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Coagulation system is currently considered an integrated part of innate immunity. Clotting

activation in response to bacterial surface along with complement cascade priming

represents the first line of defense against pathogens. In the last three decades, we

learned that several coagulation factors, including factor II or thrombin and factor X,

can interact with specific cell surface receptors activated by an unusual proteolytic

mechanism and belonging to a novel class of G-protein-coupled receptors known as

protease-activated receptors (PARs). PARs are expressed by a variety of cells, including

monocytes, dendritic cells, and endothelial cells andmay play a key role in themodulation

of innate immunity and in the regulation of its interaction with the adaptive branch of

the immune system. Also, the fibrinolytic system, in which activation is controlled by

coagulation, can interact with innate immunity, and it is a key modulator of extracellular

matrix deposition eventually leading to scarring and fibrosis. In the setting of kidney

transplantation, coagulation and fibrinolytic systems have been shown to play key roles

in the ischemia/reperfusion injury featuring delayed graft function and in the pathogenesis

of tissue damage following acute and chronic rejection. In the present review, we aim to

describe the mechanisms leading to coagulation and fibrinolysis activation in this setting

and their interaction with the priming of the innate immune response and their role in

kidney graft rejection.
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INTRODUCTION

Kidney transplantation is the treatment of choice for most patients with end-stage renal disease
because kidney graft recipients live longer than dialysis patients and have a markedly higher quality
of life. The improvement in the immunosuppressive drugs and protocols dramatically reduced the
clinical impact of acute rejection and significantly enhanced graft survival. However, graft half-life
is still far from being ideal. The quality of the grafts is significantly worsening, and they are more
exposed to damage in immediately before and after transplantation, as a consequence of brain death
and cold/warm ischemia (1). These peri-transplant events are often mediated by innate immunity
and, therefore, are poorly influenced by current immunosuppressive approaches (2). In addition,
we are now realizing that they are significantly associated with long-term transplant outcome and
with the occurrence of rejection. It is conceivable, then, that the priming of innate immunity early
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posttransplantation may significantly amplify the adaptive
response to the graft (3, 4). Thus, the need to improve our
therapeutic approaches to limit the effects of the innate arm
of host immune system is now clear. The innate response has
cellular and soluble components. Among the latter, complement
cascade received in the last decade a considerable attention,
and several drugs able to influence the activation of this
proteolytic system have been introduced in the clinical scenario
(5). However, complement is not the only enzymatic cascade
activated in the innate immune response. Indeed, there is an
increasing body of evidence that also the coagulation systemmay
play a key role in this setting.

COAGULATION CASCADE AND INNATE
IMMUNITY

The coagulation system is a proteolytic cascade that plays a key
role in blood clotting. In the last decades, several intersection
points between coagulation and immunity have been delineated,
and the coagulation system is currently considered an integrated
part of innate immune immunity.

Traditionally, the coagulation system has been classified into
extrinsic and intrinsic pathways. These two pathways converge,
forming the common pathway, which results in the activation
of factor X to Xa. In the extrinsic pathway, tissue factor exposed
by vascular injury interacts with plasma factor VIIa and activates
factor IX and X, with results in the formation of small amounts
of the serine protease thrombin. Thrombin not only acts on
fibrinogen to form the fibrin clot but also stimulates platelet
and vascular endothelial cells and activates plasma coagulation
factors, priming the intrinsic pathway (6). Blood-circulating FXII
is autoactivated by contact with negatively charged surfaces, such
as nucleic acids, platelet, and microbial polyphosphate and thus
converted to the serine protease FXIIa (7) finally promoting the
sequential activation of coagulation factors XI and IX (Figure 1).
Regulation of coagulation activation occurs by three distinct
physiological anticoagulant pathways: antithrombin (AT) (which
blocks factor Xa and thrombin), tissue factor pathway inhibitor
(TFPI) (which inhibits the tissue factor–factor VIIa complex),
and activated protein C (aPC) (which proteolytically degrades
factor Va and factor VIIIa).

The coagulation cascade can be directly activated by different
pathogens, including bacteria and viruses (8–12), and the
formation of fibrin clots can trap bacteria and limit the
invasiveness of pathogens. However, several other pathological
conditions are characterized by the activation of the coagulation
system, and studies performed in the past 15 years have
provided novel insights into the role of coagulation proteases in
kidney disease beyond their function in normal hemostasis and
thrombosis (13).

