
ON MINIMAL GRAPHS OF SUBLINEAR GROWTH OVER MANIFOLDS

WITH NON-NEGATIVE RICCI CURVATURE

GIULIO COLOMBO, LUCIANO MARI, AND MARCO RIGOLI

Abstract. We prove that entire solutions of the minimal hypersurface equation

div

(
Du√

1 + |Du|2

)
= 0

on a connected, complete manifold with Ric ≥ 0, whose negative part grows like O(r/ log r)
(r the distance from a fixed origin), are constant. This extends the Bernstein Theorem for

entire positive minimal graphs established in recent years. The proof depends on a new

technique to get gradient bounds by means of integral estimates, which does not require
any further geometric assumption on M .
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The aim of this note is to prove the following Liouville-type theorem for entire solutions u
of the minimal hypersurface equation on complete manifolds of non-negative Ricci curvature.
Hereafter, we denote with

u−(x) = max{0,−u(x)}

the negative part of u.

Theorem A. Let M be a connected, complete Riemannian manifold with Ric ≥ 0 and u ∈
C∞(M) a solution of the minimal hypersurface equation

div

(
Du√

1 + |Du|2

)
= 0 on M. (1)

Let r be the Riemannian distance from a fixed point o ∈M . If

u−(x) = O
(

r(x)

log r(x)

)
as r(x) → ∞, (2)

then u is constant.

The interest in this problem stems from a series of classical and more recent results con-
cerning the global behaviour of entire solutions of the minimal hypersurface equation both on
Euclidean spaces and on suitable classes of complete Riemannian manifolds. In particular,
the result improves on the Bernstein Theorem for positive minimal graphs on complete man-
ifolds with Ric ≥ 0 recently proved by the authors with Magliaro [8] and by Ding [10]. The
main novelty of the present paper is that we can treat, without any additional requirement
besides Ric ≥ 0, solutions whose negative part diverges in a controlled way, close to the sharp
condition u−(x) = o(r(x)) under which it is expected that the conclusion of Theorem A may
hold as well in the stated assumptions.
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1. Introduction

In Euclidean space Rm+1, the (generalized) Bernstein theorem considers minimal hyper-
surfaces Σ given as the graph of a function u : Rm → R, which therefore solves the minimal
hypersurface equation

div

(
Du√

1 + |Du|2

)
= 0. (MSE)

Having defined the following property:

(B1) all solutions to (MSE) are affine functions,

the theorem guarantees that

(B1) holds for solutions
u : Rm → R to (MSE)

⇐⇒ m ≤ 7.

For a detailed treatment of this cornerstone result, see [16]. On the other hand, if one
assumes an a-priori bound on u (or |Du|), then Bernstein-type theorems holding true in every
dimension m ≥ 2 have been obtained by Moser [23] and Bombieri, De Giorgi and Miranda
[3]. In particular, the main result in [3] guarantees the following properties:

(B2) positive solutions to (MSE) are constant;
(B3) solutions to (MSE) with at most linear growth on one side, namely, satisfying

u−(x) = O
(
r(x)

)
as r(x) → ∞ (3)

are affine functions.

Here, r(x) is the distance from a fixed origin. Notice that (B3) implies (B2), indeed in the
following strengthened form:

(B2′) Solutions to (MSE) satisfying u−(x) = o
(
r(x)

)
as r(x) → ∞ are constant.

Also, (B3) implies Moser’s theorem in [23]: globally Lipschitz solutions to (MSE) are affine.

A natural question one might ask is under which conditions a similar picture occurs for
minimal graphs in more general ambient spaces. Topological products M × R with (Mm, σ)
a complete connected Riemannian manifold are a natural setting. Given u :M → R and the
associated graph map

Γu : M →M × R, Γu(x) = (x, u(x)),

the possible rigidity of Σ = Γu(M) depends on the metric chosen on M × R, and here we
focus on the product metric σ + dt2. Then, identifying Σ with M endowed with the induced
metric g = Γ∗

u(σ + dt2), Σ is minimal if and only if u solves (MSE) on M , where now D, div
are the gradient and divergence in (M,σ).

Remark 1. The problem has also been considered for different warped product metrics on
M × R, we refer to [1, 2] for motivations and a detailed account.

By [24, 13] (see also [14, 15] for previous achievements), in hyperbolic space Hm any contin-
uous boundary value ϕ ∈ C(∂∞Hm) gives rise to a bounded solution to (MSE) attaining ϕ at
infinity. Hence, there are plenty of bounded minimal graphs over Hm, and (B1), (B2), (B3)
fail. The results have been extended to Cartan-Hadamard manifolds with suitably pinched
negative sectional curvature, see [1] and the references therein. On the other hand, for reasons
explained in [1, 7, 8], results analogous to those for M = Rm might be expected on complete
manifolds (M,σ) with non-negative sectional or Ricci curvature:

Sec ≥ 0, or Ric ≥ 0.
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The analogy is also suggested by the theory of harmonic functions, in particular by the
classical results of Yau and Cheng-Yau [28, 6], Kasue [17] and Cheeger-Colding-Minicozzi [5].
In this respect, notice that on the graph Σ = (M, g) equation (MSE) rewrites as ∆gu = 0.

Apart from the Euclidean space, (B1) was proved on manifolds with Ric ≥ 0 and satisfying
the mild volume growth condition ∫ ∞ rdr

vol(Br)
= ∞. (4)

Indeed, one gets the following rigidity result, well-known at least if M has dimension 2 (a
case for which (4) is automatically satisfied if Ric ≥ 0). See [7, Theorem 6(i) and Remark 5].

Theorem 2 ([7]). Let (M,σ) be a connected, complete manifold with Ric ≥ 0 and satisfying
(4), and let u : M → R be a non-constant solution to (MSE). Then, M admits a splitting
N × R with the product metric σN + ds2 such that u(y, s) = as+ b for some a, b ∈ R.

To the best of our knowledge, property (B1) seems far from reaching on manifolds not
satisfying (4), even in case Sec ≥ 0. On the other hand, much progress was made in recent
years for properties (B2), (B3). When Sec ≥ 0, by [7, Corollary 10] property (B3) holds:

If M is complete, connected with Sec ≥ 0, and if u is a non-constant solution
to (MSE) satisfying (3), then the conclusion of Theorem 2 holds.

