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Abstract: Celiac disease (CD) is a multiorgan autoimmune disorder of the chronic intestinal disease
group characterized by duodenal inflammation in genetically predisposed individuals, precipitated
by gluten ingestion. The pathogenesis of celiac disease is now widely studied, overcoming the limits
of the purely autoimmune concept and explaining its hereditability. The genomic profiling of this
condition has led to the discovery of numerous genes involved in interleukin signaling and immune-
related pathways. The spectrum of disease manifestations is not limited to the gastrointestinal
tract, and a significant number of studies have considered the possible association between CD and
neoplasms. Patients with CD are found to be at increased risk of developing malignancies, with
a particular predisposition of certain types of intestinal cancer, lymphomas, and oropharyngeal
cancers. This can be partially explained by common cancer hallmarks present in these patients. The
study of gut microbiota, microRNAs, and DNA methylation is evolving to find the any possible
missing links between CD and cancer incidence in these patients. However, the literature is extremely
mixed and, therefore, our understanding of the biological interplay between CD and cancer remains
limited, with significant implications in terms of clinical management and screening protocols. In
this review article, we seek to provide a comprehensive overview of the genomics, epigenomics, and
transcriptomics data on CD and its relation to the most frequent types of neoplasms that may occur
in these patients.

Keywords: celiac disease; cancer; gastrointestinal disease; biomarkers; diagnosis; molecular profiling;
omics; gut microbiota

1. Introduction

Celiac disease (CD) is an autoimmune multiorgan disorder triggered by dietary gluten,
characterized by chronic enteropathy in genetically predisposed individuals [1]. Its treat-
ment relies on a gluten-free diet [2,3]. The pooled global prevalence of this condition
has increased over the past 50 years, ranging from 0.7% (histopathological diagnosis) to
1.4% (seroprevalence) to date [4].

The diagnosis of CD relies on the combination of clinical, serological, and histopatho-
logical findings [1]. Although the recommended first-line diagnostic serological test with
IgA tissue transglutaminases (TTA) shows a high sensitivity and specificity, with the evo-
lution of endoscopic and biopsy techniques, histopathological evaluation has become a
cornerstone [5–7]. The main histopathologic features of CD include the elevated number of
intraepithelial T lymphocytes, villous atrophy, crypt hyperplasia, and decreased enterocyte
height [1,2,7,8]. The histological interpretation of small-bowel biopsy should be essen-
tially conducted in strong collaboration with a gastroenterologist for the establishment of
clinical–pathological correlations [1,6]. Biopsy-confirmed CD is 1.5 times more common
in females than in males, and approximately twice more common in children than in
adults, with higher prevalence in Caucasian populations [4]. However, the lack of unbiased
population-based studies in many countries prevents the proper establishment of the exact
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global burden of CD. The typical clinical manifestations of CD are related to malabsorption
and include abdominal pain, steatorrhea, and diarrhea [9]. However, the spectrum of
CD-related symptoms is extremely wide, comprising heterogeneous conditions, such as
gastroesophageal, cardiovascular, neurologic, and endocrine disorders [9–11]. Lately, a
significant number of studies have considered the possible association between CD and
neoplasms [8]. Indeed, a higher mortality rate in patients with CD is associated with several
types of malignancies [8,12]. However, the role of CD in increasing (or decreasing) the risk
of cancer remains a matter of great controversy.

In this review article, we seek to provide the current evidence in the literature about
the possible development of cancers in patients with a diagnosis of CD. A comprehensive
review of the literature is carried out and each tumor type is analyzed separately. We also
aim to review and analyze current screening, treatment, and prevention strategies, adding
our opinion to possible future prospectives.

2. Immunogenetics and Comorbidities

Understanding CD pathogenesis has extended beyond the traditional concept of a
purely autoimmune disorder, being at present considered as a dynamic process of small
intestine mucosal remodeling due to a spectrum of immunologic processes [7,13]. These
are based on various components, such as neutrophils, eosinophils, mast cells, and comple-
ment, which contribute to disease pathogenesis and evolution [7,14,15]. The main genetic
predisposing factors for CD are in the major histocompatibility complex (MHC) region,
which is located on chromosome 6p21, comprising several immune-related genes [16]. In
this respect, it has been proposed that CD may predispose to certain cancer types due to per-
sistent immune activation [8,17]. Hence, CD and cancer share some hallmarks [18], such as
inflammation, genome instability and mutations [19], phenotypic plasticity [13], epigenetic
reprogramming [20], and polymorphic microbiomes [21]. In particular, chronic inflamma-
tion is one of the key aspects of CD and one of the acknowledged cancer causes [17,22,23].
Thus, a well-known association of CD with HLA-DQ2 genes was first identified in 1989 [24],
and HLA-DQA1 and HLA-DQB1 genetic variants are known to account for up to 48%
of disease etiology [25]. The prevalence of these HLA haplotypes in the general popu-
lation is around 30–40%, suggesting that they are not sufficient to induce CD on their
own [20]. No other genetic factors were identified for a long time until the comprehensive
genomic profiling era was established, with one of the biggest clinical studies featuring
the recruitment of 1048 biopsy-proven coeliac disease patients [26–28]. This allowed re-
searchers to uncover a numerous amount of non-HLA genetic markers and differentially ex-
pressed genes, improving the understanding of CD pathophysiology and resulting in over
550,000 single-nucleotide polymorphisms (SNPs) genotyped to date [25,26,28]. However,
most of the identified variants are located in non-coding regions of the genome, making
the interpretation of their functional role challenging [26]. To date, it has been possible
to explain only up to 55% of CD heritability, suggesting numerous genetic variants with
minor allele frequencies below 5–10% that may not have been taken to account [26].