CROSS TALK BETWEEN COAGULATION
AND COMPLEMENT SYSTEM

Activation of the coagulation proteolytic cascade can influence
innate immunity in different ways by interacting with diverse

molecular mechanisms involved in the immune response. One
of the main columns of innate immunity is represented by the
complement system, and several possible interactions between
the two cascades have been proposed (14).

The complement system is an important component of the
innate immunity and functions primarily as a first-line host
defense against pathogenetic infections and in the removal of
immune complexes and apoptotic cells (15). The complement
system can be activated by three main pathways—classical,
lectin, and alternative—that include several components and
regulators, produced by different cells under diverse conditions
finally leading to a proteolytic cascade, which terminate in
opsonization and lysis of pathogens as well as in the generation
of proinflammatory molecules (16). The classical pathway uses
C1 and is triggered by antigen–antibody immune complexes.
It consists in the activation of the serine proteases C1r
and C1s, the subsequent cleavage of C4 and C2, and the
generation of the classic C3 convertase (C4bC2a), which
cleaves C3 into the anaphylatoxin C3a and C3b. The lectin
pathway activation also leads to the formation of C4bC2a C3
convertase complex but is activated by opsonin, mannose-
binding lectin (MBL), and ficolins, instead of C1q. Finally,
the alternative pathway is constitutively active at low levels
in the normal host as a result of spontaneous C3 hydrolysis.
It is regulated by factor H and factor I and need factor
B and factor D to generate the alternative pathway C3
convertase (17). The terminal phase is similar for the classical,
lectin, and alternative pathways. The incorporation of C3b
in the C3 convertases results in the formation of the C5
convertases that cleave C5 into C5a and C5b, leading to
the formation of the multimeric terminal membrane attack
complex (C5b-9) (18).

Other factors of the coagulation and fibrinolytic pathway
including thrombin; human factors XIa, Xa, and IXa; and
plasmin can cleave C5 without the involvement of other
complement factors, leading to the so-called extrinsic
complement pathway (19).

Proteases of the lectin pathway induce thrombin and fibrin
generation, stabilize the fibrin clot, and impair fibrinolysis (20).
Takahashi K et al. demonstrated that the MBL and MBL-
associated serine protease (MASP)-1/3 together can function
as thrombin (21). In particular, they observed both in vitro
and in vivo in MBL null mice that MBL deficiency may lead
to disseminated intravascular coagulation and organ failure
during infectious diseases (21). MASP-1 is a serine protease
able to cleave several proteins, both complement and non-
complement substrates, in the human blood. MASP-1 shares
many characteristics with thrombin; for example, it can cleave
several members of protease-activated receptors (PARs)—PAR-1,
PAR-2, and PAR-4—thus leading to cytokine production leading
to chemotaxis of neutrophils (22). MASP-1 is also involved
in coagulation and thrombus formation by the activation of
endothelial cells and generation of thrombin (22).

Several studies also reported that the coagulation system can
activate the lectin pathway in turn (23, 24). These interactions
can play an important role in clinical conditions because they can
influence hypercoagulability and increase thrombosis risk.
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FIGURE 1 | Schematic representation of the coagulation cascade and the fibrinolytic system. In the coagulation cascade, the extrinsic pathway starts with tissue

factor (TF) and activated factor VII (FVIIa). Tissue factor in physiological conditions is not in contact with the blood; however, damage of blood vessel structure can

expose this membrane-associated glycoprotein to the blood, thus activating the extrinsic pathway of the coagulation cascade. TF can also be expressed by

mononuclear cells or endothelial cells in response to inflammatory mediators. The TF/FVIIa complex promotes the activation of factor X (FXa). In the intrinsic pathway,

negatively charged surfaces (such as phospholipids and polyphosphates from activated platelets) activate FXII, initiating a cascade leading to FXa. The common

pathway FXa, along with the cofactor FVa, converts prothrombin (FII) to thrombin (FIIa). Finally, thrombin activates fibrinogen into fibrin and FXIIIa acts on fibrin strands

to form a fibrin mesh. Regulation of coagulation activation occurs by three distinct natural anticoagulant pathways: AT (which blocks FXa and thrombin), TFPI (which

inhibits the tissue factor–factor VIIa complex), and aPC (which proteolytically degrades factor Va and factor VIIIa). Natural regulators of the coagulation cascade are

indicated in green: TFPI, AT, and aPC. Once the first thrombin is produced, it induces the propagation of the coagulation cascade (red arrows) but also a feedback

regulation through aPC. In the fibrinolytic system, uPA and tPA catalyze the proteolysis of plasminogen into plasmin, which, in turn, degrades fibrin. Inhibition of the

plasminogen system occurs by specific PAIs and by α2-AP at the level of plasmin.

