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Abstract. In this paper we study conformal solitons for the mean curvature flow in hyperbolic
space Hn+1. Working in the upper half-space model, we focus on horo-expanders, which relate
to the conformal field −∂0. We classify cylindrical and rotationally symmetric examples, finding
appropriate analogues of grim-reaper cylinders, bowl and winglike solitons. Moreover, we address
the Plateau and the Dirichlet problems at infinity. For the latter, we provide the sharp boundary
convexity condition to guarantee its solvability, and address the case of noncompact boundaries
contained between two parallel hyperplanes of ∂∞Hn+1. We conclude by proving rigidity results
for bowl and grim-reaper cylinders.

1. Introduction

LetM andN be complete connected Riemannian manifolds and f : M → N an isometric immersion.
A mean curvature flow (MCF for short) issuing from f is a smooth map F : M × [0, T )→ N such
that each Ft : M → N , Ft(·) = F (· , t), is an immersion and satisfies the evolution equation

∂Ft
∂t

= H(Ft),

F0 = f,
(1.1)

where H(Ft) is the unnormalized mean curvature vector field of Ft. If M is compact, then (1.1) ad-
mits a smooth and unique (up to reparametrizations) solution, see for example [6,29,50]. Although
most of the literature regards the MCF in Euclidean space, there are significant applications of the
MCF in other ambient manifolds, see [50] for an overview.
In this paper we will consider a special class of solutions to the MCF. Let X be a smooth vector
field on a Riemannian manifold N and Φ : D ⊂ N × R → N its associated flow with maximal
domain D . A solution F : M × (0, T )→ N to the MCF is said to move along X if there exists an
immersion f : M → N , a reparametrization s : (0, T )→ R of the flow lines of X and a 1-parameter
family of diffeomorphisms η : M × (0, T )→M such that

F (x, t) = Φ
(
f(η(x, t)), s(t)

)
, (x, t) ∈M × (0, T ). (1.2)

While the definition is meaningful for arbitrary X, we focus on conformal vector fields since in
this case the MCF “preserves” the shape of the evolved submanifold. A MCF moving along a
conformal field X is said to be a self-similar solution with respect to X. Self-similar solutions serve
as comparison solutions to investigate the formation of singularities. Differentiating (1.2) with
respect to t and estimating at 0, we obtain the equation

H = s′(0)X⊥,

2010 Mathematics Subject Classification. Primary 53C44, 53A10, 53C21, 53C42.
Key words and phrases. Mean curvature flow, solitons, Plateau’s problem, Dirichlet’s problem.
A. Savas-Halilaj is supported in the framework of H.F.R.I. call "Basic Research Financing" under the National

Recovery and Resilience Plan "Greece 2.0" funded by the European Union-NextGenerationEU (H.F.R.I. Project Num-
ber:14758). L. Mari is supported by the PRIN project no. 20225J97H5 “Differential-geometric aspects of manifolds
via Global Analysis".

1



2 L. MARI, J.D. ROCHA DE OLIVEIRA, A. SAVAS-HALILAJ, AND R. SODRÉ DE SENA

where {·}⊥ is the orthogonal projection on the normal bundle of f . This motivates the following
definition:

Definition 1.1. An isometric immersion f : M → N satisfying the elliptic equation

H = cX⊥, (1.3)

where c ∈ R, is called a soliton with respect to X with soliton constant c. If X is a gradient field
(resp. a conformal field or a parallel field ), then f is named a gradient (resp. a conformal or a
translating ) soliton.

Remark 1.2. Let us make some comments regarding solitons in general ambient spaces:

(1) The case where X is conformal and closed was considered in [1,5,17,51]. A soliton with respect
to X with constant c is a soliton with respect to cX with constant 1. However, in what follows,
it will be more convenient to specify X from the very beginning and keep c as a parameter.

(2) The fact that f solves (1.3) may not imply that the MCF issuing from f moves along X.
This is the case, however, when X is a Killing field, since X generates a 1-parameter group of
isometries, [31, 32]. Nevertheless, the study of (possibly non-Killing) gradient solitons in more
general ambient spaces can also be justified from the parabolic point of view, as shown by
Yamamoto [56]. The starting point is the investigation of the MCF in a Ricci flow background;
see [40, 41]. More precisely, let {gt} a smooth 1-parameter family of Riemannian metrics on
N and Ft : M → N a smooth 1-parameter family of immersions for t ∈ [0, T ). We say that
{(gt, Ft)} is a solution to the Ricci-mean curvature flow if the following system is satisfied

∂gt
∂t

= −2 Ric(gt),

∂Ft
∂t

= H(Ft),

(1.4)

where H(Ft) denotes the mean curvature vector field of Ft : M → (N, gt). One interesting case
is that of a MCF in a gradient shrinking Ricci soliton (N, g, u). In this situation, g and u satisfy

Ric(g) + Hessg(u)− (1/2) g = 0

and thus gt = (T − t)Φ∗t g, where Φt : N → N , t ∈ (0, T ) is the flow of the vector field

V =
∇u
T − t .

Yamamoto [56] proved the following results:
• Let (N, g, u) be a shrinking gradient Ricci soliton and let f : M → N be a soliton satisfying

H(f) = −(∇u)⊥.

Then, F : M×[0, T )→ N given by F = Φ−1
t ◦f forms, up to tangential reparametrizations,

a solution to the Ricci-mean curvature flow (1.4); see [56, Proposition 4.3].

• Let (N, g, u) be a compact shrinking gradient Ricci soliton, M a compact manifold and let
F : M × [0, T ) → N , T < ∞, be a Ricci-mean curvature flow defined by (1.4). Suppose
that the second fundamental forms A(Ft) of Ft satisfy

max
M
|A(Ft)| <

C√
T − t ,

where C is a positive constant. For any increasing sequence {sj} of numbers tending to
infinity and any sequence of points {xj} inM , the family of the rescaled pointed immersions
Gsj : (M,xj) → N given by Gsj = Φtj ◦ Ftj , where tj is defined by sj = − log(T − tj),
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subconverges in the Cheeger-Gromov sense to an immersion f∞ : M∞ → N of a complete
Riemannian manifold satisfying the equation

H(f∞) = −(∇u)⊥;

for more details we refer to [56, Theorem 1.5].

Remark 1.3. When X is a gradient field, a further motivation for studying solutions to (1.3) is
the tight relation to the theory of minimal submanifolds; see for example [14–16,28,30–35,51].

(1) Isometric immersions f : Mk → (Nn+1, g) satisfying the soliton equation

H = (∇u)⊥, (1.5)

for u ∈ C∞(N) are precisely the stationary points of the weighted volume functional

Ω ⊂M 7→
∫

Ω
eu(f)dx,

where dx is the induced Riemannian measure on M . Consequently, solitons are particular
examples of u-minimal submanifolds. By considering the conformally related metric gI(k) =

e2u/k g and endowing M with the induced metric h(k) = f∗gI(k), eudx is the Riemannian
volume measure of h(k) and thus f solves (1.5) if and only if f : (M, h(k)) → (N, gI(k)) is
minimal. The metric gI(k) is called the Ilmanen metric.

(2) According to a result of Smoczyk [51], there exists a 1-1 correspondence between gradient
conformal solitons in N and minimal submanifolds in a suitable warped product constructed out
of N . Smoczyk proved that if f : M → (N, g) is a soliton with respect to a conformal gradient
field ∇u, then its associated submanifold M̄ = R×M is minimal in N̄ = R×N equipped with
the warped metric ḡ(s,x) = e2u(x)ds2 + gx. Moreover, he proved that a submanifold M in N

converges to a conformal soliton under the MCF if and only if its associated submanifold M̄
converges to a minimal submanifold under a rescaled MCF in N̄ .

In the present paper, we will investigate conformal solitons in the hyperbolic space

Hn+1 =
{

(x0, x1, . . . , xn) ∈ Rn+1 : x0 > 0
}
, gH = x−2

0

∑n

i=0
dx2

i . (1.6)

The class of conformal vector fields of Hn+1 is particularly rich. Thus, we shall restrict ourselves to
solitons with respect to −∂0, i.e., solutions to

H = −∂⊥0 = (∇x−1
0 )⊥. (1.7)

Such solitons correspond to “limit self-expanders” which we call horo-expanders. Horo-expanders
share many similarities with translators in Euclidean space. One may suspect that the analogy is a
trivial consequence of the fact that the model (1.6) is conformal to the Euclidean upper half-space.
However, a direct computation shows that a k-dimensional soliton in Hn+1 with respect to −∂0

is a soliton in the Euclidean half-space R+ × Rn with respect to (−x−1
0 − kx−2

0 )∂0, which is not
conformal. Hence, a duality between conformal solitons in Hn+1 and translators in Rn+1 is hardly
obtainable via simple transformations.
In view of Remark 1.3(1), we can regard a k-dimensional soliton with respect to −∂0 as minimal
submanifold of (Hn+1, gI(k)), where

gI(k) = e
2

kx0 gH . (1.8)
This allows us to relate the existence of a soliton with prescribed boundary contained in the boundary
at infinity ∂∞Hn+1 to the existence of minimal submanifolds in Riemannian manifolds. It turns out
that in codimension one, both the Plateau and the Dirichlet problem at infinity are solvable, the
latter under the additional condition that the boundary is mean convex. However, a distinction shall



4 L. MARI, J.D. ROCHA DE OLIVEIRA, A. SAVAS-HALILAJ, AND R. SODRÉ DE SENA

be made between boundary points of ∂∞Hn+1: in the upper half-space model (1.6) the boundary
at infinity can be represented as the union of

∂′∞Hn+1 = {x0 = 0} and p∞ = ∂∞Hn+1\∂′∞Hn+1,

which behave quite differently for the Ilmanen metric. Hereafter, the space ∂′∞Hn+1 will be given
the Euclidean metric and metric quantities (balls, hyperplanes, neighbourhoods, etc..) will be
considered with respect to it.
We can also represent the hyperbolic space via the Poincaré model

Hn+1 = {x ∈ Rn+1 : ‖x‖2 < 1}, gH = 4(1− ‖x‖2)−1
∑n+1

i=1
dx2

i .

In this model, ∂∞Hn+1 is the n-dimensional unit sphere Sn. Moreover, if W ⊂ Hn+1, then

∂∞W
.
= W ∩ Sn,

where W denotes closure of W in the Euclidean topology.
Regarding Plateau’s problem, we show its solvability for hypersurfaces. The higher codimensional
case remains as an open problem; see Section 4. Before stating our result, let us recall some standard
notations from geometric measure theory: given a closet subset W with locally finite perimeter in a
smooth manifold N , we denote by [W ] its associated rectifiable current. IfM is a rectifiable current
we denote by sptM its support and by ∂M its boundary; for more details we refer to [49].

Theorem A (Plateau’s problem). Let Σ ⊂ ∂′∞Hn+1 be the boundary of a relatively compact subset
A ⊂ ∂′∞Hn+1 with A = int(A). Then, there exists a closed set W of local finite perimeter in Hn+1

with ∂∞W = A such that M = ∂[W ] is a conformal soliton for −∂0 on the complement of a closed
set S of Hausdorff dimension dimH (S) ≤ n − 7, and that ∂∞ spt(M) = Σ. Furthermore, when
n < 7, then M is a properly embedded smooth hypersurface of Hn+1.

We next focus on hypersurfaces which are graphs of the form

Γ(u) =
{

(u(x);x) ∈ Hn+1 = R+ × Rn : x ∈ Ω ⊂ Rn
}
,

where u ∈ C∞(Ω). Given 0 ≤ φ ∈ C(∂Ω), it turns out that Γ(u) is a soliton with respect to −∂0

with boundary Γ(φ) if and only if u satisfies
div

(
Du√

1 + |Du|2

)
= − 1 + nu

u2
√

1 + |Du|2
on Ω,

u > 0 on Ω,

u = φ on ∂Ω,

(1.9)

where D,div, | · | are the gradient, divergence and norm in the Euclidean metric. In particular, for
φ ≡ 0, we obtain a complete graphical soliton whose boundary at infinity is ∂Ω. The right-hand
side of (1.9) becomes undefined as u = 0, which calls for some care. However, we will see that the
terms u and |Du| contribute in opposite directions to the size of u. We show the following result,
which parallels the seminal one by Jenkins & Serrin [36] for minimal graphs:

Theorem B (Dirichlet’s problem). Let Ω ⊂ ∂′∞Hn+1 be an open, connected subset with C3-smooth
boundary ∂Ω. Assume that Ω is contained between two parallel hyperplanes of ∂′∞Hn+1, and denote
by H∂Ω the Euclidean mean curvature of ∂Ω in the direction pointing towards Ω.

(1) If H∂Ω ≥ 0 on ∂Ω, then for each continuous bounded function φ : ∂Ω → [0,∞) there exists a
function u : Ω→ [0,∞) such that:
(a) u > 0 on Ω and the graph Γ(u) ⊂ Hn+1 is a conformal soliton with respect to −∂0.

(b) u ∈ C∞(Ω) ∩ C(Ω) ∩ L∞(Ω) and u ≡ φ on ∂Ω.
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(2) If Ω is bounded and H∂Ω(y) < 0 for some y ∈ ∂Ω, then there exists a continuous boundary value
function φ : ∂Ω→ (0,∞) such that no u : Ω→ [0,∞) satisfying the properties in (1) does exist.

Remark 1.4. Let us make some comments about the conclusions of Theorem B.

