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Abstract: Cell microencapsulation and subsequent transplantation of the microencapsulated cells 

require multidisciplinary approaches. Physical, chemical, biological, engineering, and medical 

expertise has to be combined. Several natural and synthetic polymeric materials and different 

technologies have been reported for the preparation of hydrogels, which are suitable to protect 

cells by microencapsulation. However, owing to the frequent lack of adequate characterization of 

the hydrogels and their components as well as incomplete description of the technology, many 

results of in vitro and in vivo studies appear contradictory or cannot reliably be reproduced. This 

review addresses the state of the art in cell microencapsulation with special focus on 

microencapsulated cells intended for xenotransplantation cell therapies. The choice of materials, 

the design and fabrication of the microspheres, as well as the conditions to be met during the cell 

microencapsulation process, are summarized and discussed prior to presenting research results of 

in vitro and in vivo studies. Overall, this review will serve to sensitize medically educated 

specialists for materials and technological aspects of cell microencapsulation. 

Keywords: Cell microencapsulation, hydrogels, mechanical resistance, permeability, 

biocompatibility, xenotransplantation. 

Abbreviations: Alg-CS, alginate-cellulose sulfate; APA, alginate-poly(L-lysine)-alginate 

capsules; Ca-alg, calcium alginate; cryo-SEM, cryo-scanning electron microscopy; DDA, degree 

of deacetylation; ECM, extra-cellular matrix; FGF-1, heparin-binding growth factor 1; G, α-L-

guluronic acid; HPC, hydroxypropyl cellulose; IL, interleukin; ISEC, inverse size-exclusion 
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chromatography; LCST, lower critical solution temperature; M, D-mannuronic acid; MWCO, 

molecular weight cut-off; Na-alg, sodium alginate; NICCs, neonatal pig islet-like cell clusters; 

PEG, poly(ethylene glycol); PLL, poly(L-lysine); PLO, poly(L-ornithine); PMCG, 

poly(methylene-co-guanidine); PNIPAA, poly(N-isopropylacrylamide); PNVIBA, poly(N-

vinylisobutyramide); RGD, arginylglycylaspartic acid; TNF, tumor necrosis factor; UCST, upper 

critical solution temperature; VEGF, vascular endothelial growth factor;  
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Introduction 

Cell-based therapy is an attractive approach to treat several end-stage diseases. The Food and 

Drug Administration (FDA) defines cell-based therapy as “the prevention, treatment, cure or 

mitigation of diseases or injuries in humans by the administration of autologous, allogeneic or 

xenogeneic cells that have been manipulated or altered ex vivo" [1]. While the whole-organ 

transplantation is limited by the shortage of donors and the need of major surgery, cell-based 

therapy could overcome both obstacles. Indeed, xenotransplantation will offer an inexhaustible 

source of cells, and these cells could be delivered near the target site using non-invasive 

procedures.  

In spite of the enormous potential of such approach, progress in the field of cell-based therapy 

has been hampered for several reasons, in particular due to issues of maintaining cell viability 

and of the identification of "non-self" cells by the immune system causing transplant rejection. 

Although better patient and transplant survival rates are achievable by the administration of 

immunosuppressive treatment, major challenges such as adverse effects associated with these 

drugs and the risks of long-term immunosuppression are still to be overcome.  

The immobilization of cells within a hydrogel material has been identified as efficient strategy to 

provide mechanical and immune protection to the cells, and to maintain their viability and 

metabolic functionality for subsequent therapeutic applications [2-3]. Successful applications 
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undoubtedly require a multidisciplinary input from materials scientists, chemists, biologists, 

engineers, and surgeons.  

The focus of the present review will be on cell microencapsulation, even though the 

immobilization and protection of cells is achievable also by other techniques such as 

immobilization in films, extravascular chambers or in hollow fibers. This review provides an 

overview of suitable materials under study for cell microencapsulation and discusses the special 

features of the technologies applied so far. The paper is mainly addressed to medically educated 

readers working on developing therapies that rely on hydrogels. The selection of suitable 

material, the design and preparation of spherical hydrogels, as well as the main requirements to 

be fulfilled during the cell immobilization process are summarized and discussed. Recent trials 

towards transplantation of xenogeneic microencapsulated cells in order to treat congenital or 

acquired hormone/enzyme deficiencies as well as degenerative/inflammatory diseases complete 

this review. 

 

Cell microencapsulation 

Microencapsulation denotes the physical entrapment of a gas, liquid, or solid within a 

surrounding material with dimensions in the micrometer range. It has gained interest in domains 

such as agriculture, food, cosmetics, construction, and analytics. Microencapsulation also 

includes the entrapment of biologically active substances such as cells, tissue, enzymes, bacteria, 
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or DNA. For such applications, the term bioencapsulation is frequently used. An ambitious 

challenge in bioencapsulation is cell microencapsulation, which denotes the entrapment of cells 

while maintaining their viability and metabolic functionality (Figure 1). 

Cell immobilization in polymer-based hydrogels was first proposed in 1933 by Bisceglie [4], who 

demonstrated that insulin-producing cells remained viable and metabolically active after 

immobilization. Three decades later, Chang proposed the use of semi-permeable membranes as 

immune-isolating devices, and introduced the term “artificial cells” to define the concept of cell 

microencapsulation [5]. As shown in Fig. 1, cell microencapsulation offers protection against 

mechanical stress or deteriorating environmental effects. The surrounding hydrogel allows for 

bidirectional diffusion of molecules essential for cell metabolism such as oxygen and nutrients, 

and the release of metabolic products. Simultaneously, the passage of immune cells and 

antibodies is restricted, giving rise to an immunoprotection for the encapsulated cells. Therapies 

relying on microencapsulated cells could therefore result in the reduction or even avoidance of 

the administration of immunosuppressive drugs on the one hand, and on the other hand permit the 

transplantation of nonhuman cells, which is a promising alternative considering the limited 

availability of donor organs [6-7]. The therapeutic potential of the transplantation of 

microencapsulated cells has been reported for the treatment of a variety of diseases, including 

liver failure [8-10], renal failure [11-13], cancer [14], and diabetes mellitus [15-18]. 
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Hydrogels for cell microencapsulation 

Since the pioneering work of Wichterle on cross-linked poly(hydroxyethyl methacrylate) [19], 

hydrogels have been of great interest to biomaterial scientists [20-24]. Hydrogels consist of a 

three-dimensional network of natural [25] or synthetic [26] polymer chains. Due to their high 

water content, hydrogels have been recognized to meet the requirements for bioencapsulation 

[27-30]. The cross-linking mechanism determines their classification as physical or chemical 

hydrogels. Hydrogels are called “physical” or “reversible” if the networks are held together by 

physical forces only. Chemical hydrogels, also referred to as “permanent”, are obtained when 

polymers having reactive groups link together via covalent bonds. Hydrogels used for cell 

microencapsulation are hereinafter designated as microspheres, which is a generic name that 

refers to the size and shape of the materials. According to other classifications of microspheres, 

which take into account the physical structure of the hydrogel, microspheres are called 

microbeads if the hydrogel is radially homogeneous. Contrary, the term microcapsule is used if 

the microsphere is radially heterogeneous, for example, if a microbead was additionally coated 

with other polymers or if hydrogel surrounds a liquid core. 

