to be depleted and then activate gluconeogenesis using
circulating amino acids, as well as a general switch from glucose to free fatty acids. The
drop in amino acid levels eventually causes a change in mitochondrial morphology from
fission to a sustained fusion state [84].

Furthermore, SGLT-2i reduces blood leptin, increases adiponectin levels, and shows
cardiovascular protective properties, in particular in cases of heart failure, by reducing the
adipose accumulation in the myocardium [90]. The degree of the cardiovascular benefit
seems not to be related only to the weight loss but could include hemodynamic changes
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and the shift to ketone body metabolism [84]. SGLT-2i therapy has also been associated
with improvements in renal and liver function in patients with T2DM [91,92].

Thus, pharmacotherapy with SGLT-2i is recommended for T2DM subjects who have
indicators of high risk of renal or heart failure, although treatment with SGLT-2i is correlated
with an increased risk of urinary and genital infections [93].

4. Conclusions

Obesity is a highly multifaceted chronic disease condition that poses a serious public
health issue. Furthermore, it is associated with an increased risk of IR, T2DM, and several
cardiovascular and chronic inflammatory diseases. As a matter of fact, obesity and T2DM
are strictly interconnected since they share key pathophysiological mechanisms. Intensive
dietary and lifestyle modifications can be effective for both obese and T2DM subjects by
ameliorating glycemic control and producing weight loss. Such beneficial effects can also be
achieved through existing pharmacological approaches that treat both obesity and T2DM
and are already available on the market. When the weight loss, is at least 15% of the initial
bodyweight, it can lead to significant improvement in the metabolic status and can also
induce remission. However, better solutions are required for successful, significant, and
long-lasting weight loss since maintaining a healthy weight is not so simple and there is a
huge unmet need for effective pharmacotherapy with minimal side effects.

Nonetheless, it is important to underline that using BMI-based criteria to establish
eligibility for weight loss interventions has several flaws. BMI is an inadequate indicator
of a person’s health risks since it does not directly evaluate body fat mass or its potential
for harm. Addressing obesity should focus on a more adiposopathy-based approach.
Therefore, considering adiposity health should be essential, even if efforts are still needed
to easily detect adipose tissue pathology. The progress toward personalized medicine in
order to better define obesity and provide individualized treatment choices is a challenge
to prioritize. Furthermore, it is also important to recognize that more efforts are needed to
understand the complex link between adiposopathy, obesity, and T2DM in order to identify
new possible targets and develop new effective active compounds while avoiding the rise
of both obesity and T2DM.
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