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ABSTRACT
The chase is a well-known algorithm with a wide range of
applications in data exchange, data cleaning, data integra-
tion, query optimization, and ontological reasoning. Since
the chase evaluation might not terminate and it is undecid-
able whether it terminates, the problem of defining (decid-
able) sufficient conditions ensuring termination has received
a great deal of interest in recent years. In this regard, several
termination criteria have been proposed. One of the main
weaknesses of current approaches is the limited analysis they
perform on equality generating dependencies (EGDs).

In this paper, we propose sufficient conditions ensuring
that a set of dependencies has at least one terminating chase
sequence. We propose novel criteria which are able to per-
form a more accurate analysis of EGDs. Specifically, we
propose a new stratification criterion and an adornment al-
gorithm. The latter can both be used as a termination crite-
rion and be combined with current techniques to make them
more effective, in that strictly more sets of dependencies are
identified. Our techniques identify sets of dependencies that
are not recognized by any of the current criteria.

1. INTRODUCTION
The chase is a well-known algorithm originally proposed

for classical database problems, such as query optimization,
query containment and equivalence, dependency implica-
tion, and database schema design [4, 7, 24, 29]. In recent
years, it has seen a revival of interest because of a wide range
of applications where it plays a central role, such as data ex-
change, data cleaning and repairing, data integration, and
ontological reasoning [15, 8, 6, 5, 11, 12, 19, 17].

The execution of the chase involves inserting tuples pos-
sibly with null values to satisfy tuple generating dependen-
cies (TGDs), and replacing null values with constants or
other null values to satisfy equality generating dependencies
(EGDs). Specifically, the chase consists of applying a se-
quence of steps, where each step enforces a dependency that
is not satisfied by the current instance. It might well be
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the case that multiple dependencies can be enforced and, in
this case, the chase picks one nondeterministically. Different
choices lead to different sequences, some of which might be
terminating, while others might not. This aspect is illus-
trated in the following example.

Example 1. Consider the set of dependencies Σ1 below:

r1 : N(x)→ ∃y E(x, y)
r2 : E(x, y)→ N(y)
r3 : E(x, y)→ x = y

and the database D = {N(a)}. All dependencies are sati-
sfied by D, except for r1. Thus, the chase enforces r1 by
adding E(a, η1) to D, where η1 is a (labeled) null value.
However, this causes both r2 and r3 to be violated: r2 re-
quires the fact N(η1), while r3 says that a and η1 should
be the same. Suppose the chase chooses to enforce r2, and
thus N(η1) is added to the current instance. Now r1 is not
satisfied again, while r3 continues to be violated. Suppose
the chase chooses to enforce r1. Then, similar to the first
step, E(η1, η2) is added to the current instance, and this
causes r2 to become violated again. It is easy to see that
repeatedly enforcing first r1 and then r2 yields an infinite
chase sequence that introduces an infinite number of facts:
N(η2), E(η2, η3), N(η3), . . . .

However, by enforcing first r1 and then r3, we get a ter-
minating chase sequence. Specifically, enforcing r1 adds
E(a, η1) to D. Then, the application of r3 updates the null
value η1 to a. At this point, no further dependency needs
to be enforced, and the chase terminates with the resulting
database being {N(a), E(a, a)}. 2

The importance of the chase in many applications is due to
the fact that several problems (e.g., checking query contain-
ment under dependencies, checking implication of dependen-
cies, computing solutions in data exchange, and computing
certain answers in data integration) can be solved by exhibit-
ing a universal model, and the chase computes a universal
model, when it terminates [13]. Roughy speaking, a model
for a database and a set of dependencies is a finite instance
that includes the database and satisfies the dependencies.
A universal model is a model that can be “mapped” to ev-
ery other model—in a sense, it represents the entire space
of possible models (formal definitions are reported in Sec-
tion 2). Universal models are slight generalizations of uni-
versal solutions in the data exchange setting [15], and can
be used to compute them. Moreover, the certain answers to
a conjunctive query in the presence of dependencies can be
computed by evaluating the query over a universal model
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(rather than considering all models). Other applications of
universal models (e.g., dependency implication and query
containment under dependencies) can be found in [13].

Thus, finding a universal model is a central problem in
many applications and, once again, the chase is a tool to
solve it, provided that it terminates. As a consequence,
checking whether the chase terminates becomes a central
problem, but unfortunately, it is an undecidable one [13, 22,
20]. To cope with this issue, several “termination criteria”
have been proposed, that is, (decidable) sufficient conditions
ensuring chase termination.

Indeed, as illustrated in Example 1 above, when we talk
about chase termination, it is important to distinguish be-
tween two problems: checking whether all chase sequences
are terminating, and checking whether there is at least one
terminating chase sequence. Most of the work in the lit-
erature has focused on the problem of checking if all chase
sequences are terminating (a thorough discussion of related
work is reported in Section 3), independently of the con-
sidered database. However, since in many applications the
ultimate goal is to compute a universal model, checking for
the existence of a terminating chase sequence and construc-
ting it suffices for the purpose.

In this regard, a universal model might be computed using
the core chase [13], which is a variant of the standard chase
where all applicable chase steps are fired “in parallel”, rather
than picking one non-deterministically as in the standard
chase. One consequence of the parallel application is that
nondeterminism is eliminated. Another important property
of the core chase is that it is complete for finding universal
models, that is, whenever a universal model exists, the core
chase terminates and finds such a model. Thus, if we know
that there exists a terminating standard chase sequence (and
thus a universal model), then we can use the core chase to
compute a universal model.

Furthermore, the weaker requirement of checking for the
existence of a terminating chase sequence, rather than ensur-
ing that every chase sequence is terminating, can be prof-
itably leveraged to identify more sets of dependencies for
which we can compute a universal model. For instance, the
set of dependencies Σ1 of Example 1 might be identified by a
criterion ensuring termination of at least one chase sequence.
However, every criterion requiring all chase sequences to be
terminating will not recognize Σ1, thereby providing no in-
formation about whether we can compute a universal model.

Despite the significant body of work in this area, there are
still large classes of dependencies for which the chase is not
applicable as termination cannot be statically established.

One weakness of current approaches is that the analy-
sis of EGDs is limited or absent altogether. In fact, more
general approaches, such as super-weak acyclicity [30], semi-
dynamic approaches [23], and rewriting approaches [25, 26,
27], were meant to guarantee termination of TGDs only.
Other approaches, such as weak acyclicity [15] and safety [32],
guarantee the termination of a set of TGDs and EGDs, but
do not analyze EGDs at all, which leads them to impose
strong conditions on TGDs to guarantee termination. Fir-
ing relations among dependences used in stratification-based
approaches [13, 32, 26] consider EGDs in a limited way.
To mitigate the aforementioned issues, an “indirect” way of
dealing with EGDs was proposed in [21, 30], where a set Σ
of TGDs and EGDs is rewritten into a set Σ′ containing only
TGDs, and termination analysis is carried out on Σ′. The

aim is to “simulate” the behavior of the EGDs by means of
TGDs. While these preprocessing steps ensure soundness,
i.e., if all chase sequences of Σ′ are terminating then all chase
sequences of Σ are terminating, they are not complete, i.e.,
the implication in the opposite direction does not hold.

Treating EGDs as first-class citizens is very important, as
they are among the most popular classes of dependencies in
real applications, playing a critical role in maintaining data
integrity, query optimization and indexing, and schema de-
sign [14]. For instance, functional dependencies can be ex-
pressed by EGDs. In very simple scenarios, such as Exam-
ple 1 above, current termination criteria are not able to say
whether a universal model can be found. As a further sce-
nario, Example 8 shows a simple set of dependencies for
which all chase sequences are terminating, but there is no
terminating chase sequence for the set of dependencies ob-
tained from the EGD simulation.

In this paper, we propose new sufficient conditions en-
suring that a set of dependencies (possibly containing both
TGDs and EGDs) admits at least one terminating chase se-
quence, independently of the database. Our approach per-
forms an explicit analysis of EGDs and identifies sets of
dependencies that are not captured by any of the current
techniques. To the best of our knowledge, sufficient con-
ditions ensuring termination of at least one chase sequence
was studied only in [31, 32].

Contributions. The main contributions of the paper are
as follows.

• First of all, for the different variants of the chase, we study
the relationships between the classes of sets of dependen-
cies for which all chase sequences are terminating or at
least one chase sequence is terminating, when sets of de-
pendencies can contain also EGDs—previous work has ad-
dressed this problem in the presence of TGDs only.

• We propose a new stratification criterion ensuring the ex-
istence of at least one terminating chase sequence, which
strictly generalizes stratification [13] and allows us to iden-
tify sets of dependencies not included by any of the current
termination criteria.