(1) If Ω is bounded, then u realizing (a), (b) is unique, by a direct application of the comparison
theorem. It would be interesting to investigate the uniqueness problem for Ω unbounded.

(2) Similar (non-degenerate) Dirichlet problems were considered for prescribed mean curvature
graphs in warped product manifolds; see for example [3, 9–11, 19, 21–23, 36, 47]. Among them,
the only applicable result to (1.9) is [11, Theorem 1.1], which guarantees the solvability of div

(
Du√

1 + |Du|2

)
=

f(u)√
1 + |Du|2

on a smooth Ω ⊂ Rn,

u = φ on ∂Ω,

(1.10)

for C2,α-smooth positive φ provided that f ∈ C1(R) and H∂Ω satisfy:

(n− 1)κ
.
= supR|f | <∞ and H∂Ω ≥ (n− 1)κ. (1.11)

However, application to (1.9) would force a lower bound on H∂Ω that diverges as min∂Ω φ→ 0.
(3) Serrin discussed in [47, Chapter IV, pages 477-478] the solvability and the non-solvability of the

Dirichlet problem for equations of the form

div

(
Du√

1 + |Du|2

)
=

Λ

(1 + |Du|2)θ
and div

(
Du√

1 + |Du|2

)
=

Cu

(1 + |Du|2)θ
, (1.12)

where Λ, C and θ are constants and C > 0. Note that, for Λ = 1 and θ = 1/2, the equation (1.12)
describes a translating graphical soliton of the MCF in the Euclidean space. Both equations
(1.12) appear in an old paper of Bernstein [7]. As a matter of fact, Bernstein studied the 2-
dimensional case and showed that the corresponding Dirichlet problems are solvable for arbitrary
analytic boundary data in an arbitrary strictly convex analytic domain only for special values
of θ. The problem that we treat in (1.9) does not fall in the class of equations defined in (1.12).

(4) Jenkins and Serrin [36] constructed data (∂Ω, φ) for which the Dirichlet problem for the minimal
surface equation in the Euclidean space is not solvable. In their work, ∂Ω has negative mean
curvature at a given point and the oscillation of φ can be made arbitrarily small. However, this
is not the case for the boundary data we provide in Theorem B(2), whose oscillation shall be
at least a fixed amount. From the proof of Theorem B(2), we may suspect the impossibility to
produce boundary data with arbitrarily small oscillation for which (1.9) is not solvable.

(5) As a direct application of the maximum principle we can show that there are no solutions to

div

(
Du√

1 + |Du|2

)
+

1 + nu

u2
√

1 + |Du|2
= 0 on the entire Rn.

Another goal of our paper is to construct and classify complete codimension one solitons with
symmetries. Despite their own interest, such solitons serve as important barriers and will be used
in the proofs of Theorems A and B. Up to rotation, all examples are generated by special curves
γ : I → R+ × R, γ(t) = (x0(t), x1(t)), in the x0x1-plane. The first family to be considered is that
of cylindrical solitons:

M =
{

(x0, x1, . . . , xn) ∈ Hn+1 : (x0, x1) ∈ γ(I)
}
. (1.13)

We shall prove that the only such examples are the grim-reaper cylinders, described by the following:

Theorem C (Grim-reaper cylinders). If M is a complete soliton for −∂0 of the type (1.13), then
it has the following properties:
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(1) ∂∞M is a pair of parallel hyperplanes π1 ∪ π2 in ∂′Hn+1.
(2) M is contained between the two totally geodesic hyperplanes Π1 and Π2 of Hn+1 with ∂′∞Π1 = π1

and ∂′∞Π2 = π2.
(3) M is symmetric with respect to the reflection sending Π1 to Π2, and invariant with respect to

translations fixing Π1 and Π2.
(4) M is (Euclidean) convex with respect to the direction −∂0.

We name M a grim-reaper cylinder. Denote by h = maxx0(M), and let G h be the grim-reaper
cylinder isometric to M which is symmetric with respect to the hyperplane {x1 = 0}. Then, the
family {G h}h∈R+ foliates Hn+1. In particular, given a pair of parallel hyperplanes π1, π2 ⊂ ∂′∞Hn+1,
the grim-reaper cylinder with ∂∞M = π1 ∪ π2 exists and is unique.

Another way to construct complete conformal solitons is by rotating γ around the x0-axis. From this
procedure we obtain the hyperbolic winglike and bowl solitons, similar to those existing in Euclidean
space; see for more details [13] and [43]. We here report a simplified, slightly informal statement of
our main existence and uniqueness result. For the precise one, including further properties of γ, we
refer the reader to Lemma 3.6 and Theorem 3.8.

Theorem D (Rotationally symmetric solitons). There are exactly two families of curves γ giving
rise to a complete, smooth rotationally symmetric conformal soliton with respect to −∂0. They are
depicted in Figure 1, and named γB and γW . We call a bowl soliton the one obtained by rotating
γB, and a winglike soliton that obtained by rotating γW . The following holds:

(1) γB is a strictly concave graph over a domain (0, hB) of the x0-axis, and meets the x1 and x0

axes orthogonally.
(2) γW is a bigraph over a domain (0, hW ) of the x0-axis, and does not touch the x0-axis. The upper

graph (the one from q1 to p1) is strictly concave, while the lower graph is the union of a strictly
convex branch with a unique minimum (from p1 to p2) and a strictly concave branch (from p2

to q2). Moreover, γW meets the x1-axis orthogonally at two distinct points (q1 6= q2).

x1

x0

hB

hW

q1q2

p1

p2
γWγB

Figure 1. Curve generating the bowl and winglike solitons.
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It turns out that bowl solitons foliate Hn+1, see Lemma 3.9. As a direct consequence, we deduce
the following uniqueness property which may be viewed as an analogue of [43, Theorem A].

Theorem E (Uniqueness of the bowl soliton). For any Euclidean ball BR ⊂ ∂′∞Hn+1, there exists
a bowl soliton M with ∂∞M = ∂BR, and it is the unique properly immersed soliton with respect to
−∂0 with boundary at infinity ∂BR.

Regarding the uniqueness of grim-reaper cylinders, the problem is more subtle. Quite differently
from the Euclidean case, hyperbolic grim-reaper cylinders foliate the hyperbolic space, which is
quite helpful. Nevertheless, getting uniqueness under the only assumption that ∂∞M is a pair of
parallel hyperplanes of ∂′∞Hn+1 seems difficult. Our last result is that M is a grim-reaper cylinder
provided that the height x0 is bounded and that M is graphical in a small region {x0 < τ}, see
Definition 1.5. A similar result was proved in [26,42] for MCF translators in Euclidean space under
the stronger assumption that they are C1-asymptotic outside a cylinder to a grim-reaper cylinder.
In our setting, we will use a calibration argument to get rid of the C1-bound.

Definition 1.5. A properly embedded hypersurface M ⊂ Hn+1 is said to satisfy the GR-property
(see Figure 2 ) if the following conditions are satisfied:

(1) ∂′∞M = π1 ∪ π2, where π1 and π2 are parallel hyperplanes of ∂′∞Hn+1.

(2) The x0-component of M is bounded.

(3) There exist τ > 0, a pair of (Euclidean) hyperplanes Hj ⊂ Hn+1 and a pair of functions
ϕj : Hτj = Hj ∩ {x0 < τ} → R, j ∈ {1, 2}, such that:

(a) ∂′∞Hj = πj.

(b) The wings Wj = {x+ϕj(x)νj : x ∈ Hτj } are contained in M , where νj is a fixed (Euclidean)
unit normal to Hj.

(c) M ∩ {x0 < τ} is the portion of W1 ∪W2 inside {x0 < τ}.

x1

x0

π2π1

Hτ
2Hτ

1 W1 W2

τ
M

Figure 2. GR-property.
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Observe that condition (a) in Definition 1.5 implies that

∀ y ∈ πj , lim
x→y

ϕj(x) = 0.

However, a priori the limit may not be uniform in y, an assumption which was required in [26,42].

Theorem F (Uniqueness of the hyperbolic grim-reaper cylinder). Let M ⊂ Hn+1 be a properly
embedded conformal soliton with respect to −∂0 satisfying the GR-property. Then M coincides with
a grim-reaper cylinder.

The structure of the paper is as follows. Section 2 we set up the notation and derive basic properties
for conformal solitons in the hyperbolic space. In Section 3, we examine symmetric horo-expanders
and prove Theorems C, D and E. Section 4 is devoted to the Plateau problem at infinity, while in
Section 5 we consider the Dirichlet problem at infinity and prove Theorem B. Finally, in Section 6,
we prove Theorem F.

2. Preliminaries

In this section we fix the notation and review some basic formulas.

2.1. Generalities about soliton solutions. A vector field X in an n-dimensional Riemannian
manifold (N, g) is called conformal if the Lie derivative of g in direction X satisfies

LX g = 2ψ g for some ψ ∈ C∞(N).

Taking traces, ψ = divgX/n. By relating the Lie derivative to the Levi-Civita connection ∇, a
conformal vector field is characterized by the identity

g(∇YX,Z) + g(∇ZX,Y ) =
2

n

(
divgX

)
g(Y, Z)

for Y,Z ∈ X(N). If the field X is conformal and divergence free, it is called Killing. If the vector
field X satisfies

∇YX =
1

n

(
divgX

)
Y,

namely, the dual form X[ is closed, then X is called closed conformal. It is a well-known fact that
a Riemannian manifold possessing a non-trivial closed conformal vector field is locally isometric
to a warped product with a 1-dimensional factor; see for instance [44, page 721]. The hyperbolic
space possesses various conformal vector fields X and the study of the corresponding solitons is
interesting. Let us see some explicit examples here:

Example 2.1. Denote with gS, gR, gH the Riemannian metrics of the n-dimensional unit sphere
Sn, the Euclidean space Rn and of the hyperbolic space Hn.

(1) Consider for the hyperbolic space the model Hn+1\{0} = R+ × Sn equipped with the metric
dr2 + sinh2(r) gS. Then the vector field X = sinh(r)∂r is conformal. We call solitons for cX
expanders if c > 0, and shrinkers if c < 0. Also, rotation vector fields in the Sn factor extend to
Killing fields and give rise to solitons that we call rotators.

(2) Consider for the hyperbolic space the model Hn+1 = R× Rn endowed with the warped metric
dr2 + e2r gR. Then, the vector field X = er∂r is conformal. The change of coordinates x0 = e−r

gives rise to an isometry with the upper half-space model sending X to the field −∂0. Solitons
with respect to cX are called horo-expanders if c > 0 and horo-shrinkers if c < 0.

(3) Consider for the hyperbolic space the model Hn+1 = R × Hn equipped with the Riemannian
metric dr2 + cosh2(r) gH. Then X = cosh(r)∂r is conformal. Given that cosh(r) is even, we
restrict to c > 0. A soliton with respect to cX shrinks where r < 0 and expands where r > 0.
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(4) Consider for the hyperbolic space the model Hn+1 = R×Hn with the metric cosh2(ρ)ds2 + gH,
with ρ is the distance in Hn to a fixed point. Then the vector field X = ∂s is Killing. In the
upper half-space model, it corresponds to the position vector field

X =
n∑
j=0

xj∂j .

(5) Consider for the hyperbolic space the model Hn+1 = R×Hn with the metric e2ρds2 +gH, with ρ
a Busemann function in Hn. The vector field X = ∂s is Killing. In the upper half-space model,
it corresponds to the vector field ∂j , for j ∈ {1, . . . , n}.

2.2. Conformal solitons and the Ilmanen metric. Suppose that M and N are connected
manifolds with dimensions k and n + 1, respectively, with k ≤ n. Let h1 and h2 be metrics on N
which are conformally related:

h2 = λ2h1 for some 0 < λ ∈ C∞(N).

Assume that f : M → N is an immersion and denote by gj = f∗hj the corresponding induced
metrics. Then, the second fundamental forms Aj of fj = f : (M, gj)→ (N, hj) are related by

A2(X,Y ) = A1(X,Y )− g1(X,Y )
(
∇1 log λ

)⊥
, (2.1)

for any X,Y ∈ X(M). Here, ∇1 stands for the Levi-Civita connection of h1 and {·}⊥ denotes the
orthogonal projection with respect to h1 on the normal bundle of f1. Taking traces, we see that the
corresponding mean curvature vectors H1 and H2 are related by

H2 = λ−2
{
H1 − k(∇1 log λ)⊥

}
. (2.2)

As immediate consequence of the above formulas we obtain the following:

Lemma 2.2. Let M ⊂ (Hn+1, gH) be a k-dimensional soliton of the MCF with respect to −∂0.
Then, the following hold:

(1) M is a minimal submanifold of the Ilmanen space (Hn+1, gI(k)) given in (1.8).

(2) M is a soliton of the Euclidean half-space R+ × Rn with respect to the field (−x−1
0 − kx−2

0 )∂0,
which is not conformal.

3. Symmetric conformal solitons

In this section we examine special conformal solitons and will prove Theorems C, D and E.

3.1. The convex hull property. Recall that a k-dimensional conformal soliton in Hn+1 with
respect to −∂0 can be regarded as a minimal submanifold when Hn+1 is equipped with the Ilmanen
metric

gI(k) = e
2

kx0 gH .

Hence, solitons are real analytic submanifolds. According to the strong maximum principle, two
different conformal solitons cannot “touch” each other at an interior or boundary point; see [25].