 

Physical hydrogels 

Physically cross-linked hydrogels possess physical junction domains associated with chain 

entanglements, ionic or hydrogen bonding, and hydrophobic interactions [31-36]. The interest in 
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these physical hydrogels is obvious since they are easily obtainable in a one-step process while 

avoiding the use of cross-linking agents. Only physical hydrogels obtained via ionic bonding or 

induced by temperature change are discussed herein. 

 

Physical hydrogels by ionic bonding. The principle of preparing physical hydrogels via ionic 

bonding is schematically represented in Fig. 2. First, when a polyelectrolyte (polymer bearing 

many positive or negative charges) interacts with multivalent ions of the opposite charge, it may 

form a physical hydrogel known as “ionotropic” hydrogel. Second, when polyelectrolytes of 

opposite charges are mixed, they may gel depending on their polymer backbone constitution, 

concentrations, the ionic strength, as well as the pH of the solution. The products of such 

polyanion/polycation interactions are known as complex coacervates, polyelectrolyte complexes, 

or simplexes. A polyanion was selected in Fig. 2 as example to demonstrate the principle. The 

complexation of polycations is achievable similarly. 

 

A description of polymers that have been explored in terms of their ability to form physical 

hydrogels via ionic bonding is presented below. 

Sodium alginate. The designation sodium alginate (Na-alg) does not refer to a unique polymer 

structure but to a variety of polymers, which are composed of the same two monomeric units, β-

D-mannuronic acid (M) and α-L-guluronic acid (G), but arranged in different linear sequences 
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[37, 38]. As shown in Fig. 3, the monomeric units can be arranged as blocks of different lengths 

or randomly alternated in the polymer chains. Due to the advantageous gelling properties in 

contact with divalent cations, the Na-alg family is the most frequently used polymeric material 

for cell microencapsulation. However, the properties of alg-based hydrogels are very sensitive to 

the nature of the Na-alg and the preparation conditions. Consequently, the knowledge of the 

molecular and macromolecular characteristics of Na-alg is crucial for the production of defined 

hydrogels. Fig. 4 summarizes characteristics of Na-alg that influence the properties of alg-based 

hydrogels. 

The chemical composition of Na-alg has an impact on the stability and permeability of the alg-

based hydrogels [38-40], attributed to ionic bonding between G units and divalent cations, 

referred to as the egg-box model [41]. The importance of the G units is highlighted by the fact 

that the strength of alg-based hydrogels is directly related to the total content of G units and the 

average length of the G blocks in Na-alg [42]. Furthermore, it has been demonstrated that 

calcium alginate beads (Ca-alg) prepared from Na-alg with high G content are more permeable 

and exhibit less water uptake compared to Ca-alg prepared from Na-alg with high M content 

[43]. The composition-biocompatibility relationship, however, is still a matter of controversy. 

Some studies reported that Na-alg with a high content of M evoke an inflammatory response by 

stimulating monocytes to produce cytokines such as interleukin IL-1, IL-6 and TNF [44]. 
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Moreover, antibodies were found when high-M alg-based hydrogels were transplanted, but not in 

the case of high-G alg materials [45]. In contrast, other studies claim high-G alg-based hydrogels 

to be associated with more severe cell overgrowth [46]. In addition to the composition, the purity 

of the Na-alg cannot be neglected [47]. There is a consensus that in vitro and in vivo studies have 

to be conducted using highly purified Na-alg, free of endotoxin, proteins, and polyphenols. 

The molar mass of the Na-alg and the concentration of its solution are further important 

parameters. Na-alg is available with molar mass in the range of 50 to 3000 kg/mol [48, 49]. The 

viscosity of a Na-alg solution increases with both the molar mass and the concentration of Na-

alg. Therefore, a compromise between the molar mass of Na-alg and its concentration is needed 

to adapt the viscosity of the solution to a specific application in terms of cell type and technology. 

A selection of applications of Na-alg-based physical hydrogels is listed in Table 1. 

In spite of favorable properties, alg-based physical hydrogels suffer from drawbacks such as 

limited mechanical stability, insufficient durability, and too high permeability. They are dissolved 

when chelators such as phosphate, lactate, citrate and non-gelling cations are present above a 

certain concentration [62]. To overcome such problems, subsequent coating of the initially 

formed hydrogels with polycations to form a polyanion-polycation complex has been proposed. 

Poly(L-lysine) (PLL), poly(L-ornithine) (PLO), and chitosan are the main polycations that have 

been suggested for the coating of alg-based hydrogels. A final layer of Na-alg is needed to 

neutralize the excess of positive charges, to turn the surface charge into negative, and thus to 
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avoid biocompatibility problems caused primarily by attachment of proteins to a surface with 

positive charges. 

 

Poly(L-lysine) and poly(L-ornithine). Since the first transplantation of islets of Langerhans 

microencapsulated in alg-based hydrogel coated with PLL was published [63], the application of 

PLL as coating material for alg-based hydrogels has been widely reported. Typically, the 

alginate-poly(L-lysine)-alginate (APA) microcapsule comprises three main components: a core of 

Ca-alg surrounded by an alginate-PLL complex and an outer coating of Na-alg. The coating 

reinforces the mechanical resistance of Ca-alg and allows for controlling the permeability. The 

surrounding polyanion-polycation complex reduces the osmotic swelling and thus stabilizes the 

microcapsule size. Numerous studies using APA to encapsulate cells have been reported [64-70]. 

Despite improvement of the physical properties of alg hydrogels upon coating with PLL, the 

immunological response upon transplantation of APA remains a major challenge. A multitude of 

studies have demonstrated that Ca-alg is better tolerated in vivo than polycation-coated 

microcapsules [71-73]. The proposed mechanism involves the adhesion of proteins to the surface 

of the hydrogel when this latter is exposed to blood, plasma or peritoneal fluid. This adhesion 

initiates the reactive protein cascades and serves as cellular anchor [74-78]. To overcome these 

biocompatibility issues, different methods have been proposed to reduce the protein adsorption to 

the surface of APA. For instance, grafting biocompatible poly(ethylene glycol) (PEG) pendent 
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chains [79-81],  optimizing the APA composition [82] and size [83], or using epimerized Na-alg 

[84] were reported. 

Other efforts were directed towards exploring the suitability of other polycations as coating 

materials. It has been suggested that using PLO has advantages compared to the use of PLL [85-

87]. PLO is more hydrophilic than PLL due to the difference in the chemical structure, as shown 

in Fig. 5. PLO binds more efficiently to the surface of Ca-alg, which in turn has a positive impact 

on the physical properties of the microspheres. Microspheres coated with PLO exhibited higher 

hydrophilicity, improved mechanical properties, and superior resistance to swelling and damage 

under osmotic stress [88, 89]. In terms of biocompatibility, however, the suitability of using PLO 

instead of PLL is still controversial. Likewise PLL, the immunological response to PLO 

containing microcapsules was reduced by PEGylation of the outer layer [90]. While some studies 

claim that promising results are obtained when replacing PLL by PLO [91-93], others suggest 

that PLL remains the best option [94, 95].  