Coagulation factor II or pro-thrombin, once activated
into thrombin, can prime the complement system through
a direct interaction with C5 (25). On the other hand, it
is now clear that complement activation through C5 splits
products and that C5b-9 can trigger the coagulation cascade
promoting tissue factor expression by several cell types, including
monocytes and endothelial cells (26). This positive feedback
loop represents a powerful amplification mechanism of innate
immune system activation.

Tissue factor is emerging as an important player not only
in hemostasis and thrombo-inflammatory diseases but also in

non-coagulant signaling pathways mainly through the family of
G-protein-coupled receptors PARs (27).

Thrombin, other than having a key role in coagulation
cascade, modulates immune and non-immune cell functions
interacting with PARs (28). These seven transmembrane domains
proteins are activated by a peculiar proteolytic mechanism.
The protease cleaves the N terminal extracellular domain of
the receptor, leading to the exposure of a tethered ligand that
interact with the extracellular loop 2 domain and initiate receptor
signaling. Thrombin can activate PAR-1, PAR-3, and PAR-4 (29).
Interestingly, thrombin is not the only coagulation factor that
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can interact with PARs. Indeed, coagulation factors VIIa and
Xa are known activators of PAR-2 (28). PARs are expressed by
several immune cells, thus representing the main link between
coagulation and innate immunity (30), and their expression levels
have been described as implicated in the pathogenesis of several
kidney diseases (31).

Through their activation, coagulation factors may play a
central role in promoting the release of pro-inflammatory
cytokines and chemokines from different cell types including
dendritic cells, monocytes, lymphocytes (32–34), endothelial cells
(35, 36), glomerular mesangial cells, pericytes, and epithelial cells
(37) participating in the modulation of the innate and adaptive
arms of immune response. It has been recently demonstrated
that interleukin (IL)-1α is directly activated by thrombin pointing
the importance of this pathway not only for normal physiology
but also in the pathogenesis of inflammatory and thrombotic
diseases (38). Similarly, several factors in the coagulation and
fibrinolytic pathways can trigger either proinflammatory or anti-
inflammatory host responses.

Coagulation and intravascular thrombus growth in vivo can be
induced by neutrophil-derived serine proteases and nucleosomes
(39). Neutrophil serine proteases play an important role as
regulators of cell signaling and immune response, in particular
against microbial threats (40). Interestingly, neutrophils produce
a pool of FXII, functionally distinct from hepatic-derived
FXII, specifically involved into neutrophil trafficking at sites
of inflammation, through urokinase plasminogen activator
(uPA) receptor (uPAR) and Akt signaling (41). FXIIa-induced
neutrophil activation is also involved in macrophage polarization
and induces T-cell differentiation, all contributing to host defense
against pathogens (42).

COAGULATION CASCADE AND
ISCHEMIA/REPERFUSION INJURY

The coagulation system activation has been suggested to play
a significant role in several pathologic processes involving
the kidney graft such as the early posttransplant period
(43). In this first phase, the main issue is represented by
the exposure of the graft to ischemia and a subsequent
reperfusion. It is well known that ischemia/reperfusion injury
is a leading cause of acute kidney injury (AKI) (44). In
the setting of kidney transplantation, the graft experiences
a prolonged cold ischemia after harvesting and brief warm
ischemia followed by reperfusion during the transplantation
procedure. The tissue damage featuring ischemia/reperfusion in
renal transplant recipient is represented by tubular cell apoptosis
and interstitial inflammation, a pathogenic event underlying an
early posttransplant form of AKI known as delayed graft function
(DGF) (45). This early posttransplant event, complicating
between 15 and 30% of kidney transplantations, does not only
represent a delay in graft function recovery but dramatically
influences the long-term outcome of the transplanted organs.
Indeed, there are several evidences that grafts experiencing DGF
present a significantly lower survival (46); thus, prevention of
DGF might significantly improve the long-term outcome of
kidney grafts.