Consequently, (B2) and (B2′) hold as well.
Compared to the case of non-negative sectional curvature, the problem on manifolds only

satisfying Ric ≥ 0 presents new challenges. To justify this statement, we first observe that the
techniques in [28, 6, 5] to study harmonic functions rely in an essential way on two ingredients:

(i) The Bochner formula for solutions to ∆u = 0;
(ii) The properties of the distance r to a fixed point in (M,σ), in particular the Laplacian

bound

∆r ≤ m− 1

r
(5)

which follows from comparison theory.

Trying to follow the same approach when u solves (MSE) instead of ∆u = 0, a natural starting
point in place of the Bochner formula is the Jacobi equation

∆gW
−1 +

(
∥II∥2 +Ric

(
Du

W
,
Du

W

))
W−1 = 0

where W =
√
1 + |Du|2, motivating once more the interest in studying the behaviour of

solutions under the sole assumption Ric ≥ 0. However, (ii) entails to study ∆gr, which in
view of the minimality of Σ can be written as

∆gr = gij(D2r)ij

in local coordinates {xi} on M . The operator ∆g fails to be uniformly elliptic if |Du| is
unbounded. In particular, while the lower bound Sec ≥ 0 allows to estimate ∆gr by an
expression like the one in (5), and therefore to adapt most of the arguments known for
harmonic functions, the bound Ric ≥ 0 alone seems insufficient, and calls for new ideas. On
the other hand, the techniques in [3, 4] to get (B2), (B3) in Euclidean space heavily rely on
the fact that Σ enjoys the isoperimetric inequality(∫

Σ

ϕ
m

m−1

)m−1
m

≤ S

∫
Σ

∥∇ϕ∥ ∀ϕ ∈ Lipc(Σ),
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which is known to fail in our setting unless M has maximal volume growth, namely, balls
BR ⊂ (M,σ) centered at a fixed origin satisfy

lim
R→∞

vol(BR)

Rm
> 0.

New approaches able to overcome the aforementioned problems are, to our opinion, interesting
on their own, and may allow to application to other relevant PDEs.

The validity of (B2) on complete manifolds with Ric ≥ 0 was recently shown by the authors
in a joint paper with Magliaro [8], and also independently by Ding [10] with different methods.
The result improves on previous work of Rosenberg, Schulze and Spruck [25] by getting rid of
the technical assumption that the sectional curvature of (M,σ) be bounded from below. We
have:

Theorem ([8],[10]). Let M be a complete Riemannian manifold with Ric ≥ 0. Then any
non-negative solution to (MSE) on M is constant.

The proof in [8] is based on a new global gradient estimate for positive solutions to (MSE) on
complete manifolds with Ricci curvature bounded below by a (possibly negative) constant.
The estimate is obtained by using, in place of the distance function r, a different exhaustion
function constructed by means of potential theory and a duality principle recently established
in [21, 20]. By contrast, Ding’s argument in [10] is based on a new Harnack-type inequality
for positive solutions to (MSE). In fact, he considers complete manifolds satisfying global
doubling and weak Neumann-Poincaré inequalities, a class including those with Ric ≥ 0. In
his paper, Ding also remarks that from the same Harnack inequality, by applying standard
methods first outlined in [23], it is possible to infer the existence of δ > 0 such that if u is a
solution to (MSE) satisfying

u−(x) = o
(
r(x)δ

)
as r(x) → ∞ (6)

then u is constant. However, he does not provide any estimate on the sharp value of δ. In
this respect, our main Theorem A improves on [8, 10] and in particular shows the constancy
of u whenever (6) holds for any δ ∈ (0, 1). Indeed, Theorem A goes in the direction of proving
(B2′), failing only by a logarithmic term.

We conclude this introduction by briefly discussing properties (B2′) and (B3) on manifolds
with Ric ≥ 0. First, (B3) does not hold in the same strong form as for manifolds with
Sec ≥ 0. Indeed, by [7, Proposition 9] there exists a complete manifold with Ric > 0 (hence,
not splitting off any line) supporting an entire solution to (MSE) with bounded gradient. This
is not surprising, since by an example in [18] the same happens for solutions to ∆u = 0, and
in fact [7] elaborates on [18]. Then, the analogy with the case of harmonic functions discussed
in [5] led us to formulate the following:

Conjecture 3. If M is a connected, complete manifold with Ric ≥ 0, and if u is a non-
constant solution to (MSE) satisfying (3), then every tangent cone at infinity M∞ splits
isometrically as M∞ = N∞ × R.

In [7, Theorem 8], the conjecture was verified under the stronger assumption that u is
globally Lipschitz. In fact, in the proof of the theorem it is also shown that any blowdown
u∞ : M∞ → R of u corresponding to a tangent cone M∞ = N∞ × R satisfies u∞(y, t) =
∥Du∥∞t, from which one can deduce that the original function u has exactly linear growth
on both sides. In particular, under the additional assumption |Du| ∈ L∞(M), (B2′) holds as
well; indeed, the latter fact also follows from a more direct argument, sketched in the proof
of [7, Theorem 11], which we describe in detail in Lemma 8 below.

In view of [7, Theorem 8], if we could prove that

u satisfies (3) =⇒ |Du| ∈ L∞(M), (7)
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then the conjecture would be verified, and due to the above observation (B2′) would follow
too. Currently, the implication (7) was only shown under further geometric assumptions,
precisely:

(i) in [7, Corollary 18], (7) was proved in case the (m−2)-th Ricci curvature of (M,σ) in
radial direction from a fixed origin has a lower bound decaying quadratically to zero;

(ii) in [11], (7) was proved in case (M,σ) has maximal volume growth, as a consequence
of Theorem 1.3 there.

Note that the two extra assumptions in (i), (ii) are unrelated. Compared to [7, 11], the core
of the proof of Theorem A is to obtain a global gradient estimate for u under the validity of
(2), without any extra condition on M . The technique is based on integral estimates that,
differently from [3, 4, 11], do not require the validity of an isoperimetric inequality on Σ and,
unlike [27, 19, 25, 7], do not use second order properties of the distance function r. It might
be possible that our method be refined to get global gradient bounds under (3).