Overall, CD patients show an increased prevalence of autoimmune diseases and
present an overlap of genes with Crohn’s disease, ulcerative colitis, type 1 diabetes, rheuma-
toid arthritis, and systemic lupus erythematosus (SLE), which potentially may contribute
to tumorigenesis [6,26,27,29–34]. These results have been collected in different numbers of
patients, starting from case studies of a single case to large retrospective and prospective
longitudinal studies and dataset analysis [6,26,27,29–34]. One of the largest analyses of
the main Genome-Wide Association Studies (GWAS) carried out in 2021 pinpointed the
importance of the discovery of thousands of genetic polymorphisms and genome variations
that underlie the risk of different diseases, including CD [26,35]. Publicly available datasets,
analyzed by Inamo, included GWAS for CD (featuring 12,041 cases and 12,228 controls) of
the European population as the exposure and GWAS for SLE (1311 cases and 1783 controls)
of the European population as the outcome [27]. For example, the discovery of KIAA1109-
TENR-IL2-IL21 block on chromosome 4 contains the well-known immune disease IL2-IL21
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locus and was the first non-HLA risk locus associated with CD [26,36]. At present, many
known genes that have been identified in families with CD belong to interleukin family
signaling and immune-related pathways (CD3E, FBXL7, PSMA8, and PPP2R1B), while
two genes (PSMA8 and PPP2R1B) play a role in the innate immune response pathway
and IL1R1, PPP2R1B, and PSMA8 are involved in the interleukin signaling (IL-1, IL-10,
and IL-17) pathway [25]. Remarkably, an increase in PSMA8 expression has been re-
ported in different tumors, such as large B-cell lymphoma, thymomas, and testicular germ
cell tumors [37].

A distinct subtype of CD, refractory CD (RCD), has been described, where patients’
symptoms fail to improve regardless of strict gluten-free diet implementation, thus leading
to the progress of villous atrophy [9,38]. It is mostly diagnosed in patients over 50 years
of age and the range is 0.04–1.5% [38]. Common histological findings include chronic
inflammation and crypt hypoplasia with villous atrophy [9]. This CD type is divided into
two subtypes, type 1 (RCD-1) and type 2 (RCD-2), where the latter features abnormal
intraepithelial lymphocytes count and mutations in genes shared by some cancer types,
such as Janus kinase 1 (JAK1) or Signal transducer and activator of transcription 3 (STAT3),
which play role in the nuclear factor kappa light chain enhancer of activated B cells (NF-κB)
pathway, triggering CD-associated lymphomagenesis in CD patients [1,38–41].

The newest study by Atlasy et al. conducted a single-cell transcriptomic analysis of the
immune cell compartment in CD and revealed five distinct immune-cell compartments in
the lamina propria of the human small intestine by single-cell RNA-sequencing analysis and
an increased number of proinflammatory macrophages in CD associated with interferon-
gamma signaling [42,43]. Overall, recent advances in genetic and epigenetic fields may
contribute to a better understanding of the disease pathophysiology and a better diagnosis
of CD.

2.1. Gut Microbiota

The gut microbiota is constituted by the collective of microorganisms (bacteria, archaea,
eukaryotes, and viruses) populating the intestinal tract, providing aid in digestion, vitamin
production, and balancing the immune and metabolic microenvironment [20,26]. Although
bacterial dysbiosis has been widely recognized as an important feature of irritable bowel
syndrome (IBS) and colorectal cancer [44–48], some studies conducted analyses of fungal
and viral microbiome and claim it should not to be overlooked [44,49–52].

Longitudinal multi-omics analyses of IBS diseases included CD patients and aimed
to study microbiome, metabolome, and epigenome of the subjects. The data identi-
fied that all patients with IBS have an increased bacterial metabolite tryptamine, which
stimulates colonic mucosal secretion and immune activation via inflammatory-related
pathways [53,54].

The role of gut microbiota has been suggested to play a role in CD development [20,26].
In particular, the HLA-DQA1 and HLA-DQB1 alleles are believed to affect the gut microbiota
composition and were found to be predictive of a favorable response to a gluten-free diet in
patients with IBS [55,56]. Current studies revealed a decrease in Bifidobacteria and increase
in Bacteroides numbers in patients with CD, while infants with a genetic predisposition
have an abundance of Proteobacteria and Firmicutes [20,26,57,58]. One of the largest ongo-
ing prospective longitudinal multi-center CDGEMM Study (NCT02061306) is recruiting
500 infants with a first-degree family member diagnosed with CD to address genomic,
environmental, microbiome, and metabolomic factors that could affect the development
of CD [21]. The primary outcome of this study is represented by the measurement of
the change in microbiota composition of CD in at-risk infants using culture-independent
high-throughput sequence analysis of the 16S rRNA genes [21,59]. The preliminary results
of this study suggest that individual metabolomic phenotypes, as a result of gene–diet–
gut microbiome interactions, can help to define specific enterotypes associated to gluten
tolerance loss in infants genetically at risk of CD [21].
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The main limitations of most available studies include missing genetic associations
and limited cohort numbers [26].

2.2. DNA Methylation

DNA methylation studies have been shown to be relevant in different diseases and
cancer types, and CD-related DNA methylation was first described in 2010 [26,60–63].
Ultimately, the allele-specific DNA methylation (ASM) combined with comprehensive
genomic profile data has shown the presence of CD-specific SNPs, which can nomi-
nate specific transcriptional pathways in CD and represent possible targets in disease
management [63]. Overall, ASM contributes significantly to the discovery of the dis-
eases’ epigenomics, identifying previously unknown SNPs to fulfill the understanding of
the diseases [26,63].

The first genome-wide methylation study has been published in 2019, defining 43 and
310 differently methylated positions in epithelial and immune fractions, respectively [64].
According to this study, the loss of CpG island (CGI) borders, which is frequently linked
to altered gene expression, and the increased methylation variability might provide a
substrate for defining the epithelial methylome of these patients. Few CD-associated
SNPs or variations that contribute to methylation quantitative trait loci (mQTLs) align
with differentially methylated locations (DMPs). These findings validate the role of DNA
methylation changes in the HLA region and support the contention that they are a genotype-
independent event.