Lemma 3.1. Let S ⊂ (Hn+1, gH) be a (Euclidean) spherical cap centered at a point of ∂′∞Hn+1 and
2 ≤ k ≤ n a natural number. Then S ⊂ (Hn+1, gI(k)) is strictly convex with respect to the upward
pointing normal direction. Moreover, there is no k-dimensional soliton with respect to −∂0 touching
S from above.
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Proof. If ν is a unit normal vector field along S ⊂ (Hn+1, gH) then ν̃ = λ−1ν is a unit normal along
S ⊂ (Hn+1, gI(k)). Denoting with IIgH the scalar second fundamental form of S ⊂ (Hn+1, gH) in the
direction of ν, and with IIgI

that of S ⊂ (Hn+1, gI(k)) in the direction of ν̃, from (2.1) it follows that

IIgI
= e

1
kx0

{
IIgH − ν

(
1

kx0

)
gH

}
. (3.1)

Let us choose as ν the upward pointing unit normal along S. Since S is a totally geodesic hyper-
surface of (Hn+1, gH), from the last identity we obtain that

IIgI
=
e

1
kx0

k
gH(ν, ∂0) gH > 0.

Hence S is convex when the ambient space is equipped with the Ilmanen metric. The last claim of
the lemma follows by the strong maximum principle of Jorge & Tomi [37]. �

Now we show that, similarly to minimal submanifolds, solitons satisfy the convex hull property.

Lemma 3.2. Let M ⊂ Hn+1 be a k-dimensional, connected and properly immersed soliton with
respect to −∂0. Then, ∂′∞M 6= ∅ and M is contained in the cylinder R+× conv(∂′∞M), where conv
is the (Euclidean) convex hull in ∂′∞Hn+1.

Proof. Observe at first that ∂′∞M 6= ∅ since otherwise we can touch M from below by a spherical
cap S, something which contradicts Lemma 3.1; see Figure 3(a).

MM

(a) (b)

∂′
∞Hn+1

Sλ0

Sλ

π∂′
∞M

Π

S

Figure 3. Contact with spherical cap.

Assume now that conv(∂′∞M) 6≡ ∂′∞Hn+1, because otherwise we have nothing to prove. Fix a
hyperplane π ⊂ ∂′∞Hn+1 not intersecting ∂′∞M , and let Π ⊂ Hn+1 be the totally geodesic hyperplane
with ∂′∞Π = π. Denote with Uπ the open half of Hn+1 such that

∂Uπ = Π and ∂′∞Uπ ∩ ∂′∞M = ∅.
By the properness ofM , we can pick a sufficiently small spherical barrier S ⊂ Uπ centered at a point
of ∂′∞Uπ and lying outside of M . Due to Lemma 3.1, we can slide S towards Π without intersecting
M , until its boundary at infinity touches π at a point q. Denote by p the center of S and consider
the family of spherical barriers {Sλ} of radius λ > 0, passing through q and centered in the half-line
emanating from q in the direction of p. The family foliates U and, again by Lemma 3.1, M does
not intersect any spherical cap Sλ; see Figure 3(b). Hence, M ⊂ Hn+1\Uπ. The conclusion follows
by the arbitrariness of π. �
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3.2. Graphical solitons. Let us consider solitons of the form

Γ(u) =
{

(u(x);x) ∈ Hn+1 = R+ × Rn : x ∈ Ω ⊂ Rn
}
,

where u ∈ C∞(Ω).

Lemma 3.3. The graph Γ(u) ⊂ Hn+1 is a soliton with respect to −∂0, if ad only if it satisfies the
equation

div

(
Du√

1 + |Du|2

)
=

−nu− 1

u2
√

1 + |Du|2
, (SE)

where div is the Euclidean divergence, D denotes the Euclidean gradient and | · | the Euclidean norm.
In particular, Γ(u) has nowhere zero mean curvature.

Proof. The graph is the image of ψ : Ω→ Hn+1 given by

ψ(x) = (u(x);x),

for each point x ∈ Ω. As usual, denote by gH the metric of Hn+1 and by∇ its Levi-Civita connection.
The components of the induced metric g on the graph in the basis {∂j} are

gij =
uiuj + δij

u2
, (3.2)

where i, j ∈ {1, . . . , n}. Moreover, the components gij of the inverse of g are given by

gij = u2

(
δij − uiuj

1 + |Du|2
)
, (3.3)

where
ui = δijuj and Du = uj∂j .

The unit normal ν along the graph is

ν =
u ∂0 − uDu√

1 + |Du|2
=
u ∂0 − uuj∂j√

1 + |Du|2
. (3.4)

Making use of the Koszul formula and (3.4), the components of the second fundamental form are

bij = gH
(
∇ψi

ψj , ν
)

= gH(ψij , ν) + u−1〈ψi, ψj〉 gH(∂0, ν) =
uuij + δij + uiuj

u2
√

1 + |Du|2

for each i, j ∈ {1, . . . , n}, where 〈· , ·〉 stands for the Euclidean standard inner product. Using (3.2)
and raising one index by means of the graph metric, the shape operator satisfies

bkj = gkibij =
1√

1 + |Du|2

[
u

(
ukj −

ukuiuij
1 + |Du|2

)
+ δkj

]
. (3.5)

From (3.5), the unnormalized scalar mean curvature is

H = gijbij = udiv

(
Du√

1 + |Du|2

)
+

n√
1 + |Du|2

. (3.6)

One the other hand, Γ(u) is a soliton with respect to X = −∂0 if and only if

H = − gH(∂0, ν) =
−1

u
√

1 + |Du|2
. (3.7)

Combining (3.6) with (3.7) we obtain the desired result. �
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3.3. Sub and supersolutions. Let us describe here special sub and supersolutions to the quasi-
linear differential equation (SE) that we will use often in the rest of the paper.

Definition 3.4. Let Ω be a domain of the Euclidean space Rn. A C2-smooth function u : Ω→ (0,∞)
is called subsolution (resp. supersolution) to (SE) if it satisfies

div

(
Du√

1 + |Du|2

)
≥ −nu− 1

u2
√

1 + |Du|2
(
resp. ≤

)
.

In this case we say that the graph of f is a subsolution (resp. supersolution) to (SE).

Remark 3.5. Euclidean half-spheres in Hn+1 whose centers are at ∂′∞Hn+1 and Euclidean half-
hyperplanes whose boundaries are at ∂′∞Hn+1 are subsolutions to the equation (SE). If u is a
solution to (SE) and ε > 0, then u+ ε is a supersolution and u− ε is a subsolution to (SE).

3.4. Proof of Theorem C. We examine here complete solitons of the form Γ × Rn−1 ⊂ Hn+1,
where Γ is a curve in the x0x1-plane. In regions where Γ can be represented as the image of

γ(t) = (u(t), t)

for some function u, equation (SE) becomes:

u′′

1 + (u′)2
=
−nu− 1

u2
. (3.8)

Notice that u is strictly concave. Hence, up to possibly one point (the maximum of u, if any), Γ
can also be rewritten as the union of graphs of the type

γ(z) = (z, φ(z))

for some functions φ. In this case, (3.8) rewrites as

φzz
1 + φ2

z

=
nz + 1

z2
φz. (3.9)

By (3.9), if γ′ is parallel to ∂0 at some point (z0, φ0) then the unique solution is γ(z) = (z, φ0) and
the corresponding soliton is a vertical hyperplane. Let us treat now the case where γ′ is nowhere
parallel to ∂0. In this case, γ can be globally written as a graph of the type (u(t), t). In particular,
the derivative φz does not change sign on each maximal interval where γ can be written in the form
(z, φ(z)). Since φc

.
= φ+ c and φ∗ = −φ still solve (3.9), without loss of generality we can consider

a maximal interval where
γ(z) = (z, φ(z))

and φz < 0. Equation (3.9) guarantees that φ is concave therein, so the interval of definition of z is
of the form (0, h). Rewrite (3.9) as

d

dz

∫ ∞
−φz

dt

t(1 + t2)
= −n

z
− 1

z2
,

and note that the integral can be explicitly computed. Integrating on [z, b] leads to

log
√

1 + φz(b)−2 − log
√

1 + φz(z)−2 = −n log

(
b

z

)
+

1

b
− 1

z
.

If h =∞, letting b→∞ and recalling that φz is negative and decreasing we easily get a contradic-
tion. Hence, h < ∞, and by concavity and maximality of h we shall have φz(h−) = −∞. Letting
b→ h we get

log
√

1 + φz(z)−2 = n log

(
h

z

)
+

1

z
− 1

h
.
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In particular, φz(0+) = 0, i.e., γ meets the x1-axis orthogonally. Extracting φz and integrating once
more on [z, b], we get

φ(z)− φ(b) =

∫ b

z

{(
h

t

)2n

e
2
t
− 2

h − 1

}− 1
2

dt.

We deduce that φ(h) is finite, and up to translation we can assume that φ(h) = 0. Writing γ as
a graph of type (u(t), t), noting that u∗(t) .

= u(−t) still solves (3.8) and u′(0) = 0, we get that u
is even and u(t) = φ−1(t) for t > 0 has the behaviour described in Theorem C. Letting b → h we
obtain

φ(z) =

∫ h

z

{(
h

t

)2n

e
2
t
− 2

h − 1

}− 1
2

dt = h

∫ 1

z/h

{
s−2ne

2−2s
hs − 1

}− 1
2

ds. (3.10)

Hence, for h varying in R+, the functions φ in (3.10) provide a foliation of {x1 > 0}. This concludes
the proof of Theorem C. �

3.5. Rotationally symmetric solitons. We deal now with solitons for −∂0 which are rotationally
symmetric with respect to the x0-axis. Consider a curve γ(t) = (x0(t), x1(t)) in the x0x1-plane,
defined for t ∈ I ⊂ R and contained in the set {(x0, x1) ∈ R2 : x0 > 0, x1 > 0}, and let us rotate it
around the x0 axis. Locally, γ can be written either as a graph of a function u over the x1-axis or
as a graph of a function φ over the x0-axis. Let us describe the corresponding soliton equations for
u and φ.
Case 1: The curve γ is written as a graph of the form ρ 7→ (u(ρ), ρ) defined on an interval (r1, r2).
In this case, the obtained hypersurface is a graph over the annulus

A =
{

(x1, . . . , xn) ∈ ∂′∞Hn+1 : r1 < |x| = (x2
1 + · · ·+ x2

n)1/2 < r2

}
,

and it can be parametrized by the embedding Ru : A→ R+ × Rn given by

Ru(x1, . . . , xn) = (u(|x|);x1, . . . , xn).

Then Ru is a conformal soliton with respect to −∂0 if and only if u solves
u′′

1 + (u′)2
+
n− 1

ρ
u′ = −1 + nu

u2
, ρ = |x| ∈ (r1, r2). (3.11)

Case 2: The curve γ is written as a graph of the form z → (z, φ(z)) defined on an interval (z1, z2).
In this case the hypersurface can be parametrized as a graph over the cylinder R+×Sn−1 ⊂ R+×Rm.
To state the equation for φ, we first locally identify Hn+1 = R+ ×Rn with R+ ×R+ × Sn−1 via the
local diffeomorphism

(x0;x1, . . . , xn)→ (z, ρ, ω) =
(
x0;
√
x2

1 + · · ·+ x2
n;

(x1, . . . , xn)√
x2

1 + · · ·+ x2
n

)
.

The hyperbolic metric in the new coordinate system has the form

gH = z−2
(
dz2 + dρ2 + ρ2 gS

)
,

where gS is the standard metric of Sn−1. We can parametrize the hypersurface via the map Cφ :
(z1, z2)×Sn−1 → R+×R+×Sn−1 given by Cφ(z, ω) = (z, φ(z), ω). Then Cφ is a soliton if and only
if

zφ′′

1 + (φ′)2
− 1 + nz

z
φ′ − (n− 1)z

φ
= 0, z ∈ (z1, z2), (3.12)

where we use φ′ instead of φz for notational convenience.
In the next lemma we examine the qualitative behaviour of solutions to (3.12).

Lemma 3.6. Let z0 ∈ (z1, z2) with φ(z0) > 0. The following facts hold:
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(1) (Concave branch) If φ′(z0) < 0 and φ′′(z0) ≤ 0, then φ can be extended to the interval [0, z0].
Moreover, φ′ < 0, φ′′ < 0 on (0, z0) and

φ(z) = φ(0)− n− 1

3φ(0)
z3 + o(z3) as z → 0.

(2) (Convex branch) If either φ′(z0) ≥ 0 or φ′′(z0) > 0, then there exists an interval [λ0, h) ⊂
(0,∞) containing z0 where φ can be defined, is positive and satisfies

(i) : φ′′ > 0 on (λ0, h), φ′(λ0) < 0 and φ′′(λ0) = 0.

(ii) : lim
z→h

φ(z) ∈ R+ and lim
z→h

φ′(z) =∞.

In particular, φ has a unique minimum on (λ0, h).

Proof. (1) Let (z1, z0] be the maximal interval on the left of z0 where φ is defined. By (3.12), if
φ′(z) = 0 for some z ∈ (z1, z0) then φ′′(z) > 0. Hence, from φ′(z0) < 0 we deduce that φ′ < 0 on
(z1, z0]. We claim that φ′′ ≤ 0 on (z1, z0]. This fact is true since otherwise, from φ′′(z0) ≤ 0 we
deduce that there exist an interval (a, b] ⊂ (z1, z0] such that φ′′ > 0 on (a, b) and φ′′(b) = 0. Then,
from (3.12) we have

−φ′(a)

(
n+

1

a

)
≤ (n− 1)

a

φ(a)
and − φ′(b)

(
n+

1

b

)
= (n− 1)

b

φ(b)
.