The key role of innate immunity in transplant-associated
ischemia/reperfusion damage leading to DGF is clearly suggested
by the strong expression of pro-inflammatory mediators,
cytokines, and chemokines and by the priming of the coagulation
cascade leading to monocyte–macrophage recruitment and
interstitial infiltration (47–49). The coagulation cascade is
strongly activated at the time of transplantation mainly owing
to the induced vascular expression of tissue factor after
ischemia/reperfusion (50). Damage of blood vessels induces the
formation of tissue factor-activated factor VII, which, in turn,
activates factor X and ultimately activates factor II (prothrombin)
to IIa (thrombin).

There are several direct and indirect evidences that suggest the
activation of coagulation at this stage as a key potential mediator
in determining graft quality and outcome (37, 51).

Thrombin, locally released, may contribute to inflammation
by the stimulation of PARs expressed by several resident
cells including endothelial, tubular epithelial, and mesangial
cells with the subsequent activation of signaling pathways
leading to the production of cytokines and growth factors
(52). Akt-mammalian target of rapamycin-S6k and NF-kB-
inducing kinase (NIK)-NF-kB axis are two signaling pathways
regulating cell survival and inflammation. The activation of
both Akt and NIK-NF-kB signaling was detected in graft
biopsies from DGF patients and were both triggered by
thrombin in cultured proximal tubular cells, inducing a nuclear
translocation of the active form of Akt and a time-dependent
increase of NIK phosphorylation (53). Activated Akt is able to
phosphorylate several substrates in the cytoplasm and nucleus.
In transplantation, Akt-mTOR-p70S6k pathway is inhibited by
rapamycin. Indeed, the use of this treatment is associated with
prolonged period of DGF (54). On the other hand, NF-kB
induces several genes involved in inflammatory response (55). In
addition, the simultaneous activation of these two keys signaling
pathways in a pig model of ischemia/reperfusion injury and
in human biopsies from DGF correlated with tubulointerstitial
and glomerular fibrin deposition in both cases (53). Besides
participating in the activation of innate immunity featuring
ischemia/reperfusion injury underlying DGF, the activation of
the coagulation system in this setting might represent a pivotal
element in the priming of the adaptive alloimmune response.
Indeed, infiltrating dendritic cells during DGF express PAR-1 and
are localized in the proximity of fibrin and C3 deposits (56).
In vitro PAR-1 activation on dendritic cells caused a significant
upregulation of C3 and complement receptor expression. In
addition, thrombin caused a marked reduction of IL-10 mRNA
abundance and an increase of IL-12/IL-17 p40 gene expression
and promoted C3a ability to increase IL-12/IL17 mRNA
abundance. These changes can influence dendritic cells ability to
induce interferon-γ production by T cells, thus suggesting the
activation of a T helper-1 bias (56).

Another factor associated with renal damage after kidney
transplantation is increased tissue factor expression. Tissue factor
is one of the main activators of the coagulation system; it is a
membrane component of many cells and is released in blood
plasma after a cell damage. It has been recently demonstrated
that recipients with postoperative complications had much
higher concentrations of tissue factor in renal vein in the first
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minute during reperfusion, which may be associated with kidney
damage (57).

Altogether, these data strongly support the strict correlation
between the signaling pathways activated by coagulation factors
in resident and infiltrating cells and the ischemia/reperfusion
damage. Thus, the coagulation cascade might represent a
potential therapeutic target to reduce ischemia/reperfusion-
induced injury in the attempt to lessen the incidence of DGF.

COAGULATION CASCADE AND CHRONIC
REJECTION

Interstitial activation of the coagulation cascade is also a common
feature of tubular-interstitial nephritis and in particular of renal
graft rejection. Chronic allograft rejection is the final common
pathway of progressive graft injury and is characterized by
interstitial fibrosis and tubular atrophy along with a variable
degree of chronic glomerular changes, and this condition is
associated with both glomerular and interstitial fibrin deposition
(58). Fibrin is known to induce migration and proliferation
of the major cell types involved in interstitial fibrosis, such
as macrophages and vascular smooth muscle cells (59, 60). In
addition, PAR-1 expression is significantly increased at both the
glomerular and tubular levels in chronic graft rejection, clearly
suggesting that thrombinmay significantlymodulate resident cell
activation in this setting (58).

