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Simple Summary: Accurate classification of lung lesions detected in porcine respiratory disease
outbreaks is a prerequisite in the overall diagnostic process and greatly contributes to appropriate
disease management. The use of rapid and non-destructive techniques during necropsy, such as
near-infrared spectroscopy, could enhance the achievement of this objective. In this view, the aim
of the present study was to investigate the potential of such a technique in differentiating between
normal, congested, and pathological pig lung tissue and between different patterns of pulmonary
inflammation. Overall, an effective discrimination between normal and pathological lung tissue
was observed, with congested tissues exhibiting an intermediate behavior. Remarkable classification
performances were also attained for the identification of the different pathological lesions, demon-
strating high levels of accuracy, precision, and sensitivity. In conclusion, these findings underscore
the promising utility of near-infrared spectroscopy as an invaluable tool in veterinary diagnostics.

Abstract: Respiratory diseases significantly affect intensive pig farming, causing production losses
and increased antimicrobial use. Accurate classification of lung lesions is crucial for effective diag-
nostics and disease management. The integration of non-destructive and rapid techniques would
be beneficial to enhance overall efficiency in addressing these challenges. This study investigates
the potential of near-infrared (NIR) spectroscopy in classifying pig lung tissues. The NIR spectra
(908–1676 nm) of 101 lungs from weaned pigs were analyzed using a portable instrument and sub-
jected to multivariate analysis. Two distinct discriminant models were developed to differentiate
normal (N), congested (C), and pathological (P) lung tissues, as well as catarrhal bronchopneumonia
(CBP), fibrinous pleuropneumonia (FPP), and interstitial pneumonia (IP) patterns. Overall, the
model tailored for discriminating among pathological lesions demonstrated superior classification
performances. Major challenges arose in categorizing C lungs, which exhibited a misclassification
rate of 30% with N and P tissues, and FPP samples, with 30% incorrectly recognized as CBP samples.
Conversely, IP and CBP lungs were all identified with accuracy, precision, and sensitivity higher than
90%. In conclusion, this study provides a promising proof of concept for using NIR spectroscopy to
recognize and categorize pig lungs with different pathological lesions, offering prospects for efficient
diagnostic strategies.

Keywords: NIR spectroscopy; pneumonia; porcine respiratory disease; necropsy; veterinary diagnostic

1. Introduction

Porcine respiratory disease complex (PRDC) is a major cause of production losses and
antimicrobial consumption in pig farming, with serious implications for animal health and
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welfare. The combination of environmental and management stressors and genetic factors
impairs the pulmonary and systemic defense mechanisms of pigs, leading to pneumonia
with polymicrobial etiology [1]. Viruses such as porcine reproductive and respiratory
syndrome virus (PRRSV), swine influenza virus (SIV), porcine circovirus type 2 (PCV2),
pseudorabies virus (PRV), along with Mycoplasma hyopneumoniae and Actinobacillus pleurop-
neumoniae typically act as primary pathogens, promoting secondary bacterial infections by
Pasteurella multocida, Trueperella pyogenes, Mycoplasma spp., Glaesserella parasuis, and Strepto-
coccus suis [2,3]. Lung pathology is thus determined by the infectious agents involved, as
well as by the efficacy of host defenses and pharmacological treatments.

Due to its multifactorial nature, the management of PRDC requires a multidisciplinary
approach. Clinical information, epidemiological data, and direct or indirect in vivo diag-
nostic results should be integrated with post-mortem examinations [4,5]. Gross morpho-
pathological exams are helpful in selecting the most appropriate laboratory tests, such as
bacteriological, virological, and molecular analyses [6]. Indeed, the categorization of lung
lesions based on gross morphological patterns may help to narrow the list of differential
diagnoses, although mixed pathological scenarios often occur, and single pathogens may
be associated with different types of lesions [4]. Furthermore, histopathology can provide
more accurate information regarding the pathological process observed and, in some cases,
confirm the causative association between lesions and specific pathogens [4].