 

Chitosan. Chitosan is a linear polysaccharide consisting of randomly distributed β(1→4) linked 

D-glucosamine and N-acetyl-D-glucosamine units, as illustrated in Fig. 6. The cationic properties 

of chitosan depend on the degree of deacetylation (DDA), which is the fraction of glucosamine 

units. The molar mass depends on the source and isolation procedure, and it can reach values up 
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to 500 kg/mol. Lower molar masses and oligomers are obtained by chain degradation [96]. 

Chitosan is a non-permanently charged cationic polyelectrolyte. Its charge density and solubility 

strongly depend on the DDA and pH. With a pKa value of approximately 6.5, chitosan is 

positively charged and soluble in acidic to neutral media, only if the DDA exceeds 60%. 

Exceptions are oligomers. 

Similarly to PLL and PLO, chitosan has been applied to coat Ca-alg or Ba-alg [97]. However, 

microspheres with a Ca-alg core covered by an alginate-chitosan complex membrane can also be 

made in a one-stage process by dropping Na-alg into an aqueous solution containing chitosan and 

calcium ions [98]. The opposite process, dropping chitosan and Ca
2+ 

solutions into Na-alg yields 

microspheres with a chitosan core and a chitosan-alginate membrane [99]. The stability, 

permeability, and biocompatibility of alg-chitosan microcapsules were intensely studied [100-

106]. Several cell types were successfully encapsulated in alg-chitosan microspheres including 

islets of Langerhans [107, 108], hepatocytes [109-114], and mesenchymal stem cells [115, 116]. 

 

Sodium cellulose sulfate and poly(methylene-co-guanidine). Alginate-cellulose sulfate-

poly(methylene-co-guanidine) microcapsules (alg-CS/PMCG) are prepared by a two steps 

process. First, a polyanion blend of Na-alg and CS is gelled in the presence of calcium ions. 

Second, a membrane is formed via the addition of PMCG. It was demonstrated that both 

mechanical resistance and permeability of alg-CS/PMCG are tunable by changing the ratio of Na-
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alg/CS in the polyanion blend and the chemical composition [117-119]. A subsequent coating 

with lower molar mass Na-alg allowed adjusting the permeability over a wide range, suitable for 

cell microencapsulation and immunoprotection, without compromising the durability of the 

microspheres. A number of studies using alg-CS/PMCG microcapsules were published [120-

125]. However, the in vivo biocompatibility remains a major issue. Indeed, when a human whole 

blood model was used to assess the inflammatory properties of alg-CS/PMCG microspheres, they 

have triggered complement and leukocyte activation over time, although they were still less 

activating than PLL-containing microcapsules [71]. 

 

Physical hydrogel by temperature-response. The preparation of temperature-responding 

hydrogels is emerging as a promising tool for various biomedical applications [126], including 

cell microencapsulation. Such hydrogels are obtained from polymers that respond to temperature 

change and undergo a sol-gel transition [127, 128]. Derivatives of methylcellulose [129], 

chitosan [130], hydroxypropyl cellulose (HPC) [131], poly(N-vinylisobutyramide) (PNVIBA) 

[132], and poly(N-isopropylacrylamide) (PNIPAAm) [133-136] have been reported to exhibit 

gelation upon temperature change. The latter is a very attractive temperature-responsive polymer 

since it exhibits a sharp sol-gel transition in water at 34.3°C. Thus injecting a polymer solution 

prepared at room temperature (rt) can lead in situ to the formation of hydrogels at 37°C. 
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Moreover, the formation of hydrogels from PNIPAAm is tunable by changing the preparation 

conditions [137-139]. 

 

Chemical hydrogels 

Chemical hydrogels are mostly applied in cell microencapsulation when high mechanical 

resistance and long-term durability are required. For this purpose, several combinations of 

polymers and preparation conditions have been tested in regards to their suitability to encapsulate 

cells within chemical hydrogels. However, only a limited number of combinations have been 

identified for this purpose. Table 2 lists some examples that have been used to immobilize cells. 

Numerous criteria must be considered when designing a chemical hydrogel for cell 

microencapsulation. The process of hydrogel formation must not negatively influence cell 

integrity and viability and should not involve harsh conditions, toxic solvents and reactants [158]. 

Because cells are suspended in a liquid precursor solution prior to the encapsulation process, the 

choice of precursors is limited to water-soluble components. The aqueous solution must be 

buffered with appropriate osmolality to prevent cell lysis. The rheological properties of the 

precursor solution are crucial to maintain cell viability and cell-cell adhesion during the 

encapsulation process. Mixing cells with highly viscous solutions can lead to a significant 

decrease in cell viability [159]. 
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Hybrid hydrogels 

Novel hydrogel types that combine physical and chemical cross-linking, are being emerging as 

adequate candidates for cell microencapsulation. The physical interactions allow for fast gelation 

and spherical shape formation, while biocompatible covalent cross-linking ensures the 

reinforcement of the hydrogel networks, along with tunable permeability and gel stiffness. 

For the preparation of APA microspheres with covalent cross-linking between adjacent layers, 

PLL was equipped with phenyl azide residues that create covalent bonds with Ca-alg when 

irradiated with UVA [160]. The photo-initiated cross-linking was shown to be cell compatible, 

and yielded stable microspheres up to 3 years in alkaline buffer (pH 12), whereas standard APA 

disappeared within 1 min. Another strategy reported the replacement of the final alginate layer of 

APA capsules by poly(methyl vinyl ether-alt-maleic anhydride) (PMM) and poly(vinyl dimethyl 

azlactone-co-methacrylic acid) (PMV) to form stable covalent amide bonds with PLL, 

neutralizing the polycation layer [161]. 

Further, the involvement of methacrylate polymers into physical microspheres, and subsequent 

covalent cross-linking was reported [162, 163]. It was demonstrated that either cross-linked shells 

or cross-linked cores are obtainable by adjusting the molar mass of the cross-linker. Approaches 

based on chemical cross-linking through complementary reactive groups attached to two 

oppositely charged polyelectrolytes were also investigated [164, 165]. Similarly, microbeads 

were prepared by ionotropic gelation of a combination of Ca-alg and sericin as inner core 
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followed by coating with chitosan and further cross-linking with genipin [166, 167]. This 

combination effectively reduced swelling and physical disintegration of the microspheres induced 

by non-gelling ions and calcium chelating agents. Higher resistance to mechanical shear force 

and improved durability against enzymatic degradation were achieved. The entrapment of vinyl 

sulfone terminated PEG in Ca-alg and subsequent Michael-type cross-linking has been reported. 

The mechanical properties of such hybrid microspheres were adjustable and suitable for cell 

microencapsulation [168-170]. 

Rather than using hydrogels obtained from oppositely charged polyelectrolytes bearing 

complementary reactive groups for chemical cross-linking, one-component hybrid hydrogels are 

also being developed and tested for cell microencapsulation. A one-component system denotes 

hybrid hydrogels prepared from polymers able to form simultaneously both physical and 

chemical links. Such polymers are very often a modified macromolecule or biopolymer. For 

instance, the preparation of hybrid alg-based microspheres was achieved by equipping Na-alg 

with azide-terminated PEG pendent chains [171]. The azide end group forms chemical cross-

links via the Staudinger reaction by incubation in a gelation bath containing phosphine-

functionalized agents. Human pancreatic islets were encapsulated using such systems [172-174]. 