As a partial result in the attempt to prove (B2′), in the last part of the paper we obtain
an asymptotic upper estimate of the measure of superlevel sets of the function |Du| in case u
is an entire solution to (MSE) satisfying a two-sided bound |u| = o(r). We show that

lim
R→∞

vol({|Du| > ε} ∩BR)

vol(BR)
= 0 ∀ ε > 0 .

We refer to Corollary 10 for a precise statement. We also point out that, as a consequence
of Ding’s Harnack-type inequality for positive solutions of (MSE) proved in [10], the bound
|u| = o(r) is implied by the weaker, one-sided condition u− = o(r).

Acknowledgements. L.M. and M.R. are supported by the PRIN project 20225J97H5
“Differential-geometric aspects of manifolds via Global Analysis”.

2. Preliminary lemmas

Let (M,σ) be a connected, complete Riemannian manifold of dimension m ≥ 2. We denote
by | · |, D, div, vol and dv

.
= dvol the vector norm, gradient operator, divergence operator,

volume measure and volume form induced by σ, respectively. For u : M → R a smooth
function, we denote by

Γu :M →M × R, x 7→ (x, u(x))

the graph map, and by Σ = Γu(M) the graph of u. Having chosen the ambient product
metric σ̄ = σ + dt2, we let g = Γ∗

uσ̄ the induced graph metric on Σ, which is therefore
isometric to (M, g). We denote by ∥ · ∥, ∇, divg, ∆g, volg and dvg

.
= dvolg the vector norm,

gradient, divergence, Laplace-Beltrami operator, volume measure and volume form induced
by g, respectively. The metric g and its volume form dvg satisfy

g = σ + du⊗ du , dvg =Wdv

where W ∈ C∞(M) is defined, as usual, by

W =
√
1 + |Du|2 . (8)

With respect to any given local coordinate system {xi} on M we write

σ = σij dx
i ⊗ dxj , g = gij dx

i ⊗ dxj

where the Einstein convention of summation over repeated indices is in force. Letting σij and
gij denote the coefficients of the inverse matrices (σij)

−1 and (gij)
−1, respectively, we have

gij = σij − uiuj

W 2
(9)
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where ui = σij ∂u
∂xj . Using (9) and (8) we compute the norm of the gradient of u in the graph

metric g to be

∥∇u∥2 = gij
∂u

∂xi
∂u

∂xj
=

1

W 2
σij ∂u

∂xi
∂u

∂xj
=

|Du|2

W 2
≡ 1− 1

W 2
. (10)

By (9) and (8) we also have, for any ψ ∈ C1(M), the following useful formulas involving the
gradients Dψ and ∇ψ computed with respect to the metrics σ and g, respectively:

⟨∇ψ,∇u⟩ = gij
∂u

∂xi
∂ψ

∂xj
=

(
1− |Du|2

W 2

)
σij ∂u

∂xi
∂ψ

∂xj
=
σ(Du,Dψ)

W 2
, (11)

∥∇ψ∥2 = |Dψ|2 − σ(Dψ,Du)2

W 2
. (12)

From the second one we have the two-sided estimate

|Dψ|2

W 2
≤ ∥∇ψ∥2 ≤ |Dψ|2 . (13)

Lastly, for any ψ ∈ C2(M) we have the following well-known expression for the graph Lapla-
cian ∆g

∆gψ =
1√
|g|

m∑
i,j=1

∂

∂xi

(√
|g|gij ∂ψ

∂xj

)
≡ 1

W
√
|σ|

m∑
i,j=1

∂

∂xi

(
W
√
|σ|gij ∂ψ

∂xj

)
(14)

where |g| = det(gij) =W 2 det(σij) =W 2|σ|. In other words,

∆gψ =
1

W
div(ADψ)

where A is the endomorphism of TM of components Ai
k = Wgijσjk. We remark that the

eigenvalues of A are W and W−1. Hence, whenever |Du| ∈ L∞(M) we have that W∆g is a
uniformly elliptic second order operator in divergence form on (M,σ). This will be crucial in
the last part of the proof of the main theorem.

From now on, we always assume that u is a solution of the minimal hypersurface equation
(MSE), which is equivalent to ∆gu = 0 on Σ. Since ∂t is a Killing field, the positive function
1/W solves the Jacobi equation

∆g
1

W
= −(∥II∥2 +Ricσ̄(n,n))

1

W
on Σ (15)

where II is the second fundamental form of Σ and n is a normal vector field to Σ in M × R.
As a consequence, for any C > 0 the function

z :=We−Cu (16)

satisfies (see [9, formula (33) with H = 0])

divg(W
−2∇z) =

(
∥II∥2 +Ricσ̄(n,n) + C2∥∇u∥2

)
W−2z on Σ .

In case (M,σ) has Ric ≥ 0 this yields

divg(W
−2∇z) ≥ C2∥∇u∥2W−2z on Σ . (17)

The idea of considering an auxiliary function of the form (16) dates back to Korevaar, [19].
We now fix an origin o ∈M and set r(x) = distσ(o, x) for each x ∈M . For any R > 0 we

denote

BR = Bσ
R(o) = {x ∈M : r(x) < R}

the geodesic ball in (M,σ) of radius R centered at o, and by

ΣR = {(x, u(x)) : x ∈ BR} (18)
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the intersection of Σ with the infinite cylinder BR × R ⊆ M × R. For all −∞ < a < b < ∞
we also set

ΣR,a,b = {(x, u(x)) : x ∈ BR, a < u(x) < b} . (19)

We conclude this section by collecting three lemmas needed in the proof of the main result.
The first two lemmas give upper estimates on the measure volg(ΣR,a,b) and on the integral of
e−Cudvg on ΣR in case (M,σ) is any complete Riemannian manifold, in the spirit, respectively,
of [27] (see also [22, Theorem 3]) and [3]. The third lemma provides a weighted Caccioppoli-
type inequality for u on superlevel sets of the auxiliary function z in the assumption that
(M,σ) is also of non-negative Ricci curvature.