A comprehensive gene expression in CD has been studied at the level of the entire
intestinal mucosa (epithelium and lamina propria). As a result, the reverse modulation of
gene expression and methylation in the same cellular compartment was observed for the
IL21 and SH2B3, which led the authors to suggest that a “gene-expression phenotype” of
CD and the abnormal response to dietary antigens in CD might be related to the regulation
of molecular pathways, and not gene alterations [65]. The same authors previously have
defined a small set of candidate genes in peripheral blood mononuclear cells that was able
to predict CD at least 9 months before the appearance of any clinical and serological signs
of the disease, which could develop into a potential non-invasive epigenetic instrument of
screening instead of intestinal biopsy [66]. Altered DNA methylation profiles appear to
be present in the saliva of CD individuals, which may be helpful in the development of
non-invasive diagnostic methods [67].

2.3. MicroRNA

MicroRNAs (miRNAs) are short RNA sequences, regulating transcription factor, gene
expression at the post-transcript level, and the translation of protein-coding genes [20,26].
They are strongly implicated in the pathogenesis of many diseases, including inflammatory
bowel diseases and CD [68,69]. It has been confirmed the regulatory role of miRNAs on
cell proliferation in CD and several studies have identified different subsets of miRNAs
allowing researchers to stratify CD patients by the severity of intestinal damage [20,70,71].
A significant miR-31-5p downregulation has been noted in CD, and miR-192-5p and miR-
192-3p were downregulated in CD patients with severe histological lesions and anemia,
respectively [72]. miR-192-5p has been found to target two molecules, NOD2 and CXCL2,
involved in innate immunity, which were upregulated in severe cases of CD. This miRNA
targets FOXP3, which is essential for regulatory T-cell development. A significant inverse
correlation was observed between the miRNA and the target mRNA, and interestingly,
discovered miR-192 are similar to those observed in inflammatory bowel disease [20,69,71].

Tan et al. applied next-generation sequencing, correlating miRNA and mRNA expres-
sion patterns to generate a CD-specific transcript interaction network. Various pathways
have been shown to be deregulated, such as barrier homeostasis, lipid metabolism, and
immunity (interferon signaling), a key factor in the pathophysiology of CD, suggesting
miRNAs play a key role in the intestinal damage [69].
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Another possible area of application may be a study of circulating miRNAs as a non-
invasive diagnostic alternative. The upregulation of miR-21 and downregulation of miR-31
expression in active CD patients compared to the treated ones has been demonstrated in
pediatric patients and the positive correlation between miR-21 expression and IgA auto-
antibodies against tissue transglutaminase has been observed, which is a major auto-antigen
in CD [73].

Future investigations are needed to explore the miRNA roles in CD pathogenesis
and their potential role as biomarkers, with a larger validation cohort, and probably in
comparison with other inflammatory bowel diseases [20,26,69].

3. Risk of Malignancies in Patients with Celiac Disease

One of the latest nationwide cohort studies in Sweden reports that patients with CD
are, overall, at an increased risk of developing malignancies, especially those diagnosed
with CD after the age of 40, with a particular predisposition for lymphoma, oropharyn-
geal, and intestinal cancer [2,8,12,17,74–76]. Lebwohl et al. studied 47,241 CD patients,
demonstrating an increased risk of cancer incidence after a median follow-up of 11.5 years
compared to the control group (Hazard ratio (HR), 1.11; 95%; confidence interval (CI),
1.07–1.15), being significantly elevated in the first year after CD diagnosis (HR, 2.47; 95% CI,
2.22–2.74), higher in patients diagnosed in the age range of 40–59 years old (HR, 1.07; 95% CI,
1.01–1.14), and the highest in patients diagnosed with CD after the age of 60 years (HR, 1.22;
95% CI, 1.16–1.29) [12]. Overall, men with CD had a higher cancer risk than women [12].

The schematic representation of the cancer hallmarks commonly shared with alter-
ations found in celiac disease that can potentially contribute to cancer development in CD
patients is reproduced in Figure 1.

Figure 1. Schematic representation of the cancer hallmarks commonly shared with alterations
found in celiac disease, featuring: possible microbiome alterations; the role of inflammation and
tumor microenvironment; role of regulatory miRNAs, leading to transcription and cell proliferation
errors if impaired; and microsatellite instability with MLH1 promoter hypermethylation, leading to
DNA replication errors. MLH1, DNA mismatch repair protein MutL protein homolog 1. Created
with BioRender.

3.1. Lymphoproliferative Disorders

Exploring the types of cancer present in the cohort, the strongest association between
CD has been for hematologic neoplasms [77]. Refractory celiac disease type 2 (RCD-2), also
referred to as "cryptic" enteropathy-associated T-cell lymphoma or "intraepithelial T-cell
lymphoma", has been found to be a rare clonal lymphoproliferative disorder arising from
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innate intraepithelial lymphocytes. It is known to have a poor prognosis and frequently
evolves to enteropathy-associated T-cell lymphomas (EATL) if CD is untreated [77].

The risk of EATL was strongly associated with CD diagnosis (RR = 35.8 (95% CI,
27.1–47.4)), according to the Dutch nationwide population-based pathology database
(PALGA) [78,79]. Proposed mechanisms of CD association with lymphoma include the
effects of chronic inflammation and antigen-driven T-cell proliferation [12,17,32,80]. Inter-
estingly, the risk of lymphoproliferative malignancies was increased in CD patients and in
those with inflammation (HR, 2.82; 95% CI, 2.36–3.37 and 1.81; 95% CI, 1.42–2.31, respec-
tively); however, in subjects with only positive serology, a risk of lymphoma development
was similar to that of the general population (HR, 0.97; 95% CI, 0.44–2.14) [75]. Multiple
studies confirm the previously obtained data where CD patients with persistent villous
atrophy are at an increased risk of lymphoproliferative malignancies, especially EATL, com-
pared to the general population (SIR, 3.78; 95%, CI, 2.71 to 5.12), although the mechanism
is not very well understood [12,17,32,80–83]. The genetic alterations described in RCD II
include epigenetic regulators, DNA damage repair, immune evasion genes, mutations of
the tumor suppressors tumor necrosis factors alpha-induced protein 3 (TNFAIP3), and
receptor superfamily member 14 (TNFRSF14) alterations [39,84]. Of note, deep deletions
and truncating mutations of both these tumor suppressors are recurrent in non-Hodgkin
lymphomas and leukemias [85]. The adherence to a gluten-free diet has shown an effec-
tive inhibition of EATL [32,86]. Other non-Hodgkin lymphomas (NHL) have also been
demonstrated to be of a higher incidence in celiac patients, where T-cell lymphomas are
enteropathy-associated and B-cell lymphomas are more likely to develop in patients with
CD and dermatitis herpetiformis [76,87,88]. Gao et al. conducted a study of 37,869 NHL
patients and stated a risk of >5 times higher in CD patients compared to CD-unaffected
controls (OR = 5.35; 95% CI, 3.56–8.06) [75,89]. Somatic mutations of STAT3 typical for
RCD-2 are noted to occur in 10.4% of mature B-cell neoplasms, and common genes shared
with Crohn’s disease are expressed in diffuse large B-cell lymphoma (PTPN2, IL18RAP,
TAGAP, and PUS10) [90,91]. Another gene found to be mutated in RCD-2 and to trigger
CD-associated lymphomagenesis was JAK1 [1,38,39]. It has been recently demonstrated
that 80% of RCD-2 and 90% of EATL display somatic gain-of-functions mutations in the
JAK1-STAT3 pathway, including a remarkable p.G1097 hotspot mutation in the JAK1 kinase
domain in approximately 50% of cases, assuming the JAK1-STAT3 pathway to be the main
driver of CD-associated lymphomagenesis [39,92].