Following kidney transplantation, microvascular thrombi
along with endothelial dysfunction and fibrin deposition in the
kidney graft were recognized as a challenging cause of graft
dysfunction, particularly for highly sensitized kidney transplant
recipients. Indeed, in these patients, the activation of endothelial
cells by the involvement of both complement and coagulation
pathways is a response to human leukocyte antigen (HLA)
antibodies (61).

In vitro study suggests that incubation with specific anti-
HLA antibody against a line of human umbilical endothelial
cells induces upregulation of tissue factor expression and activity,
defining a role in direct initiation of coagulation by HLA
antibody binding (62). Yamakuchi et al. have shown that, both
in vitro and in vivo, anti-HLA antibody induces endothelial
cell exocytosis and, in turn, an increased expression of von
Willebrand factor (vWF) (63).

Increasing evidence underlie that in response to HLA
antibodies, both complement and coagulation cascades can be
activated (20, 61); however, traditional views of HLA antibodies
have focused on the initiation of complement, and studies
relating to the initiation of coagulation by HLA antibody
activation are still limited. Understanding the complexities of
these interactions remains a challenge especially within the scope
of intervention.

THE FIBRINOLYTIC SYSTEM IN INNATE
IMMUNITY

The fibrinolytic system removes fibrin from the vascular system,
preventing clots from occluding the vessel. The activation of the

fibrinolytic system is controlled by coagulation itself. Activation
of the fibrinolytic system depends mainly upon uPA and tissue-
type plasminogen activator (tPA) that catalyze the proteolysis
of plasminogen into plasmin, which, in turn, degrades fibrin,
preventing its extracellular deposition (Figure 1). uPA and tPA,
with the glycosylphosphatidylinositol (GPI)-linked uPAR, are
expressed by a variety of cells of hematopoietic origin and
are upregulated during infections and inflammation (64). The
interaction between the plasminogen and complement systems
at sites of tissue injury represents an important bridge between
innate and adaptive immunity (65). Indeed, the activating effect
of plasmin on complement cascade both in vitro and in vivo is
well known (66).

The plasminogen system is also important for tissue
remodeling, in particular through its specific endogenous
inhibitor plasminogen activator inhibitor-type 1, PAI-1.
Inhibition of the plasminogen system occurs by specific PAIs
and by α2-antiplasmin (AP) at the level of plasmin (Figure 1).
PAI-1 is not expressed in the healthy kidney (67). In contrast,
its expression is significantly increased in several primary and
secondary glomerulonephritis, and several evidences suggest
a key role for this protease inhibitor in the progression of
renal damage in this setting (68). In particular, PAI-1 may play
an inhibitor effect also on different proteases involved in the
degradation of extracellular matrix, including metalloproteases,
thus promoting tissue fibrosis.

FIBRINOLYSIS ACTIVATION IN KIDNEY
TRANSPLANTATION

The key role of fibrinolytic system is to dissolve blood clots.
Plasmin is converted in the active form from plasminogen by
the action of tPA. Fibrinolysis deficiency often occurs not only
in hemodialyzed patients (69) but also in kidney transplant
recipients. The association between fibrinolytic decrease and
impaired renal function would be supported by the observation
that successful renal transplantation is characterized by an
improved fibrinolysis (70), although transplant patients continue
to present hypofibrinolysis, which, however, unlike in dialysis
patients, is secondary to a rise in PAI-1 (71). A role in the increase
of the plasma levels of PAI-I in transplant patients is, indeed,
played by the immunosuppressive therapy and in particular
by corticosteroids and cyclosporine, in addition to the effects
of metabolic disorders featuring transplant recipients, such as
insulin resistance or dyslipoproteinemia (71).

Fibrinolysis activation can be influenced by the cause of
cadaveric kidney donors’ death. Zietek et al. demonstrated that
organ donors who had injured death, such as road traffic injury,
were characterized by an intensive activation of fibrinolytic
process when compared with non-injured donors, which showed
instead intensive activation of blood coagulation (72). This
observation suggests that injured donors have a lower risk
of microthrombi and fibrin deposits than non-injured donors;
however, the clinical importance of this observation and the effect
on the outcome of the graft are still unknown.
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Renal ischemia/reperfusion injury leading to DGF is
characterized by an increased expression of uPA and uPAR
(73). uPAR plasma concentrations in kidney allograft recipients
have been demonstrated to be significantly and negatively
correlated with graft function in deceased-donor renal transplant
recipients (74). uPAR plays an important role in the structure and
function of the renal filtration barrier (75); thus, its upregulation
is responsible of proteinuria (72). It has also been demonstrated
that tPA regulates renal neutrophil influx in kidney ischemia
and reperfusion injury (76), and recent evidences propose
a proinflammatory role for postischemic tPA release (77).
However, further and larger clinical investigations are needed.