Among morpho-pathological patterns of lung inflammation, catarrhal bronchopneu-
monia (CBP), fibrinous pleuropneumonia (FPP), and interstitial pneumonia (IP) are fre-
quently found at necropsy. CBP in pigs is typical of M. hyopneumoniae pulmonary infection,
although other pathogens may cause similar lesions [7]. FPP is most commonly associated
with A. pleuropneumoniae lung infection, as well as with Actinobacillus suis or virulent strains
of P. multocida responsible for pleuritis [4,8]. Finally, IP is typical of viral infections, with
PRRSV and PCV2 commonly implicated [6].

The ability to differentiate pathological patterns quickly and accurately is crucial for
selecting the proper diagnostic tests. While macroscopic and histological examinations
contribute to the formulation of a morphological diagnosis, the availability of objective, non-
destructive, automatable, and rapid analytical techniques to obtain confirmation in a short
time could be extremely useful. The implementation of such techniques within veterinary
diagnostic labs and slaughterhouses would expedite and optimize meat inspection and
diagnostic processes, given the possibility of complementing or partially replacing extensive
human labor, and would enhance the overall efficiency of animal disease management.
Moreover, these tools could play a pivotal role in enhancing animal health and welfare
monitoring within pig abattoirs. Indeed, the slaughterhouse represents a strategic control
point to assess the impact of respiratory disease in pig fattening farms [9–11]. Over the years,
several scoring methods have been proposed to quantify pulmonary lesions in slaughtered
pigs, providing farmers and veterinarians with reports on the effectiveness of on-farm
prevention and management strategies [12–14]. These scoring systems evaluate the extent
and severity of lung lesions by visual inspection and palpation, particularly in relation to
bronchopneumonia and chronic pleuritis [15]. In such contexts, the adoption of innovative
non-destructive methods and technologies in slaughterhouses, as promoted by Regulation
(EU) 625/2017 [16], would not only enhance official veterinary controls to safeguard
food safety and public health but also bolster the role of abattoirs as animal welfare and
epidemiological observatories [17,18]. Moreover, techniques capable of classifying the type
of pulmonary inflammation in a continuous and standardized manner would provide
an overview of the respiratory health status of a farm and more precise feedback to herd
veterinarians, thus enhancing the on-farm management of PRDC [19].

Near-infrared (NIR) spectroscopy has emerged as a promising tool with a proven
track record in diverse fields such as agriculture, food, and pharmaceuticals. This tech-
nique is based on the fundamental principle of measuring the interaction between NIR
electromagnetic radiation and the molecules within a sample matrix. This interaction
results in a unique spectral fingerprint that includes comprehensive information related
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to the composition and condition of the analyzed tissues [20]. Theoretically, this spectral
fingerprint could be used to rapidly recognize distinctive patterns specific to lung lesions,
facilitating efficient and accurate identification of pathological features within a short time
frame and improving the overall costs of operation.

Of note, NIR spectroscopy has gained increasing recognition in human medical re-
search [21], particularly for screening pathological kidney tissues and conditions associated
with fibrotic and steatotic liver diseases [22–24]. The versatility of this technique has also
been proven in veterinary medicine and meat inspection, where NIR and ultraviolet-visible
(UV) spectroscopy, often integrated within hyperspectral imaging systems, have been suc-
cessfully employed to differentiate normal from septicemic poultry carcasses, discriminate
among different poultry myopathies [25–28], identify milk spot livers [29], and discern
between healthy and pathological sheep lung tissues [30].

Based on this premise, the primary goal of this study was to explore for the first time
the use of NIR spectroscopy, specifically employing a portable device, as an innovative
solution for the assessment of lung lesions in pigs, thereby providing a groundbreaking
proof of concept regarding its potential usefulness within this specific field.

The outcomes detailed in the present manuscript represent the first promising achieve-
ment of an ongoing research project dedicated to the development and application of
objective measurement systems based on near-infrared spectroscopy and computer vision.
These systems aim to support postmortem inspection of pig carcasses and organs, as well
as diagnostic procedures.

2. Materials and Methods
2.1. Lung Samples

A total of 101 lungs, sampled from weaned pigs (weighing less than 50 kg) delivered
to the Diagnostic Section of the “Istituto Zooprofilattico Sperimentale della Lombardia
e dell’Emilia Romagna” (IZSLER) in Brescia (Italy) for postmortem investigations, were
included in the present study. Only well-preserved lungs were evaluated to avoid the
inclusion of tissues with potential postmortem alterations.