Now from 0 < φ(b) < φ(a), we obtain that 0 > φ′(a) > φ′(b), contradicting that φ′′ > 0 on (a, b). To
show the strict inequality φ′′ < 0 on (z1, z0], observe that any point z ∈ (z1, z0] for which φ′′(z) = 0
must be a local maximum for ϕ′′, hence a point for which ϕ′′′(z) = 0. Differentiating (3.12), and
evaluating at z, we have

0 =
zφ′′′(z) + φ′′(z)

1 + (φ′(z))2
− 2zφ′(z)(φ′′(z))2

(1 + (φ′(z))2)2
− 1 + nz

z
φ′′(z) +

φ′(z)
z2
− (n− 1)

φ(z)
+

(n− 1)zφ′(z)
φ2(z)

=
φ′(z)
z2
− (n− 1)

φ(z)
+

(n− 1)zφ′(z)
φ2(z)

< 0,

which gives a contradiction. From φ′ < 0 and φ′′ < 0 we deduce that the limit limz→z1 φ
′(z) exists

and is finite. If z1 > 0, then the function φ can be extended beyond z1, which contradicts the
maximality of the interval. Hence, z1 = 0 and so φ has a C1-extension up to z = 0. By using
spherical barriers and the strong maximum principle, we deduce that limz→0 φ

′ = 0. To find the
asymptotic behaviour of φ, consider the function

F (z) =
z−nφ′(z)√
1 + (φ′(z))2

, (3.13)

defined in a neighbourhood (0, a]. Differentiating and using (3.12), we deduce that

F ′ − F

z2
=

n− 1

znφ
√

1 + (φ′)2
,

that is, (
Fe

∫ a
z r
−2dr

)′
=

(n− 1)e
∫ a
z r
−2dr

znφ
√

1 + (φ′)2
.

Integrating on [z, a], we get

F (a)− F (z)e−
1
a

+ 1
z =

∫ a

z

(n− 1)e−
1
a

+ 1
r

rnφ(r)
√

1 + φ′(r)2
dr, (3.14)
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or, equivalently,

F (z) = F (a)e
1
a
− 1

z − e− 1
z

∫ a

z

(n− 1)e
1
r

rnφ(r)
√

1 + φ′(r)2
dr.

Computing the asymptotic behaviour of the right hand side as z → 0 and using the facts

lim
z→0

φ(z) = φ(0) > 0, lim
z→0

φ′(z) = 0 and F (z) ∼ z−nφ′(z)

we infer
φ′(z) = −n− 1

φ(0)
z2 + o(z2), as z → 0.

By integration we obtain the desired asymptotic behaviour of φ close to z = 0.
(2) Notice that if φ′(z0) ≥ 0 then (3.12) implies φ′′(z0) > 0. Let (λ0, h) be the maximal interval
containing z0 where φ′′ > 0. By convexity, the limits of φ and φ′ as z tends to h exist and

lim
z→h

φ(z) = φh ∈ [0,∞] and lim
z→h

φ′(z) = φ′h ∈ (−∞,∞]. (3.15)

Claim 1: It is not possible that h, φ′h are finite and φh > 0.
Proof of the claim. Indeed, if this is possible then φ can be extended beyond h and therefore, by
the maximality of h, φ′′(h) = 0. Equation (3.12) then gives φ′(h) < 0 and by part (1), the function
φ would be a concave branch before h, which is a contradiction. ~

Observe that φ′′ > 0 implies that φ′ does not change sign in some interval (λ, h).
Claim 2: φ attains a minimum on (λ0, h) and the minimum is unique.
Proof of the claim. Uniqueness is immediate from φ′′ > 0. Because of the convexity, for the existence
we only have to exclude the possibility that |φ′| > 0 on (λ0, h).

(a) First, we rule out the possibility that φ′ < 0 on (λ0, h). Suppose to the contrary that this case
occurs. If h = ∞, then the convexity and the positivity of φ imply that limz→∞ φ′(z) = 0.
From (3.12) we deduce that the existence of a positive constant C such that φ′′(z) > C for large
values of z. Integrating, φ′(z) → ∞, a contradiction. Assume now that h < ∞ and the limit
φh in (3.15) vanishes. By convexity, fixing λ ∈ (λ0, h) there exists a constant C > 0 such that
φ(z) ≤ C(h− z), on [λ, h). From (3.12) and the fact that φ′ is bounded on [λ, h), it follows that
there exist positive constants C1 and C2 such that

φ′′ ≥ C1

h− z − C2 on [λ, h).

Integrating on [λ, z] we get

φ′(z)− φ′(λ) ≥ −C1 log

(
h− z
h− λ

)
− C2(z − λ)→∞ as z → h,

contradicting φ′(z) < 0. Consequently, h is finite and φh ∈ R+. From (3.15) and φ′ < 0 we
deduce that φ′h is finite as well. By Claim 1, this leads to a contradiction.

(b) We also rule out the possibility that φ′ > 0 on (λ0, h). Arguing again by contradiction, let
us suppose that this happens. We may represent the graph of φ on (λ0, h) as the graph of
a function u over the x1-axis defined on an interval (r1, r2) ⊂ (0,∞), where r1 = φ(λ+

0 ) and
r2 = φ(h−). Consider Φ : (r1, r2)→ R given by

Φ(ρ) =
u′(ρ)ρn−1√
1 + (u′(ρ))2

. (3.16)

From (3.11) we deduce that

Φ′(ρ) = − (1 + nu(ρ))ρn−1

u2(ρ)
√

1 + (u′(ρ))2
< 0 for r ∈ (r1, r2).
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Hence Φ is strictly decreasing. Since u is increasing, Φ is positive on (r1, r2). If r1 = 0, then
letting ρ → 0, we get that Φ(0+) = 0 which contradicts the aforementioned properties of Φ.
Consequently r1 > 0. Moreover, λ0 must be positive. Indeed, otherwise φ is defined, convex and
increasing on (0, h). Consider the functional F given by (3.13) on the interval (0, a] ⊂ (0, h).
From the properties of φ, it follows that φ′ is bounded on (0, a]. Hence,

lim
z→0

∫ a

z

(n− 1)e−
1
a

+ 1
r

rnφ(r)
√

1 + (φ′(r))2
dr =∞.

From (3.14) we now deduce that

lim
z→0

F (z)e−
1
a

+ 1
z = −∞.

Consequently F < 0 in a neighbourhood of z = 0. Since F and φ′ have the same sign, this leads
to a contradiction. Thus λ0 must be positive. Because φ(λ0) > 0 and φ′(λ0) ≥ 0 we can extend
the solution below λ0. The minimality of λ0 implies that φ′′(λ0) = 0 and from (3.12) we obtain
that φ′(λ0) < 0, contradiction. ~

Claim 3: λ0 > 0 and (i) holds.
Proof of the claim. Suppose that this is not true. Recalling that φ′′ > 0 on (λ0, h), one of the
following holds:

(a) λ0 = 0;
(b) λ0 > 0 and limz→λ0 φ(z) =∞;
(c) λ0 > 0 and limz→λ0 φ(z) <∞ and limz→λ0 φ

′(z) = −∞.

Cases (a) and (b) are excluded by considering the soliton M obtained by rotating the graph of φ
and sliding-enlarging a small spherical barrier below M up to a touching point. As for (c), writing
the graph in terms of the parametrization ρ→ (u(ρ), ρ), we get that u can be extended near φ(λ0)
with zero derivative and nonnegative second derivative. This contradicts (3.11) and concludes the
proof of the claim. ~

Claim 4: h is finite and (ii) holds.
Proof of the claim. By Claim 2, φ′ and φ′′ are positive in an interval (λ, h). Then we represent the
graph of φ therein as a graph of the form ρ 7→ (u(ρ), ρ) satisfying u′ > 0 and u′′ < 0 for ρ ∈ (r1, r2),
where r2 = φ(h−). First we show that r2 <∞. Suppose that this is not the case and denote by u∞
the limit of u as ρ tends to ∞. If u∞ is finite, then u′ → 0 as ρ → ∞ and there exists a sequence
{ρj}j∈N tending to infinity such that u′′(ρj) → 0. Evaluating (3.11) at ρj and passing to the limit
we easily get a contradiction. If u∞ =∞, consider Φ given in (3.16) for ρ ∈ (r1,∞). Fixing ρ0 > 1,
from the monotonicity of Φ there exists a constant C > 0 such that

u′(ρ)√
1 + (u′(ρ))2

≤ Cρ1−n for all ρ ≥ ρ0,

from where we deduce that

u′(ρ) ≤ Cρ1−n√
1− C2ρ2−2n

.

If n ≥ 3, then by integration we get that u∞ <∞, contradiction. If n = 2, integration gives

u′(ρ) ≤ C1ρ
−1 and u(ρ) ≤ C1 log ρ for some constant C1 > 0.

Inserting into (3.11), we conclude that there exists a constant C2 > 0 such that

u′′ ≤ − C2

log ρ
for large enough ρ.
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By integrating we see that u′(ρ) → −∞ as ρ → ∞, which gives a contradiction. Hence r2 < ∞,
which implies that h is finite by the concavity of u. Moreover, u′ → ` ≥ 0 as ρ→ r2, whence u can
be extended beyond r2. From (3.11) we get u′′(r2) < 0. If ` > 0, then rephrasing the curve in terms
of φ, it follows that φ can be extended beyond h to a convex function, contradicting the maximality
of h. Thus, ` = 0 and (ii) follows. ~

This completes the proof of the lemma. �

Lemma 3.7. Let u1 and u2 be solutions to (3.11) on an interval (r1, r2). Then, either u1 ≡ u2 or
u1 − u2 does not have a non-negative local maximum on (r1, r2).

Proof. Assume to the contrary that u1 − u2 attains a local maximum c0 ≥ 0 at a point r0. Then,
u1 ≤ u2 + c0 near r0 with equality attained at the point r0. From c0 ≥ 0 it follows that u2 + c0 is a
supersolution to (3.11) and this contradicts the strong maximum principle. �

Now we are ready to prove the main theorem characterizing all rotationally symmetric solitons.

Theorem 3.8. There are exactly two families of complete solitons with respect to −∂0 which are
rotationally symmetric around the x0-axis. They are properly embedded and, denoting with

γ ⊂ {(x0, x1) ∈ R2 : x0 > 0, x1 ≥ 0}
the rotated curve, one of the following cases occurs:

(1) (Winglike catenoids) Suppose that (x0 ◦ γ)′(t0) = 0 at some interior point t0 and let γ(t0) =
(h,R), R > 0. Then the curve γ can be written as the bi-graph over the x0 axis of φ1, φ2 :
(0, h]→ (0,∞) satisfying the following properties:
(a) It holds φ1 < φ2 on (0, h) and φ1(h) = φ2(h) = R. Furthermore, φ1(0+) < φ2(0+), namely,

γ cannot have the same end-points;
(b) the graph of φ2 is a concave branch on (0, h);

(c) there exists λ0 ∈ (0, h) such that φ1 is the union of a concave branch on (0, λ0) and a
convex branch on (λ0, h);

(2) (Bowl solitons) If x0 ◦ γ does not have interior stationary points, then γ is the graph of
φ : (0, h]→ [0,∞) satisfying the following properties:
(a) The graph of φ is a concave branch on (0, h);
(b) it holds φ(h) = 0, φ′(h−) =∞.

Proof. (1) Writing γ near (h,R) as a graph of the form ρ → (u(ρ), ρ), the equation (3.11) and
u′(R) = 0 gives u′′ < 0 near R. In particular, u is decreasing after R and increasing before. Hence,
by Lemma 3.6, for ρ > R the graph of u extends to a concave branch of the form z → (z, φ2(z)) for
φ2 : (0, h)→ R+, while for ρ < R it extends to a convex branch of a function φ1 : (λ0, h)→ R+. At
the point (λ0, φ1(λ0)) we can apply Lemma 3.6 again to deduce that φ1 extends to a concave branch
on (0, λ0). Set c = minφ1. It remains to prove that φ1 < φ2 on (0, h) and φ1(0+) < φ2(0+). Arguing
by contradiction, if any of the properties fails then, according to what we already proved, there exists
R1 ∈ (c, φ2(0+)] such that the curve γ can be written as a bigraph of functions ui : (c,R1) → R+

over the x1-axis satisfying u1 > u2 on (c,R1), u1−u2 → 0 as ρ→ c and as ρ→ R1. This contradicts
Lemma 3.7.
(2) If x0 ◦ γ has no stationary points, then γ can be globally written as a graph of the form
z → (z, φ(z)). By Lemma 3.6, the graph of φ is the concave branch defined in a maximal domain
(0, h). Representing γ as a graph of the form ρ → (u(ρ), ρ), concavity implies that u′(0+) exists
and is non-positive. If this value is negative, then by inspecting (3.11) for small enough ρ we arrive
at a contradiction. Hence, u′(0+) = 0. It remains to prove that a curve of type (2) actually exists.
This is addressed in the next lemma. �
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Lemma 3.9. Fix R ≥ 0. For h > 0, the solution uh to the following problem exists and is unique:
u′′

1 + (u′)2
+
n− 1

ρ
u′ = −1 + nu

u2
for ρ > R,

u(R+) = h,

u′(R+) = 0.