We briefly comment on the geometrical meaning of the upper estimates (20)-(22) for
volg(ΣR,a,b) given by the first lemma below. For any R > 0 and −∞ < a < b < ∞, the
set ΣR,a,b defined in (19) is the intersection of Σ with the cylinder

ΓR,a,b = BR × (a, b)

of M ×R. By a classical calibration argument (see, for instance, the first part of the proof of
Lemma 3.2 in [8]), the measure volg(ΣR,a,b) ≡ volg(Σ ∩ ΓR,a,b) is not larger than half of the
perimeter of the surrounding cylinder ΓR,a,b, so for a.e. R > 0 we have

volg(ΣR,a,b) ≤ vol(BR) +
b− a

2
Area(∂BR) .

A quite standard variation of this argument yields an analogous estimate in which Area(∂BR)
is replaced with a term depending on the volume vol(BR1

) of a second ball of larger radius
R1 > R. This turns out to be useful in case only a control on the growth of the function
R 7→ vol(BR) is available.

Lemma 4. Let (M,σ) be a complete Riemannian manifold, u ∈ C∞(M) a solution to (MSE)
and o ∈M a fixed origin. For any −∞ < a < b <∞ and R1 > R > 0 we have

volg(ΣR,a,b) ≤ vol(BR) +
b− a

2

vol(BR1
\BR)

R1 −R
(20)

where ΣR,a,b is as in (19). In particular, for any −∞ < a < b <∞ we have

volg(ΣR,a,b) ≤ vol
(
BR+ 1

2 (b−a)

)
∀R > 0 (21)

and also

volg(ΣR,a,b) ≤ vol(BR) +
b− a

2
Area(∂BR) for a.e. R > 0 . (22)

Proof. Let ψ :M → [0, 1] be the Lipschitz cut-off function defined by

ψ =


1 on BR

R1 − r

R1 −R
on BR1 \BR

0 on M \BR1

and let û = χ ◦ u, where χ : R → R is given by

χ(s) =


1
2 (a− b) if s ≤ a

s− 1
2 (a+ b) if a < s < b

1
2 (b− a) if s ≥ b .
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Then using φ = ûψ as a test function for the equation ∆gu = 0 we get

0 = −
∫
Σ

φ∆gudvg

=

∫
Σ

⟨∇φ,∇u⟩dvg

=

∫
Σ

ψ∥∇u∥21{a<u<b} dvg +

∫
Σ

û⟨∇ψ,∇u⟩dvg .

Using ∥∇u∥2 = 1−W−2 and dvg =Wdv we have∫
Σ

ψ∥∇u∥21{a<u<b} dvg =

∫
Σ

ψ1{a<u<b} dvg −
∫
M

ψ

W
1{a<u<b} dv

≥ volg(ΣR,a,b)− vol(BR1
) .

On the other hand, since ⟨∇ψ,∇u⟩ = gijψiuj = W−2σijψiuj = W−2(Dψ,Du) by (11), we
also have ∫

Σ

û⟨∇ψ,∇u⟩dvg =

∫
M

û
(Dψ,Du)

W
dv

≥ −
∫
M

|û||Dψ|dv

≥ −b− a

2

vol(BR1 \BR)

R1 −R

and putting together all estimates we obtain

volg(ΣR,a,b) ≤ vol(BR1
) +

b− a

2

vol(BR1 \BR)

R1 −R

that is, (20). Inequality (21) can then be deduced from (20) choosing R1 = R + 1
2 (b − a)

and using that vol(BR1
\ BR) = vol(BR1

) − vol(BR), while (22) follows from (20) since for
a.e. R > 0 the limit

lim
ε→0

vol(BR+ε)− vol(BR)

ε
exists and equals Area(∂BR). □

The next Lemma elaborates on arguments in [3, p. 264].

Lemma 5. Let (M,σ) be a complete Riemannian manifold, u ∈ C∞(M) a solution to (MSE)
and o ∈M a fixed origin. For any C > 0, λ > 0 and R > 0 we have∫

ΣR

e−2Cu dvg ≤ exp

(
−2C inf

BR

u

)
vol(B(1+λ)R)

1− e−4λCR
(23)

and for a.e. R > 0 we also have∫
ΣR

e−2Cu dvg ≤ exp

(
−2C inf

BR

u

)
vol(BR) + λRArea(∂BR)

1− e−4λCR
. (24)

Proof. Noting that∫
ΣR

e−2Cu dvg = exp

(
−2C inf

BR

u

)∫
ΣR

e−2C(u−infBR
u) dvg , (25)

we can set v = u− infBR
u and then we are left with the problem of estimating

∫
ΣR

e−2Cv dvg.

Since v ≥ 0 on BR, we have

ΣR =

∞⋃
n=0

Σ̃R,n
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where, for each integer n ≥ 0,

Σ̃R,n := {(x, u(x)) : x ∈ BR, 2nλR ≤ v(x) < 2(n+ 1)λR} .

Then ∫
ΣR

e−2Cv dvg =

∞∑
n=0

∫
Σ̃R,n

e−2Cv dvg ≤
∞∑

n=0

e−4nλCR volg(Σ̃R,n) . (26)

Note that for any n ≥ 0 we have

Σ̃R,n ⊆ ΣR,a,b

for all a < 2nλR− infBR
u and for b = 2(n+1)λR− infBR

u. Using (21) to bound volg(ΣR,a,b)
from above and then letting a↗ 2nλR− infBR

u we obtain

volg(Σ̃R,n) ≤ vol(B(1+λ)R) ∀n ≥ 0 .

Substituting this estimate into the RHS of (26) we get∫
ΣR

e−2Cv dvg ≤
vol(B(1+λ)R)

1− e−4λCR

and then (23) follows from this together with (25). A similar reasoning using (22) instead of
(21) yields (24). □

Lemma 6. Let M be a complete Riemannian manifold with Ric ≥ 0 and u ∈ C∞(M) a
solution to (MSE). For any C > 0, s1 > 0, α ≥ 2 and ψ ∈ Lipc(M), ψ ≥ 0 we have

4C2

α2

∫
{z>s1}

∥∇u∥2ψαe−2Cu dvg ≤
∫
{z>s1}

ψα−2∥∇ψ∥2e−2Cu dvg (27)

where z =We−Cu.