Expert veterinarians conducted a comprehensive examination of each lung, involv-
ing visual inspection and palpation, aimed to establish a gross morphological diagnosis.
Three acute pneumonia patterns, namely catarrhal bronchopneumonia (CBP), fibrinous
pleuropneumonia (FPP), and interstitial pneumonia (IP), were considered based on the
classification scheme proposed by Ruggeri et al. [6]. Briefly, CBP is characterized by a
cranioventral distribution, typically affecting the apical, middle, and cranial portions of the
diaphragmatic lung lobes. In acute cases, affected parenchyma is consolidated and dark
red-purple in color. On the cut surface, scarce to abundant whitish catarrhal exudate can be
observed filling the airways. In acute FPP, lesions are mainly located in the dorso-caudal
portions of the diaphragmatic lobes. Affected areas appear dark reddish-purple to black
and slightly to moderately firm. On the cut surface, the parenchyma appears extremely
heterogeneous with diffuse hemorrhage, distended interlobular septa, and areas of friable
necrosis, usually surrounded by white lines composed of leukocytes and fibrin. Layers
of fibrin can be observed on the pleural surface. Finally, IP is commonly characterized by
diffuse lesion distribution. Lungs typically fail to collapse, have a rubbery consistency,
and their color changes from light to purple-red. Acute alterations also include diffuse
hyperemia and severe interlobular edema.

When available, normal (i.e., healthy, N) and congested (C) portions of tissue found
within the same pathological lung or from distinct (non-pathological) lungs were also
included. Lung tissue was classified as congested if its consistency was unchanged and
its color was darker red compared to normal parenchyma. Representative images of the
selected lung tissue categories are reported in Figure 1.
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Figure 1. Lung tissue categories selected at necropsy. (A) normal lung tissue; (B) congested lung
tissue; (C) catarrhal bronchopneumonia; (D) fibrinous pleuropneumonia; (E) interstitial pneumonia).

2.2. Near-Infrared Spectroscopic Analysis

NIR diffuse reflectance spectra of lung tissue samples were recorded by expert veteri-
narians during necropsy at room temperature (20 ◦C) using a battery-powered portable
device (MicroNIR OnSite-W, Viavi Solutions, Santa Rosa, CA, USA) in the 908–1676 nm
infrared region (6.1 nm apparent resolution, 10 ms integration time, 100 co-added scans).
The calibration of the instrument and the background signal correction were performed
before sample analysis by the periodical recording (every ten lung tissue samples) of total
absorbance (i.e., “black”) and total reflectance (i.e., “white”) reference spectra. To this
purpose, the Spectralon® Diffuse Reflectance Standards (Labsphere, Inc., North Sutton,
NH, USA) was employed.

All the visible and well-defined N, C, or pathological (P) areas of each lung were
scanned by aligning the instrument at a right angle to the surface of the organ (scanning
area of approximately 1.5–2 cm2), as represented in Figure 2. For each analyzed sample
area, eight replicate spectra were recorded to capture a sufficient amount of variability
associated with the inherent compositional inhomogeneity of the lung tissue. This was
achieved by rotating the instrument between consecutive spectrum acquisitions.
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2.3. NIR Data Processing

Before conducting data analysis and the development of discriminant models, a
thorough inspection and visual assessment of all NIR spectra were carried out to find and
exclude potential analytical outliers and divergent samples. The filtered NIR data matrix
subjected to elaboration by multivariate statistics included a total of N = 1298 spectra
(distributed into different lung tissue categories according to Table 1) and 125 variables
(corresponding to absorbance values of each sample at the considered NIR wavelengths).

Table 1. Distribution of NIR spectra across the various lung tissue classes.

Lung Tissue Class No. of Collected NIR Spectra

N 419
C 291

CBP 451
FPP 113
IP 24

The selected raw NIR spectra were then mean centered and pre-processed to enhance
the quality, accuracy, and robustness of the subsequent data processing steps. Indeed,
the raw NIR spectra, while holding valuable information, exhibited several undesirable
characteristics (i.e., baseline shifts and drifts), which hampered the identification of small
spectral features crucial for discriminating lung tissues. Two pre-processing techniques,
commonly used in the NIR spectroscopy analytical workflow, were concatenated and
applied to the raw spectra:

• Standard normal variate (SNV): useful to mitigate the impact of light scattering and
reduce baseline shifts/drifts;

• Fourth-order derivative (4Der): useful to increase the resolution among overlapping
peaks and highlight spectral differences.