It has been previously reported that JAK1 mediates autocrine IL-6 and IL-10 cytokine
signaling in activated B-cell-like diffuse large B-cell lymphoma by a certain epigenetic
regulatory mechanism involving phosphorylation of histone H3 on tyrosine 41 [93]. This
observation suggests a new therapeutic strategy as JAK1 inhibitors synergize with in-
hibitors of active B-cell receptor signaling [93]. Of note, JAK1 inhibitors, targeting the
JAK-STAT pathway, have been also regarded as a possible treatment for inflammatory
bowel diseases [94,95]. Other putative drivers mutations in interferon regulatory factor
4 (IRF4) have been described in CD patients [96]. This transcription factor, which is involved
in the differentiation of T and B lymphocytes, is altered by mutation and chromosomal
rearrangement in various hematologic malignancies [85].

3.2. Head and Neck Carcinomas

Askling et al. have identified a higher risk of oropharyngeal cancer development in
celiac patients by 2.3-fold [17,74]. The risk of oropharyngeal cancer has been linked to the
higher incidence of gastroesophageal reflux caused by delayed stomach emptying and
malabsorption [17,97,98].

Numerous CD-related genes have been found to be altered in head and neck can-
cers, such as LPP (lipoma-preferred partner), SCHIP1 (schwannomin-interacting protein
1), and IL12A (interleukin-12 subunit alpha) [90,91]. The latter gene encodes a subunit
of cytokine IL12 acting on T and NK cells, activating them, and this gene is upregu-
lated in an experimental model of anticancer response, suggesting a possible antitumor
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mechanism [15]. Later studies have demonstrated the potential for intratumorally deliv-
ered IL12 mRNA to promote TH1 tumor microenvironment transformation and robust
antitumor immunity [99,100].

Typical STAT3 and JAK1 gene alterations in RCD-2 are known to be activated in head
and neck squamous cell carcinoma, representing an important therapeutic target that may
be of a particular interest in CD patients with the abovementioned mutations [101,102].

3.3. Gastrointestinal Cancers

Exploring the types of cancer present in the Swedish cohort, a strong association
between CD and gastrointestinal cancers (HR, 1.34; 95% CI, 1.24–1.45) has been observed.
Among the gastrointestinal cancer subtypes, elevated risks have been observed for hep-
atobiliary cancer (HR, 1.80; 95% CI, 1.44–2.25) and pancreatic cancer (HR, 2.30; 95% CI,
1.87–2.82) but not for gastric cancer (HR, 1.21; 95% CI, 0.91–1.61) or colorectal cancer (HR,
1.06; 95% CI, 0.96–1.18) [12,103–105].

A meta-analysis of 17 studies from the biggest databases (Pubmed, Embase) by
Han et al. has demonstrated that CD was associated with a 60% increase in GI cancer risk
(pooled OR = 1.60, 95% CI 1.39–1.84), suggesting that CD patients had a higher risk of
developing esophageal cancer with a pooled OR for esophageal cancer of 3.72 (95% CI,
1.90–7.28) [105]. Same authors found CD patients to be at a higher risk of small intestinal
carcinoma (pooled OR = 14.41; 95% CI, 5.53–37.60), but without significant associations
between CD and risk of gastric cancer (OR = 1.53; 95% CI, 0.96–2.44), colon cancer (pooled
OR = 1.15; 95% CI, 0.86–1.56), or rectal cancer (OR = 0.90; 95% CI, 0.71–1.14) [105].

3.3.1. Gastroesophageal Cancer

A 4.2-fold risk of developing esophageal cancers in CD patients has been previ-
ously reported [12,17,74,103–105]. A meta-analysis conducted by Han et al. indicates that
esophageal cancer risk is higher in the peridiagnostic period (pooled OR = 4.02; 95% CI,
1.54–10.52) rather than postdiagnostically (pooled OR = 2.17; 95% CI, 1.34–3.51) [105], which
is probably related to a higher frequency of endoscopic procedures in CD patients.

A case–control study from the Dutch nationwide population-based pathology database
(PALGA) found that an increased CD-associated risk of esophageal squamous cell carci-
noma was restricted to female patients and age over 50 at the time of diagnosis
(RR = 5.9 (95% CI, 3.3–10.3) [78].

The risk of esophageal, and subsequently oropharyngeal cancer, was associated with
a higher gastroesophageal reflux risk due to malabsorption and delayed stomach emp-
tying, possibly complicated by reflux, which represents a risk of chronic inflammation
and (pre)malignant epithelial changes [17,74,106]. Shared biological pathways have been
observed with head and neck cancer [17,90,91,97].