Proof. Let C > 0, s1 > 0 and α ≥ 2 be given. By standard density arguments, it is enough
to prove (27) for smooth ψ, so let 0 ≤ ψ ∈ C∞

c (M) be given. We already observed in (17)
that, since M has non-negative Ricci curvature, the function z satisfies

divg(W
−2∇z) ≥ C2∥∇u∥2W−2z ,

hence

C2

∫
M

∥∇u∥2W−2zφdvg ≤ −
∫
M

W−2⟨∇z,∇φ⟩dvg (28)

for every φ ∈ Lipc(M), φ ≥ 0. Let λ ∈ C∞(R) be such that

λ(s) = 0 for s ≤ 1 , λ(s) = 1 for s ≥ 2 , λ′ ≥ 0 on R

and for each δ > 0 define λδ ∈ C∞(R) by

λδ(s) := λ(s/δ) ∀ s ∈ R .

We have λδ ↗ 1(0,∞) as δ → 0+. For each δ > 0 set

φδ := ψαzλδ(z − s1) .

We have φδ ∈ Lipc(Σ), φδ ≥ 0, hence φδ is an admissible test function and by (28)

C2

∫
{z>s1}

∥∇u∥2W−2z2ψαλδ(z − s1) dvg ≤ −
∫
{z>s1}

W−2⟨∇z,∇φδ⟩dvg (29)
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where we can restrict ourselves to integrating over {z > s1} since the support of φδ is contained
in the closure of {λδ(z − s1) > 0} ≡ {z − s1 > δ}, hence inside {z ≥ s1 + δ} ⊆ {z > s1}. By
direct computation and using λ′δ ≥ 0 we get

⟨∇z,∇φδ⟩ = αψα−1λδ(z − s1)z⟨∇z,∇ψ⟩
+ ψαλδ(z − s1)∥∇z∥2

+ ψαλ′δ(z − s1)z∥∇z∥2

≥ λδ(z − s1)
(
αψα−1z⟨∇z,∇ψ⟩+ ψα∥∇z∥2

)
and by Young’s inequality we have

αψα−1z⟨∇z,∇ψ⟩+ ψα∥∇z∥2 ≥ −α
2

4
ψα−2z2∥∇ψ∥2

hence, since λδ ≥ 0,

−⟨∇z,∇φδ⟩ ≤
α2

4
z2ψα−2∥∇ψ∥2λδ(z − s1) .

Substituting this into (29) we obtain

C2

∫
{z>s1}

∥∇u∥2W−2z2ψαλδ(z − s1) dvg ≤ α2

4

∫
{z>s1}

W−2z2ψα−2∥∇ψ∥2λδ(z − s1) dvg .

By construction we have W−2z2 = e−2Cu, hence this amounts to

C2

∫
{z>s1}

∥∇u∥2ψαe−2Cuλδ(z − s1) dvg ≤ α2

4

∫
{z>s1}

ψα−2e−2Cu∥∇ψ∥2λδ(z − s1) dvg

and since λδ(z − s1) ↗ 1{z>s1}, by monotone convergence when letting δ ↘ 0 we obtain

C2

∫
{z>s1}

∥∇u∥2ψαe−2Cu dvg ≤ α2

4

∫
{z>s1}

ψα−2e−2Cu∥∇ψ∥2 dvg

that is, (27). □

3. Proof of the main theorem

Let (M,σ) be a connected, complete Riemannian manifold with Ric ≥ 0. As in the previous
section, let o ∈M be a fixed origin and set r(x) = distσ(o, x) for each x ∈M . Let u ∈ C∞(M)
be a solution of the minimal hypersurface equation (MSE) satisfying

u ≥ −f(r) on M (30)

for some continuous, positive and non-decreasing function f : R+
0 → R+, where we adopt the

notation

R+ = (0,∞) , R+
0 = [0,∞) .

We assume that

lim
t→∞

f(t) = ∞ , ∃ lim
t→∞

f(t)

t
=: K ∈ [0,∞) . (31)

We claim that under these assumptions it is possible to choose h : R+ → R+ continuous
and positive in such a way that the following requirements are satisfied for some parameters
A ∈ R+

0 and t0 ∈ R+
0 : 

th(t) > 2 for each t > t0

h(t) → 0 as t→ ∞

f(t)h(t) → A as t→ ∞ .

(32)
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Indeed, if f(t) = o(t) (that is, K = 0) then these conditions are satisfied with A = 0 by

h(t) =
1√
tf(t)

+
2

t

(in particular, in this case th(t) = 2 +
√
t/f(t) → ∞ as t → ∞); otherwise, that is K > 0,

the conditions in (32) are satisfied for instance by

h(t) =
2

t
+

1

t2

with A = 2K. For any h satisfying the requirements in (32), we set

ℓ = lim inf
t→∞

th(t) ∈ [2,∞] . (33)

LetM , u and f be as above and let h satisfy (32) for some t0, A ∈ R+
0 . Fix two parameters

s0 > 1 , µ > 0 ,

set

Λ =
eµ√

1− s−2
0

(34)

and for each R > 0 define

CR = Λh(R) , zR =We−CRu , s1(R) = s0 exp(Λf(R)h(R)) (35)

and
ER = {x ∈ BR : zR(x) > s1(R)} . (36)

where BR = Bσ
R(o) as defined in the previous section. We claim that the following inclusion

holds:
ER ⊆ {x ∈ BR :W (x) > s0} ∀R > 0 . (37)

Indeed, for any R > 0 and for any x ∈ BR such that W (x) ≤ s0 we have

zR(x) =W (x) exp(−Λu(x)h(R))

≤ s0 exp(−Λu(x)h(R))

≤ s0 exp(Λf(r(x))h(R))

≤ s0 exp(Λf(R)h(R))

= s1(R) ,

where we used positivity of s0, Λ, h, f , monotonicity of f and assumption (30). This shows
that

{x ∈ BR :W (x) ≤ s0} ⊆ {x ∈ BR : zR(x) ≤ s1(R)} ∀R > 0

and passing to the complements in BR we get (37).