2.4. Multivariate Statistics

Multivariate analysis, consisting of Orthogonal Partial Least Squares Discriminant
Analysis (OPLS-DA), was then applied to the SNV + 4Der pre-processed spectral data
in order to develop classification models that could discriminate between the different
categories of lung tissues. More specifically, OPLS-DA was used to establish a correlation
between the NIR spectral data and the results from the gross anatomopathological diagnosis
performed by veterinarians (serving as the reference standard for assigning classes to the
lung samples).

Specifically, two separate OPLS-DA models were developed:

• A 3-class model (i.e., “Model 1”), created with the objective of distinguishing between
N, C, and P lung tissues;

• A 3-class model (i.e., “Model 2”), including only spectra from pathological tissues and
designed to discriminate among CBP, FPP, and IP lung lesions.

Before the construction of the models, the whole spectral dataset was prepared by
randomly splitting it into calibration (75%) and validation subsets (25%). This procedure
was performed both for the OPLS-DA Model 1 and Model 2. By consequence, the calibration
sets, containing the majority of the spectra, included N = 974 spectra for Model 1 and
N = 441 spectra for Model 2. The calibration sets were employed for model training and
development, which were performed by using a 7-fold cross-validation.

The validation sets, including the remaining spectra not used for calibration (i.e., N = 324
spectra for Model 1 and N = 147 spectra for Model 2), were instead employed for inde-
pendent testing (external validation) of the developed calibration OPLS-DA models. They
served as unbiased sample sets to evaluate the overall performances of the models in
discriminating N vs. C vs. P or FPP vs. CBP vs. IP lung tissues when applied to new
unknown lung samples.
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Following the external validation stage, confusion matrices were generated for both
Model 1 and Model 2 to summarize the predicted vs. the actual classifications of the samples
included in the two validation spectral subsets. Starting from the confusion matrices, true-
positive, true-negative, false-positive, and false-negative samples for each class of lung
samples were identified. These values were then used to calculate specificity, sensitivity,
accuracy, and precision percentage values, providing comprehensive performance metrics
for the discriminant models [31].

Finally, to identify the crucial NIR wavelengths that had a significant impact on
predicting the class membership of the lung samples, the Variable Importance in Projection
(VIP) index was employed, where VIP values equal to or greater than 1 were considered
significant [32].

Multivariate analysis was performed by using SIMCA® software v. 17.0.2.34594
(Sartorius Stedim Data Analytics AB, Umea, Sweden).

3. Results
3.1. NIR Spectral Profiles of Lung Tissues

To enhance visualization and emphasize spectral characteristics, the average NIR
spectra for each analyzed class of lung tissues (i.e., N, C, P, BPC, FPP, and IP) were calculated
and examined. The raw and pre-processed (SNV + 4Der) average NIR spectra, spanning
the 908–1676 nm NIR region, are depicted in Figures 3A and 3B, respectively.
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Figure 3. Comparative representation of average NIR spectra of the analyzed lung tissue classes,
with (A) displaying raw NIR spectra and (B) illustrating corrected NIR spectra after the application
of SNV + 4Der pre-processing techniques.

Upon examination, unwanted baseline drifts, shift effects, and the presence of promi-
nent unresolved peaks were observed in the raw spectra, rendering them uninformative
and useless for direct analysis (Figure 3A). In contrast, the pre-processed spectra were
found to be characterized by improved resolution and suitable for discriminant analysis
(Figure 3B). The graphical evaluation of SNV + 4Der spectra allowed for the identification
of spectral regions where peaks tended to exhibit variations in absorbance values among
different lung tissue categories. As observed in Figure 3B, the IP lung tissues exhibited
higher absorption values in the peaks located within the 950–990 nm, 1070–1110 nm, and
1140–1190 nm NIR regions. In contrast, absorption bands within the 1320–1360 nm and
1400–1430 nm NIR regions were found to be higher in N and C lung tissues compared to
pathological ones (Figure 3B). Additionally, minor absorption peaks were detected around
1460–1490 nm and 1520–1550 nm, although these showed similar intensities across all
investigated lung categories.