The role of engulfment and cell motility protein 1 (ELMO1) in gastrointestinal can-
cer promotion has been widely discussed. ELMO1 is one of the key proteins for innate
immunity, responsive of pathogenic bacteria and apoptotic cell clearance, regulating in-
flammatory responses by phagocytosis, reshaping, and cell migration promotion [107,108].
While its role in infectious process is well established, the role of ELMO1 in cancer still needs
to be explored, as it may possibly trigger malignant cells’ invasion and metastasis [107,108].

The deregulation of ELMO1 has been found in inflammatory bowel disease, positively
correlating with inflammatory cytokines expression, and has been proposed as a potential
early biomarker [109].

The discovery of the deleterious effect of ELMO1 alterations in CD may provide a link
in association to many gastrointestinal tumors, mainly esophageal and gastric cancer, which
feature alterations of ELMO1 in up to 8%, and this gene has been proposed as a diagnostic
or prognostic biomarker [90,91,107,110]. Moreover, ELMO1 alterations have been shown to
play a role in HPV-related oropharyngeal squamous cell carcinoma, in metastatic spread
of squamous cell carcinoma by means of TGFβ signaling, and epithelial-to-mesenchymal
transition in gastric cancer [107,111].
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Other altered genes, found in CD, have also been implicated in esophagogastric
cancers pathways. These include ATXN2 (Ataxin-2), which mediates the translation of
TNFR1, promoting esophageal squamous cell carcinoma, or ITGA4, a cytoskeleton protein
involved in gastric cancer cells migration [112–114]. These genes have been found altered
in 3–4% of esophageal cancers [90,91]. PSMA8 (Proteasome 20S subunit alpha 8), linked
to innate immune response pathway and CD pathogenesis, was found altered in around
5% of esophageal cancers [90,91,112–114].

It is widely known that the reflux may also cause premalignant epithelial transforma-
tion (Barett’s esophagus), which is an additional risk factor, but all these risks have been
shown to be successfully attenuated if a gluten-free diet was rigorously followed, [17,74,115]
and reflux esophagitis itself, unless ulcered, is not an indication for esophageal biopsy [116].

3.3.2. Small Bowel Cancer

Limited data are available on small bowel carcinoma (SBC), although a strong associa-
tion of CD with this cancer type has been observed [17,117,118].

A retrospective study in Sweden has identified an increased risk of small bowel cancer
in CD patients (HR, 3.05; 95% CI, 1.86–4.99) [92,119], which confirms the prior meta-analysis
study (pooled OR = 14.41; 95% CI, 5.53–37.60), and, similarly to esophageal cancer, this risk
is higher in the peridiagnosis period (pooled OR = 17.08; 95% CI, 3.59–81.20) compared to
the postdiagnosis period (pooled OR = 4.64; 95% CI, 1.06–20.26) [105].

SBC is usually diagnosed at an advanced stage because of late-presenting symp-
toms [79]. In CD, it is characterized by a younger age of onset, a higher prevalence in the
female gender, most frequent occurrence in jejunum, a higher prevalence of medullary type,
and better overall survival compared to sporadic, Crohn- and hereditary syndrome-related
SBC, which also represent a high level of microsatellite instability (MSI) [78,120]. It has been
noted that SBC is most often synchronously diagnosed with CD, suggesting a probability
of these patients having a silent CD before developing the symptoms of malignancy [105].

Chronic inflammation in CD has been shown to potentially contribute to the risk
accumulation by enterocyte destruction potentiating premalignant changes [7,17,82,121],
and some authors have found an association with a small bowel adenoma as a precursor
lesion [117]. Epigenomic studies have demonstrated an APC promoter hypermethylation
found in 73% of CD-associated small intestine malignancies, and this gene is frequently
altered in small bowel and colorectal cancer types [60,90]. Vanoli et al. compared the
histological and molecular features of small bowel carcinomas arising from patients with
CD and Crohn’s disease (CrD), as both are potentially cancer-predisposing conditions [122].
CD patients have been found to harbor microsatellite instability with MLH1 promoter
hypermethylation more often than CrD ones and have a higher number of tumor-infiltrating
lymphocytes (TILs), which suggested a better outcome [120,122,123].

Another large Swedish cohort study of 48,119 patients with CD conducted by
Emilsson et al. demonstrated a low risk of small bowel adenocarcinoma overall
(HR 3.05; 95% CI, 1.86–4.99], but the risk of its incidence, as well as the risk of small
bowel adenoma, was higher in CD patients compared to the healthy individuals [105,119].
Overall, delayed diagnosis, untreated CD, and persistent villous atrophy are the most
frequently mentioned risk factors of malignant complications [79,119].

3.3.3. Colorectal Cancer

A low risk of colorectal cancer in CD patients has been confirmed by an Italian cohort
study of 1757 celiac patients, where only 6 patients developed colon carcinoma during
the mean follow-up period of 18.1 years [103]. The standardized incidence ratio was
0.29 (95% CI=0.07–0.45), dropping to 0.07 (95% CI = 0.009–0.27) in CD patients with a strict
adherence to a gluten-free diet [103].

However, Lasa et al. demonstrated a higher incidence of colorectal adenoma among
celiac patients compared to the control group (47.37% versus 27.97%, p = 0.01), known to
be a precursor lesion of colorectal cancer, with a particular increase in the prevalence of left-
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sided lesions [104,124]. Another study evaluated similarities in gut microbiota alterations,
which may share common activation pathways in CD and colorectal cancer [125].

Although colorectal cancer is the third most prevalent malignancy in the world popu-
lation [126], its lower risk in celiac patients may be explained by an overall healthier diet
due to the certain product groups’ limitation and decreased capability of fat absorption,
which attenuates most of the main inflammatory risk-factors involved in gastrointestinal
tumor process [17,23]. The risk may be attenuated also by the lower body mass index (BMI)
of celiac patients compared to healthy individuals, which is a crucial factor in colorectal
cancer development [17,88]. Interestingly, a functional novel long non-coding RNA IQCJ-
SCHIP1-AS1 has been shown to carry an indicative tumor-suppressor role and appears to
be a potential prognostic factor in colorectal carcinoma, which may be significant in view
of the known SCHIP1 alterations in CD [127,128].