• We then propose an adornment algorithm which is used
to define sufficient conditions ensuring the existence of
at least one terminating chase sequence, independently of
the database. The algorithm performs a direct analysis of
EGDs and exploits them to try to identify a terminating
chase sequence. The aim of the algorithm is twofold: (i) it
defines a termination criterion on its own, and (ii) it can
be combined with other termination criteria to make them
more effective, in that strictly more sets of dependencies
can be identified by using our algorithm in conjunction
with a termination criterion.

• To assess our approach, we carried out an experimental
evaluation over 178 real-world datasets. The experimental
results show that our technique is very effective (among
76 datasets for which the chase terminated, only 2 were
not recognized) and also efficient (in most of the cases the
algorithm’s running time is lower than one second).

2. PRELIMINARIES
Basics. We assume the existence of the following pairwise
disjoint sets of symbols: an infinite set Consts of constants,
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an infinite set Nulls of labeled nulls, and an infinite set Vars
of variables. A term is a constant, a labeled null, or a vari-
able. A schema is a finite set R of predicates, where each
predicate R is associated with an arity ar(R), which is a
non-negative integer.

An atom over R is an expression of the form R(t1, . . . , tn),
where R is an n-ary predicate in R and each ti is a term—
we denote an atom also as R(t), where t is understood to
be a sequence of n terms. If ti ∈ Consts ∪ Nulls for every
1 ≤ i ≤ n, then the atom is also called a fact.

Given a set of atoms A, we use Consts(A) (resp. Nulls(A),
Vars(A)) to denote the set of all constants (resp. labeled
nulls, variables) occurring in A, and use Dom(A) to denote
the set Consts(A) ∪Nulls(A) ∪Vars(A).

An instance over R is a set of facts over R, while a da-
tabase is an instance where only constants appear. We will
use D (resp. I, J , and K), possibly subscripted or primed,
to refer to databases (resp. instances).

A tuple generating dependency (TGD) over R is a formula
r of the form:

∀x∀y ϕ(x,y)→ ∃zψ(x, z)

where x,y, z are lists of variables, and ϕ(x, z) (resp. ψ(x,y))
is a conjunction of atoms over R whose variables are exactly
x and y (resp. x and z) and is called the body (resp. head) of
r, denoted as Body(r) (resp. Head(r)). With a slight abuse
of notation, we sometimes treat Body(r) and Head(r) as sets
(of atoms). A TGD is said to be universally quantified or
full if all its variables are universally quantified (i.e., z is
empty), otherwise it is existentially quantified.

An equality generating dependency (EGD) over R is a
(universally quantified) formula of the form:

∀x∀y ϕ(x,y)→ x1 = x2

where x = x1, x2, y is a list of variables, ϕ(x,y) is a conjunc-
tion of atoms over R whose variables are exactly x and y.

In the following, we will omit the universal quantification
in front of dependencies and assume that all variables ap-
pearing in the body are universally quantified. Labeled nulls
are not allowed to occur in dependencies. Throughout this
paper we assume we are given an arbitrary but fixed schema
R. Unless otherwise stated, an atom (database, instance,
dependency, etc.) is understood to be over R. In Exam-
ple 1 above, r1 and r2 are TGDs, with r1 being existentially
quantified and r2 being full, while r3 is an EGD.

A homomorphism from a set of atoms A1 to a set of atoms
A2 is a mapping h : Dom(A1)→ Dom(A2) such that:

• h(c) = c, for every c ∈ Consts(A1); and

• for every atomR(t1, . . . , tn) inA1, we have thatR(h(t1),
. . . , h(tn)) is in A2.

With a slight abuse of notation, we apply h also to sets
of atoms and thus, for a given set of atoms A, we define
h(A) = {R(h(t1), . . . , h(tn)) | R(t1, . . . , tn) ∈ A}.

Example 2. Consider the database D = K1 = {N(a)}
and the set of dependencies Σ1 of Example 1.

Let h1 : Dom(Body(r1)) → Dom(K1) be defined as fol-
lows: h1(x) = a. Clearly, h1 is a homomorphism from the
body of r1 to K1. Consider now the instance K2 = {N(a),
E(a, η1)}, and let h2 be the mapping defined as follows:
h2(x) = a and h2(y) = η1. It is easy to see that h2 is a
homomorphism from the body of r2 to K2. Moreover, h2 is
also a homomorphism from the body of r3 to K2. 2

Universal models. Given a database D and a set of de-
pendencies Σ, a model of (D,Σ) is a finite instance J such
that D ⊆ J and J |= Σ (i.e., J satisfies all dependencies in
Σ in the standard first-order manner). A universal model of
(D,Σ) is a model J of (D,Σ) such that for every model J ′

of (D,Σ) there exists a homomorphism from J to J ′. The
set of all models (resp. universal models) of (D,Σ) will be
denoted by Mod(D,Σ) (resp. UMod(D,Σ)).

Example 3. Consider the set of dependencies Σ3 below:

r1 : P (x, y)→ ∃z E(x, z)
r2 : Q(x, y)→ ∃z E(z, y)

and the database D = {P (a, b), Q(c, d)}. Both J1 = D ∪
{E(a, η1), E(η2, d)} and J2 = D ∪ {E(a, d)} are models of
(D,Σ3). It can be shown that J1 is a universal model, while
J2 is not. Notice that an homomorphism from J1 to J2 is
the mapping h defined as follows: h(η1) = d and h(η2) = a.
In a sense, J2 makes the somehow arbitrary assumption that
the two facts required by the two TGDs are the same fact
E(a, d), which is not part of the specification. 2

As discussed below, computing certain query answers is
one of many applications where universal models play an
important role, and their computation is a central problem.
Consider an instance J and a query Q. Then, (i) J↓ denotes
the set of facts in J that do not contain labeled nulls, and
(ii) Q(J) denotes the result of evaluating Q over J .

The certain answers to a query Q over a database D and
a set of dependencies Σ are defined as certain(Q,D,Σ) =⋂
{Q(J) | J ∈ Mod(D,Σ)}. The certain answers to a union

of conjunctive queries Q can be computed by evaluating Q
over an arbitrary universal model, that is, certain(Q,D,Σ) =
Q(I)↓, where I ∈ UMod(D,Σ). This means that to deter-
mine the certain answers to a union of conjunctive queries
Q over a database D with dependencies Σ, it is not nec-
essary to compute all models of (D,Σ), but it suffices to
compute just an arbitrary universal model. Therefore, the
computation of a universal model is particularly relevant. It
is worth mentioning that the aforementioned property has
applications in query answering under dependencies, query
answering in data exchange, and query answering with in-
complete and inconsistent data [15, 10].

The chase. The chase takes as input a database D and a
set Σ of dependencies, and whenever it terminates without
failing, it constructs a universal model of (D,Σ) [13, 15].

Below we define a chase step, which consists of enforcing
a TGD or an EGD. As detailed later, the chase step is used
by different variants of the chase (standard, oblivious, semi-
oblivious), each of which relies on a different condition of
“applicability” of the chase step. Thus, the following defi-
nition does not incorporate a notion of applicability, but it
will be combined with different notions of applicability to
define the different variants of the chase.

A substitution γ is either the empty set or a singleton
{η/t}, where η is a labeled null and t is either a labeled null
or a constant. The result of applying γ to an expression F
(e.g., term, atom, set of atoms, etc.), denoted F γ, is F if
γ = ∅, otherwise it is the expression obtained from F by
replacing every occurrence of η with t.

Definition 1 (Chase step). Let K be an instance, r
a dependency, and h a homomorphism from Body(r) to K.
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An expression of the form K
r,h,γ−→ J is a chase step if the

following conditions hold.

1. If r is a TGD ϕ(x,y) → ∃zψ(x, z) then let h′ be the
homomorphism obtained by extending h so that each
variable in z is assigned a fresh labeled null not occur-
ring in K. Then, J = K ∪ h′(ψ(x, z)). Furthermore,
γ is the empty substitution.

2. If r is an EGD ϕ(x,y)→ x1 = x2 then h(x1) 6= h(x2).
Furthermore,

(a) If h(x1), h(x2) ∈ Consts, then J =⊥ and γ is the
empty substitution.

(b) Otherwise, γ and J are defined as follows. If h(x1)
is a labeled null, then γ = {h(x1)/h(x2)}; other-
wise, γ = {h(x2)/h(x1)}. Moreover, J = K γ.

In a chase step, γ is used to keep track of the substitution
performed when an EGD is enforced.