3.2. Discriminant Analysis

Model 1, aimed at distinguishing among N, C, and P lung tissues, was constructed by
applying OPLS-DA to the calibration subset. This model was found to be characterized
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by a total of 2 predictive and 7 orthogonal components. As summarized in Table 2, the
cumulative goodness-of-fit (R2Xcum) and the cumulative goodness-of-prediction (R2Ycum
and Q2

cum) parameters of this model were globally higher than 0.5, thus suggesting its
suitability for the intended purpose of discriminating N vs. C vs. P lung tissues.

Table 2. Summary of the calibration performances of the discriminant models created.

Model Components
(Predictive + Orthogonal) R2Xcum R2Ycum Q2

cum

Model 1 (N vs. C vs. P) 2 + 7 0.936 0.547 0.532
Model 2 (BPC vs. FPP. vs. IP) 2 + 7 0.904 0.647 0.615

The score scatter plot, serving as visual representations of individual tissue samples in
a bi-dimensional plane defined by the first two predictive components extracted from Model
1, displayed quite uniform clusters for each lung tissue category (Figure 4A). However,
while the three clusters were generally well defined, a significant degree of overlap was
observed among samples from different categories.
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Model 2, designed for the discrimination among CBP, FPP, and IP, was developed
from the calibration subset using a total of 2 predictive and 7 orthogonal components. The
model displayed an R2Xcum of 0.904, an R2Ycum of 0.647, and a Q2

cum of 0.615 (Table 2).
Compared to Model 1, the fitting ability was hence found to be lower, but the prediction
ability was enhanced.

As illustrated in the OPLS-DA score scatter plot of Model 2 presented in Figure 4B
(bounded by the first two predictive components derived from the model, t[1] and t[2]),
distinct sample clusters corresponding to the three different patterns of pneumonia emerged.
Of note, the separation of IP samples was particularly pronounced, despite their limited
numerical representation compared to other groups. IP samples were indeed positioned
distinctly apart from CBP and FPP samples along both the t[1] and t[2], with only one
sample closely overlapping with the samples of the CBP group (Figure 4B). Even in this
case, it is crucial to emphasize that a certain degree of overlap was evident among CBP and
FPP samples (Figure 4B).

Table 3 presents the predictive VIP values extracted from the two discriminant models
for distinguishing between different lung tissue conditions and pneumonia types using
NIR spectroscopy. For Model 1, VIP values at specific NIR wavelengths highlighted the
importance of amide/protein (1515 nm, VIP = 1.28), water (976 nm, VIP = 1.27), and alkyl
alcohol (964 nm, VIP = 1.23) in discriminating between N, C, and P lung tissues. The
influence of amines and fatty acids was also evident, due to high VIP values at 1472, 1521,
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1391, 1428, 1422, and 1327 nm NIR wavelengths (Table 3). In Model 2, the highest VIP values
were observed at 1580 nm (alcohol/water, VIP = 2.24), 1453 nm (water, VIP = 2.16), and
1471 nm (amide/protein, VIP = 2.06), emphasizing the significance of patterns associated
with molecules in differentiating between CBP, FPP, and IP lungs. Also in this case, the
molecular patterns associated with aliphatic hydrocarbons typical of fatty acids were
evident (Table 3).

Table 3. The ten most significant Variable Importance in Projection (VIP) values, highlighting the key
NIR wavelengths for discriminating N vs. C vs. P (Model 1) and CBP vs. FPP vs. IP (Model 2) lung
samples and their corresponding band assignments *.