Lemma 7. Let M be a connected, complete Riemannian manifold with Ric ≥ 0 and u ∈
C∞(M) a solution to (MSE) satisfying (30) for some non-decreasing f : R+

0 → R+. Let h,
s0, µ, Λ, CR, zR and s1(R) be as above. Then∫

ER∩BR/2

e−2CRu dvg ≤ e−µRh(R)vol(B2R)

(
e2ΛA

1− e−4Λℓ
+ o(1)

)
as R→ ∞ (38)

(with the agreement that e−∞ = 0 in case ℓ = ∞). Moreover, if

vol(B2R) = o(eµRh(R)) as R→ ∞ (39)

then
sup
M

W ≤ s0e
AΛ <∞ . (40)
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Proof of Lemma 7. We start by proving (38). For each R > 0 we apply Lemma (6) with
parameters C = CR, s1 = s1(R) and with ψ = ψR the cut-off function given by

ψR =


1 on BR/2

2R− 2r

R
on BR \BR/2

0 on M \BR

to obtain

4C2
R

α2

∫
ER

∥∇u∥2ψα
Re

−2CRu dvg ≤
∫
ER

ψα−2
R ∥∇ψR∥2e−2CRu dvg ∀α ≥ 2 , (41)

where we restricted the integration domain to ER since ψR and ∥∇ψR∥ vanish a.e. outside
BR. By (37) we have

W > s0 on ER .

Since ∥∇u∥2 = 1−W−2, this yields

∥∇u∥2 > 1− s−2
0 on ER

and then by (35) and (34)

C2
R∥∇u∥2 = Λ2∥∇u∥2h(R)2 > Λ2(1− s−2

0 )h(R)2 = e2µh(R)2 on ER . (42)

On the other hand, we have

∥∇ψR∥2 ≤ |DψR|2 ≤ 4

R2
on M (43)

Substituting (42) and (43) into (41) we obtain

e2µR2h(R)2

α2

∫
ER

ψα
Re

−2CRu dvg ≤
∫
ER

ψα−2
R e−2CRu dvg ∀α ≥ 2 . (44)

For any α > 2 an application of Hölder’s inequality with conjugate exponents α
α−2 and α

2

yields ∫
ER

ψα−2
R e−2CRu dvg ≤

(∫
ER

ψα
Re

−2CRu dvg

)1− 2
α
(∫

ER

e−2CRu dvg

) 2
α

.

Substituting this into (44) and then raising everything to the exponent α
2 we get(

eµRh(R)

α

)α ∫
ER

ψα
Re

−2CRu dvg ≤
∫
ER

e−2CRu dvg ∀α > 2 .

Recalling that ψR ≡ 1 on BR/2, we further obtain(
eµRh(R)

α

)α ∫
ER∩BR/2

e−2CRu dvg ≤
∫
ER

e−2CRu dvg ∀α > 2 . (45)

By the first assumption in (32), for each R > t0 we apply (45) with the choice

α = α(R) := Rh(R) > 2

to obtain

eµRh(R)

∫
ER∩BR/2

e−2CRu dvg ≤
∫
ER

e−2CRu dvg ∀R > t0 . (46)
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By Lemma 5 applied with the choice C = CR ≡ Λh(R) and λ = 1, and by also recalling (30),
we estimate∫

ER

e−2CRu dvg ≤
∫
ΣR

e−2CRu dvg ≤ vol(B2R)

1− e−4CRR
exp

(
−2CR inf

BR

u

)
≤ vol(B2R)

1− e−4ΛRh(R)
exp (2Λf(R)h(R))

and thus we finally obtain∫
ER∩BR/2

e−2CRu dvg ≤ e−µRh(R)

1− e−4ΛRh(R)
vol(B2R) exp (2Λf(R)h(R)) ∀R > t0 . (47)

From the third condition in (32) and the definition of ℓ := lim inft→∞ th(t) we have

lim sup
R→∞

exp (2Λf(R)h(R))

1− e−4ΛRh(R)
=

e2ΛA

1− e−4Λℓ
,

that is,

exp (2Λf(R)h(R))

1− e−4ΛRh(R)
≤ e2ΛA

1− e−4Λℓ
+ o(1) as R→ ∞

and substituting this into (47) we obtain (38).
We now prove the last part of the statement. Suppose by contradiction that (39) holds but

(40) is not satisfied. Then there exists x0 ∈ M such that W (x0) > s0e
AΛ and by continuity

we can find γ > s0e
AΛ and a relatively compact open neighbourhood Ω of x0 such that

W > γ on Ω .

Since u is bounded on Ω and CR = Λh(R) → 0 as R→ ∞ by (32), we have

e−CRu → 1 and therefore zR →W uniformly on Ω as R→ ∞ .

On the other hand, we also have

s1(R) → s0e
AΛ < γ as R→ ∞ .

Hence, setting ε = 1
2 (γ − s0e

AΛ), there exists R1 > 0 such that

zR > W − ε > γ − ε = s0e
AΛ + ε > s1(R) on Ω ∀R > R1 ,

that is, Ω ⊆ ER for all R > R1. Since Ω is bounded, up to choosing a larger R1 we can also
assume that Ω ⊆ ER ∩BR/2 for all R > R1. But then from (38) and (39) we have

0 = lim
R→∞

∫
ER∩BR/2

e−2CRu dvg ≥ lim
R→∞

∫
Ω

e−2CRu dvg = volg(Ω) > 0 ,

contradiction. □

We next need the following well-known Lemma. We provide a detailed proof for the sake
of completeness.

Lemma 8. Let M be a connected, complete Riemannian manifold with Ric ≥ 0, and u ∈
C∞(M) a solution to (MSE) such that

(i) sup
M

|Du| <∞ and (ii) u−(x) = o(r(x)) as r(x) → ∞ .

Then u is constant.
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Proof. A way to see this is to use [7, Theorem 8] and its proof, according to which, if u is non-
constant, any blowdown u∞ :M∞ → R of u corresponding to the tangent coneM∞ = N∞×R
satisfies u∞(y, t) = ∥Du∥∞t. In particular, u has exactly linear growth both from above and
from below. We provide a more direct argument. Without loss of generality we can assume
that u(o) = 0, so that

inf
BR

u ≤ 0 ∀R > 0 .