Similarly, Na-alg with thiol end groups was prepared [175, 176]. The modified Na-alg 

maintained the gelling capacity in the presence of calcium ions, while the thiol end groups 

ensured the preparation of a chemically cross-linked network via disulfide bond formation. Being 
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biocompatible, spontaneous, and catalyst free, the formation of disulfide bonds yielded hybrid 

microspheres in a one-step extrusion process under physiological temperature, pH, and 

osmolality. Good survival rate and improved proliferation were obtained upon 

microencapsulation of liver-derived cells within hybrid microspheres [177]. 

Nonetheless, the strategies described above mainly focused on the robustness of the biomaterials 

but other parameters must also be underlined. The lifetime and biocompatibility of encapsulated 

cells should be enhanced to overcome the problem of graft failure [178]. Actually, the survival of 

engrafted cells depends on the cells adhesion to the hydrogel matrix, on the vascularization 

improving the delivery of nutrients, oxygen and metabolites but also on the immune response of 

the host body. For this purpose, hybrid hydrogels containing peptides or proteins were developed. 

Mimicking the ECM, and the covalent incorporation of adhesives ligands such as galactose 

[179], RGD [180], and other types of laminin-derived recognition sequences and collagen type I 

sequence [181] have been reported. Besides these molecules, proteins such as fibrin [182] and 

collagen [183] but also glycoproteins [184] were also encapsulated to enhance cell viability. 

Moreover, the co-encapsulation of vascularization promoting factors such as VEGF [185] and 

FGF-1 [186] promoted the neovascularization by improving the viability of engrafted 

encapsulated islets. Last but not least, co-encapsulation of anti-inflammatory agents such as 

complement receptor 1 sCR1 [187], the chemokine CXCL12 [188] or the drug dexamethasone 

[189] reduced the inflammatory response and thus prolonged the graft survival. Also, anti-
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cytokine agents [190, 191] were covalently attached on the hydrogel matrix sequestrating the pro-

inflammatory cytokines highly expressed in wounded environment. 

 

 

Properties of hydrogel microspheres and their assessment 

In addition to the size and size stability as well as chemical stability, the most important 

characteristics of microspheres, which determine the applicability for subsequent transplantation, 

are their mechanical resistance, permeability, and biocompatibility. The selection of suitable 

methods to assess these parameters is not always a straightforward decision.  
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Mechanical resistance. The mechanical resistance of hydrogel microspheres is not an absolute 

parameter. It can be evaluated by several methods, each of them providing different information. 

One method to assess the mechanical resistance is the osmotic pressure test. The microspheres 

are simply exposed to water [192]. The sudden influx of water causes the microspheres to swell 

and break. A method to study the resistance to mechanical stress is the microsphere shearing test. 

A suspension of microspheres is subjected to a controlled fluid shear [193]. The number of 

broken microspheres as a function of the applied mechanical stress gives an indication of their 

mechanical resistance. Such essays have the advantage of being very simple. However, they have 

limitations: 

1) only qualitative information, restricted quantification; 2) the osmotic pressure test is reliably 

applicable only to physical hydrogels. 
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Contrary, the evaluation of the resistance and deformability of the microspheres under 

compression is considered a quantitative method [194]. A mobile probe compresses the 

microspheres at a defined speed. Microspheres having the same size can be characterized and 

compared by measuring the force corresponding to the rupture of the microsphere, and by 

comparing the mechanical resistance at a given degree of compression [195, 196]. Dependent on 

the equipment sensitivity and the hydrogel stiffness, two methods are commonly used:  

- Each microsphere is individually compressed. The mechanical resistance of 20 to 30 

microspheres needs to be analyzed to obtain statistically meaningful data. 

- A layer of microspheres is compressed. This method is suitable for capsules that burst at low 

force. A narrow size distribution is the prerequisite.  

Although several methods have been proposed to study the mechanical properties of hydrogels, 

only few have focused on measuring the mechanical properties of cell-embedding hydrogels. 

Ahearne et al. reported a non-destructive, online and real-time method that allows measuring the 

mechanical properties of hydrogels with incorporated cells [197]. 

 

Permeability. The ability to deliver metabolic products and therapeutic proteins, but to block the 

diffusion of immune cells and antibodies, is the basis of the use of cell microencapsulation in 

biomedical applications. A defined and controllable permeability is therefore an essential 

prerequisite of hydrogel microspheres intended for transplantation.  
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The permeability of microspheres can be described by the mass transfer or diffusion coefficient 

[198, 199]. It defines the rate of diffusion of a given solute into the hydrogel microsphere. 

Another quantification is the minimum size of a solute, which is completely excluded from the 

hydrogel pores. This is usually referred to as the exclusion limit or molecular weight cut-off 

(MWCO). The determination of solute permeation can be either by diffusion into the 

microspheres (ingress) or from the microspheres (egress). 

Several experimental techniques to assess the permeability of microspheres have been described 

relying on different solute types and monitoring methods for quantifying the chosen solute. These 

include, for example, dextrans and pullulans as solutes and spectroscopy (fluorescence, UV/vis), 

measurement of radioactivity, size exclusion chromatography with concentration-sensitive 

detectors, and protein assay kits as monitoring methods [200, 201].  

An efficient technique that is being used for measuring the permeability is the inverse size-

exclusion chromatography (ISEC) [202, 203]. It has the advantage that the MWCO and its 

distribution can be determined simultaneously. The drawback is that a minimum of 10 mL of 

microspheres is so far needed for each measurement. The optimization of this method to reduce 

the volume of hydrogel microspheres would be a great achievement. 

The hydrogel mesh size, which is the space available between the macromolecular chains, has 

been also used to describe the permeability of hydrogel microspheres. Direct determination of the 

mesh size is achieved by cryo-scanning electron microscopy (cryo-SEM), a technique that images 
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the internal structure of hydrogel microspheres on a nanometer scale [204]. However, the 

manipulation of the hydrogel during freezing is critical. 

 

Biocompatibility. The assessment of the biocompatibility of hydrogel microspheres is a complex 

task due to the multitude of interactions between host body and foreign material and because 

biocompatibility is not simply a property of a material but a property of a biomaterial-host system 

[205]. Biocompatibility issues of microspheres are often connected with their ability to perform 

with an “appropriate host response” in a “specific application” [206]. A biocompatible hydrogel 

is considered to be a system that elicits no or not more than a minimal foreign body reaction. The 

success of cell microencapsulation intended for transplantation strongly depends on minimizing 

this immune response. Upon implantation of microencapsulated cells, the immune response is 

activated by the adsorption of proteins onto the microspheres surface, which will subsequently 

stimulate the recruitment of immune cells [207], and the rejection of the transplant through one of 

the many well-documented pathways [208, 209]. The immune response also elicits fibrosis 

around the hydrogels, which subsequently starves the encapsulated cells by limiting the diffusion 

of nutrients, and limits the efflux of bioactive molecules secreted from the cells [210]. Thus, most 

approaches developed to minimize the immune response to hydrogels are focused on preventing 

protein adsorption and cellular adhesion to the surface of hydrogels through the encapsulation of 

cells into biologically inert hydrogels, or modification of the hydrogel surface with biocompatible 
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materials. Very recently, beads size and shape have shown to influence the immune response of 

the foreign body [211]. It was demonstrated that larger beads (1.5 mm) reduced immune 

reactions and fibrosis in comparison to smaller beads (0.5 mm) when using different materials, 

including alginate in rats and non-human primate models [212].  