Model 1 (N vs. C vs. P) Model 2 (CBP vs. FPP vs. IP)

NIR Wavelength (nm) VIP Value Assignment NIR Wavelength (nm) VIP Value Assignment

1515 1.28 Amide/protein 1580 2.24 Alcohol/water
976 1.27 Water 1453 2.16 Water
970 1.24 - 1471 2.06 Amide/protein
964 1.23 Alkyl alcohol 1205 2.05 Water

1472 1.22 Aromatic amine 1463 2.03 Amide/protein

1521 1.22 Amide/protein 1212 1.95 Aliphatic
hydrocarbons

1391 1.21 Aliphatic
hydrocarbon 1023 1.95 Aromatic amines

1428 1.21 Primary
amides 1218 1.62 Aliphatic

hydrocarbons

1422 1.20 Aromatic
hydrocarbon 1042 1.48 Aliphatic

hydrocarbons

1397 1.20 Aliphatic
hydrocarbon 1174 1.44 Alkenes

* Band assignment was performed according to [33].

Following the external validation of Model 1 using samples of the validation subset,
promising results were achieved, indicating the model’s potential to achieve relatively
high correct classification rates (i.e., precision) toward unknown samples belonging to
different tissue categories: 84.6% N lungs, 69.9% for C lungs, and 90.5% for P lungs, as
observed in the confusion matrix reported in Table 4. However, a notable challenge emerged
during external validation, consistent with the observations from the score plot reported in
Figure 4A. Specifically, C lungs exhibited a higher misclassification rate, frequently being
inaccurately categorized as either N or P (Table 4).

Table 4. Confusion matrices depicting the allocation of lung samples within the considered lung
classes for the external validation subsets of discriminant Models 1 and 2.

Model 1 Model 2

Lung Tissue Class Actual Members N C P Lung Tissue Class Actual Members CBP FFP IP

N 104 88 6 10 CBP 112 107 5 0
C 73 13 51 9 FFP 29 9 20 0
P 147 4 10 133 IP 6 0 0 6

Total 324 105 67 152 Total 147 116 23 6

In Figure 5A, the performance metrics for Model 1 are presented in greater detail,
encompassing accuracy, precision, specificity, and sensitivity percentage values. Notably,
the P lung class exhibited the highest precision, accuracy, and sensitivity values which
reached 90.5%, 89.8%, and 87.5%, respectively. The significance of the high degree of
sensitivity lies in its direct correlation with the model’s ability to correctly detect true
positive pathological tissues. Conversely, the class of C lungs attained the highest specificity
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values (Figure 5A). This highlights the superior ability of the model to distinguish false-
positive C samples, thereby preventing the misclassification of N or P lungs as C, but not
vice versa.
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Following the external validation of Model 2 using the validation subset, the results
were notably promising. Indeed, an overall precision of 90.5% in effectively identifying
and categorizing the unlabeled pathological lung tissues as CBP, FPP, or IP was achieved
(Table 4). Consequently, on a global scale, Model 2 demonstrated superior classification
performance compared to Model 1. Remarkably, every lung in the IP category was correctly
identified and none of the CBP or FPP samples were incorrectly classified as IP, resulting in
100% accuracy, precision, sensitivity, and specificity toward lung samples of the IP class
(see Figure 5B). Model 2 also exhibited high accuracy, precision, and sensitivity rates for
samples belonging to the CBP group (90.5%, 95.6%, and 92.2%, respectively), highlighting
its remarkable ability/performance in distinguishing these samples from others (Table 4,
Figure 5B). However, it is noteworthy that the precision value achieved for the FPP was
found to be low (69.0%, Figure 5B). This outcome stems from the misclassification of nine
FPP samples as CBP samples and the wrong recognition of five true CBP samples as FPP
samples (Table 4).

4. Discussion

Although conducted as a preliminary step within a broader research project and
characterized by its exploratory nature, this study yielded promising results concerning the
application of NIR spectroscopy for discriminating categories of pig lung tissues. Indeed,
it emerged that NIR spectral fingerprinting could successfully categorize N, C, and P pig
lungs, as well as distinguish among specific lung inflammation patterns (CBP, FPP, and
IP), opening new perspectives for more effective diagnostic and management strategies of
porcine respiratory diseases by veterinarians.