Example 4. Consider again the database D = K1 =
{N(a)} and the set of dependencies Σ1 of Example 1. Let h1

be the homomorphism of Example 2. Then, K1
r1,h1,γ1−→ K2 is

a chase step, whereK2 = K1∪{E(a, η1)} = {N(a), E(a, η1)}
and γ1 is the empty substitution (as r1 is a TGD). Consider

now the homomorphism h2 of Example 2. Then, K2
r2,h2,γ2−→

K3 is a chase step, where K3 = K2 ∪ {N(η1)} = {N(a),
E(a, η1), N(η1)} and γ3 is the empty substitution. Another

possible chase step starting from K2 is K2
r3,h2,γ

′
2−→ K′3, where

γ′2 = {η1/a} and K′3 = K2 γ
′
2 = {N(a), E(a, a)}. 2

A chase sequence of (D,Σ) is a (possibly infinite) sequence

of chase steps S = K1
r1,h1,γ1−→ K2

r2,h2,γ2−→ K3 · · · such that
K1 = D and every ri ∈ Σ. Moreover:

• S is a standard chase sequence if it is an exhaustive ap-

plication of chase steps s.t. for each Ki
ri,hi,γi−→ Ki+1 in

S, if ri is a TGD, then there is no extension of hi to a
homomorphism h′i from Body(ri) ∪Head(ri) to Ki.

• S is an oblivious chase sequence if it is an exhaustive ap-

plication of chase steps s.t. for each Ki
ri,hi,γi−→ Ki+1 in

S, there is no chase step Kj

rj ,hj ,γj−→ Kj+1 in S such that
j < i, rj = ri = r, and for each variable x occurring in
the body of r we have that hi(x) = hj(x) γj · · · γi−1.

• S is a semi-oblivious chase sequence if it is an exhaustive

application of chase steps s.t. for each Ki
ri,hi,γi−→ Ki+1 in

S, there is no chase step Kj

rj ,hj ,γj−→ Kj+1 in S such that
j < i, rj = ri = r, and for each variable x occurring in
both the body and the head of r we have that hi(x) =
hj(x) γj · · · γi−1.

Example 5. Consider again the database D = {N(a)}
and the set of dependencies Σ1 of Example 1. A standard

chase sequence of D with Σ1 is K1
r1,h1,γ1−→ K2

r3,h2,γ
′
2−→ K′3,

where K1 = D and h1, h2, γ1, γ
′
2,K2,K

′
3 are those reported

in Example 4. Notice that no further chase steps can be
added to the sequence.

As mentioned in Example 1, another standard chase se-
quence of D with Σ1 is the (infinite) one obtained by re-

peatedly enforcing first r1 and then r2, that is K1
r1,h1,γ1−→

K2
r2,h2,γ2−→ K3 . . . , where h1, h2, γ1, γ2,K2, and K3 are those

reported in Example 4. 2

The following example shows the different behaviors of
standard, oblivious, and semi-oblivious chase sequences.

Example 6. Consider the database D = K1 = {E(a, b)}
and a set Σ6 consisting only of the following TGD r:

E(x, y)→ ∃z E(x, z)

Since D |= r, the only standard chase sequence of D with Σ
is the empty sequence.

A non-empty (terminating) semi-oblivious chase sequence

is K1
r,h1,γ1−→ K2, where h1(x) = a, h1(y) = b, γ1 is the empty

substitution, andK2 = K1∪{E(a, η1)} = {E(a, b), E(a, η1)}.
Notice that adding the chase stepK2

r,h2,γ2−→ K3, with h2(x) =
a, h2(y) = η1, γ2 = ∅, and K3 = K2 ∪ {E(a, η2)}, does
not result in a semi-oblivious chase sequence, because of the

presence of the chase step K1
r,h1,γ1−→ K2 in the same chase

sequence, with h1(x)γ1 = h2(x) = a.
As for the oblivious chase, the infinite sequence whose first

step is K1
r,h1,γ1−→ K2 discussed above, and the i-th chase

step (i > 1) is Ki
r,hi,γi−→ Ki+1, with hi(x) = a, hi(y) = ηi−1,

γi = ∅, and Ki+1 = Ki ∪{E(a, ηi)} is an (infinite) oblivious
chase sequence. 2

A standard (resp. oblivious, semi-oblivious) chase se-
quence S can be finite (when no further chase step can be
applied) or infinite (when there is always a further chase step
that can be applied)—in the former case we also say that
the sequence is terminating. If S is finite and consists of m
chase steps, we say that Km is the result of S. If Km =⊥
then S is failing, otherwise it is successful. For instance,
the first standard chase sequence discussed in Example 5 is
terminating, successful, and its result is K′3. The second
standard chase sequence in Example 5 is not terminating.

In the presence of TGDs only, the oblivious (resp. semi-
oblivious) chase procedure is equivalent to the computation
of the fixpoint of a particular Skolemized version of Σ with
D, where Skolemized terms are used in place of labeled nulls.
For instance, the Skolemized version of dependency r in
Example 6 for the oblivious (resp., semi-oblivious) chase is
E(x, y)→ E(x, frz (x, y)) (resp., E(x, y)→ E(x, frz (x))).

As shown in [15], for every database D and set of depen-
dencies Σ, (1) if J is the result of some successful termi-
nating standard chase sequence of D with Σ, then J is a
universal model of (D,Σ), called canonical ; (2) if some fail-
ing standard chase sequence of D with Σ exists, then there
is no model of (D,Σ). We use CMod(D,Σ) to denote the
set of all canonical models of (D,Σ). In some cases, we can-
not produce a universal model by the chase as there is no
terminating sequence, although a model does exist.

The core chase has been proposed to identify a prefer-
able universal model [13, 16]. To define the core chase, we
first need to introduce the notion of a core of an instance.
Roughly speaking, the core of an instance J is the smallest
subset of J that is also a homomorphic image of J . More
precisely, a subset C of an instance J is a core of J if there
is a homomorphism from J to C, but there is no homomor-
phism from J to a proper subset of C. Cores of J are unique
up to isomorphism and therefore we can talk about “the”
core of J , which is denoted as core(J).

A core chase sequence is a sequence of core chase steps.
Roughly speaking, a core chase step first applies all possible
standard chase steps “in parallel”, and then computes the
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core of the resulting instance. As all standard chase steps
are applied in parallel, the core chase eliminates the nonde-
terminism of the standard chase. More formally, given an
instance K and a set of dependencies Σ, a core chase step
consists of the following two sub-steps: (i) J = ∪

K
r,h,γ−→ K′

K′,

where each K
r,h,γ−→ K′ is understood to be a standard chase

step; (ii) J ′ = core(J). Then, J ′ is the result of the core
chase step. [13] showed that whenever there is a universal
model of (D,Σ), the core chase is able to construct one, that
is, the core chase is a complete procedure for finding univer-
sal models. Moreover, every core chase sequence of D with
Σ constructs the same (up to isomorphism) universal model.

Example 7. Consider the database D and the set of de-
pendencies Σ6 = {r} of Example 6. Recall that there is no
standard chase step involving D and r. As the core chase
starts by applying all standard chase steps, the only core
chase sequence is the empty one, similar to the standard
chase case. 2

In the following, whenever a successful terminating c-
chase sequence of D with Σ does exist, where c ∈ {std,
obl, sobl, core} stands for the standard, oblivious, semi-
oblivious, and core chase, respectively, we use chasec(D,Σ)
to denote one of the homomorphically equivalent universal
models constructed by the c-chase. If there is a failing c-
chase sequence of D with Σ, we write chasec(D,Σ) =⊥.

Termination Classes. We denote by CTc
∀, with c ∈ {std,

obl, sobl, core}, the class of sets of dependencies Σ such that
for every database D all c-chase sequences of D with Σ are
terminating. Analogously, we denote by CTc

∃ the class of
sets of dependencies Σ such that for every database D there
is a terminating c-chase sequence of D with Σ.

Even focusing on TGDs only, the problem of verifying
whether a set of dependencies belongs to CTc

∀ or CTc
∃, for

c ∈ {std, obl, sobl, core}, is undecidable [20, 22]. Thus, the
best practical approach is to find relevant decidable classes
of dependencies included in these classes. For sets of TGDs
only, it has already been shown in [31, 33] that:

CTobl
∀ =CTobl

∃ ( CTsobl
∀ =CTsobl

∃ ( CTstd
∀ (CTstd

∃ ( CTcore
∀ =CTcore

∃

The above hierarchy is relevant because if we determine that
a set of TGDs belongs to CTc

q with q ∈ {∀, ∃} and c ∈
{obl, sobl}, then Σ belongs to CTstd

∀ (and, of course, CTstd
∃ ),

and, in some cases, the analysis of the oblivious or semi-
oblivious chase is easier. In fact, the importance of these
chase variants has been widely recognized and their behavior
has been studied in different works [9, 23, 27, 30, 31].