3.4. Hepatobiliary and Pancreatic Cancer

Among the gastrointestinal cancer subtypes, elevated risks were observed for hep-
atobiliary cancer (HR, 1.80; 95% CI, 1.44–2.25) and pancreatic cancer (HR, 2.30; 95% CI,
1.87–2.82) [12,103–105].

The higher proneness to hepatobiliary carcinomas in CD patients may be partially
explained by liver enzymes’ disbalance and gut microbiota alterations with decreased
Bifidobacterium quantities, resulting in an increased liver cancer risk [17]. In patients who
do not strictly follow a gluten-free diet, an inflammation provoked by gluten ingestion
may lead to excessive liver fibrosis and even cirrhosis, which is a known malignancy
precursor [17,129]. Another possible explanation may be the average higher rice and corn
consumption by these patients as gluten-free carbohydrate sources. It is known that rice,
corn, and soybeans may contain aflatoxin, a mycotoxin produced by Aspergillus flavus
and related fungus that contaminates foods due to impropriate storage. This toxin has been
shown a major risk factor for hepatocellular carcinoma development [130,131].

As alterations of ELMO1, found in CD patients, are shown to have the effect on
epithelial-to-mesenchymal transition; unsurprisingly, its levels are found to be elevated
in hepatocellular carcinomas compared to adjacent non-tumor tissues [107,132]. This pro-
cess was found to be mediated through PI3K/Akt pathway, which was confirmed by
Gene Enrichment and Pathway (KEGG) analysis [132]. It has also been found that the
TRIM27–USP7 complex promotes tumor progression via STAT3 activation in human hepa-
tocellular carcinoma, which could represent a possible therapeutic target in CD patients
as well [133].

The development of pancreatic cancer has been shown to be linked to PSMA8 al-
terations in up to 5% of cases, which have also been found in CD patients, involved in
the interleukin signaling pathway. Other pancreatic cancer-related altered genes feature
KIAA1109, associated with susceptibility to celiac disease and JAK1 (typical of RCD-2) alter-
ations [25,90,91,134,135]. It is important to keep in mind that celiac disease may co-exist
with other autoimmune diseases including diabetes, which may lead to endocrine and
exocrine changes, and histopathological alterations to the pancreas [136]. An increased
overall risk of pancreatitis has been described in CD patients [137].

3.5. Thyroid Neoplasms

Volta et al. found that celiac patients carry a 2.5-fold increased risk of thyroid papillary
cancer, stating that the early diagnosis of CD and strict adherence to a gluten-free diet
did not have a protective effect on the development of this malignancy [138,139]. Several
studies indicating the risk of thyroid papillary cancer development in CD patients may
suggest an additional thyroid examination once the diagnosis of CD is established [138,139].

3.6. Gynecologic, Breast, and Other Malignancies

Interestingly, patients that have been diagnosed with CD also have a decreased risk of
breast cancer (HR, 0.83; 95% CI, 0.74–0.92), endometrial cancer (HR = 0.60;
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95% CI = 0.41–0.86), ovarian cancer (HR = 0.89; 95% CI = 0.59–1.34), and lung cancer
(HR, 0.88; 95% CI, 0.75–1.03) [12,17,74,140,141].

The peculiar data, though, are an identification of GATA3 SNP identified in CD by
Immunochip data meta-analysis, considering that alterations of this gene are noted in about
17% of breast cancer [26,90,91,142].

The decreased risk of female cancers (breast, endometrial, and ovarian) in CD pa-
tients is explained by a probable low estrogen exposure, generally reduced in the lifetime
of celiac patients, and the early menopause that celiac patients may experience if not
treated properly [140].

The decreased risk of breast cancer specifically in CD could be attributed to a generally
lower body mass in CD patients due to decreased nutritional status and malabsorption
[12,88]. Other studies indicate a role of concurrent lactose intolerance of CD patients
[17,143], thus reducing milk products consumption, which are known to contain the insulin-
like growth factor 1 (IGF-1) that may promote tumorigenesis due to the reduction in
apoptosis and angiogenesis promotion [144].

The decreased risk of lung cancer can be related to a lower smoking incidence in
this population [12].

Despite the known possibility of skin lesions in CD patients, no association with
cutaneous melanoma has been detected [145].

The complete list of cancer hallmarks commonly shared with celiac disease pathogene-
sis and malignancy types with increased incidence in celiac patients sharing common gene
and molecular alterations is shown in Table 1 and schematically represented in Figure 2.

Table 1. Cancer hallmarks commonly shared with celiac disease pathogenesis, and genetic/molecular
alterations commonly observed in celiac disease and different malignancy types.

Group of Disorders Role Hallmarks/Genetic and
Molecular Alterations Ref.

Cancer hallmarks

Epithelial transdifferentiation Inflammation [18]
Chromosome alterations Genome instability [18]

Epigenomic modifications, cell reprogramming Genome mutations [18]
Epithelial dedifferentiation Phenotypic plasticity [18]

Invasiveness Epigenetic reprogramming [18]
Tumor growth, immune evasion, therapy resistence Polymorphic microbiomes [18]

Lymphoproliferative

Interleukin signalling, DNA repair PSMA8 [25]

Malignant transformation JAK1 [38,39]
Malignant transformation STAT3 [38]
Malignant transformation PTPN2 [90,91]
Malignant transformation IL18RAP [90,91]

Malignant transformation, tumor reccurence TAGAP [90,91]
Malignant transformation PUS10 [90,91]

Immune response and cell proliferation regulations IRF4 [96]
Malignant transformation TNFAIP3 [39]

Head and neck

Tumor cell migration, invasion, and metastasis LPP [90,91]
Malignant cell proliferation SCHIP1 [90,91]

Antitumor immunity IL12A [99,100]
Malignant transformation STAT3 [38,101]
Malignant transformation JAK1 [38,102]

Gastroesophageal
cancer

Tumor cell migration, invasion, and metastasis LPP [17,90,91]
Malignant cell proliferation SCHIP1 [17,90,91]

Antitumor immunity IL12A [17,90,91]
Cancer invasion, metastasis ELMO1 [90,91,107]
Malignant transformation ATXN2 [28]
Malignant cell migration ITGA4 [113,114]

Interleukin signalling, DNA repair PSMA8 [25]

Small bowel cancer
Microsatellite instability, impaired DNA repair MLH1 methylation [122]

Impaired DNA repair Microsatellite instability [120]
Tumor supressor, cell migration, apoptosis APC [60,90]
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Table 1. Cont.