In addition to the host reaction, the cell compatibility of the hydrogel is a general 

biocompatibility prerequisite for a successful therapy using microencapsulated cells. Different 

cell types could require different hydrogel properties in terms of stiffness or hydrophobicity. In 

this context, also a minimum of microsphere volume was reported as being advantageous to 

ensure sufficient oxygen supply and to avoid necrosis [92]. This is in contradiction with results 

reported in [212]. 

 

Cell microencapsulation techniques 

Extrusion techniques 

Numerous techniques have been developed for the production of hydrogel microspheres [213, 

214]. Most of them are based on forcing the passage of the cell-containing solution through a 

needle or a nozzle, and its extrusion into a gelation bath. The simplest method comprises dripping 

with only gravitational force as the driving force. This mode is restricted to low-viscous solutions 

and yields hydrogel microspheres with diameters in the range of 1.5 to 3 mm. However, the 

challenge in cell microencapsulation is to produce preferably microspheres with diameters in the 
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range of 100 to 400 µm. Indeed, hydrogel microspheres with such dimensions have the advantage 

of a higher surface-to-volume ratio, exhibiting good transport of nutrients [215]. Subsequently, 

different processes of droplet formation, which is the first step of cell microencapsulation, are 

discussed and schematically shown in Fig. 8. A comprehensive database of different 

encapsulation technologies is available on http://www.genialab.de/WG3/. 

 

Droplet formation by coaxial air-flow. The principle of the coaxial air-flow droplet generator 

[216] is the use of air-flow to separate droplets from a needle or nozzle tip before they fall due to 

gravity into a gelling bath. Surface tension gives the droplets their near-spherical shape. 

Microspheres in the range of 200-1000 µm with good uniformity are obtained. However, the size 

distribution significantly increases for diameters below 400 µm [217]. Reasonable production 

rates are attainable by optimization [218].  

Jet breakage by a vibrating nozzle. Small (<1000 µm) and uniform (< 3 % size deviation) 

microspheres can be obtained by employing the jet-break vibrating technique [219]. The 

technology principle is that a laminar liquid jet breaks up into equally sized droplets by 

superimposed vibration of the nozzle. However, given that the droplet diameter obtained by this 

technique is 2 to 3 times larger than the nozzle diameter, the production of capsules with 

diameters < 400 µm needs extrusion nozzles of 150 µm. Therefore, this technique is not optimal 
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for the microencapsulation of large cells or cell clusters. The high mechanical stress to which the 

cells are exposed might compromise their viability.  

Droplet formation by an electrostatic potential. To obtain small uniform droplets, a high 

electrostatic potential between the needle and the receiving bath can be used [220, 221]. The 

diameter of the droplets can be tailored by controlling the electrostatic pulses [222-224].  

Jet breakage by rotating elements. This technology is especially suitable for the production of 

large batches of microspheres. Droplets are formed by rotating nozzles, a rotating disk or a 

cutting wire [225]. 

 

Emulsion techniques 

Emulsion techniques allow the formation of microspheres with relatively small diameters. The 

aqueous phase (cell-containing solution) is mixed and dispersed in an organic phase. When the 

dispersion reaches equilibrium, gel formation is initiated by cooling or by the addition of a 

gelling agent. Although the emulsion process is advantageous for large-scale production [222-

226], its use for cell microencapsulation is limited due to the broad size distribution generally 

obtained. Further, the use of an organic phase and the significant shear stress during emulsion 

may compromise cell survival [227]. 

 

Microfluidic-based cell encapsulation 
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The recent advances in microfluidics and microlithography provided effective tools to control the 

formation of hydrogel microspheres with desirable shape, size, and size distribution [228-231]. 

Microfluidics allow for the preparation of hydrogels with defined morphology such as Janus 

particles, multi-compartment microspheres and non-spherical microgels [232-239]. Droplets are 

produced when mixing an aqueous precursor solution with an oil phase such as mineral oil, 

silicone oil, corn oil, hexadecane or fluorinated oil [240]. The droplets are further internally 

crosslinked by ionic gelation or by photo-polymerization to obtain cells entrapped in hydrogel 

microspheres [241]. Obviously, the immiscibility of the two phases is a prerequisite to ensure the 

formation of spherical droplets [242, 243]. However, the viscosity of the oil has been identified 

as an important factor controlling the formation of the droplets. The results have shown that 

highly viscous liquids are emulsified into larger droplets with lower polydispersity [244]. As a 

proof of concept, several cell types have been encapsulated within hydrogel microspheres using 

microfluidic droplet formation devices [245-251]. Moreover this technology exhibits ideal 

solution for single cell encapsulation [252, 253]. The production of a sufficient numbers of 

droplets in a short-time period remains a major drawback to be overcome. There is therefore a 

need for scale up studies to adapt this technology for cell microencapsulation [254]. 

 

Conformal polymer coating 
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If the average diameter of a cell aggregate is considered as 150 µm, the total volume of a 450 µm 

diameter microcapsule is 27 times larger. This “dead” volume is an often-overlooked issue that 

can be related to a delayed metabolic response and a slowed diffusion of oxygen and nutrients 

causing cell necrosis, especially at the center of the microsphere. This issue may also represent a 

limiting factor if the transplantation of microencapsulated cells is aimed, as only limited space is 

available at the transplant site. To reduce the microsphere size, depositing a polymer coating 

directly on the surface of a cell was proposed [255]. As shown in Fig. 9, the total volume equals 

the size of the cell aggregate plus the thickness of the coating. The advantages from a mass 

transfer perspective are achieved because of the high ratio of surface to volume. The direct 

deposit of polymer coatings on the surface of cells has been achieved following different 

processes such as emulsification [212], discontinuous gradient density centrifugation [256], 

selective withdrawal [257], or interfacial polymerization [258]. Because of the relatively large 

cell or cell cluster diameter, conformal polymer coating was preferably applied to islets of 

Langerhans, using alginate [259], agarose [260], and PEG [261-263] and different chemical 

strategies were explored to modify covalently the surface of the cells [264]. Polymers such as 

PLL have been applied for conformal coating after conjugation with biocompatible molecules to 

attenuate their toxicity [265-267]. 

 

Cell microencapsulation for xenotransplantation 
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Sites of transplantation 

Different surgical sites have been so far used for the transplantation of encapsulated cells [268, 

269]. Choosing the surgical site is critical to provide capsules proper intimacy with the outside 

environment and graft vascularization. In addition to biological functionality, the ideal site for 

transplantation should be easily accessible for both placement and microcapsule retrieval. 