In this paper, we introduce new (decidable) sufficient con-
ditions for a set of dependencies to be in CTstd

∃ .

3. RELATED WORK
As mentioned in the introduction, several sufficient con-

ditions for chase termination have been proposed over the
years—we call them termination criteria.
We will use calligraphic style C to denote the class of sets of
dependencies recognized by a criterion C (written in italics).

Static approaches. The first and basic effort concern-
ing the formalization of a (decidable) sufficient condition
guaranteeing that all standard chase sequences are termi-
nating, independently from the database, is weak acycli-
city (WA) [15]. Roughly speaking, it checks whether the

TGDs do not allow for nulls to cyclically propagate. The ap-
proach works for sets of dependencies containing both TGDs
and EGDs, even though the latter are ignored in the analysis
(as a strong condition is imposed on TGDs).

An extension of weak acyclicity, called stratification (Str),
has been proposed in [13]. The idea behind stratification
is to decompose the set of dependencies into independent
subsets, where each subset consists of dependencies that may
fire each other, and to check each component separately for
weak acyclicity. However, [31] showed that stratification is
not able to check whether all standard chase sequences are
terminating (as weak acyclicity does), but ensures only that
there is a terminating standard chase sequence. A variant
of stratification, called c-stratification (CStr), guaranteeing
that all standard chase sequences are terminating, has been
proposed in [31]. C-stratification is defined in the same way
as stratification, but the oblivious chase is used instead of
the standard one to determine whether a dependency fires
another. Both Str and CStr allow TGDs as well as EGDs,
but the analysis of EGDs is limited to the firing relation only.
A different extension of weak acyclicity, called safety (SC),
has been proposed in [32]. The improvement is obtained by
considering only “affected” positions [10], that is, positions
which may actually contain null values. The approach works
for sets of dependencies containing both TGDs and EGDs,
but the latter are neglected altogether in the analysis.

Another extension of weak acyclicity (which indeed strictly
extends SC) has been introduced in [30] under the name of
super-weak acyclicity (SwA). In addition to considering how
dependencies may activate each other, SwA also takes into
account the fact that the same variable may appear more
than once in the body, and thus a dependency is not fired
when different nulls are inserted in positions associated with
the same variable. The analysis is carried out by using the
semi-oblivious chase. The approach is defined for sets of
TGDs only, as EGDs are emulated via “substitution-free
simulation”, which will be discussed in Section 4.

Safe restriction (SR) and inductive restriction (IR) ex-
tend c-stratification, but still perform a limited analysis of
EGDs [32]. In terms of expressivity, these approaches are
not comparable with SwA. Both SwA and IR have been ex-
tended by the Local Stratification (LS) criterion [26]; how-
ever, LS neglects EGDs altogether.

As for the relative expressivity of the termination criteria
discussed above, [27] showed that CStr ( SR ( IR ( LS
and SwA ( LS.

Semi-dynamic approaches. In [23], the model-faithful
acyclicity (MFA) and model-summarising acyclicity (MSA)
techniques have been proposed. The idea is to run the obli-
vious (or semi-oblivious) chase and then use sufficient checks
to identify cyclic computations. Since no sufficient, neces-
sary, and computable test can be given for the latter, [23]
adopted an approach of “raising the alarm” and stop the
process if a “cyclic” term f(t) is derived, i.e., where f oc-
curs in t. This is done in a declarative way by extending
a given set of dependencies Σ into a new set Σ′, and then
checking whether Σ′ does not entail a special predicate. The
two aforementioned techniques are defined for TGDs only, as
EGDs are assumed to be emulated through substitution-free
simulation (discussed in Section 4).

Rewriting approaches. Rewriting techniques for check-
ing chase termination have been proposed in [25, 26, 27].
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They consist in rewriting a set of TGDs Σ into a new set
Σα with the aim of verifying structural properties for chase
termination on Σα rather than Σ. These techniques have
been defined for TGDs only and perform an analysis of the
semi-oblivious chase. [27] showed that most of the termi-
nation criteria improve if we consider adorned TGDs rather
than the original ones. The rewriting approach has also been
used to define the acyclicity (AC) criterion.

The termination criteria discussed in this section ensure
that all standard chase sequences are terminating, except
for stratification (which ensures the existence of at least one
terminating standard chase sequence), and perform a lim-
ited analysis of EGDs (or no analysis altogether), thereby
imposing stronger conditions on TGDs. In contrast, the
criteria proposed in this paper ensure that at least one stan-
dard chase sequence is terminating. It is worth noticing
that constructing one terminating standard chase sequence
suffices for the purpose of getting a universal model. By
considering this weaker condition to be ensured and by per-
forming a direct analysis of EGDs, our techniques identify
sets of dependencies that are not captured by any of the
aforementioned criteria.

4. DEALING WITH EGDS

Before presenting our criteria (in Sections 5 and 6), we
shed light on the relationships between the classes CTc

q,
where q ∈ {∀,∃} and c ∈ {obl, sobl, std, core}, when arbi-
trary sets of dependencies are considered. Recall that a hi-
erarchy for sets consisting only of TGDs has been presented
in Section 2, but the relationships in the presence of both
TGDs and EGDs have not been studied so far (to the best
of our knowledge). We also discuss different issues arising
in the presence of EGDs.

In the rest of the paper, given two sets C1 and C2, we
write C1 ∦ C2 iff C1 6⊆ C2 and C2 6⊆ C1.

Theorem 1. For general dependencies (including TGDs
and EGDs), the following relations hold:

1. CTc
∀ ( CTc

∃ for c ∈ {obl, sobl, std}, and CTcore
∀ = CTcore

∃ ;

2. CTobl
q ( CTsobl

q ( CTstd
q ( CTcore

q for q ∈ {∀, ∃};

3. CTobl
∃ ∦ CTsobl

∀ , CTsobl
∃ ∦ CTstd

∀ , and CTobl
∃ ∦ CTstd

∀ . 2

The relationships between the classes CTc
q, where q ∈

{∀, ∃} and c ∈ {std, obl, sobl, core}, are shown in Table 1,
for the case of TGDs only (such results are known) and in
the presence of both TGDs and EGDs (shown in this paper).

As discussed in the previous section, chase termination
criteria proposed in the literature focus on TGDs consider-
ing EGDs in a very limited way. More general approaches
(including SwA,LS ,MFA,MSA) as well as rewriting tech-
niques were meant to guarantee termination of TGDs only.

An “indirect” way of dealing with EGDs has been pro-
posed in [21, 30]. Specifically, the analysis of a set of depen-
dencies Σ containing both TGDs and EGDs is performed
on a set Σ′ derived from Σ and containing only TGDs. The
aim is to “simulate” the behavior of the EGDs by means
of TGDs only. The first approach of this kind, known as
natural simulation, has been proposed in [21], and further
refined by the substitution-free simulation in [30]. Below
is an example showing how the substitution-free simulation
works.

TGDs TGDs and EGDs
CTobl
∀ = CTobl

∃ CTobl
∀ ( CTobl

∃
CTsobl
∀ = CTsobl

∃ CTsobl
∀ ( CTsobl

∃
CTobl
∃ ( CTsobl

∀ CTobl
∃ ∦ CTsobl

∀
CTsobl
∃ ( CTstd

∀ CTsobl
∃ ∦ CTstd

∀
CTobl
∃ ∦ CTstd

∀
CTstd
∀ ( CTstd

∃ CTstd
∀ ( CTstd

∃
CTcore
∀ = CTcore

∃ CTcore
∀ = CTcore

∃

Table 1: Relationships among the CTc
q’s classes.