Specifically, in this study, the first model to discriminate between N, C, and P pig
lung samples was developed using the NIR spectra collected on these categories of tissues
(Model 1). As shown in Figure 4A, distinct clusters for each tissue category were obtained.
Notably, the three clusters tended to separate primarily along the first (horizontal) pre-
dictive component, indicating the potential ability of the model to perform such a task.
However, some overlap was observed between samples from different categories. This
observation underscores the complexity of tissue classification and suggests the presence of
shared spectral characteristics among the studied tissues, resulting in overlapping features
between categories in certain instances. It is crucial to acknowledge that the morphological
diagnosis in this study was determined solely through macroscopic evaluation of the lungs
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by veterinarians. Therefore, it is possible that more detailed diagnostic information, such as
those obtained by gold standard methods like histopathology, would have contributed to a
more precise assignment of each sample to the correct tissue categories, thus improving
model calibration and validation metrics. Indeed, given the complex pulmonary histoar-
chitecture and its inherent compositional inhomogeneity, the co-presence of variegate
histological findings in adjacent lung lobules is quite common [34]. It is therefore plausible
that within the lung area scanned with the portable NIR spectrometer, the replicate spectra
could have been collected from lobules associated with different macroscopically indistin-
guishable lung tissue categories (i.e., in regions where N, C, and P tissue traits coexisted).

Generally, C lung tissue samples (Figure 4A) were positioned between N and P
samples, suggesting intermediate spectral characteristics. Pulmonary congestion is char-
acterized by increased blood volume in the lungs and can have several causes, including
blood stasis due to cardiovascular disorders (passive hyperemia) and increased blood flow
to injured tissue due to dilation of arterioles and capillaries during acute inflammation
(active hyperemia) [35]. The increased amount of blood, and therefore of erythrocytes and
macromolecules, may justify the separation of C from N samples, while their positioning
between the N and P lung tissues may reflect the normal evolution of pneumonia.

Following the external validation of Model 1, the categorization of the P lung class
exhibited the highest precision, accuracy, and sensitivity values. Indeed, tissue alterations
characterizing acute lung inflammation, such as active hyperemia, edema, exudation, and
leukocytic infiltration [36], may have resulted in a distinct and unique spectral fingerprint
of P lungs, ultimately leading to the correct recognition of unlabeled P samples. In this
context, it is crucial to note that attributing absorption peaks in the NIR region to particular
chemical bonds and linking them to the molecules responsible for discrimination can be
difficult. The VIP analysis for Model 1 revealed a highly intricate molecular fingerprint
involved in distinguishing between N, C, and P tissues. As reported in Table 3, this finger-
print encompassed variations in amide, proteins, water, and hydrocarbon chains (typical
of fatty acids) [33], which are related to tissue characteristics. These variations may poten-
tially correlate with biochemical and cellular changes associated with tissue inflammation.
However, further dedicated studies are needed to fully elucidate these relationships.

The second model was developed to discriminate between different patterns of pul-
monary inflammation (Model 2). The three most common types of porcine pneumonia
were considered, namely CBP, FPP, and IP. Compared to Model 1, the prediction ability of
Model 2 was found to be higher. This outcome confirms the hypothesis that structural and
compositional modifications in lung tissues, resulting from pathological processes, can be
well captured within the NIR spectra. Moreover, it affirms the presence and usability of
a substantial portion of NIR spectral variability associated with the specific pathological
characteristics of lung tissues for proper sample recognition.

The score scatter plot of Model 2 showed distinct clusters for each pathological tis-
sue category. A certain degree of overlap was evident between CBP and FPP samples
(Figure 4B). While these two pneumonia patterns are typically taught as distinct entities,
it is not uncommon in routine diagnostics to encounter mixed scenarios where typical
findings of CBP coexist with FPP lesions. Consequently, for future endeavors, incorpo-
rating histopathological data remains imperative to achieve enhanced accuracy in model
calibration. Notably, the separation of IP samples from CBP and FPP was particularly
pronounced, and external validation resulted in 100% accuracy, precision, sensitivity, and
specificity toward lung samples of the IP class (Figures 4B and 5B). Indeed, pathological
findings typical of lung interstitial inflammation are deeply different from those of other
pneumonia models, and this may justify the results obtained. Whereas acute CBP and
FPP are mainly characterized by exudation (catarrhal or fibrinous) and cellular infiltra-
tion (mainly neutrophils and macrophages) within the airspaces of the alveoli and distal
airways, IP shows alterations primarily involving the peribronchiolar, perivascular, and
perilobular interstitium. In acute cases, edema and abundant lymphoplasmacytic and
histiocytic infiltrates expand alveolar and interlobular septa, while severe interstitial fi-
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brosis is typical of chronic evolution [35]. When evaluating the NIR absorbance values
which predominantly varied according to the type of pathological tissue and responsible
for their discrimination (Table 3), a notable influence of water was observed, followed
by amides/proteins [33]. This observation may suggest a potential relationship between
exudation and cellular infiltration processes and the spectral fingerprints recorded in these
types of lung lesions (Table 3). However, it is crucial for future studies to broaden the
sample size, particularly within the IP category, to further substantiate these results. Ad-
ditionally, complementing NIR analysis with other chemical techniques is essential for a
comprehensive understanding of the samples under investigation.