(3.17)

Moreover, uh is concave and strictly decreasing. Let [R, r2(h)) be the maximal interval where uh is
defined. Then, for h ∈ R+ the graphs of {uh} foliate the region {ρ > R}, and r2 : (0,∞)→ (R,∞)
is a strictly increasing bijection.

Proof. Uniqueness for uh is a consequence of Lemma 3.7 and the strong maximum principle (or the
Hopf Lemma, if R > 0) for the solitons Mh obtained by rotating the graphs {x0 = uh(|x|)} around
the x0-axis. Note that, if R = 0, Mh is C1 near the origin and gI(n)-minimal, hence it is smooth
therein. Existence for (3.17) is standard if R > 0. By adapting the proof of Lemma 3.6, one easily
sees that uh is strictly decreasing for R > 0 and concave for ρ > R. To prove existence for R = 0
one may proceed by adapting the techniques in [8, Chapter 5, Theorem 5.10]. However, we give
a geometric and simpler proof which exploits the results we showed so far. Consider a decreasing
sequence εi ↓ 0, and for each i let ui solve

u′′i
1 + (u′i)

2
+
n− 1

ρ
u′i = −1 + nui

u2
i

,

ui(εi) = h,

u′i(εi) = 0,

on its maximal interval [εi, Ri). Since

u′′i (εi) = −(1 + nh)h−2 < 0,

from Lemma 3.6 we get that the graph of ui is a concave branch in (εi, Ri) and in particular Ri is
finite. We claim that Ri is bounded from below away from zero. Suppose to the contrary that, along
a subsequence, Ri → 0. According to Lemma 3.6 the graph of ui is part of a winglike catenoind
Mi of height h. Take a grim-reaper cylinder Gs of height s > h and passing through (s, 0, . . . , 0).
Then, for fixed Ri small enough, Mi lies below Gs. Reducing s up to a first touching point with
Mi we reach a contradiction. Let now 0 < R∗ = inf Ri. By (3.11) and since each ui is decreasing,
the sequence {ui} has uniformly bounded C2-norm on any fixed compact set of (0, R∗). Therefore,
up to a subsequence, ui → u in C2

loc((0, R
∗)), where u solves (3.11) on (0, R∗). Since each ui is

decreasing and concave, u is concave, non-increasing and u(0+) = h. As a matter of fact, u′ < 0 by
(3.11) and so u is a concave branch. In particular, by the first part of the proof of Theorem 3.8(2),
u′(0+) = 0.
We next address the properties of uh for varying h.

(i) First we show that r2 is strictly increasing and that {uh} is increasing in h. Suppose to the
contrary that for h1 > h2 we have r2(h1) ≤ r2(h2). Then, c .= max(u1 − u2) is positive and
attained at some r ∈ [R, r2(h1)). Consider the functions vj : Br2(h1)\BR → R obtained
by rotating uhj along the x0-axis, and notice that u1 is a soliton for −∂0 while v2 + c is a
supersolution for (1.9), equivalently, it is mean convex for gI(n) in the downward direction.
The interior strong maximum principle (if r > R or r = R = 0) or the boundary maximum
principle (if r = R > 0) in [25] imply v1 ≡ v2 + c wherever both are defined, contradiction.
The very same reasoning also proves that {uh} is an increasing family in h.

(ii) Fix h0 > 0 and suppose to the contrary that r∗ = inf{r2(h) : h > h0} > r2(h0) = r0. Then
a spherical barrier S with radius (r∗ − r0)/2 centered at the point (0, (r∗ + r0)/2, 0, . . . , 0)
fits between the sequence of solitons {Mh} that are generated by the sequence {uh} for
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h > h0 and uh0 . Consider now the sequence {uh = uh|[R,r0)} for h > h0. Observe that {uh}
uniformly converges to uh0 as h tends to h0. Hence, for h1 sufficiently close to h0 and ρ1

sufficiently close to r0, we have that

uh1(ρ1) <
r∗ − r0

2
.

Hence Mh1 intersects S, contradiction. This proves that r2 is continuous.

(iii) We show that r2(h) → ∞ as h → ∞. By contradiction, if r2(h) ≤ ` for some ` ∈ R+

and all h > 0, consider a grim-reaper cylinder G of width 4` and symmetric with respect
to {x1 = 0}, and fix h < supG x0. Let M be the hypersurface obtained by rotating uh
with respect to the x0-axis. Then, by construction and since u′h(R+) = 0, we can find a
grim-reaper cylinder G ′ in the foliation determined by G that touches M from above at
some interior point p, contradiction.

(iv) To show that the graphs of uh foliate {ρ > R}, let ρ0 > R and by (iii), let h0 satisfy
r2(h0) = ρ0. It is enough to prove that the map η : h ∈ (h0,∞) 7→ uh(ρ0) ∈ (0,∞) is a
continuous bijection. First, by (i) η is injective and strictly monotone. Next, if hj → h > h0

then {uhj} has uniformly bounded C0 (hence, C2) norm on any fixed compact of (0, ρ0].
Up to a subsequence and by the uniqueness of solutions to (3.17), uhj → uh in C2

loc((0, ρ0]),
thus η is continuous. Whence η((h0,∞)) is an interval. By concavity and (iii), η(h) → ∞
as h → ∞. On the other hand, if δ = inf η((h0,∞)) > 0, then for hj ↓ h0 we would have
uhj (ρ0) > δ for each j. Let ρ1 < ρ0 be such that uh0(ρ1) < δ/2. From uhj (ρ1) → uh0(ρ1),
for j large we would have uhj (ρ1) < uhj (ρ0), contradiction.

This completes the proof of the lemma. �

As an immediate consequence of Theorem 3.8 and Lemma 3.9, we are ready for the:

3.6. Proof of Theorem E. Hereafter, all spheres and balls we use are meant to be centered at
the center of BR. By Theorem 3.8 there exists a unique graphical rotationally symmetric bowl
soliton BR having as boundary at infinity ∂BR. Suppose now that M is a properly immersed
soliton with respect to −∂0 such that ∂′∞M = ∂BR. We take two bowl solitons Br1 and Br2 , with
∂′∞Brj = ∂Brj ⊂ ∂′∞Hn+1 and lying above and belowM , respectively. Shrinking Br2 and enlarging
Br1 , by the maximum principle we deduce that the soliton M must coincide with BR.

4. The Plateau problem at infinity

In this section we will show the existence of solitons M ⊂ Hn+1 with respect to −∂0 that have
prescribed asymptotic boundary values on ∂∞Hn+1.

4.1. Plateau’s problem at infinity. Consider an embedded (k − 1)-dimensional (topological)
submanifold Σ ⊂ ∂∞Hn+1, where 2 ≤ k ≤ n. Our aim is to find a k-dimensional conformal soliton
M with respect to the direction−∂0 whose boundary at infinity satisfies ∂∞M = Σ. Viewing solitons
as minimal submanifolds with respect to the Ilmanen metric, our problem can be rephrased as the
classical Plateau’s problem at infinity for area minimizing submanifolds. Thanks to various works,
the solvability theory for Plateau’s problem is well understood on Cartan-Hadamard manifolds,
that is, on complete, simply connected manifolds N with non-positive sectional curvature; see for
example [2–4,9, 10, 12,53].
It is known that every Cartan-Hadamard manifold N can be compactified by adding a sphere at
infinity ∂∞N ; see for details [24]. Given a compact (k − 1)-dimensional submanifold Σ ⊂ ∂∞N ,
Plateau’s problem at infinity asks whether exists a k-dimensional area minimizing submanifold
M ⊂ N such that ∂∞M = Σ. It is well-known that Plateau’s problem is solvable if ∂∞N satisfies
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certain convexity conditions. Let us recall here a convenient one proposed by Ripoll & Telichevesky
in [46].

Definition 4.1 (SC condition). A Cartan-Hadamard manifold N satisfies the strict convexity con-
dition (SC condition for short ) at a point x ∈ ∂∞N if, for each relatively open subset W ⊂ ∂∞N
containing x, there exists a C2-open subset Ω ⊂ N such that x ∈ int(∂∞Ω) ⊂ W and N\Ω has
convex boundary in the inward pointing direction. We say that N satisfies the SC condition if this
holds at every x ∈ ∂∞N .

For a reason to be explained below, Theorem A is restricted to hypersurfaces. In this case, building
on a previous result of Lang [39], Castéras, Holopainen & Ripoll [12, Theorem 1.6] obtained the
following.

Theorem 4.2. Let Nn+1, n ≥ 2, be a Cartan-Hadamard manifold satisfying the SC condition and
let Σ ∈ ∂∞N satisfy Σ = ∂A for some open subset A ⊂ ∂∞N with A = int(A). Then, there exists
a closed set W ⊂ N of locally finite perimeter in N such that M .

= ∂[W ] is a locally rectifiable,
minimizing n-current in N , ∂∞W = A and ∂∞sptM = Σ.

Remark 4.3. An n-dimensional area minimizing n-rectifiable current M in a smooth complete
manifold Nn+1 is a smooth, embedded manifold on the complement of a singular set of Hausdorff
dimension at most n − 7. In particular, if n < 7 then the singular set is empty, while if n = 7
it consists of isolated points. In higher codimensions, the singular set has Hausdorff dimension at
most n− 2; for more details see [20, Section 3, Theorems 3.3, 3.4 and 3.5].

4.2. Geometry of the Ilmanen metric. Let us examine here the geometry of the Ilmanen metric
in more detail. As a matter of fact, we will compute its curvatures and geodesics.

Lemma 4.4. The Riemannian manifold N = (Hn+1, gI(n)) is Cartan-Hadamard, and its sectional
curvatures satisfy:

(1) secgI
(∂i ∧ ∂0) = −e−

2
nx0

2+n
nx0

,

(2) secgI
(∂i ∧ ∂j) = −e−

2
nx0

1+nx0
n ,

(3) secgI
((sin θ ∂0 + cos θ ∂i) ∧ ∂j) = sin2 θ secgI

(∂0 ∧ ∂j) + cos2 θ secgI
(∂i ∧ ∂j),

for any i, j ∈ {1, . . . , n} and θ ∈ (0, 2π).

Proof. Completeness immediately follows from gI(n) > gH, and the fact that (Hn+1, gH) is complete.
Direct computations gives the sectional curvatures in (1), (2) and (3). Eventually, let π ⊂ TpHn+1

be a fixed 2-plane. If π ⊂ ∂⊥0 , then up to a rotation, π is generated by ∂i ∧ ∂j and (2) gives
secgI

(π) ≤ 0. Otherwise, let e1 be a unit vector generating π ∩ ∂⊥0 , which up to rotation we can
assume to be ∂1. Complete e1 to an orthonormal basis {e1, e2} of π. Again up to rotation, we have
that e2 = sin θ∂0 + cos θ∂2, for some θ ∈ (0, 2π). Item (3) gives now secgI

(π) ≤ 0. �

Let γ : (−ε, ε) → Hn+1 be a geodesic with respect to the Ilmanen metric gI(n). Observe that
isometries of the hyperbolic space which preserves the direction −∂0 are also isometries of the
Ilmanen metric. Because of this fact, it suffices to examine only geodesics in the x0x1-plane. Let us
suppose that the geodesic has the form γ = (x0, x1). By straightforward computations we see that
γ is a geodesic if the functions x0 and x1 satisfy

x′′0 −
1 + nx0

nx2
0

(
(x′0)2 − (x′1)2

)
= 0 and x′′1 − 2

1 + nx0

nx2
0

x′0x
′
1 = 0.

Following the same methods as in Section 3, we can show the following:
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Lemma 4.5. Let γ : R → (Hn+1, gI(n)) be a geodesic lying in the x0x1-plane. Then, either γ is a
vertical line or:

(1) there exist tn ∈ R such that maxx0 = x0(tn), and γ is symmetric with respect to the line x1 = tn
in the x0x1-plane;

(2) γ is concave, when regarded as a curve lying the Euclidean space;
(3) the two ends of γ approach ∂′∞Hn+1 orthogonally.

4.3. Proof of Theorem A. According to Lemma 4.4, the Ilmanen space N = (Hn+1, gI(n)) is
a Cartan-Hadamard manifold. Regarding the SC condition, if x ∈ ∂′∞Hn+1 one can consider a
spherical barrier S, which by Lemma 3.1 is convex with respect to the upward pointing normal
direction. The SC condition therefore holds at any point x ∈ ∂′∞Hn+1 by choosing as Ω the half-
ball below S. However, at the point p∞, the SC condition may fail and for this reason we have to
slightly complement the strategy in [12,39], which we now recall. Fix an origin o ∈ N and consider
the cone Cone(o,A) generated by geodesics issuing from o to points in A. Moreover, denote by
Br(o) the geodesic ball in N of radius r centered at o. For each i ∈ N, consider the set

Ti = ∂Bi(o) ∩ Cone(o,A)

with orientation pointing outside of Bi(o) and denote by [Ti] its associated n-rectifiable current.
Note that the boundary ∂[Ti] is supported in Cone(o,Σ). Meanwhile, according to Lemma 4.5, the
geodesics in N either are vertical lines or behave like grim-reaper type curves. Since A is relatively
compact in ∂′∞Hn+1, we can therefore take a large enough bowl soliton B such that Cone(o,A) (in
particular, T i) lies in the open subgraph of B, which we call U . According to a result of Lang [39],
for each i ∈ N, there exists a set Wi ⊂ Bi(o) of finite perimeter such that Mi

.
= ∂[Wi]− [Ti], is area

minimizing in Bi(o). Notice that ∂Mi = −∂[Ti] is supported in U . Moreover, since Bi(o) is strictly
convex, by the strong maximum principle of White [55] we deduce that

sptMi ∩ ∂Bi(o) = spt ∂Mi, i ∈ N.