Example 8. Consider the following set of dependencies
Σ8 (containing both TGDs and EGDs):

r1 : A(x) ∧B(x) → C(x)
r2 : C(x) → ∃y A(x) ∧B(y)
r3 : C(x) → ∃y A(y) ∧B(x)
r4 : A(x) ∧A(y) → x = y
r5 : B(x) ∧B(y) → x = y

The substitution-free simulation works as follows:

1. The TGDs below (equality-axioms) are added to Σ8:

a1 : Eq(x, y) → Eq(y, x)
a2 : Eq(x, y) ∧ Eq(y, z) → Eq(x, z)
a3.1 : A(x) → Eq(x, x)
a3.2 : B(x) → Eq(x, x)
a3.3 : C(x) → Eq(x, x)

2. Every occurrence of x = y in Σ8 is replaced with
Eq(x, y). In our case, this affects r4 and r5 only, which
are replaced with:

r′4 : A(x) ∧A(y) → Eq(x, y)
r′5 : B(x) ∧B(y) → Eq(x, y)

3. Dependency r1, which contains multiple occurrences
of x in the body, is (non-deterministically) replaced
with one of the following two dependencies, where one
of the two occurrences of x is replaced with x2, and
the atom Eq(x, x2) is added to the body:

r′1 : A(x2) ∧B(x) ∧ Eq(x, x2) → C(x)

r′′1 : A(x) ∧B(x2) ∧ Eq(x, x2) → C(x)

Notice that the only dependencies that remain unchanged
are r2 and r3. Also, notice that there are no EGDs anymore
in the resulting set of dependencies (their role is “simulated”
by the rewriting). 2

Although not explicitly stated, but somehow left implicit
in [21, 30], the natural simulation and the substitution-free
simulation ensure the desirable soundness property: if, for
every database D, all c-chase sequences of D with Σ′ are ter-
minating, then for every database D, all c-chase sequences
of D with Σ are terminating, for c ∈ {obl, sobl, std}. The
natural question now is whether these simulations are also
complete, that is, if the implication in the opposite direc-
tion holds. The answer is negative for both approaches, as
stated in the following theorem. Furthermore, we show that
the same properties hold when checking for the existence of
at least one terminating c-chase sequence. We focus on the
substitution-free simulation only, as it is a refinement of the
natural simulation.
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Theorem 2. Let Σ be a set of TGDs and EGDs and Σ′

be a set of TGDs obtained from Σ by applying the substitu-
tion-free simulation. For every c ∈ {obl, sobl, std} and every
q ∈ {∀,∃},

1. if Σ′ ∈ CTc
q then Σ ∈ CTc

q.

2. Σ ∈ CTc
q does not imply Σ′ ∈ CTc

q. 2

The theorem above says that there are sets Σ of TGDs
and EGDs such that Σ ∈ CTc

q but their substitution-free
simulation Σ′ does not belong to CTc

q, and thus it is not
possible to realize that Σ ∈ CTc

q with an analysis of Σ′. The
set of dependencies Σ8 of Example 8 above is one of such
cases: Σ8 belongs to CTc

∀ (and thus belongs to CTc
∃ too),

but any of its substitution-free simulations is not even in
CTc
∃, for every c ∈ {obl, sobl, std}. The problem is that the

simulation of EGDs by means of TGDs is not able to fully
capture the specific behavior of EGDs, which replace null
values (with constants and other null values). This aspect
is not faithfully modeled by storing the information that a
null value is equal to a constant or to another null value.

In Sections 5 and 6, we propose approaches that perform
a direct analysis of EGDs. However, dealing with EGDs
needs some care. In some cases the presence of EGDs al-
lows us to have a terminating c-chase sequence when the set
consisting only of the TGDs does not have one; at the same
time, the opposite case can occur, that is, in the presence
of EGDs there is no terminating c-chase sequence while the
set consisting only of the TGDs does have one, where c can
be one of {obl, sobl, std}. The following two examples show
such cases.

Example 9. Consider the set of dependencies Σ1 of Exam-
ple 1 and the databaseD = {N(a)}. There is no terminating
c-chase sequence of D1 with the set of TGDs Σ′1 = {r1, r2},
for every c ∈ {obl, sobl, std}. In fact, it is easy to see that
an infinite number of facts is introduced: E(a, η1), N(η1),
E(η1, η2), . . . . However, the addition of the EGD r3 allows
us to have a terminating c-chase sequence, obtained by en-
forcing first r1 and then r3, and whose result is the universal
model {N(a), E(a, a)}. 2

Example 10. Consider the set of dependencies Σ10 be-
low:

r1 : N(x)→ ∃y ∃z E(x, y, z)
r2 : E(x, y, y)→ N(y)
r3 : E(x, y, z)→ y = z

For every database D, every c-chase sequence of D with
the set of TGDs Σ′10 = {r1, r2} is terminating, for every c ∈
{obl, sobl, std}. On the other hand, there is no terminating c-
chase sequence of D = {N(a)} with Σ10, as an infinite num-
ber of facts is introduced: E(a, η1, η1), N(η1), E(η1, η2, η2),
N(η2), .... 2

In the rest of the paper, given a set of dependencies Σ,
we use Σtgd and Σegd to denote the sets of all TGDs and
all EGDs in Σ, respectively (obviously, Σ = Σtgd ∪ Σegd).
Furthermore, we use Σ∀ and Σ∃ to denote the set of all full
dependencies in Σ (these include full TGDs and all EGDs)
and the set of all existentially quantified dependencies in Σ,
respectively (obviously, Σ = Σ∀ ∪ Σ∃).

Recall that for a termination criterion C, we use C to
denote the class of all sets of dependencies recognized by C.
For a criterion C defined for TGDs only (e.g., SwA and LS),

we use C to denote the class of all sets of dependencies Σ
such that the set of TGDs obtained from Σ by applying the
substitution-free simulation is recognized by C.

5. SEMI-STRATIFICATION
In this section, we introduce a new sufficient condition

for checking if a set of dependencies belongs to CTstd
∃ . Our

condition strictly generalizes stratification.
First of all, we recall the notion of stratification proposed

in [13]. Given two dependencies r1 and r2, we write r1 ≺ r2
iff there exist an instance K, an instance J , a homomor-
phism h1 from Body(r1) to K, and a homomorphism h2

from Body(r2) to J , such that:

• K |= h2(r2),

• K r1,h1,γ1−→ J is a standard chase step (for some γ1), and

• J 6|= h2(r2).

The chase graph G(Σ) of a set of dependencies Σ is a directed
graph (Σ, E) containing an edge (r1, r2) iff r1 ≺ r2. Then,
Σ is stratified (Str) iff every cycle of G(Σ) is weakly acyclic.

We now introduce a new relation between dependencies
along with the corresponding graph it induces—they are
used to define our criterion, allowing us to extend strati-
fication.

Definition 2 (Firing graph). Let Σ be a set of de-
pendencies. Given two dependencies r1, r2 ∈ Σ, we write
r1 < r2 iff there exist instances K and J , a homomor-
phism h1 from Body(r1) to K, and a homomorphism h2

from Body(r2) to J , such that:

• K |= h2(r2),

• K r1,h1,γ1−→ J is a standard chase step (for some γ1),

• J 6|= h2(r2), and

• if r2 ∈ Σ∃, then @r3 ∈ Σ∀ such that K
r3,h3,γ3−→ J ′ and

J ′ |= h2(r2) (for some h3, γ3).

The firing graph Gf (Σ) of Σ is a directed graph (Σ, Ef )
containing a directed edge (r1, r2) iff r1 < r2.

We say that a dependency r1 ∈ Σ is fireable with respect to
Σ if there exists a dependency r2 ∈ Σ such that r2 < r1. 2

Definition 3 (Semi-stratified dependencies). A set
of dependencies Σ is semi-stratified (S-Str) iff every strongly
connected component of Gf (Σ) is weakly acyclic. 2

Example 11. Consider the following set of TGDs Σ11:

r1 : N(x)→ ∃y E(x, y)
r2 : E(x, y)→ N(y)
r3 : E(x, y)→ E(y, x)

The chase and the firing graphs are depicted in Figure 1.
Notice that, since r2 and r3 are full TGDs, their incoming
edges are the same in the two graphs. On the other hand,
the edge in G(Σ11) from r2 to r1 does not belong to Gf (Σ11),
as the firing of r1 because of r2 is blocked by first enforcing
r3. It can be easily verified that Σ11 is semi-stratified, but
not stratified.

Consider now the database D = {N(a)}. The standard
chase sequence consisting of the iterative application of r1
followed by r2 is non-terminating. However, if we apply
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Figure 1: Chase graph (left) and firing graph (right) of Σ11.

r3 before r1, we obtain a terminating standard chase se-
quence producing the instance K = {N(a), E(a, η1), N(η1),
E(η1, a)}. Such a standard chase sequence is terminating as
no more standard chase steps can be added. 2

Theorem 3. For every semi-stratified set of dependen-
cies Σ and for every database D, there exists a terminating
standard chase sequence of D with Σ whose length is poly-
nomial in the size of D. 2

As the following theorem states, it can be decided in coNP
whether a set of dependencies is semi-stratified.

Theorem 4. Deciding if a set of dependencies is semi-
stratified is in coNP. 2

The following theorem shows the relative expressivity of
S-Str and other classes of dependencies previously proposed.

Theorem 5.

1. Str ( S-Str.
2. S-Str ∦ C for C ∈ {SC,AC,MFA}.

Notice that SC, AC, and MFA guarantee that all stan-
dard chase sequences are terminating, while Str and S-Str
guarantee the existence of at least one terminating standard
chase sequence.