To accomplish these needs, several studies have investigated the peritoneal site. Indeed, the 

peritoneum is currently considered by several authors a feasible and effective site to implant both 

encapsulated islets and hepatocytes [270-275]. However, it was also shown that the peritoneal 

cavity has less chance to provide sufficient oxygen to microencapsulated cells compared to the 

kidney capsule and muscle [270]. Nonetheless, the peritoneum has shown good results, when 

used as implantation site for encapsulated cells, despite impaired insulin secretion to glucose 

stimuli and progressive loss of function in islet transplantation has been reported. Furthermore it 

has been shown that the capsules are likely to float into the peritoneal cavity with lack of 

engraftment, clot formation and subsequent poor nutrition. On the other hand, the peritoneum 

allows the transplantation of large quantity of tissue and further infusions in case of loss of graft 

function with respect to other sites [276]. In addition, the biocompatibility can be significantly 

improved by using barium-alginate microcapsules [277]. To overcome low oxygen tension, some 

authors proposed the construction of an omental pouch providing a more efficient blood supply 

by capillary neoangiogenesis [278, 279]. Indeed, it was shown that encapsulated islets, 
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transplanted into the omental pouch, are able to restore euglycemia in NOD mice without 

immunocytes infiltration around the capsules [279, 280].  

The portal vein is traditionally used for human islet transplantation and it is now considered the 

standard site to make islets exert their function. Moreover closer contact to the vessels should 

provide efficient nutrition and blood supply. On the other hand the risk of portal vein occlusion 

and the difficult retrieval of the capsules (harboring both islets and hepatocytes) are important 

issues to be solved to optimize this site of implantation [281]. Nevertheless, portal puncture 

during acute liver failure for HT should be balanced as a highly hazardous maneuver due both to 

coagulopathy and the enhanced risk of occlusion in pathologic liver parenchyma.  

Skin and subcutaneous tissue represent the most accessible site for microsphere transplantation 

regarding surgical implantation and retrieval [282]. Lack of blood supply could be improved by 

prevascularization of the site [283]. However, para-physiological conditions for the cells to work 

properly is difficult to obtain in these sites, thus the skin should be used for host-biocompatibility 

and immunoprotection tests. Vascularization could be improved by using the intramuscular site 

to maintain good surgical accessibility and graft monitoring. 

The kidney capsule has been widely used for murine islet transplantation [284, 285]. It provides 

good surgical accessibility and retrievability. However, the volume of encapsulated cells required 

to achieve insulin independence makes this site unconvincing for clinical translation. 
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Sources of cells for xenotransplantation 

The use of porcine cells for xenotransplantation has been intensively studied, in particular for 

islet transplantation [286, 287]. Shin et al. demonstrated that adult porcine islets from pathogen-

free miniature pigs transplanted into immunosuppressed diabetic monkeys induced fast glucose 

levels normalization. In addition, normoglycemia was maintained for more than six months in 

four cases, with no serious advert effects resulting from the transplantation [288]. Several reports 

highlighted the advantages to use neonatal pig islet-like cell clusters (NICCs) instead of adult pig 

cells. In particular, NICCs are easily digested and purified, show low level of T-cell response and 

high resistance to ischemia and inflammation [289]. Optimal functionality was observed after 12 

days of culture [290] and tolerance to xenotransplantation of NICCs can be improved by 

treatment with expanded regulatory T cells or molecules targeting innate immunity [291]. The 

ideal age at which these cell clusters should be isolated from porcine donors was established to be 

during the first month of life, with slight advantages for pigs within the first week of life [292]. 

Pig-to-monkey islet xenotransplantation was also attempted from adult genetically engineered 

pigs to overcome the metabolic and immunological barriers between species. However, the multi-

transgenic islet grafts did not show consistent long-term functionality for several months [293]. 

The use of pig cells was also investigated in the context of xenotransplantation for the treatment 

of acute liver-failure [294]. Alginate encapsulated re-aggregated neonatal pig liver cells 

demonstrated promising efficacy for the treatment of mice with acute liver failure. In addition, 
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coating of the capsules with chitosan resulted in a reduction of the attachment of macrophages 

[295]. Recently, No et al reported on the development of a method for the tri-culture of three 

types of cells from rats to produce uniformly sized and shaped micro liver tissues. Encapsulated 

in collagen-alginate composites, these cells induced a long-term survival rate of 80% in mice 

with 90% hepatectomy [296]. Other sources of transgenic cells have been investigated. In 

particular, wide-type and transgenic tilapia donors were considered for the harvesting of islet 

cells [297, 298]. Transplantation of alginate encapsulated tilapia islets into diabetic mice resulted 

in long-term (up to 210 days) metabolic control but required immunosuppressive treatment [299]. 

The significant difference between tilapia insulin and human insulin is nevertheless a strong 

limitation to clinical application of tilapia islets in cell therapy protocols. 

 

Translation of cell microencapsulation into a xenotransplantation cell therapy 

Since the first reports, in the 1980s, of hydrogel encapsulation of islet-β-cells for the treatment of 

type I diabetes mellitus, many studies on animal models addressed the different parameters which 

can improve biocompatibility, stability and functionality of encapsulated cells. Table 4 lists some 

of the animal experiments and pre-clinical studies that evaluated the xenotransplantation of 

encapsulated islets and hepatocytes. 
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The encapsulation of different islet types in Ca- and Ba-alg materials allowed restoring 

normoglycemia in xenogenic settings, without immunosuppression. Similarly, encapsulated 

xenogenic hepatocytes were able to revert acute liver failure in rodent models, in absence of 

immunosuppressive treatment. Despite these encouraging results, the demonstration of effective 

protocols in patient protocols is still very scarce. In 2011, Calafiore et al reported a phase I 

clinical trial testing alginate encapsulated islets, transplanted into the portal vein, in 4 type I 

diabetic patients obtaining transient insulin independence only in one of them, but showing 

safety, feasibility and biocompatibility of alginate capsules in humans [304]. More recently, 

Matsumoto et al published the results from a phase I/IIa xenotransplantation study of APA 

encapsulated neonatal porcine islets in 14 patients with unstable type 1 diabetes [305]. Without 

immunosuppressive treatment, the transplantation was safe and resulted in the reduction of 

unaware hypoglycemia events, but did not result in insulin independence.  

 

Concluding remarks, future directions and open questions  

The Holy Grail for transplant investigators is to avoid the use of immunosuppression. 

Encapsulation of cells and cell clusters could finally lead to this goal by setting up the conditions 

for long-term function cell therapy without the adverse effect of immunosuppressive agents. 

Nonetheless, adequate protection of cells from the immune system could expand the field of 

xenogeneic transplantation. However, despite the recent breakthrough-findings, crucial issues 
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still remain unsolved. Purity and stability of encapsulation materials should be improved to gain 

effective biocompatibility [306]. Highly purified alginate-based materials have brought 

promising results, but capsular overgrowth is still an issue leading to inadequate blood and 

nutrients supply. Conformal coating of cells and cell clusters seems to be one possibility to 

overcome problems of cell malnutrition by reducing the distance between cells and capillaries 

and has shown better quality in terms of immunogenicity. Despite the progress achieved in 

biotechnology, the balance between immunoprotection and nutrition delivery requires further 

attention. Interestingly, necrosis of the central region of the encapsulated cells was identified in 

several studies as the common characteristic for graft failure and thus it was hypothesized that 

poor nutrition and lack of blood supply are the main causes of loss of function other than failure 

in immunoprotection [279]. 