Group of Disorders Role Hallmarks/Genetic and
Molecular Alterations Ref.

Colorectal cancer Malignant cell proliferation SCHIP [128]

Hepatobiliary and pancreatic
cancer

Malignant cell proliferation and survival PI3K/Akt [132]
Malignant cell promotion TRIM27-USP7 [133]
Malignant transformation STAT3 [38,133]

Interleukin signalling, DNA repair PSMA8 [25]
Cancer invasion, metastasis ELMO1 [107,132]

Cancer invasion, metastasis KIAA1109 [25,90,91,134,
135]

Malignant transformation JAK1 [38]

Breast cancer Cell differentiation GATA3 [26]

Figure 2. Celiac-disease-related gene alterations commonly shared with cancer pathways, graphically
summarized according to Table 1 and paper sections. Created with BioRender.

4. Screening, Treatment, and Prevention

Most national and international CD guidelines advise screening in high-risk groups,
including first-degree relatives of patients with CD and those with associated high-risk
disorders [11]. The diagnostic algorithm is referred to serological testing, followed by
a biopsy in the case of a positive result [11]. Recent guidelines also suggest avoiding
duodenal biopsies in children with a clear clinical presentation and positive serology [146].
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In seronegative patients who refuse to undergo endoscopy, genetic tests for the absence of
human leukocyte antigen haplotype HLA-DQ2/8 may be useful to exclude CD [83].

Monitoring the patients with CD-specific antibodies or measurement of gluten im-
munogenic peptides in urine and feces may be useful in patients with early CD diagnosis
to assess recent gluten exposure and predict the absence of histological lesions, thus pre-
venting disease progression [147].

The role of a gluten-free diet, being the only proven effective treatment, is to conserve
the mucosa integrity, avoiding CD-related inflammation and atrophy, which may play
role in future carcinogenesis [1,8,38], and, in the presence of RCD, evaluate these patients
at early stages and prevent them from undergoing a transition from RCD1 to RCD2,
given the potential risk of EATL development [1,38]. However, some authors suggest
that the capability of intestinal mucosa to restore itself in CD is only partial [42]. The
possibility of gut microbiota transplantation has been considered; however, it is still unclear
which microorganisms should be selected and safely transferred for the benefit of the
patient [45,53]. The lack of diet compliance by CD patients may become a major limitation
in correct CD and RCD differential diagnosis, making CD-specific antibodies a cornerstone
investigation in this instance [38].

In addition to nutritional support, various therapies have been proposed, such as im-
munotherapy, but have been found useful only in RCD-1, and hematopoietic stem cell trans-
plantation following high-dose chemotherapy as an alternative treatment
[1,38,148]. Phase II “gluten-challenging” trials have shown glutenase ALV003 [149,150],
latiglutenase IMGX003, and acetate AT1001 [151,152] to be able to attenuate gluten-induced
small intestinal mucosal injury in patients with celiac disease, but there is no widely
adopted implementation observed for these drugs, and some trials are ongoing.

Genetical screenings could be powerful predictive instruments for CD patients, for
example, the identification of somatic mutations in JAK1 and STAT3 could be useful to
predict the risk of EATL development in patients with RCD2 [1,38,39].

The overall higher rate of gastrointestinal disorders due to digestion issues give rise
to awareness of the control of malabsorption, gastroesophageal reflux, and colorectal
adenomas, especially left-sided [17,74,104,115,124]. Pancreatic and liver lesions could
possibly be prevented by the careful monitoring of biochemical bloodwork [12,17,129]. The
risk of small bowel adenocarcinoma development, even relatively low, should be carefully
considered, being higher in CD patients compared to healthy individuals [105,119]. Data
on higher tumor-infiltrating lymphocyte (TIL) numbers in small bower adenocarcinoma in
CD patients could probably be linked to refractory CD type and could be proposed as a
prognostic factor together with MSI instability upon prospective investigations [122].

A small number of studies, uncovering the increased risk of thyroid papillary cancer
development in CD patients, prompted clinicians to a careful thyroid examination in all
CD patients to develop effective prevention strategies [138,139].

Even though the risk of breast, endometrial, and ovarian cancers is low in CD patients,
they should not remain unconsidered if hormone replacement therapy is
administered [17,140].

In the context of the overall population, we should probably pay more attention
to the elderly population, for both naturally acquired risk factors and possible late CD
diagnosis [2,8,12,17,74–76,153].

Overall, in addition to following the gluten-free diet, all CD patients are given the
widely accepted recommendations of a healthy lifestyle preventing cancer risks, such as
high fiber consumption, physical activity, healthy body mass, and smoking
cessation [12,88,154].

5. Discussion

An increased cancer incidence in patients diagnosed with CD has been found in
many studies [8,12,17]. Most of these studies, however, were based on data from pa-
tients that were diagnosed before widespread serologic testing, so the cohort possibly
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represented a more severe disease phenotype [12,155,156]. One should not overlook the
possible delayed seropositivity of CD, which can be caused by co-occurring and/or autoim-
mune diseases, as described in a case report by Kostopoulou et al. in patients with type
1 diabetes mellitus [157]. It is important to remember that CD may be associated with other
autoimmune comorbidities, potentially increasing the risk for certain malignancies [88].

Some authors claim that, even though CD represents an increased risk of gastrointesti-
nal cancers due to possible disease latency and chronic inflammation, the risk is high in
the first year after diagnosis with little to no risk thereafter [12,155]. These data may be
explained by the fact that many studies were conducted in subjects with CD prior to the
serological testing, so a long time passed before the adoption of a gluten-free diet, which
has been shown to mitigate autoimmune inflammatory response and, therefore, reduce
overall risk [12,80].