We recall that SC ( AC, and thus the incomparability of
S-Str with SC and AC implies that S-Str is incomparable
also with any other class included by AC and containing SC
(e.g., SwA, SR, and IR)—see [27] for a complete picture.

6. ADORNMENT ALGORITHM
In this section, we propose another decidable sufficient

condition for a set of dependencies to be in CTstd
∃ .

Specifically, we propose an algorithm which takes as input
a set of dependencies, and gives as output a set of adorned
dependencies and a boolean value. The aim of the algo-
rithm is twofold: (i) it defines a termination criterion on
its own—on the basis of the boolean value returned by the
algorithm; and (ii) it can be combined with other termina-
tion criteria to enhance them, in that (strictly) more sets
of dependencies in CTstd

∃ can be identified by using our al-
gorithm in conjunction with a termination criterion—this is
achieved by analyzing the set of adorned dependencies re-
turned by the algorithm. Before presenting our approach,
we introduce additional terminology and notation.

Adornments. An adornment symbol is an element of the
alphabet Λ = {b} ∪ {fi | i ∈ N}, where b is called “bound”
symbol and the fi’s are called “free” symbols. Consider an
n-ary predicate R. An adornment of R is a string α of length
n built from adornment symbols; we call Rα an adorned pre-
dicate. An adorned atom is of the form Rα(t), where R(t)
is an atom and α is an adornment of R. An adorned con-
junction is a conjunction of adorned atoms. An adorned de-
pendency is a dependency containing adorned atoms. Given

an adorned formula (i.e., atom, conjunction of atoms, de-
pendency, etc.) or set of adorned formulas F , we use src(F )
to denote the formula or set of formulas derived from F by
deleting all adornments. We also say that F is an adorned
version of src(F ).

Given a set of adorned predicates AP , the set of the ador-
ned versions of an atom R(t) w.r.t. AP is defined as follows:

A(R(t), AP ) = {Rα(t) | Rα ∈ AP}

The set of the adorned versions of a conjunction of atoms
ϕ = A1 ∧ · · · ∧Ak w.r.t. AP is defined as follows:

A(ϕ,AP )={Aα1
1 ∧· · ·∧A

αk
k | A

αi
i ∈ A(Ai, AP ) for 1 ≤ i ≤ k}

If ϕ is the empty conjunction, then A(ϕ,AP ) contains only
the empty conjunction.

Given an adorned atom Rα1...αn(t1, . . . , tn), we say that
ti is adorned with αi. An adorned atom or conjunction is co-
herent if every variable occurring in it is always adorned with
the same adornment symbol and constants are adorned with
b. For instance, the adorned conjunction Nb(x)∧Ef1b(x, y)
is not coherent because x is adorned with b in the first
atom and with f1 in the second atom. On the other hand,
Nf1(x) ∧ Ef1b(x, y) is coherent.

An adornment definition is an expression of the form fi =
frz (α) where fi is an adornment symbol, r is a TGD of the
form ϕ(x,y) → ∃zψ(x, z), z is in z, and α is a string of
n adornment symbols with n being the number of variables
in x. The role of adornment definitions will be explained
shortly.

Head adornment. One important step of our adornment
algorithm is the propagation of adornments from the body to
the head of dependencies, which is defined as follows. Given
a set AD of adornment definitions, a dependency r : body →
head, and a coherent adorned version bodyµ of body, we
define HeadAdn(r, bodyµ, AD) as the procedure that updates
AD and returns an adorned version headµ of head as follows:

1. if r is an EGD, then headµ = head, and AD is not
modified.

2. Otherwise, r is a TGD ϕ(x,y)→ ∃zψ(x, z) and headµ

is obtained from ∃zψ(x, z) as follows:

• every universally quantified variable (i.e., every
x ∈ x) is adorned with the same adornment sym-
bol the variable is adorned with in bodyµ (notice
that such an adornment symbol is unique as bodyµ

is coherent);

• constants are adorned with b;

• every (existentially quantified) variable z ∈ z is
adorned as follows.1 Let frz (α) be the Skolem
term where if x = x1, . . . , xn then α = α1, . . . , αn
is the string of adornment symbols such that ev-
ery xj is adorned with αj in bodyµ, for 1 ≤ j ≤ n.
If an adornment definition of the form fi = frz (α)
is already in AD, then z is adorned with fi and
AD is not modified. Otherwise, z is adorned with
fj , where j = 1 + max{k | fk appears in AD},
and fj = frz (α) is added to AD.

1It is assumed that the existentially quantified variables are
considered one at a time following the order they appear in
z. Also, an arbitrary but fixed ordering of the variables in
x is assumed.
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For instance, assuming AD = ∅ and given a TGD r :
R(x, y)→ ∃z R(x, z), then HeadAdn(r,Rbb(x, y), AD) gives
the adorned formula ∃z Rbf1(x, z) and f1 = frz (b) is added
to AD.

Cyclic adornment symbol. Given a set of adornment
definitions AD, we use Ω(AD) to denote the labeled directed
graph whose vertices are the adornment symbols appearing
in AD, and where there is a directed edge from fi to fj
labeled with frz iff there are fi = frz (· · · fj · · · ) and fj =
fsw(· · · ) in AD with r, s ∈ Σ∃ and there are r1, ..., rn ∈ Σ∀
(n ≥ 0) such that s < r1 < · · · < rn < r.

An adornment symbol fi is cyclic w.r.t. AD if there is
a path in Ω(AD) departing from fi where (at least) two
edges have the same label. We say that an adorned head
∃zψµ(x, z) is cyclic (w.r.t. AD) if there is a variable z in z
adorned with a cyclic adornment symbol.

Adornment Substitution. An adornment substitution θ
is a set of pairs of the form fi/fj (whose intuitive meaning
is that fi is replaced by fj), where fi and fj are adornment
symbols such that if fi/fj ∈ θ then there is no fj/fk in θ
(that is, a symbol fj used to replace a symbol fi cannot be
substituted by a symbol fk). The result of applying θ to an
adornment α, denoted αθ, is the adornment obtained from
α by simultaneously replacing every occurrence in α of an
adornment symbol fi with fj iff fi/fj ∈ θ. This is extended
to adorned atoms, adorned dependencies, adornment defini-
tions, etc., in the obvious way.

Given a set of adornment definitions AD, an adornment
substitution θ is valid (w.r.t. AD) if for every fi/fj in θ, it
is the case that AD contains adornment definitions of the
form fi = frz (α) and fj = frz (α′).

Given a set of adorned dependencies Σµ and a dependency
r, we define:

AP (Σµ) = {Rα | Rα(t) appears in Σµ}
Dµ(Σµ) = {R(α1, ..., αn) | Rα1...αn ∈ AP (Σµ)}
Bµ(r,Σµ)={bodyµ | rµ : bodyµ→headµ ∈ Σµ ∧ src(rµ)=r}

We are now ready to introduce the Adn∃ algorithm (Al-
gorithm 1). The input is a set of dependencies Σ, while
the output is a set of adorned dependencies Σµ along with
a boolean value Acyc. As mentioned before, the aim of the
algorithm is twofold: it defines a termination criterion on its
own, and it can be combined with other termination criteria.

More specifically, if Acyc is false, then a form of cyclicity
has been detected; otherwise, for every database D, there is
a terminating standard chase sequence of D with Σ.

As for the second aim of the algorithm, the adorned set
of dependencies Σµ given as output can be used as follows:
a sufficient condition for checking membership in CTstd

∃ is
applied to Σµ rather than Σ. If Σµ satisfies the condition,
then the original set of dependencies Σ is in CTstd

∃ .
The basic idea of the algorithm is to produce adorned

dependencies from the original ones by keeping track of what
facts can be derived by a chase execution and how terms
are derived. When adorning dependencies, the algorithm’s
strategy is to adorn first full dependencies, and to adorn
existentially quantified dependencies only when no further
full dependency can be adorned. This is iterated as long
as new adorned dependencies can be derived. EGDs are
leveraged to see if free symbols can be changed.

The algorithm maintains two sets Σµ and AD, contai-
ning the adorned dependencies and the adornment defini-

tions currently derived, respectively. These two sets are also
used by Function 2, which is called by Algorithm 1 to verify
whether a dependency r can be adorned, on the basis of Σµ

and AD (these are not explicitly passed to Function 2, but
are treated as “global variables”). Specifically, to see if a de-
pendency r = body → head can be adorned, function adorn
proceeds as follows. It checks if there is a coherent adorned
version bodyµ of body (obtained using adorned predicates in
AP (Σµ)) such that there is no dependency in Σµ having
bodyµ as body. If such a coherent adorned version bodyµ ex-
ists, the adorned head headµ = HeadAdn(r, bodyµ, AD(Σµ))
is computed, by propagating adornments from bodyµ. If
rµ = bodyµ → headµ is fireable w.r.t. Σµ, then rµ can be
added to Σµ, and thus is returned along with the boolean
value true. Otherwise, the input dependency r is returned
along with the boolean value false.