B

∂′
∞Hn+1

o

Ti

A

Bi(o)

Mi

Cone(o, A)

Figure 4. The cone Cone(o,A).

We claim now that sptMi ⊂ U . Suppose to the contrary that this is not true and consider the
foliation of Hn+1 determined by B. Then we could find a large bowl soliton B′ lying above B
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and touching sptMi from above at some point p 6∈ spt ∂Mi. Let U ′ be the open set below B′, and
consider the manifold with boundary

N ′ = U ′ ∩Bi(o).
Let v(M ′i) be the stationary integral varifold obtained, by forgetting orientations, from the connected
component of Mi whose support contains p; see [49, Section 27]. The strong maximum principle of
White [55, Theorem 4], guarantees that spt v(M ′i)∩N ′ contains a connected component of B′∩Bi(o).
In particular, spt ∂M ′i contains a piece of B

′∩∂Bi(o). This however contradicts ∂M ′i ⊂ spt ∂Mi ⊂ U.
Having observed that each Wi is contained in U and is therefore separated from p∞, the rest of the
argument follows verbatim as in [12,39]. �

Remark 4.6. A similar argument (see [12, Theorem 1.5]) would allow to solve Plateau’s problem
for k-dimensional submanifolds provided that the point p∞ can be separated from each ∂[Ti] by
a k-convex barrier. We have been unable to produce such objects, e.g. by rotating special curves
around the x0-axis. It might be possible that such barriers do not exist.

5. The Dirichlet problem at infinity

In this section, we investigate the Dirichlet problem (1.9). Set for simplicity

f(u) = −1 + nu

u2
and W (u) =

√
1 + |Du|2

and consider the operator Q given by

Q[u] = div

(
Du

W (u)

)
− f(u)

W (u)
,

acting on positive C2-functions on Ω.

5.1. Proof of Theorem B. Part (1) - Existence: We shall first solve the problem for data that
do not meet the boundary at infinity of the hyperbolic space, and then we will exploit Perron’s
method to establish the existence of solutions to the Dirichlet problem at infinity.
We distinguish three cases:
Case A: Assume at first that ∂Ω is compact, φ is positive on ∂Ω and C3-smooth. To solve
the problem use the continuity method. Since the operator Q is quasilinear, the method will be
applicable once we provide global a priori C1-estimates on a solution u of (1.9); see for example
[27, Chapter 11] or [47, page 417]. Height and gradient estimates will be proved by constructing
suitable subsolutions and supersolutions for (1.9) and applying classical comparison theorems, for
which we refer to [45, Theorem 2.1.3 & 2.1.4]. Notice that comparison holds because f defined
above is increasing.
Claim 1 (Height estimate): There exist positive constants B1 and B2 which only depend on φ and
Ω such that B1 ≤ u ≤ B2.
Proof of the claim. Observe at first that the constant u1 = B1 = min∂Ω φ is a subsolution to (1.9),
namely Q[u1] ≥ 0. By the comparison principle, a solution u to (1.9) satisfies u1 ≤ u. Consider
now a bowl soliton B lying above the graph of φ on ∂Ω. Then, if B is generated by the graph of
u2, by the comparison principle we get u ≤ u2. The claim follows. ~

Claim 2 (Boundary gradient estimate): There exists a constant B3 which only depends on φ and Ω
such that sup∂Ω |Du| ≤ B3.

Proof of the claim. Let ν be the inward pointing Euclidean unit normal on ∂Ω, and fix a tubular
neighborhood

Ωρ = {x ∈ Ω : dist(x, ∂Ω) < ρ}
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around ∂Ω for which the Fermi chart [0, ρ) × ∂Ω → Ωρ given by (r, y) 7→ y + rν(y) is well defined
and smooth. Define φ̂ on Ωρ by φ̂(r, y) = φ(y). The goal is to find l ∈ (0, ρ) and an increasing
C2-smooth function ψ : [0, l)→ [0,∞) with bounded gradient and satisfying

ψ(0) = 0 and |u(r, y)− φ(y)| ≤ ψ(r) for all (r, y) ∈ Ωl.

To achieve this goal we seek for l ∈ (0, ρ) and ψ such that Q[ψ + φ̂] ≤ 0 ≤ Q[−ψ + φ̂] on Ωl. Set
v = ψ + φ̂. Then, by a straighforward computation we get that

Q[v] =
1

W (v)

[
∆v −D2v

(
Dv

W (v)
,
Dv

W (v)

)
− f(v)

]
=

1

W (v)

[
ψ′′ + ψ′∆r + ∆φ̂− ψ′′ 〈Dr,Dv〉

2

W 2(v)
− ψ′D2r

(
Dv

W (v)
,
Dv

W (v)

)
−D2φ̂

(
Dv

W (v)
,
Dv

W (v)

)
− f(v)

]
, (5.1)

where here ∆ is the Euclidean Laplacian. Let us examine each term of (5.1) carefully:

• Because f is increasing and negative, we deduce that

0 < −f(t) ≤ Cφ .
= −f(B1) for each t ≥ inf∂Ωφ > 0. (5.2)

• Since φ is assumed to be smooth, there exists a constant C1 such that

1 + ‖Dφ̂‖2∞ + ‖D2φ̂‖2∞ ≤ C1 on Ωρ. (5.3)

• Using Gauss’ Lemma we see that

Dv = ψ′Dr +Dφ̂ and 〈Dφ̂,Dr〉 = 0. (5.4)

• Because Y = Dv/W (v) is of length at most 1, there exists a constant C2 such that

〈Dr,Y〉 = ψ′W−1(v) and
∣∣∆φ̂∣∣+

∣∣D2φ̂ (Y,Y)
∣∣ ≤ C2. (5.5)

• Since Dr belongs to the kernel of D2r, we have that∣∣D2r(Y,Y)
∣∣ = W−2(v)

∣∣D2r(Dφ̂,Dφ̂)
∣∣ ≤ C1‖D2r‖∞ .

= C3. (5.6)

• Since H∂Ω ≥ 0, the Laplacian comparison theorem implies

∆r ≤ − H∂Ω

1− rH∂Ω
≤ 0 on Ωρ. (5.7)

Taking into account (5.2), (5.3), (5.4), (5.5), (5.6), (5.7), inequality (5.1) can be estimated by

W 3(v)Q[v] ≤W 2(v)ψ′′ − ψ′′(ψ′)2 + C3ψ
′ + CW 2(v), (5.8)

where C = C2 +Cφ. Consider now ψ to be a function of the form ψ(r) = µ log(1 +kr), where µ > 0
and k > 0 are constants to be chosen later. Then,

ψ(0) = 0, ψ′(r) =
µk

1 + kr
and ψ′′(r) = −(ψ′)2

µ
.

For this choice of ψ, inequality (5.8) becomes

W 3(v)Q[v] ≤ −(ψ′)2

µ

(
1 + |Dφ̂|2

)
+ C3ψ

′ + CW (v)2. (5.9)

From (5.3) and (5.4), we have

W 2(v) = W 2(ψ + φ̂) = 1 + |Dφ̂|2 + (ψ′)2 ≤ C1 + (ψ′)2.
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Hence,

W 3(v)Q[v] ≤ −(ψ′)2

µ
+ C3ψ

′ + C(C1 + (ψ′)2) ≤
(
− 1

µ
+ C

)
(ψ′)2 + C3ψ

′ + CC1. (5.10)

By height estimates, u ≤ B2 on Ω. Define

µ =
B2

log(1 +
√
k)
,

and observe that µ → 0 as k → ∞. Choose k > ρ−2 sufficiently large and set l1 = k−1/2. Then,
from (5.10) we deduce that Q[v] < 0 on Ωl1 . Since

v(0, y) = φ(y) = u(0, y) and v(l1, y) > B2 ≥ u(l1, y) for each y ∈ ∂Ω,

from the comparison principle, it follows that u ≤ v = ψ + φ on Ωl1 . To prove the existence of
l2 ∈ (0, ρ) such that u ≥ −ψ + φ on Ωl2 , we may proceed with the same technique as above and
making use the fact that −f(t) ≥ −f(B2) for t ∈ [B1, B2]. Alternatively, observe that since f ≤ 0 a
standard lower barrier w for the minimal surface equation on Ωρ also satisfies Q[w] ≥ 0 on {w > 0}.
Take l = min{l1, l2} and let us restrict ourselves in Ωl. For each y ∈ ∂Ω, we have that∣∣∣∣∂u∂ν (y)

∣∣∣∣ = lim
r→0

|u(r, y)− u(0, y)|
r

≤ lim
r→0

ψ(r)

r
= µk.

Let now X is a unit tangent vector field along ∂Ω. Since

u|∂Ω ≡ φ|∂Ω,

the derivative of u in the direction X obeys∣∣〈Du,X〉∣∣ ≤ sup
∂Ω
|Dφ|.

Combining all these we complete the proof of the claim. ~

Claim 3 (Interior gradient estimate): There exists a constant B4 which depends only on φ and Ω
such that supΩ |Du| ≤ B4.

Proof of the claim: From Lemma 3.3, the unit normal ν and the mean curvature of the soliton M
are given by

ν =
u ∂0 − uDu√

1 + |Du|2
and H =

−1

u
√

1 + |Du|2
< 0.

Let us compute the Laplacian of H with respect to the induced metric g, following the same lines as
in [43, Lemma 2.1]. For simplicity, let us denote the metrics of Hn+1 andM by the same letter g. As
usual let us denote by ∇ the Levi-Civita connection of Hn+1 and by ∇ the Levi-Civita connection of
the induced metric on M . Let {e1, . . . , en} be a local orthonormal tangent frame, which is normal
at a fixed point p ∈ M , and denote by bij the coefficients of the second fundamental form II of M
with respect to ν. Differentiating with respect to ei, we get that

eiH = −ei gH(∂0, ν) = − gH(∇ei∂0, ν)− gH(∂0,∇eiν), i ∈ {1, . . . , n}.
From the Koszul formula, we have that at p it holds

∇ei∂0 = −u−1ei, i ∈ {1, . . . , n}.
Consequently,

eiH = − gH(∂>0 ,∇eiν) = II(∂>0 , ei), i ∈ {1, . . . , n}.
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Differentiating once more, using the Codazzi-Mainardi equation, and then estimating at p ∈M , we
obtain

∆gH = eieiH = ei
(
bij gH(∂0, ej)

)
= biji gH(∂0, ej) + bij gH(∇ei∂0, ej) + bij gH(∂0,∇eiej)

= gH(∂>0 , biijej)− u−1bijδij + bijbij gH(∂0, ν)

= gH(∂>0 ,∇H)− u−1H −H|II|2,
where ∆g is the Laplacian with respect to the induced metric g of the soliton. Since −H > 0,
according to the maximum principle, we obtain that supΩH = max∂ΩH. Thus, there exists y0 ∈ ∂Ω
such that

−1

u(x)
√

1 + |Du|2(x)
≤ −1

u(y0)
√

1 + |Du|2(y0)
for each x ∈ Ω.

Hence,

|Du|2(x) ≤ u2(y0)

u2(x)

(
1 + |Du|2(y0)

)
− 1 for each x ∈ Ω.

Combining with the estimates we showed in Claims 1 and 2, we deduce the desired estimate on the
gradient of u. This completes the proof of the claim. ~

Case B: Assume that Ω has C3-smooth compact mean convex boundary ∂Ω. Furthermore, assume
that φ : ∂Ω→ (0,∞) is continuous. Choose a decreasing sequence {φj} and an increasing sequence
{θj} of positive smooth functions uniformly converging to φ. For each j ∈ N denote by uj , vj the
solutions given by Case A for boundary data φj and θj , respectively. By the comparison maximum
principle, the sequence {uj} is decreasing, {vj} is increasing and vj ≤ ul for each j, l ∈ N. Moreover,
by the height estimates obtained in Case A, there exist positive constants B1, B2 such that

B1 ≤ vj ≤ ul ≤ B2 for all j, l ∈ N.
According to a result of Simon [48, Corollary 1, p. 257], the sequences {uj} and {vj} have uniformly
bounded gradients on compact subsets K ⊂ Ω. Then local C1,α-estimates follow by Ladyzhenskaya
& Ural’tseva [38], and Schauder estimates imply that the sequences {uj} and {vj} are bounded on
C2,α(K); for more details see also [27, Section 11.3, Chapter 13 and Theorem 13.6]. Passing to the
limit, using the same idea as in Lemma 3.7, we deduce that uj ↓ u and vj ↑ u locally in C2,α to a
unique solution u to Q[u] = 0 which satisfies u ≡ φ on ∂Ω.

Case C: We conclude the proof by considering the case where Ω, not necessarily compact but
satisfying H∂Ω ≥ 0, is contained between two parallel hyperplanes of ∂′∞Hn+1. We employ Perron’s
method, the main novelty being the treatment of boundary barriers to force u = φ on ∂Ω. Recall
at first that a function v is said to satisfy Q[v] ≥ 0 in the viscosity sense if, for each x ∈ Ω and each
C2-smooth test function ϕ touching v from above at the point x (i.e., ϕ ≥ v near x and ϕ(x) = v(x))
it holds Q[ϕ] ≥ 0; see for details [18]. Consider now a large grim-reaper cylinder G such that the
graph of φ over ∂Ω lies in the region below G . Without loss of generality, we may denote the graph
function generating G with the same name. Define Perron’s class

F =

v ∈ C(Ω) :

0 < v ≤ G on Ω,

Q[v] ≥ 0 on Ω in the viscosity sense,

0 ≤ v ≤ φ on ∂Ω.