Overall, the results of the present study provide a promising proof of concept re-
garding the use of NIR spectroscopy for the categorization of pig lung tissues and offer
prospects for efficient diagnostic strategies. Indeed, the obtained performance metrics
are notably satisfactory, aligning closely with those reported by other authors employing
NIR spectroscopy for distinguishing between normal and pathological tissues. In fact, the
accuracy of classification achieved in the present study reached levels greater than 90%
and it is comparable to performance levels previously reported in the literature [26–28].
Additionally, based on the results, it appears that misclassifications were primarily linked
to variations in the severity of pathology and a gradient from normal to pathological tis-
sues. These observations are consistent with previous findings, highlighting the recurring
challenge of tissue recognition across different studies [26–28].

In summary, the utilization of NIR spectroscopy, especially through the use of hand-
held spectrometers, holds significant potential not only in veterinary laboratories for routine
diagnostics, but also in various other settings, particularly in abattoir inspection activities.
For example, employing this technology for the systematic assessment of lung tissue char-
acteristics in slaughtered pigs could yield extensive data for epidemiological studies and
enhance on-farm animal health management practices. However, integrating a portable
NIR instrument into a high-throughput industrial abattoir poses numerous challenges
that require careful consideration [37]. In this regard, future research should explore the
advancement of analytical sensors using contactless NIR spectroscopy principles. These
sensors should be capable of analyzing tissue characteristics remotely and without the need
for human operators, thus aligning with the requirements of Regulation (EU) 2019/627
on postmortem inspection in pig slaughterhouses [38], which calls for the application of a
visual-only, risk-based meat quality assurance system [39].

Furthermore, the implementation of customized hyperspectral imaging systems oper-
ating in the NIR region within slaughter lines would represent a breakthrough innovation.
These systems, based on the same principles as the portable NIR spectroscopic instrument
employed in this study, operate within the same time frame as the portable instrument
but can scan the entire organ surface and provide spatially resolved hyperspectral images.
Additionally, NIR-based hyperspectral imaging systems, capturing information across a
broader portion of the electromagnetic spectrum, offer advantages over conventional cam-
eras, which operate within the visible light range (400–700 nm) and are increasingly being
adopted in abattoir environments. Indeed, the broader spectrum would allow for better
discrimination of artifacts, such as those arising from carcass geometry or the presence of
blood, thus significantly enhancing the accuracy of lesion evaluation and control activities
in abattoir settings.

5. Conclusions

The integration of advanced instrumental methods is rapidly emerging as a focal point
in animal and veterinary sciences.

Despite the preliminary testing of NIR spectroscopy in a previously unexplored area
of pig lung pathology assessment. The findings obtained in this study demonstrate the
feasibility of using NIR spectroscopy for the automated and unbiased identification of
normal, congested, and pathological pig lung tissues, as well as for the identification of
specific pathological patterns. The non-destructiveness and rapidity of the method make it
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well suited for future integration along the slaughter line, allowing the semi-quantitative
analysis of pig lung lesions and their severity. The classification models developed based
on NIR spectra for lung tissue recognition hold significant potential as supporting tools
for veterinarians conducting necropsies and gross diagnosis of respiratory diseases in pigs,
facilitating efficient abattoir inspection activities. Such advancement has the potential to
enhance disease management and prevention strategies, ultimately contributing to the
improvement of both animal health and public health outcomes.
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