We now go into the details of Algorithm 1. Initially,
Acyc is true, AD is empty, and Σµ contains a dependency
R(x1, ..., xn) → Rb...b(x1, ..., xn) for each R ∈ R (lines 1–
3). As the algorithm proceeds, Σµ and AD are extended
and modified; in the case a form of cyclicity is detected the
value of Acyc is changed to false. Specifically, the algorithm
proceeds as follows (until Σµ does not change).

It first checks if there is a universally quantified depen-
dency r that can be adorned (line 6), using function adorn.
If this is the case, the corresponding adorned dependency rµ

is added to Σµ (line 7). Moreover, if r is an EGD and is not
satisfied by Dµ(Σµ), then the ChaseStep function executes
a chase step over Dµ(Σµ) with r (line 9). Notice that facts
in Dµ(Σµ) contains bound (i.e., b’s) and free (i.e., fi’s) sym-
bols: the former is treated as a constant while the latter are
treated as labeled nulls. If the chase step replaces fi with s,
where s is either b or an fj with i 6= j, then τ = {fi/s}.2 Fi-
nally, τ is applied to Σµ, all the definitions of fi are deleted
from AD, and τ is applied to AD—to replace occurrences of
fi in the right-hand side of adornment definitions (line 10).

When there are no full dependencies that can be adorned,
the algorithm checks if there is an existentially quantified
dependency that can be adorned (line 11), and if so, a cor-
responding adorned dependency rµ is added to Σµ (line 12).

After a dependency is adorned into rµ, the algorithm
checks if there exists a non-empty valid substitution θ s.t.
rµθ is equal to rυ for some rυ in Σµ (line 13). If this is
the case, then θ is applied to Σµ and AD (line 14). This
ensures termination of Adn∃. Moreover, if headµθ is cyclic,
then a form of cyclicity that may lead to non-termination is
detected and Acyc is set to false (line 16).

The overall process described so far is iterated as long as
Σµ changes.

Example 12. Consider the set of dependencies Σ1 of Ex-
ample 1. Initially, the following two adorned dependencies,
mapping unadorned atoms to atoms adorned with strings of
b’s, are added to Σµ1 :

s1 : N(x) → Nb(x)
s2 : E(x, y) → Ebb(x, y)

The algorithm then proceeds by adorning full dependen-
cies and adds the following adorned dependencies to Σµ1 :

s3 : Ebb(x, y) → x = y
s4 : Ebb(x, y) → Nb(x)

2With a slight abuse of notation, here we allow adornment
substitutions containing fi/b.
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Algorithm 1 Adn∃

Input: Set of dependencies Σ over schema R.
Output: Set of adorned dependencies Σµ, Boolean value Acyc.
1: Acyc = true;
2: Σµ={R(x1, ..., xn)→Rb...b(x1, ..., xn) | R ∈ R and ar(R) = n};
3: AD = ∅;
4: repeat
5: Σµold = Σµ;

6: if ∃r ∈Σ∀ s.t. 〈b, rµ〉 = adorn(r) and b = true then
7: Σµ = Σµ ∪ {rµ};
8: if r ∈ Σegd s.t. Dµ(Σµ) 6|= r then
9: τ = {fi/s} = ChaseStep(r,Dµ(Σµ));
10: Σµ = Σµτ ; AD = AD\{fi=fsz (α) ∈ AD}; AD = ADτ ;
11: else if ∃r ∈ Σ∃ s.t. 〈b, rµ〉 = adorn(r) and b = true then
12: Σµ = Σµ ∪ {rµ};
13: if ∃ rυ ∈ Σµ ∧ ∃valid subst. θ 6=∅ s.t. rµθ = rυ ∧ src(rυ) = r

then
14: Σµ = Σµθ; AD = ADθ;
15: if headµθ is cyclic then
16: Acyc = false;
17: until Σµ = Σµold
18: return 〈Σµ,Acyc〉;

Function 2 adorn
Input: Dependency r = body→ head.
Output: Pair 〈bool, r′〉, where bool is a Boolean value and r′ is a

possibly adorned dependency.
1: if ∃bodyµ ∈ A(body,AP (Σµ)) s.t.

a) bodyµ is coherent,
b) bodyµ /∈ Bµ(r,Σµ), and
c) rµ = bodyµ → headµ is fireable w.r.t. Σµ,
where headµ = HeadAdn(r, bodyµ, AD) then

2: return 〈true, rµ〉;
3: else
4: return 〈false, r〉;

Notice that Dµ(Σµ1 ) = {N(b), E(b, b)} and thus the EGD
r3 in Σ1 is satisfied by Dµ(Σµ1 ). Next, the existentially quan-
tified dependency (namely, r1) is adorned and the following
adorned dependency is added to Σµ1 :

s5 : Nb(x) → ∃y Ebf1(x, y)

Moreover, AD = {f1 = fr1y (b)}. After that, the algo-
rithm starts considering full dependencies again. By ador-
ning the EGD r3, the following adorned dependency is ob-
tained, which is added to Σµ1 :

s6 : Ebf1(x, y) → x = y

Notice that Dµ(Σµ1 ) = {N(b), E(b, b), E(b, f1)} and thus
Dµ(Σµ1 ) 6|= r3. Thus, function ChaseStep is executed with
Dµ(Σµ1 ) and r3, returning the substitution θ = {f1/b}, which
is applied to Σµ1 , whereas AD becomes empty. After the ap-
plication of θ, we have that Σµ1 = {s1, s2, s3, s4, s′5}, where
s′5 is derived from s5 by replacing f1 with b, that is, s′5 :
Nb(x)→ ∃y Ebb(x, y).

At this point, no further dependencies can be adorned and
the algorithm terminates by returning the value Acyc = true
along with Σµ1 . Notice that there is no dependency (of any
kind) that can be adorned because AP (Σµ1 ) = {Nb, Ebb}
and the body of the dependencies in Σ1 have already been
adorned using these adorned predicates. 2

Example 13. Consider the set of dependencies Σ10 of
Example 10. Initially, the following adorned dependencies
are added to Σµ10:

s1 : N(x)→ Nb(x)
s2 : E(x, y, z)→ Ebbb(x, y, z)

Then, full dependencies are adorned and the following
adorned dependencies are added to Σµ10:

s3 : Ebbb(x, y, z)→ y = z
s4 : Ebbb(x, y, y)→ Nb(y)

Notice that Dµ(Σµ10) = {N(b), E(b, b, b)} and thus the
EGD r3 in Σ10 is satisfied by Dµ(Σµ10). Next, the existenti-
ally quantified dependency (namely, r1) is adorned and the
following adorned dependency is added to Σµ10:

s5 : Nb(x)→ ∃y ∃z Ebf1f2(x, y, z)

with AD = {f1 = fr1y (b), f2 = fr1z (b)}. Now universally
quantified dependencies are considered again to see if they
can be adorned. Suppose r3 is chosen. Then, the following
adorned dependency is added to Σµ10:

s6 : Ebf1f2(x, y, z)→ y = z

Now, Dµ(Σµ10) = {N(b), E(b, b, b), E(b, f1, f2)}, which does
not satisfy the EGD r3. By executing the ChaseStep func-
tion on Dµ(Σµ10) and r3, the substitution τ = {f2/f1} is
obtained (alternatively, f1/f2 might have been chosen, but
the choice is immaterial). Then, the adornment definition
f2 = fr1z (b) is removed from AD, and the substitution τ is
applied to both Σµ10 and AD, replacing f2 with f1. Thus,
AD becomes {f1 = fr1y (b)}, while s5 and s6 become:

s′5 : Nb(x)→ ∃y ∃z Ebf1f1(x, y, z)
s′6 : Ebf1f1(x, y, z)→ y = z

By proceeding as discussed above, the following adorned
dependencies are added to Σµ10:

s7 : Ebf1f1(x, y, y)→ Nf1(y)
s8 : Nf1(x)→ ∃y ∃z Ef1f3f3(x, y, z)
s9 : Ef1f3f3(x, y, z)→ y = z
s10 : Ef1f3f3(x, y, y)→ Nf3(y)
s11 : Nf3(x)→ ∃y ∃z Ef3f5f5(x, y, z)
s12 : Ef3f5f5(x, y, z)→ y = z
s13 : Ef3f5f5(x, y, y)→ Nf5(y)
s14 : Nf5(x)→ ∃y ∃z Ef5f7f7(x, y, z)
s15 : Ef5f7f7(x, y, z)→ y = z

with AD = {f1 = fr1y (b), f3 = fr1y (f1), f5 = fr1y (f3), f7 =
fr1y (f5)}. When s15 is introduced, a valid substitution θ =
{f5/f1, f7/f3}mapping s15 to s9 is found. Thus, θ is applied
to both Σµ10 and AD, replacing all occurrences of adornment
symbols f5 and f7 with f1 and f3, respectively. Notice that
dependencies s11 − s14 become:

s′11 : Nf3(x)→ ∃y ∃z Ef3f1f1(x, y, z)
s′12 : Ef3f1f1(x, y, z)→ y = z
s′13 : Ef3f1f1(x, y, y)→ Nf1(y)
s′14 : Nf1(x)→ ∃y ∃z Ef1f3f3(x, y, z)

while s15 becomes equal to s9. Moreover, AD = {f1 =
fr1y (b), f3 = fr1y (f1), f1 = fr1y (f3)}. Since Ω(Σµ10) is cyclic
(after the application of θ), as it contains the edges (f1, f3)
and (f3, f1), variable Acyc is set to false.