 .

Claim 4: The set F is non-empty.
Proof of the claim: For each x ∈ Ω we can consider the maximal spherical barrier Sx centered at x
whose boundary at infinity is contained in Ω. The spherical barrier can be expressed as the graph
of a function sx : Bx → R which solves Q[sx] ≥ 0 in the interior of its domain of definition Bx.
Note that sx is zero on ∂Bx and sx < G on Bx by comparison. Extend sx as being zero on Ω\Bx
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and define s : Ω→ R by s = supx∈Ω sx. Then, 0 < s ≤ G on Ω and moreover s is locally Lipschitz.
By elementary properties of viscosity solutions, we deduce that Q[s] ≥ 0 on the entire Ω. Since Ω
is contained between two parallel hyperplanes, the radius of Sx is uniformly bounded from above
by some R > 0. Hence, for each x ∈ Ω, by considering a nearest point x0 ∈ ∂Ω to x and a spherical
cap of radius R and center x0 +Rν(x0) we deduce

sy(x) ≤ R
√

1− R− dist(x, ∂Ω)

R
∀ y ∈ Ω.

Consequently, s ∈ C(Ω) and s ≡ 0 on ∂Ω. This shows that F 6= ∅. ~

Define now Perron’s envelope
u(x) = sup {v(x) : v ∈ F} . (5.11)

Then, u is lower-semicontinuous on Ω, 0 < u ≤ G on Ω and 0 ≤ u ≤ φ on ∂Ω.
Claim 5: The function u defined in (5.11) belongs to C∞(Ω) and Q[u] = 0 on Ω.
Proof of the claim: Fix x ∈ Ω and a sequence {vj} ⊂ F with vj(x) → u(x). Up to replacing vj
with max{v1, . . . , vj} ∈ F , we can assume that vj(x) ↑ u(x). Pick a small ball B ⊂ Ω centered at
x, and for each j ∈ N solve {

Q[v′j ] = 0 on B,

v′j = vj on ∂B.

The existence of the unique v′j ∈ C2(B) ∩ C(B) follows by Case B above. From the comparison
principle we deduce that vj ≤ v′j ≤ G on B, for each j ∈ N; see [18]1.
Define the replacement ṽj of vj to be the function

ṽj =

{
v′j on B,

vj on Ω\B.
Then ṽj still belongs to F and ṽj(x)→ u(x). Local gradient estimates [48, Corollary 1] and higher
elliptic regularity imply ṽj → v ≤ u locally smoothly on B, where v is a function with v(x) = u(x).
We claim that u ≡ v on B. Assume to the contrary that u(p) > v(p) for some p ∈ B, let w ∈ F
such that w(p) > v(p) and consider wj = max{ṽj , w}. Let w̃j be the replacement of wj on B. Again
elliptic estimates guarantee that w̃j → w̃ ≤ G on B locally smoothly. By construction, w̃ ≥ v on
B, with strict inequality at p but with equality at x, contradicting the maximum principle. ~

Claim 6: The function u defined in (5.11) is continuous up to the boundary ∂Ω and u ≡ φ on ∂Ω.
Proof of the claim: Fix a point x0 ∈ ∂Ω, choose a positive ε > 0 and a large ball Br0 centered at
some fixed origin for which x0 ∈ Br0−2. To simplify the notation, let us denote here the intersection
of ∂Ω with a ball Br of radius r by ∂Ωr, that is ∂Ωr = ∂Ω∩Br. Parametrize now a neighbourhood
of ∂Ωr0 by the smooth Fermi chart [0, ρ)× ∂Ωr0 → Ω given by

(r, y) 7→ y + rν(y),

where ν the unit normal to the boundary ∂Ω pointing towards Ω. Let B ≥ ‖G ‖∞ and consider
functions φ1, φ2 ∈ C3(∂Ω) satisfying the following properties:

(i1) 0 ≤ φ2 ≤ φ and ε+ φ ≤ φ1 ≤ G , on ∂Ω,

(i2) |φj − φ| ≤ 2ε, on ∂Ωr0−2,

(i3) φ2 = 0 and φ1 = G , on ∂Ω ∩ (∂′∞Hn+1\Br0−1).

By the construction of boundary gradient estimates in Case 1, there exists ρ0 < ρ (depending on ε)
and C2-smooth functions v1 and v2 on U = [0, ρ0]× ∂Ωr0 with the following properties:

1Comparison in this case holds trivially: if maxB(vj − v′j) = c > 0, the function v′j + c would touch from above vj
at some interior point x0. However, Q[v′j + c] < 0, contradicting the fact that vj is a subsolution at x0.
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• Q[v1] ≤ 0 on U , Q[v2] ≥ 0 on {v2 > 0}.
• It holds

v1(ρ0, y) = B, v1(0, y) = φ1(y), ∂rv1(r, y) > 0, for each (r, y) ∈ U,
and

v1(r, y) ≥ G (r, y), for each (r, y) ∈ [0, ρ0)× (∂Ωr0\∂Ωr0−1).

• It holds

v2(ρ0, y) < 0, v2(0, y) = φ2 and ∂rv2(r, y) < 0, for each (r, y) ∈ U.
Therefore,

v2(r, y) < 0 on (0, ρ0)× (∂Ωr0\∂Ωr0−1).

Pick now a smooth function η : ∂Ωr0 → [0, ρ0] satisfying

η(y) = ρ0 for y ∈ ∂Ωr0−1 and η(y) = 0 for y ∈ ∂Ωr0 ∩ ∂Br0 ,
and consider the region

Ũ =
{

(r, y) ∈ U : 0 ≤ r < η(y)} ⊂ U.
Then, by construction,

v2 < 0 < G ≤ v1 on ∂Ũ\∂Ω.

By the comparison principle, we have that v ≤ v1 on Ũ for each v ∈ F . Thus u ≤ v1 on Ũ and

lim sup
x→x0

u(x) ≤ lim sup
x→x0

v1(x) = φ1(x0) ≤ φ(x0) + 2ε.

On the other hand, by construction we have that {v2 > 0} ⊂ Ũ . Therefore, the function v given by

v =

{
max{v2, s} on Ũ ,

s elsewhere on Ω,

is well defined on the entire Ω and v ∈ F . Inequality u ≥ v implies

lim inf
x→x0

u(x) ≥ lim
x→x0

v(x) = lim
x→x0

v2(x) = φ2(x0) > φ(x0)− 2ε.

The continuity of u at x0 follows by letting ε→ 0. ~

This conclude the proof of Theorem B(1). �

5.2. Proof of Theorem B. Part (2) - Non-existence: Suppose that there exists a point y ∈ ∂Ω
with H∂Ω(y) < 0, and let u ∈ C∞(Ω)∩C(Ω) be a positive solution to Q[u] = 0 on Ω. Our approach
follows [47], and we split the argument into three steps. The main difference with [47] is Lemma 5.2
below: as observed in Remark 1.4(3), its use to construct a boundary data φ for which the Dirichlet
problems is not solvable forces a lower bound on the oscillation of φ.
To achieve our goal, we need to compare u with appropriate supersolutions to (SE). Recall that a
function r defined on an open subset of Ω is called a distance function if it is smooth and |Dr| ≡ 1.
We start with the following:

Lemma 5.1. Let r be a distance function defined on an open subset U ⊂ Rn and ω : (0,∞) → R
a smooth function. Then v = ω(r) : U → R is a supersolution of (SE), if there exists a continuous
function h defined on (0, r) such that

ω′ < 0,
ω′′

ω′[1 + (ω′)2]
+ h ≥ 0 and ∆r − f(v)

ω′(r)
≥ h(r) ≥ 0 on U. (5.12)
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Proof. Consider the orthonormal frame {e1 = Dr; e2, . . . , en}. By a straightforward computation,
we deduce that√

1 + (ω′(r))2Q[v] =
ω′′(r)

1 + (ω′(r))2
+ ω′(r)∆r − f(v) ≤ ω′′(r)

1 + (ω′(r))2
+ h(r)ω′(r),

from where the statement follows. �

Lemma 5.2. For each positive number ε > 0, there exist positive constants a0 = a0(ε, diam(Ω), n)
and c = c(diam(Ω), n) such that

supΩ\Ba(y)u ≤ ε+ sup∂Ω\Ba(y)u− cf(sup∂Ω\Ba(y)u)

for all a < a0.

Proof. Let a be a positive number. To simplify the notation let us set

d = 2 diam(Ω), Ua = Ω\Ba(y), Va = ∂Ω\Ba(y) and u∗a = supVau.

Denote by r the distance function r(x) = |x− y| and let v : Ua → R be the function given by

v = ω(r) + u∗a,

where ω is C2-smooth on (a, d] and continuous on [a, d]. Furthermore, we require for ω that

ω ≥ 0, ω(d) = 0, ω′ <
2d

n− 1
f(u∗a) < 0 and ω′(a+) = −∞. (5.13)

From the monotonicity of f and Lemma 5.1, we easily see that

∆r − f(v)

ω′(r)
≥ n− 1

r
− f(u∗a)
ω′(r)

≥ n− 1

r
− n− 1

2d
≥ n− 1

2r
> 0.

Therefore, Q[v] ≤ 0 provided that

ω′′

ω′[1 + (ω′)2]
+
n− 1

2r
≥ 0. (5.14)

We first find a solution ω̃ to (5.14) with the equality sign. To achieve this goal, consider the strictly
decreasing diffeomorphism F : (0,∞)→ (0,∞) given by

F (s) =

∫ ∞
s

dτ

τ(1 + τ2)
= log

√
1 + s−2. (5.15)

By a direct computation we see that(
F (−ω̃′)

)′
= − ω̃′′

ω̃′[1 + (ω̃′)2]
=
n− 1

2r
.

Integrating on [a, r] and using the fact ω̃′(a+) = −∞, we get

−ω̃′(r) = F−1

(
n− 1

2
log
(r
a

))
.

Another integration on [r, d] gives

ω̃(r) =

∫ d

r
F−1

(
n− 1

2
log

(
t

a

))
dt. (5.16)

Since F−1(t) � t−1/2 as t→ 0, it follows that ω̃′ is integrable in a neighbourhood of a. Also, explicit
computation gives ω̃(a) → 0 as a → 0. We can therefore choose a0 = a0(ε, d, n) small enough so
that ω̃(a) < ε for each a < a0. Summarizing, ω̃ given in (5.16) solves (5.14). Choose now the
function

ω(r) = ω̃(r)− 2d

n− 1
f(u∗a)(d− r).
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Observe that ω satisfies both (5.14) and (5.13). Hence, v = ω(r) + u∗a is a supersolution to (SE).
We claim that u ≤ v on the closure of Ua. Indeed, assume by contradiction that u−v has a positive
maximum at some point x0. By the strong maximum principle, x0 is not an interior point, and thus
x0 ∈ ∂Ba(y) by the construction of v. However, along the segment ` given by

`(t) = x0 + tDr(x0)

it holds
(u ◦ `− v ◦ `)′(t) = 〈Du,Dr〉(`(t))− ω′(a+ t)→∞ as t→ 0+,

contradiction. From the inequality u ≤ v on Ua we deduce

u(x) ≤ u∗a + ω̃(a)− 2d2

n− 1
f(u∗a) < u∗a + ε− 2d2

n− 1
f(u∗a) for all a < a0,

concluding the proof of the lemma. �

Lemma 5.3. For each ε > 0, there exists a positive constant a0 = a0(Ω, ε) such that

supΩ∩Ba(y)u ≤ ε+ supΩ∩∂Ba(y)u (5.17)

for all a < a0.

Proof. Define r(x) = dist(x, ∂Ω), and choose a0 small enough to guarantee that r is smooth on
Ω ∩Ba0(y). Since ∆r(y) = −H∂Ω(y), by continuity there exist a0, θ > 0 such that

∆r ≥ 2θ on Ω ∩Ba(y).

Fix a < a0, choose δ ∈ (0, a) and set

u∗∗a = supΩ∩∂Ba(y)u, k = θ−1supΩ|f(u)|.
Consider now the function v : Ω ∩Ba(y)→ R given by

v = u∗∗a + ω(r),

where ω is a C2-smooth function on (δ, a] and continuous on [δ, a]. Furthermore, we require ω to
satisfy

ω > 0 on [δ, a], ω′ ≤ −k on (δ, a] and ω′(δ+) = −∞. (5.18)
Observe that

∆r − f(v)

ω′(r)
≥ 2θ − supΩ |f(u)|

k
≥ θ on Ω ∩Ba(y).

By Lemma 5.1, we deduce that Q[v] ≤ 0 provided

ω′′

ω′[1 + (ω′)2]
+ θ = 0

and the conditions (5.18) are satisfied. Consider the decreasing diffeomorphism F : (0,∞)→ (0,∞)
given in (5.15) to rewrite the last ODE in the form

(F (−ω′))′ = θ.