There is no consensus about the ideal site of transplantation. Many reports gave evidence for the 

advantages of intraperitoneal placement of both encapsulated islets and hepatocytes. Peritoneum 

is well surgically accessible but the shortage of nutrition impairs the engraftment of encapsulated 

cells [307, 308]. Moreover the lack of contact with vessels causes a reduced insulin response to 

glucose stimuli for the islets. On the other hand, the omental pouch has shown sufficient 

angiogenesis potential and could be an ideal site for islet transplantation by virtue of direct portal 

delivery. Intraportal infusion has the advantage of providing more accessible blood supply to the 

encapsulated cells but it is affected by the risk of occlusion. Hence, optimization of the 
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microcapsule size is advised in order to avoid unnecessary hydrogel dead-volume. Islet 

encapsulated therapy has been demonstrated to be effective in the treatment of diabetes in rodent 

models and large animals. Feasibility and biocompatibility studies in human beings have recently 

highlighted the potential of this fascinating technology in translational medicine, but effective 

results in patients are still lacking [309]. However, enough evidence has been gathered to justify 

clinical trials, in particular for porcine islet xenotransplantation [310]. The other therapeutic area, 

which might largely benefit from xenotransplantation, is the reversal of acute liver failure. In 

murine models, the engraftment of encapsulated xenogenic hepatocytes brought new advances in 

cell therapy [270, 271]. Xenogeneic sources of hepatocytes should be considered in translational 

protocols given the shortage of liver donors. Further studies in large animal models are required 

to prove the effectiveness of this strategy. However, encapsulated hepatocytes have shown, by 

metabolites de-tossification rate analysis, loss of function within 30 days after transplantation. 

This short-term cell functionality could be acceptable for therapies intending to provide a bridge 

for the native liver to regenerate upon acute failure, but is objectionable for a long-term function 

protocol in order to treat chronic liver diseases. In the near future, cryopreserved 

microencapsulated cells could be stored in a cell therapy bank with the aim to secure large 

quantities for patients. Also for this purpose, alginate-based hydrogels were successfully tested. 

Cryopreservation and re-warming did not negatively affect the function of microencapsulated 
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hepatocytes [311, 312]. In conclusion, while the potential of cell microencapsulation for the 

development of cell therapies has been demonstrated in animal models, long-term studies are still 

scarcely reported. Despite promising results, translating in particular xenotransplantation of 

microencapsulated cells into a therapy will require further multidisciplinary efforts. The final 

success will not least depend on the development of suitable encapsulation materials and 

technologies. 
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Table 1. Selected alg-based physical hydrogels applied for cell microencapsulation 

Divalent 

ions 
Cell type Target Reference 

Ca
2+ 

BMSC
1 

Hepatocytes 

Pig islets 

ADSC
2 

CSP
3 

Treatment of stress urinary incontinence 

Development of bio-artificial liver 

Impact of implantation sites on the biocompatibility 

Study of angiogenic and osteogenic potential of ADSC 

Therapeutic approach for cartilage regeneration 

[50] 

[51] 

[52] 

[53, 54] 

[55] 

Ba
2+ 

Rat islets 

Neuroblastoma 

WJMSC
4
 

Study of islets function in vitro and in vivo 

Cryopreservation of neurospheres by encapsulation 

Optimized microencapsulation of MSC by vibrational nozzle 

[56] 

[57] 

[58] 

Ba
2+
/Ca

2+ Human islets 

ARPE-19
5 

Viability and function after transplantation into diabetic mice. 

In vitro study of encapsulated human retinal pigment epithelial cells 

[59, 60] 

[61] 
1
Bone marrow mesenchymal stem cells; 

2
Adipose-derived stem cells; 

3
Human mesenchymal progenitor cells 

from the subchondral bone marrow; 
4
Wharton's jelly mesenchymal stem cells; 

5
Human retinal pigment epithelial 

cells 
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Table 2. Examples of chemical hydrogels applied for cell immobilization 

Material Preparation Cell Reference 

Alginate 
Click reaction with tetrazine-norbornene modified hydrogel 

(no ionic cross-linkings) 

EGFP-expressing 3T3 

fibroblast 
[140] 

PEG 

Thiol-ene reaction of PEG diacrylate with thiolated gelatin Fibroblasts; keratinocytes [141, 142] 

Maleimide, acrylate and vinyl sulfone-modified PEG cross-

linked with peptides 
C2C12 myoblast [143] 

Photo-polymerization of fibrinogen-g-PEGacryloyl and PEG 

diacrylate 

BMSC 
[144] 

Photo-polymerization of PEG diacrylate Huh-7.5 [145] 

Chitosan 

Photo-polymerization of chitosan grafted with lactic acid and 

methacrylate Chondrocytes 

 

[146] 

Chemically cross-linked chitosan hydrogel loaded with gelatin [147] 

N-succinyl-chitosan gelation with aldehyde hyaluronic acid [148] 

Dextran 

Photo-polymerization of dextran with benzophenone Osteoblast-endothelial cell [149] 

Gelation of methacrylate and lysine functionalized dextran Smooth muscle cells [150] 

Photopolymerization of dextran-acrylate Embryonic stem cells [151] 

HA 

HA cross-linked via disulfide bond formation reaction Fibroblasts, stem cells [152] 

Methacrylated HA cross-linked by UV exposure MSC [153] 

Peroxidase catalyzed oxidation of tyramine-substituted HA Chondrocytes [154] 

Conjugate addition of thiol-modified HA onto PEG diacrylate Adipocyte-stem cells [155] 

PVA 
UV photopolymerization 

L929 fibroblast 
[156] 

Click hydrogels formed by hydrazone bonds [157] 

PEG: Poly(ethylene glycol); HA: Hyaluronic acid; PVA: Poly(vinyl alcohol); MSC: Mesenchymal stem cell 
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Table 3. Xenotransplantation of encapsulated cells in animal models 

Transplanted 

model 
Cell type Transplantation site 

Materials for 

encapsulation 
Reference 

Mice 

Neonatal porcine islets Peritoneal cavity Ca-alg and Ba-alg 
[273] 

[274] 

Rat islets 

Subcutaneous tissue 

 

Intraperitoneal space 

Peritoneal cavity 

Agarose / poly (styrene 

sulfonic acid) 

Alg-PLL-PEG 

Agarose 

[283] 

 

[80] 

[187] 

Human islets 
Omental pouch 

Peritoneal cavity 

Agarose 

Ba-alg 

[279] 

[300] 

Neonatal pig hepatocytes Abdominal cavity Ba-alg [295] 

Rat hepatocytes 

Human hepatocytes 

Peritoneal cavity 

 

Alg-PLL-alg 

 

[270, 271] 

 

Fish islets Abdominal cavity Ba-alg [299] 

Rat 

Pig islets 
Subcutaneous tissue 

Abdominal cavity 

Ca-alg 

Ba-alg 

[282] 

[301] 

Guinea pig hepatocytes 

Peritoneal cavity acrylonitrile-sodium 

methallyl-sulfonate 

copolymer 

[302] 

Non human 

primates 
Pig islets 

Intraportal injection No material 

 

[288] 

[293] 

Intraperitoneal space Ca-alg-PLL [303] 
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Fig. 1. Schematic representation of cell microencapsulation. 
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Fig. 2. Principles to form physical hydrogels by ionic bonding. 
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Fig. 3. Na-alg consists of α-L-guluronic and β-D-manuronic acid residues. 
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Fig. 4. The properties of alg-based hydrogels depend on the nature of the applied Na-alg, (solid 

line) confirmed influence, (dotted line) controversially discussed. 
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Fig. 5. Chemical structure of poly(L-lysine) hydrochloride and poly(L-ornithine) hydrochloride. 