At this point, no further dependencies can be adorned
and the algorithm terminates by returning the value Acyc =
false along with Σµ10. 2

Theorem 6. Algorithm Adn∃ terminates for every set of
dependencies. 2
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XXXXXXXX|Σ∃|
|Σegd | [1, 10] [11, 100]

#tests |Σ| #tests |Σ|
[1, 10] 50 86 7 451

[11, 100] 15 406 26 1,210
[101, 1000] 51 3,113 13 3,176
[1001, 5000] 9 9,117 7 19,587

(a) Ontologies’ Size

[1, 10] [11, 100]

|Σµ|/|Σ| Time |Σµ|/|Σ| Time

2.38 84 3.15 125
2.45 141 2.83 275
2.97 787 6.16 22,819
2.82 712 2.82 1,495

(b) Complexity

[1, 10] [11, 100]

A+NT FN A+NT FN

50[44+6] 0 7[6+1] 0
15[6+9] 0 26[13+13] 0
51[4+47] 0 11[1+10] 2
9[0+9] 0 7[0+7] 0

(c) Expressivity

Table 2: Experimental Results.

Thus, given an input set of dependencies Σ, Algorithm 1
always returns a pair consisting of a set Σµ of adorned de-
pendencies and a boolean value Acyc giving information
about the detection of a form of cyclicity—we useAdn∃(Σ)[1]
to refer to Σµ and Adn∃(Σ)[2] to refer to Acyc.

Another important property of Algorithm 1 is stated in
the next theorem. It says that, given a set of dependen-
cies Σ and a database D, some of the canonical models of
(D,Σ) can be obtained from the canonical models of (D,Σµ)
by dropping adornments, where Σµ = Adn∃(Σ)[1]. More-
over, whenever (D,Σ) has canonical models, (D,Σµ) admits
canonical models as well. These two properties imply that
if (D,Σ) has canonical models, then we can construct one
from (D,Σµ) (e.g., by using the core chase).

Theorem 7. Consider a set of dependencies Σ and let
Σµ = Adn∃(Σ)[1]. For every database D,

1. src(CMod(D,Σµ)) ⊆ CMod(D,Σ), and

2. CMod(D,Σµ) 6= ∅ iff CMod(D,Σ) 6= ∅. 2

On the basis of the boolean value returned by Algorithm 1,
below we define semi-acyclic dependencies.

Definition 4 (Semi-acyclic dependencies). A set of
dependencies Σ is semi-acyclic (SAC) ifAdn∃(Σ)[2] is true. 2

Every semi-acyclic set of dependencies belongs to CTstd
∃ .

Theorem 8. For every semi-acyclic set of dependencies
Σ and for every database D, there is a terminating standard
chase sequence of D with Σ whose length is polynomial in
the size of D. 2

7. EXPRESSIVITY, COMPLEXITY, AND
EXPERIMENTAL EVALUATION

As Algorithm 1 embeds the fireable condition of semi-
stratification, we have that semi-acyclicity strictly generali-
zes semi-stratification. It also generalizes acyclicity.

Theorem 9. S-Str ( SAC and AC ( SAC. 2

As SAC includes sets of dependencies which are not in
CTstd
∀ , it follows that SAC 6⊆ MFA; it is an open problem

whether MFA ⊆ SAC.
We now turn our attention to the second aim of Algo-

rithm 1: providing a set of adorned dependencies Σµ which
can be used in place of the original set of dependencies Σ for
termination analysis. As shown in the following, Σµ turns
out to be better than Σ for the purpose of checking termi-
nation (see Theorem 11 below).

Given a termination criterion C, we use Adn∃-C to denote
the class of sets of dependencies Σ such that Adn∃(Σ)[1]

belongs to C. Moreover, we define C as the set containing C
for every criterion C discussed in Section 3.

The following theorem states that by combining Algo-
rithm 1 with current termination criteria (including those
for checking if a set of dependencies belongs to CTstd

∀ ), we
can check (via a sufficient condition) if a set of dependencies
belongs to CTstd

∃ . Theorem 11 below says that by proceeding
in this way we can identify strictly more sets of dependencies
in CTstd

∃ .

Theorem 10. Let Σ be a set of dependencies. If Σ ∈
Adn∃-C then Σ ∈ CTstd

∃ , for C ∈ C. 2

Theorem 11. C ( Adn∃-C, for C ∈ C. 2

The previous theorem follows from the fact that if a set of
dependencies satisfies a termination condition, then its ador-
ned version has the same (or weaker) structural properties
and thus it satisfies the termination condition too.

We point out that if Σ ∈ Adn∃-C then Σ ∈ CTstd
∃ , but it

can be the case that Σ 6∈ CTstd
∀ even if C is a criterion for

checking if a set of dependencies is in CTstd
∀ .

The following theorem states the complexity of Algorithm 1.

Theorem 12. For any set of dependencies Σ, the size of
Adn∃(Σ)[1] and the time complexity of computing it using
Algorithm 1 are exponential and double exponential in the
size of Σ, respectively.

Despite of the theorem above, as shown in our experimen-
tal evaluation, the size of Σµ and the time to compute it are
reasonable in practice.

Experimental Evaluation. We now report on an experi-
mental evaluation we performed to assess our approach. We
have implemented Algorithm 1 in Java. The implemen-
tation, as well as the datasets we used, can be found at
http://si.deis.unical.it/~calautti/chase/. We used
sets of dependencies taken from the repository [1], which in-
cludes ontologies in a variety of domains: a large subset of
the Gardiner ontology corpus [18], the LUBM ontology [28],
several Phenoscape ontologies [3], and a number of ontolo-
gies from two versions of the Open Biomedical Ontology
corpus [2]. All experiments were run on an Intel i7-3770
3.40 Ghz, 16 GB of memory.

Table 2 resumes (a) the main characteristics of the de-
pendency sets used in our experiments, (b) the complexity
of analyzing a set of dependencies in terms of the number
of generated adorned rules and the time to compute them,
and (c) the expressive power in terms of the number of sets
of dependencies recognized as terminating or not.

More specifically, we considered a collection of 178 on-
tologies and partitioned it into eight classes depending on
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the number of existentially quantified TGDs and the num-
ber of EGDs. For the former we considered four intervals,
namely [1, 10], [11, 100], [101, 1000] and [1001, 5000], while
for the latter we considered two intervals, namely [1, 10] and
[11, 100]. For each class, we have considered ontologies with
different ratios |Σ∀|/|Σ∃|.

Table 2a reports, for each class, the number of ontologies
belonging to the class (column #tests) along with the aver-
age number of dependencies for the ontologies in the class
(column |Σ|).

Table 2b shows, for each class, the average ratio of the
number of adorned dependencies to the number of depen-
dencies in the original ontology (column |Σµ|/|Σ|), along
with the average time (in milliseconds) to compute the ador-
ned set (column Time). It is worth noting that the set of
adorned dependencies in not much larger than the original
set of dependencies, and running times are lower than 1 se-
cond in most of the cases.

Table 2c reports, for each class, (i) the number of semi-
acyclic ontologies + the number of ontologies that are not
semi-acyclic and the standard chase did not halt within 24
hours (column A + NT ), and (ii) the number of ontolo-
gies that are not semi-acyclic and the standard chase ter-
minated within 24 hours (column FN , “false negatives”).
Notice that, among the 76 ontologies for which the chase
terminated, only 2 were not semi-acyclic.
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