Integrating on (δ, r) and using that ω′(δ+) = −∞ we get

−ω′(r) = F−1 (θ(r − δ)) ≥ F−1(θa0) ≥ k,
where the last inequality holds if a0 is small enough. Moreover, the last requirement in (5.18) is also
satisfied. Integrating again and using the asymptotic behaviour of F−1, the function ω′ is integrable
in a neighbourhood of δ and thus

ω(r) =

∫ a0

r
F−1(θ(t− δ))dt ∈ C([δ, a]) ∩ C2((δ, a]).
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Consequently, all of the required assumptions on ω are satisfied. Making use of the comparison
maximum principle as in the previous lemma, we obtain u ≤ v on Ω ∩Ba(y)\Bδ(y). Therefore,

u ≤ u∗∗a + ω(δ) = u∗∗a +

∫ a0

δ
F−1(θ(t− δ))dt.

Changing variables from s to t − δ in the last integral, letting δ → 0 and using the monotone
convergence theorem, we get

u ≤ u∗∗a +

∫ a0

0
F−1(θs)ds on Ω ∩Ba(y)\{y}.

The integral on the right hand side is finite. By continuity, the same inequality also holds at the
point y. Therefore, choosing a0 sufficiently small, the estimate (5.17) holds. This concludes the
proof of the lemma. �

We are now ready to complete the proof of Theorem B(2). Recall that we are dealing with a domain
Ω with smooth boundary ∂Ω, which at a point y has strictly negative mean curvature. Fix ε > 0
and let a0 > 0 small enough so that both Lemmas 5.2 and 5.3 hold for a < a0. This means that
any positive solution u ∈ C∞(Ω) ∩ C(Ω) of (SE) must satisfy the estimate

u(y) ≤ ε+ supΩ∩∂Ba(y)u ≤ 2ε+ sup∂Ω\Ba(y)u− cf(sup∂Ω\Ba(y)u) (5.19)

for each a < a0. On the other hand, choose an arbitrary positive constant c0 > 0 and a positive
boundary datum φ ∈ C∞(∂Ω) satisfying

φ ≡ c0 > 0 on ∂Ω\Ba(y) and φ(y) > 2ε+ c0 − cf(c0).

Then, from (5.19) it follows that u(y) < φ(y). Consequently, the Dirichlet problem Q[u] = 0 with
prescribed u ≡ φ on ∂Ω does not admit any solution u ∈ C∞(Ω) ∩ C(Ω). �

6. Uniqueness of the grim-reaper cylinder

In this section, we prove Theorem F. We begin with the following observation:

Lemma 6.1. Let M ⊂ Hn+1 be a properly immersed soliton with respect to −∂0 such that ∂′∞M =
π1 ∪ π2, where π1 and π2 are parallel hyperplanes in ∂′∞Hn+1. Then M is contained in the open
region U bounded by the parallel hyperplanes Π1,Π2 ⊂ Hn+1 that meet ∂′∞Hn+1 orthogonally and
satisfy ∂′∞Π1 = π1, ∂′∞Π2 = π2, and by the half-cylinder C with ∂′∞C = π1 ∪ π2.

Proof. By Proposition 3.2, M is contained in the slab between Π1 and Π2. Again from the strong
maximum principle M cannot touch Π1 ∩ Π2. Next, consider a spherical barrier S centered at a
point q∞ ∈ ∂′∞Hm+1 equidistant, with respect to the Euclidean metric, from π1 and π2, and choose
its radius to be small enough to satisfy S ∩M = ∅. By increasing the radius, the strong maximum
principle ensures that M lies above the half-sphere centered at q∞ and tangent to Π1 ∪ Π2. The
conclusion follows since C is the envelope of such barriers for varying q∞. �

6.1. Compactness and a maximum principle for varifolds. Let us set recall some important
facts that we will need in the sequel.

Definition 6.2. Let {Mi}i∈N be a sequence of properly embedded hypersurfaces in a Riemannian
manifold (N, g). We say that {Mi}i∈N has uniformly bounded area on compact subsets of N if

lim sup
i→∞

|Mi ∩K|g <∞

for any compact subset K of N .

The following well-known theorem in geometric measure theory holds; see for example [49, Theorem
42.7].
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Theorem 6.3. Let {Mi} be a sequence of minimal hypersurfaces in Ω ⊂ Rn+1, where Ω is an open
subset equipped not necessarily with the canonical metric, whose area is locally bounded. Then a
subsequence of {Mi} converges weakly to a stationary integral varifold M∞.

Let us denote by

Z =
{
p ∈ Ω : lim sup

i→∞
|Mi ∩Br(p)|g =∞ for every r > 0

}
,

the set where the area blows up. Clearly Z is a closed set. It will be useful to have conditions
that will imply that the set Z is empty. In this direction, White [54, Theorems 2.6 and 7.3] shows
that under some natural conditions the set Z satisfies the same maximum principle as properly
embedded minimal hypersurfaces without boundary.

Theorem 6.4. Let (N, g) be a smooth Riemannian (n + 1)-manifold and {Mi}i∈N a sequence of
properly embedded minimal hypersurfaces without boundary in (N, g). Suppose that the area blow up
set Z of {Mi}i∈N is contained in a closed (n+1)-dimensional region P ⊂ N with smooth, connected
boundary ∂P such that g

(
H, ξ

)
≥ 0, at every point of ∂P , where H is the mean curvature vector of

∂P and ξ is the unit normal to the hypersurface ∂P that points into P . If the set Z contains any
point of ∂P , then it contains all of ∂P .

Remark 6.5. The above theorem is a sub-case of a more general result. In fact the strong barrier
principle holds for sequences of properly embedded hypersurfaces (possibly with boundaries) of
Riemannian manifolds which are not necessarily minimal but they have uniformly bounded mean
curvature. For more details we refer to [54].

In the proof of Theorem F we will need the following strong maximum principle which is due to
Solomon and White [52].

Theorem 6.6. Let (Nn+1, g) be a Riemannian manifold with connected nonempty boundary ∂N
and that Nn+1 is mean convex, that is, that g(H, ξ) ≥ 0 on ∂N where H is the mean curvature
vector of ∂N and where ξ is the unit inward pointing normal of ∂N . Let V be an n-dimensional
stationary varifold in Nn+1. If sptV contains a point of ∂N , then it must contain all ∂N .

6.2. The hyperbolic dynamic lemma. Let M ⊂ Hn+1 be a conformal soliton with respect to
−∂0 satisfying the GR-property. Without loss of generality we can choose coordinates so that π1

and π2 are respectively given by the equations

{x0 = 0, x1 = a} and {x0 = 0, x1 = −a},
where a is a positive constant. Recall that the soliton property is preserved if we act on M via
isometries of the hyperbolic space which fix the vector −∂0. Therefore, if v = (0, 0, v2, . . . , vm) is a
vector of Hn+1 then the hypersurface

M + v = (x0, x1, x2 + v2, . . . , xm + vm)

is again a soliton in Hn+1 satisfying the GR-property.

Lemma 6.7. Let M ⊂ Hn+1 be a properly embedded soliton with respect to −∂0 satisfying the GR-
property. Suppose that {vi}i∈N ⊂ span{∂2, . . . , ∂m} is a sequence of vectors and let Mi = M + vi.
Then, after passing to a subsequence, {Mi}i∈N weakly converges to a connected stationary integral
varifold M∞ with ∂∞M∞ = ∂∞M .

Proof. First, by Lemma 6.1 we know that M lies in the region U . Let τ > 0 be the constant
guaranteed by the GR-property, set

Uτ = U ∩ {τ < x0 < supMx0},
and denote with Z the blow-up set of {Mi}. We split the proof in four steps.
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Step 1: We show that the sequence {Mi}i∈N has locally bounded area with respect to the Ilmanen
metric outside Uτ . Due to the GR-property,

M\Uτ =
(
W1 ∪W2

)
∩ {x0 < τ},

where the wing Wj is the image of the graph of the function ϕj : Hτj → R, j ∈ {1, 2}. To simplify
notation, for fixed j we let

W =Wj , ϕ = ϕj and H = Hj .
Let ν be a Euclidean unit normal to H. Then

ν = cos θ∂1 + sin θ∂0,

where θ ∈ (−π/2, π/2). Notice that since W ⊂ U there exists C > 0 such that

|ϕ(p)| < C for each p ∈ Hτ . (6.1)

Let us introduce the coordinates

y0 = cos θx1 + sin θx0, y1 = − sin θx1 + cos θx0, yk = xk for k ≥ 2.

Thus y = (y1, . . . , ym) are coordinates on H. Choose an Euclidean ball B ⊂ Hτ , consider the box
Q = [−C,C]×B in coordinates (y0; y) and let

K = Q ∩ U ;

see Figure 5. By construction, K is compact subset with piecewise smooth boundary in Hn+1, and
W ∩ K is the image of the graph of the function ϕ over the entire B. We claim that the gI(n)-
area of {Mi}i∈N on K is uniformly bounded. Since for varying B,C the sets K cover the region
U ∩ {x0 < τ}, we deduce that the sequence {Mi} has locally bounded area outside Uτ . We use a
calibration method.

τ

Π1 Π2

Hτ

W

K

Figure 5. The subset K.
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Write for convenience

gI(n) = λ2 gR, with λ(y0; y) = x−1
0 (y0; y)e

1
nx0(y0;y) ,

and notice that the unit normals ξ and ξI along W with respect to the Euclidean and Ilmanen
metric (say, pointing towards increasing y0) are related by

ξI(q) = λ−1(q)ξ(q), for each q = (ϕ(y); y) ∈ W.

Extend ξ on K to be constant along the y0-direction and accordingly extend ξI on K by

ξI(y0; y) = λ−1(y0; y)ξ(y0; y), for each (y0; y) ∈ K.
We compute

divgI
ξI = divgRξI + n gR(D log λ, ξI)

= λ−1
(
divgRξ + (n− 1) gR(D log λ, ξ)

)
.

(6.2)

Let p = (y0; y) ∈ K, and let q = (ϕ(y); y). Since W is gI(n)-minimal and |ξI|gI
= 1 by construction

on the entire K, we have

divgI
ξI(q) = 0, divgRξ(p) = divgRξ(q).

Evaluating (6.2) at p and q and using the last two identities, we get

divgI
ξI(p) =

n− 1

λ(p)

(
gR
(
Dp log λ, ξ(p)

)
− gR

(
Dq log λ, ξ(q)

))
.

Since minK x0 > 0, the function log λ is bounded in C1(K, gR). So there exists a constant CK such
that

|divgI
ξI| ≤ CK on K.

Let K ′ be the region of K where y0 < ϕ(y). By the divergence theorem,

CK |K|gI
≥
∫
K′

divgI
ξIdxgI

= |W ∩K|gI
+

∫
∂K′∩∂K

gI(ξI, η)dσgI
≥ |W ∩K|gI

− |∂K|gI
.

Therefore,
|W ∩K|gI

≤ |∂K|gI
+ CK |K|gI

is uniformly bounded, as claimed.
Step 2: From Step 1, Z ⊂ Uτ . Choose a spherical barrier B not intersecting Uτ , and increase its
radius up to touching Z. Theorem 6.4 would imply that B ⊂ Z, a contradiction. Thus, Z = ∅.
Step 3: From Steps 1 & 2, the sequence {Mi} has locally bounded gI(n)-area. Hence, Theorem 6.3
guarantees the weak subconvergence of {Mi} to a stationary integral varifold M∞.
Step 4: By the GR-property, ∂′∞Mi = ∂′∞M for each i ∈ N. Every point p ∈ ∂′∞Hm+1\∂′∞M
can be separated to M , hence to each Mi, by a small spherical barrier. Thus ∂′∞M∞ ⊂ ∂′∞M .
On the other hand, on each Euclidean ball B centered at p ∈ ∂′∞M the GR-property and the
almost monotonicity formula for gI(n)-stationary varifolds guarantee a uniform lower bound for the
gI(n)-area of Mi ∩B. Therefore, p belongs to sptM∞.
This completes the proof. �

6.3. Proof of Theorem F. By Lemma 6.1 and since x0 is bounded on M , we have that

M ⊂ U ∩ {x0 ≤ supx0}.
Pick a grim-reaper cylinder Gh of height h whose symmetry axis is parallel to the hyperplanes Π1,
Π2, and (Euclidean) equidistant to them. For h small enough, Gh ∩M = ∅. We claim that we can
increase h up to a limit value h∗ in such a way that Gh ∩M = ∅, for each h < h∗, and

∂′∞Gh∗ = π1 ∪ π2.
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Suppose that this is not the case. Then, necessarily,
(i) distgI

(Gh∗ ,M) = 0,

(ii) ∂′∞Gh∗ is contained in the open slab between π1 and π2.

By (i) there exists a sequence {pi}i∈N ⊂ M such that dist(pi,Gh∗) → 0. Denote by pki the xk-
component of pi and define vi = (0, 0, p2

i , . . . , p
m
i ). Since M is contained in U and because of (ii), it

follows that there exists τ0 > 0 such that p0
i > τ0 for each i ∈ N. Therefore, up to a subsequence,

pi−vi converges to a point p` ∈ Gh∗ . Applying the hyperbolic dynamic Lemma 6.7 to Mi = M +vi,
we obtain a limiting gI(n)-stationary varifold M∞ with

∂′∞M∞ = π1 ∪ π2.

By construction p` ∈ M∞ and M∞ lies above Gh∗ . By Theorem 6.6 we get that Gh∗ ⊂ M∞,
contradicting condition (ii). To conclude, pick a large grim-reaper cylinder Gs with the same axis
as Gh∗ and containing U ∩ {x0 ≤ supx0}. Decreasing s and following the same argument as before,
we can show that

Gs ∩M = ∅,
for each s > h∗. Hence M ≡ Gh∗ and this completes the proof. �
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