Another explanation may be supported by the data of esopageal and small bowel can-
cer incidence in CD patients, where the risk was observed to be higher in the peridiagnostic
period [105]; however, it is not clear if the risk was correlated to pathological mucosal
changes in the presence of CD or the diagnosis of malignancy was delayed by its silent
nature, especially typical of small bowel carcinoma.

Recent studies also emphasized that gluten intake is not associated with cancer risk
in adults without CD, and for those people, dietary gluten restriction is unlikely to play
a preventive role in cancer development [158,159]. On the contrary, inconsistency in the
gluten-free diet in celiac patients may arise numerous inflammatory conditions, which
unfavorably contribute to possible carcinogenesis. Thus, it is possible that a gluten-free diet
may minimize the risk of cancer where inflammation is a major trigger [23,129,158,160].

The abovementioned higher risk of malignancies in patients diagnosed with CD after
the age of 60 years [12] could be connected with the fact that, despite most diagnoses
of CD are at present made in children and young adults, there are still 20–30% of celiac
patients who were first diagnosed at age over 60 years in several countries such as Canada,
the United States, and Northern Europe [87,153]. These data, indeed, leave an open
question, of whether CD develops at an advanced age or remains undiagnosed during
one’s lifetime [87], although it is known that patients diagnosed with CD in older age tend
to be seronegative [83]. Other reasons could be the overall worldwide population aging
and the increased risk of cancer promoted by DNA replication errors accumulating during
one’s life, overall higher malignancy rate in the elderly, as well as the diminishing capacity
of mucosa healing in the context of possibly low adherence to a gluten-free diet [87,88,161].

6. Conclusions and Future Perspectives

The effect of a gluten-free diet in CD patients is unequivocally helpful for reducing
the main symptoms of the disease and improving the quality of life of the patient [10].
The effect of this diet on reducing or preventing the development of malignancies in those
patients is still debatable [17].

Patients diagnosed with CD should be aware of slow mucosal healing in the case of
non-strict diet adherence, and the process may be utterly slowed down in the presence of
concomitant diseases or aging and are recommended to undergo a strict follow-up during
different periods of the disease [154,162]. While the majority of patients respond to a GFD,
up to 20% of patients with CD have persistent or recurrent symptoms [146].

Nevertheless, the awareness of the CD diagnosis and treatment has substantially
grown in recent decades, and there are still many factors to discover in the risk of develop-
ment of CD-associated neoplasms [8]. Expanding our knowledge on the complex nature
of CD suggests the improvement of early disease detection and sensitive biomarkers es-
tablishment. Genomics, epigenomics, and transcriptomics development have significantly
amped the overview of the CD immune landscape [42]. The possible future validation of
non-invasive tests, such as miRNA detection in the blood and saliva, may significantly ease
the diagnostic process [20,69].
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RNA sequencing has recently allowed researchers to create a map of microbial biomark-
ers along the gastrointestinal tract for celiac disease patients, which also describes the effect
of gluten-free diet [163]. A new study by Khalkhal found the mRNA expression of six
genes, suggesting some of them are useful and sensible markers in differentiating patients
with celiac disease from healthy controls [164]. Circulating miRNAs, such as miR-192,
could represent important biomarkers in clinical practice, and therefore are an exciting
target, but require further studies [72].

DNA methylation assays are new promising lines of research. Peng et al. recently
performed a plasma-based multiplex DNA methylation assay of a plethora of upper gas-
trointestinal cancer samples, resulting in three methylated cancer-specific signatures [108].
The methylated ZNF582 and TFPI2 and ELMO1 have been proposed as an alternative
panel for the early detection of non-invasive upper gastrointestinal cancer [108]. Given that
the latter has been found deregulated in inflammatory bowel disease and proposed as a
potential early biomarker, this finding could evolve into a potent diagnostic instrument for
CD and gastrointestinal cancer risk assessment [109].

Numerous kinds of research suggest various methylation and gene expression profiles
as novel non-invasive CD diagnosis tools [65,66].

The screening for somatic mutations in JAK1 and STAT3 found in CD patents with
RCD2 [1,38,39] could become a potential therapeutic target for RCD2 treatment, blocking
progression toward EATL [39]. The emerging results of the single-cell mass cytometry of
RCD2 patients highlighted intertumoral and intratumoral cell heterogeneity within the
duodenal and peripheral aberrant cell population, which may offer a clue to the therapy
responsiveness upon further investigations [165].

Microsatellite instability (MSI), another important tumorigenesis factor, may as well
become a potential target in CD patients. MSI is a hallmark and a surrogate test of mismatch-
repair (MMR) deficiency, which has been observed in CD patients with small-bowel car-
cinoma [122]. A recent retrospective study of gastrointestinal tract cancers has revealed
that 34% of small intestinal cancers are MMR-deficient [166]. Immunohistochemical (IHC)
testing for four mismatch-repair (MMR) protein (MLH1, MSH2, MSH6, and PMS2) expres-
sion to date is the most cost-effective method to evaluate MMR status [167], so it would
be interesting to assess the MMR status in CD patients without any identified tumors,
given that CD shares many common cancer hallmarks. This could lead to a possible new
immunotherapy application [168]. To our knowledge, there has been no study assessing
MMR status in CD [166].

The presence of tumor-infiltrating lymphocytes (TILs) has a positive predictive value
in many cancer types’ treatment and prognosis [43,169,170]. These include T lymphocytes,
containing programed cell death 1 (PD-1) protein, which interacts with the programed cell
death ligand 1 (PD-L1) located on the surface of neoplastic cells, leading to the decrease
in anti-tumor immune response [171]. Considering the findings of Vanoli et al. [122], the
higher TIL number in small bower cancers in CD patients could propel a new research line
of the PD-1/PD-L1 axis in CD patients.

The future discovery of the diseases’ epigenetics may complete the clarification of the
nature of CD, thus improving its prognosis, averting complications, and understanding the
association with the risk of cancer development [8,20,26].

Increasing the number of retro- and prospective studies around the world could
probably make a significant contribution to the understanding of the diseases’ biology and
pathogenesis.
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