  

Page 86 of 102

Xenotransplantation

Xenotransplantation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

87 

 

 

 

 

 

 

 

Fig. 6. The chemical structure of chitosan. 
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Fig. 7. The chemical structures of sodium cellulose sulfate (CS) and poly(methylene-co-

guanidine) hydrochloride (PMCG). 
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Fig. 8. Formation of droplets by: coaxial air-flow (1), electrostatic potential (2), rotating disk (jet 

cutter) (3), and vibrating nozzle (4). Cells are finally entrapped in hydrogel microspheres after 

falling down in the gelation bath. 
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Fig. 9. Comparison of conformal coating and cell microencapsulation. 
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Figure 1. Schematic representation of cell microencapsulation  
95x73mm (72 x 72 DPI)  
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Figure 2. Principles to form physical hydrogels by ionic bonding  
214x85mm (72 x 72 DPI)  
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Figure 3. Na-alg consists of α-L-guluronic and β-D-manuronic acid residues  
209x67mm (72 x 72 DPI)  
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Figure 4. The properties of alg-based hydrogels depend on the nature of the applied Na-alg, (solid line) 
confirmed influence, (dotted line) controversially discussed  

168x74mm (72 x 72 DPI)  
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Figure 5. Chemical structure of poly(L-lysine) hydrochloride and poly(L-ornithine) hydrochloride  
40x65mm (300 x 300 DPI)  
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Figure 6. The chemical structure of chitosan  
124x55mm (72 x 72 DPI)  
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Figure 7. The chemical structures of sodium cellulose sulfate (CS) and poly(methylene-co-guanidine) 
hydrochloride (PMCG)  

81x68mm (300 x 300 DPI)  
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Figure 8. Formation of droplets by: coaxial air-flow (1), electrostatic potential (2), rotating disk (jet cutter) 
(3), and vibrating nozzle (4). Cells are finally entrapped in hydrogel microspheres after falling down in the 

gelation bath  
213x96mm (72 x 72 DPI)  
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Figure 9. Comparison of conformal coating and cell microencapsulation  
154x50mm (72 x 72 DPI)  
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Table 1. Selected alg-based physical hydrogels applied for cell microencapsulation 

Divalent 

ions 
Cell type Target Reference 

Ca
2+ 

BMSC
1 

Hepatocytes 

Pig islets 

ADSC
2 

CSP
3 

Treatment of stress urinary incontinence 

Development of bio-artificial liver 

Impact of implantation sites on the biocompatibility 

Study of angiogenic and osteogenic potential of ADSC 

Therapeutic approach for cartilage regeneration 

[50] 

[51] 

[52] 

[53, 54] 

[55] 

Ba
2+ 

Rat islets 

Neuroblastoma 

WJMSC
4
 

Study of islets function in vitro and in vivo 

Cryopreservation of neurospheres by encapsulation 

Optimized microencapsulation of MSC by vibrational nozzle 

[56] 

[57] 

[58] 

Ba
2+
/Ca

2+ Human islets 

ARPE-19
5 

Viability and function after transplantation into diabetic mice. 

In vitro study of encapsulated human retinal pigment epithelial cells 

[59, 60] 

[61] 
1
Bone marrow mesenchymal stem cells; 

2
Adipose-derived stem cells; 

3
Human mesenchymal progenitor cells 

from the subchondral bone marrow; 
4
Wharton's jelly mesenchymal stem cells; 

5
Human retinal pigment epithelial 

cells 
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Table 2. Examples of chemical hydrogels applied for cell immobilization 

Material Preparation Cell Reference 

Alginate 
Click reaction with tetrazine-norbornene modified hydrogel 

(no ionic cross-linkings) 

EGFP-expressing 3T3 

fibroblast 
[140] 

PEG 

Thiol-ene reaction of PEG diacrylate with thiolated gelatin Fibroblasts; keratinocytes [141, 142] 

Maleimide, acrylate and vinyl sulfone-modified PEG cross-

linked with peptides 
C2C12 myoblast [143] 

Photo-polymerization of fibrinogen-g-PEGacryloyl and PEG 

diacrylate 

BMSC 
[144] 

Photo-polymerization of PEG diacrylate Huh-7.5 [145] 

Chitosan 

Photo-polymerization of chitosan grafted with lactic acid and 

methacrylate Chondrocytes 

 

[146] 

Chemically cross-linked chitosan hydrogel loaded with gelatin [147] 

N-succinyl-chitosan gelation with aldehyde hyaluronic acid [148] 

Dextran 

Photo-polymerization of dextran with benzophenone Osteoblast-endothelial cell [149] 

Gelation of methacrylate and lysine functionalized dextran Smooth muscle cells [150] 

Photopolymerization of dextran-acrylate Embryonic stem cells [151] 

HA 

HA cross-linked via disulfide bond formation reaction Fibroblasts, stem cells [152] 

Methacrylated HA cross-linked by UV exposure MSC [153] 

Peroxidase catalyzed oxidation of tyramine-substituted HA Chondrocytes [154] 

Conjugate addition of thiol-modified HA onto PEG diacrylate Adipocyte-stem cells [155] 

PVA 
UV photopolymerization 

L929 fibroblast 
[156] 

Click hydrogels formed by hydrazone bonds [157] 

PEG: Poly(ethylene glycol); HA: Hyaluronic acid; PVA: Poly(vinyl alcohol); MSC: Mesenchymal stem cell 

 

 

Page 101 of 102

Xenotransplantation

Xenotransplantation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Table 3. Xenotransplantation of encapsulated cells in animal models 

Transplanted 

model 
Cell type Transplantation site 

Materials for 

encapsulation 
Reference 

Mice 

Neonatal porcine islets Peritoneal cavity Ca-alg and Ba-alg 
[273] 

[274] 

Rat islets 

Subcutaneous tissue 

 

Intraperitoneal space 

Peritoneal cavity 

Agarose / poly (styrene 

sulfonic acid) 

Alg-PLL-PEG 

Agarose 

[283] 

 

[80] 

[187] 

Human islets 
Omental pouch 

Peritoneal cavity 

Agarose 

Ba-alg 

[279] 

[300] 

Neonatal pig hepatocytes Abdominal cavity Ba-alg [295] 

Rat hepatocytes 

Human hepatocytes 

Peritoneal cavity 

 

Alg-PLL-alg 

 

[270, 271] 

 

Fish islets Abdominal cavity Ba-alg [299] 

Rat 

Pig islets 
Subcutaneous tissue 

Abdominal cavity 

Ca-alg 

Ba-alg 

[282] 

[301] 

Guinea pig hepatocytes 

Peritoneal cavity acrylonitrile-sodium 

methallyl-sulfonate 

copolymer 

[302] 

Non human 

primates 
Pig islets 

Intraportal injection No material 

 

[288] 

[293] 

Intraperitoneal space Ca-alg-PLL [303] 
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