From assumption (i), the operator L = W∆g is a uniformly elliptic operator in divergence
form on the complete manifold (M,σ) of non-negative Ricci curvature. Since Lu = 0, for
each R > 0 the function

uR = u− inf
B2R

u

satisfies LuR = 0 on M , uR ≥ 0 on B2R and

inf
BR

uR = inf
BR

u− inf
B2R

u ≤ − inf
B2R

u .

Since uR is non-negative on B2R, from the Harnack inequality of [26, Theorem 5.3] we have

sup
BR

uR ≤ C inf
BR

uR ≤ −C inf
B2R

u

with C > 0 constant independent of R, and thus

sup
BR

u = sup
BR

u− inf
B2R

u ≤ −(1 + C) inf
B2R

u = o(R) as R→ ∞ .

From this and (ii) we obtain that |u(x)| = o(r(x)) as x → ∞, and since |Du| ∈ L∞(M) we
can apply the argument from the proof of [12, Theorem 3.6] and [7, Theorem 11] to conclude
that u is constant. We briefly sketch the argument for reader’s convenience: since Lu = 0
and L is uniformly elliptic, we have a Caccioppoli inequality∫

M

ψ2|Du|2 dv ≤ C

∫
M

u2|Dψ|2 dv ∀ψ ∈ Lipc(M)

with C > 0 a fixed constant. Fix ε > 0. Since |u| = o(r), there exists R0 > 0 large enough so
that u2 ≤ εR2 on B2R for all R > R0. Applying the Caccioppoli inequality with the cut-off
function

ψR =


1 on BR

2R− r

R
on B2R \BR

0 on M \B2R

we get ∫
BR

|Du|2 dv ≤ Cε vol(B2R) ≤ 2mCε vol(BR) ∀R > R0

where we used Bishop-Gromov’s inequality with m = dimM . Letting R → ∞ (with ε > 0
fixed) we get

lim
R→∞

1

vol(BR)

∫
BR

|Du|2 dv ≤ 2mCε . (48)

The function |Du|2 is bounded and satisfies

L|Du|2 =W∆gW
2 ≥W 2∆gW ≥ (∥II∥2 +Ricσ̄(n,n))W

3 ≥ 0

due to Jacobi equation (15) and condition Ric ≥ 0. Again since L is a uniformly elliptic
operator in divergence form on a manifold with Ric ≥ 0, we apply Proposition 22 in [7] to
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the non-negative, bounded, L-superharmonic function f = supM |Du|2 − |Du|2 to obtain the
Li-type mean value formula

sup
M

|Du|2 = lim
R→∞

1

vol(BR)

∫
BR

|Du|2 dv . (49)

Combining (48) and (49) we get

sup
M

|Du|2 ≤ 2mCε ∀ ε > 0

that is, Du ≡ 0 on M . This concludes the proof. □

We can now prove Theorem A from the Introduction.

Proof of Theorem A. Fix A > 0 such that

u ≥ − Ar

log(1 + r)
on M,

and consider the functions

f(t) =
At

log(1 + t)
, h(t) =

3 + log(1 + t)

t
,

which satisfy all assumptions in (32). By the Bishop-Gromov comparison theorem,

vol(B2R) ≤ CRm ∀R > 0

with m = dimM and C = C(m) > 0 a constant independent of R. Therefore, for any µ > 0
we have

e−µRh(R)vol(B2R) ≤ (e−µ)3+log(1+R)CRm =
C

e3µ
Rm

(R+ 1)µ
∀R > 0 .

Thus, for any choice of parameters µ > m and s0 > 1 we deduce from Lemma 7 that

sup
M

W ≤ s0e
AΛ <∞

with Λ = Λ(µ, s0) defined as in (34). In particular, |Du| =
√
W 2 − 1 is bounded on M . By

the previous Lemma 8, we conclude that u is constant. □

4. Further results

Let (M,σ) be a connected, complete Riemannian manifold with Ric ≥ 0 and let r, BR

denote, respectively, the Riemannian distance from a fixed origin o ∈ M and the geodesic
ball of radius R > 0 centered at o. In this section, we derive asymptotic (as R → ∞) upper
estimates on the measure of the sets {|Du| > ε}∩BR, ε > 0, in case u is a solution to (MSE)
on M satisfying u = o(r). In the last part of the section we show that condition u = o(r) can
in fact be relaxed to u− = o(r), Therefore, the estimates proved in this section can be seen
as complementary, weaker results to those proved in the previous section, where the stronger
assumption u− = O(r/ log r) was required.

Let (M,σ) and r be as above and let u ∈ C∞(M) be a solution to (MSE) satisfying

|u| ≤ f(r) on M (50)

for a continuous, positive and non-decreasing f : R+
0 → R+. Let h, ℓ, s0, µ,Λ, CR, zR, s1(R), ER

be as at the beginning of the previous section. For each R > 0 define

s2(R) = s0 exp(2Λf(R)h(R))

and

ΩR = {x ∈ BR :W (x) > s2(R)} .
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We observe that, due to the upper bound u ≤ f(r) ensured by (50), the following inclusion
holds:

ΩR ⊆ ER ∀R > 0 . (51)

Indeed, for any R > 0 and x ∈ BR such that W (x) > s2(R) we have

zR(x) =W (x) exp(−Λu(x)h(R))

> s2(R) exp(−Λu(x)h(R))

≥ s2(R) exp(−Λf(r(x))h(R))

≥ s2(R) exp(−Λf(R)h(R))

= s0 exp(Λf(R)h(R))

= s1(R)

where in the second inequality we used that u(x) ≤ f(r(x)).

Lemma 9. Let M be a connected, complete Riemannian manifold with Ric ≥ 0 and u ∈
C∞(M) a solution to (MSE) satisfying (50). In the above setting,∫

ΩR∩BR/2

e−2CRu ≤ e−µRh(R)vol(B2R)

(
e2ΛA

1− e−4Λℓ
+ o(1)

)
as R→ ∞ . (52)

In particular, for each

γ > s0e
2AΛ (53)

we have

volg({W > γ} ∩BR/2) ≤ e−µRh(R)vol(B2R)

(
e2ΛA

1− e−4Λℓ
+ o(1)

)
as R→ ∞ . (54)

Proof. Inequality (52) follows directly from (38) coupled with inclusion (51). The second part
of the statement then follows by noting that for any γ > s0e

2AΛ one has

{W > γ} ⊆ {W > s2(R)} for all sufficiently large R > 0

since s2(R) → s0e
2AΛ < γ as R→ ∞. □

A consequence of the previous Lemma is the following.