Glomerular and interstitial fibrin deposition observed in
chronic renal allograft failure is caused by, other than
the pro-fibrotic effect of thrombin, a dysregulation of the
plasminogen/plasmin system that results in a subsequent
inhibition of fibrinolysis (78). Corticosteroids may induce PAI-1
expression in tubular cells in vitro and in vivo in chronic renal
graft failure (58). Thrombin itself can induce at the tubular
and endothelial levels PAI-1 gene and protein expression (13).
Immunosuppressive therapy can significantly influence these
events. Indeed, rapamycin, an mTOR inhibitor, has a beneficial
effect on chronic graft injury progression because patients
converted from calcineurin inhibitors to rapamycin present a
significant reduction in the progression of interstitial fibrosis
and glomerulosclerosis (79). Interestingly, in these patients, the
introduction of rapamycin significantly reduced glomerular and
tubulointerstitial expression of PAI-1. In vitro data demonstrate
that rapamycin reduced PAI-1 expression induced by both
thrombin and CD40L in proximal tubular cells (79).

TARGETING COAGULATION FACTORS TO
LIMIT THE ACTIVATION OF INNATE
IMMUNITY

A potential limit in the use of activated coagulation factors as
therapeutic targets to limit the activation of the innate immunity
is represented by their persistence within the fibrin clots where
they are usually protected from the majority of their soluble
natural or synthetic inhibitors. The fibrin deposition due to the
activation of the coagulation system is in fact under the tight
control of fibrinolysis, a highly regulated enzymatic process that
prevents accumulation of intravascular fibrin (80).

Several animal models have been used to demonstrate
the specific effect of coagulation inhibition on the graft
outcome. In a porcine preclinical model of renal auto-
transplantation, peri-transplantation treatment with an anti-
factor Xa compound protected kidney grafts, improving
functional recovery and reducing chronic lesions (81). The
same authors demonstrated in this animal model the benefits
of a preservation anticoagulation therapy using a specific and
effective dual-molecule anti-coagulation factors Xa/IIa, which
was able to protect the kidney by reducing thrombin generation

with subsequent early functional recovery and decreased chronic
lesions (82). These results opened the way to the potential
therapeutic benefits of the use of anticoagulation in the
reperfusion solutions, an approach that may significantly limit
the potential side effects due to inhibition of the coagulation
system in a surgical setting. Although phase I human studies
have been conducted on these synthetic anticoagulants with a
dual mechanism of action (83), their use in the clinical practice
needs to be further investigated. One approach to possibly
improve outcomes after transplantation is the use of C1 inhibitor,
a serum protease inhibitor (serpin) that binds covalently and
inactivates C1r, C1s, and mannan-binding protein blocks. Other
than the classical and lectin pathways of complement activation,
C1 inhibitor also inhibits the contact, coagulation, and kinin
systems (84). It has been demonstrated in some trials and studies
in kidney transplant recipients that C1 inhibitor treatment may
reduce ischemia/reperfusion injury and DGF (85); however,
small patient numbers are included in these studies, most
results are from single centers, and differences in study design
preclude meta-analyses.

CONCLUDING REMARKS

There is an increasing body of evidence that suggests that the
activation of the coagulation system is associated with several
pathological conditions of the graft and that it is invariably
associated with a significant activation of the innate branch
of the immune system also through a complex interaction
with the complement proteolytic cascade. This activation plays
a key part in the pathogenesis of the progression of graft
injuries independently of their etiology. It is conceivable that
in this setting coagulation cascade activation might mediate the
activation of the innate immune system and might be involved,
through its effects on dendritic cells, in the amplification of
alloantigen-specific adaptive response. Thus, coagulation might
be considered a potential therapeutic target to modulate innate
immunity and to prevent progressive graft damage. Ideally,
the inhibition of coagulation activation or of its downstream
cellular effects should be associated with the inhibition of the
harmful effects of the complement cascade priming. Targeting
the common checkpoints shared by the two proteolytic systems
might represent a promising therapeutic approach to reduce the
activation of the innate immune system in kidney transplantation
and reduce its deleterious consequences on graft function
and survival.
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