Corollary 10. Let (M,σ) be a connected, complete Riemannian manifold with Ric ≥ 0 and
u ∈ C∞(M) a solution to (MSE) satisfying

u(x) = o(r(x)) as x→ ∞ .

Then for each ε > 0 we have

volg({|Du| > ε} ∩BR) = o(BR) as R→ ∞ .

In particular,

vol({|Du| > ε} ∩BR) = o(BR) .

Proof. If u(x) = o(r(x)) as x → ∞ then condition |u| ≤ f(r) is satisfied for a suitable
continuous, non-decreasing function f : R+

0 → R+ such that{
f(t) = o(t) as t→ ∞

f(t) → ∞ as t→ ∞
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Consequently, as already observed at the beginning of the previous section, one can find
h : R+ → R+ satisfying the set of conditions (32) with A = 0 (and ℓ = ∞). Thus, for any
choice of parameters γ > s0 > 1 and µ > 0 estimate (54) yields

volg({W > γ} ∩BR/2) ≤ e−µRh(R)vol(B2R)(1 + o(1))

≤ e−µRh(R)4mvol(BR/2)(1 + o(1))

= o(vol(BR/2)) as R→ ∞

where we used Bishop-Gromov’s theorem to estimate vol(B2R) ≤ 4mvol(BR/2) and e
−µRh(R) =

o(1) as R→ ∞. Relabeling R/2 7→ R, we get

volg({W > γ} ∩BR) = o(vol(BR)) as R→ ∞

for each γ > 1, which is equivalent to

volg({|Du| > ε} ∩BR) = o(vol(BR)) as R→ ∞

for each ε > 0. □

In [10], Q. Ding proved a Harnack inequality for entire solutions of (MSE) on complete
Riemannian manifolds satisfying the volume-doubling property and a uniform Neumann-
Poincaré inequality. This class includes complete manifolds with non-negative Ricci curvature.
By means of this Harnack inequality, that we restate in Lemma 11 below in the particular
setting of manifolds with Ric ≥ 0, we are able to prove (Corollary 13) that for an entire
solution u of (MSE) the two-sided bound u = o(r) appearing in the assumptions of Corollary
10 is implied, in fact, by the one-sided bound u− = o(r).

Lemma 11 ([10], Theorem 4.3). Let M be a complete manifold with Ric ≥ 0 and let u ∈
C∞(M) be a solution to (MSE). Suppose that u > 0 on B4R(p) for some p ∈M and R > 0,
and let

D2R = {(x, t) ∈M × R : distσ(x, p) + |t− u(p)| < 2R} , B2R = Σ ∩D2R(x̄) . (55)

Then

sup
B2R

u ≤ θ inf
B2R

u (56)

where θ > 1 is a constant depending only on m = dimM .

Corollary 12. Let M be a complete Riemannian manifold with Ric ≥ 0 and let u ∈ C∞(M)
be a solution to (MSE). Suppose that u > 0 on B4R(p) for some p ∈M and R > 0. Then

min

{
sup

BR(p)

u, u(p) +R

}
≤ θmax

{
inf

BR(p)
u, u(p)−R

}
(57)

where θ > 1 is the constant appearing in Lemma 11, depending only on m = dimM .

Proof. Let us consider

Γ̃R = {(x, t) ∈M × R : distσ(x, p) < R, |t− u(p)| < R} , Σ̃R = Σ ∩ Γ̃R .

We have Γ̃R ⊆ D2R and therefore Σ̃R ⊆ B2R, where D2R and B2R are as in (55). Hence,

sup
Σ̃R

u ≤ sup
B2R

u ≤ θ inf
B2R

u ≤ θ inf
Σ̃R

u . (58)

When regarding u as a function on the graph Σ, we have

u(p)−R < u < u(p) +R on Σ̃R
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by the very construction of Γ̃R. On the other hand, again by the construction of Γ̃R we have
x ∈ BR(p) for each (x, t) ∈ Γ̃R. Therefore,

inf
Σ̃R

u = max

{
inf

BR(p)
u, u(p)−R

}
, sup

Σ̃R

u = min

{
sup

BR(p)

u, u(p) +R

}
and substituting this into (58) we get (57). □

Corollary 13. Let (M,σ) be a connected, complete Riemannian manifold with Ric ≥ 0
and let u ∈ C∞(M) be a solution to (MSE). If u−(x) = o(r(x)) as r(x) → ∞, then also
|u(x)| = o(r(x)) as r(x) → ∞.

Proof. For each R > 0 let
uR = u− inf

B4R

u+ 1 .

Then uR is a solution to (MSE) on M that satisfies uR > 0 on B4R. By Corollary 12, for
each R > 0 we have

min

{
sup
BR

uR, uR(o) +R

}
≤ θmax

{
inf
BR

uR, uR(o)−R

}
Equivalently,

min

{
sup
BR

u, u(o) +R

}
≤ θmax

{
inf
BR

u, u(o)−R

}
+ (θ − 1)

(
1− inf

B4R

u

)
. (59)

Since infBR
u = o(R) as R→ ∞, there exists R0 > 0 such that

inf
BR

u > u(o)−R ∀R > R0

and therefore we have

min

{
sup
BR

u, u(o) +R

}
≤ θ inf

BR

u+ (θ − 1)

(
1− inf

B4R

u

)
∀R > R0 . (60)

Since the RHS of (60) is o(R) as R→ ∞, and therefore it is eventually smaller than u(o)+R,
we infer that there exists R1 > R0 such that

min

{
sup
BR

u, u(o) +R

}
= sup

BR

u ∀R > R1

so we get

sup
BR

u ≤ θ inf
BR

u+ (θ − 1)

(
1− inf

B4R

u

)
∀R > R1

and in particular supBR
u = o(R) as R→ ∞. This concludes the proof. □
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