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TRIPLE COVERS OF K3 SURFACES

ALICE GARBAGNATI and MATTEO PENEGINI
∗

Abstract. We study triple covers of K3 surfaces, following Miranda (1985,

American Journal of Mathematics 107, 1123–1158). We relate the geometry of

the covering surfaces with the properties of both the branch locus and the

Tschirnhausen vector bundle. In particular, we classify Galois triple covers

computing numerical invariants of the covering surface and of its minimal

model. We provide examples of non-Galois triple covers, both in the case in

which the Tschirnhausen bundle splits into the sum of two line bundles and in

the case in which it is an indecomposable rank 2 vector bundle. We provide a

criterion to construct rank 2 vector bundles on a K3 surface S which determine

a non-Galois triple cover of S. The examples presented are in any admissible

Kodaira dimension, and in particular, we provide the constructions of irregular

covers of K3 surfaces and of surfaces with geometrical genus equal to 2 whose

transcendental Hodge structure splits in the sum of two Hodge structures of

K3 type.

§1. Introduction

The Galois covers of K3 surfaces are a quite classical and interesting argument of research:

for example, the K3 surfaces which are Galois covers of other K3 surfaces are classified in

[X], and the abelian surfaces which are Galois covers of K3 surfaces are classified in [Fu].

The study of surfaces with higher Kodaira dimension which are covers of K3 surfaces is

less systematic, and sporadic examples appear in order to construct specific surfaces (see,

e.g., [CD], [L1], [L2], [PZ], [RRS], [Sa]. Nevertheless, a systematic approach to the study

of the double covers of K3 surfaces is presented in [G3], where smooth double covers are

classified and their birational invariants are given. In the same paper, certain cover surfaces

with pg = 2 are described with more details, since the geometry of these surfaces is quite

interesting (see, e.g., [L1], [L2]).

The aim of this paper is to analyze triple covers of K3 surfaces. One of the main differences

between covers of degree 2 and the ones of degree 3 is that the latter are not necessarily

Galois.

In §2, we present the general theory of the triple covers of surfaces following [Mi1], [T].

We consider a smooth surface S and a triple cover f : X → S which is naturally associated

with a rank 2 vector bundle E , with the property

f∗OX =OS ⊕E .

The vector bundle E is called the Tschirnhausen vector bundle of the cover. There are three

possibilities:
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940 A. GARBAGNATI AND M. PENEGINI

• the cover is Galois (in particular, Z/3Z-cyclic); this happens if E splits in the direct sum

of two line bundles L and M which are determined by the nontrivial characters of Z/3Z

(see Paragraph 2.12). In this case, the triple cover is totally ramified and the singularities

of X are due only to singularities of the branch locus;

• E splits into the direct sum of two line bundles L and M, but the cover is not Galois.

In this case, there are components in the branch locus which are of simple, but not total,

ramification, and we refer to this situation as a split nonGalois triple cover; and

• E is indecomposable; moreover, in this case, the cover is not Galois and we refer to this

case as the nonsplit triple cover.

We are interested in calculating the numerical invariants of the covering surface X : pg(X),

q(X), c1(X)2, c2(X), and κ(X) (which are, resp., the geometric genus, the irregularity, the

square of the first Chern class, the second Chern class, and the Kodaira dimension of the

surface X ). We relate them with the properties of the surface S and of the bundle E . Some

of these numbers are not birational invariants; hence, if X is singular, we need to find the

minimal model of X to determine the numerical invariants for this model. This aspect is

highly nontrivial, even if one restricts itself to the Galois triple covers; indeed, it requires

a careful analysis not just of the singularities of X, but also of the configurations of the

(−1)-curves appearing in its minimal resolution.

We restrict to the situation where S is a K3 surface. We provide a criterion to determine

the Kodaira dimension of the cover surface X, and due to the example constructed in the

paper, we prove the following theorem.

Theorem 1.1. There exist pairs (S,f) such that f : X → S is a triple cover either

Galois, or split non-Galois or nonsplit and with either κ(X) = 1 or κ(X) = 2. There exist

pairs (S,f) such that f : X → S is a triple cover either Galois or split non-Galois with

κ(X) = 0 and X is necessarily (a possibly singular model of) either a K3 surface or an

abelian surface.

Since X is a cover of S, it is not possible that κ(X) = −∞. We do not know if there

exists a nonsplit triple cover f :X → S with κ(X) = 0.

We consider the Galois triple covers of K3 surfaces, obtaining both general results (in §3)
and constructing explicitly families of examples (in §4). First, we discuss the singularities

of X, all coming from the singularities in the branch locus of the cover f :X → S. There are

two different strategies to resolve the singularities of the triple cover: one can blow up S in

the singularities of the branch locus until one obtains a birational model of S such that the

strict transform of the branch locus is smooth, then one can construct the smooth triple

cover of this surface. The surface obtained is birational to X, and it is called the canonical

resolution of X (cf. [T]). However, one can also consider the possibly singular surface X

and then resolve its singularities obtaining a resolution which is called minimal resolution

of X. Note that neither the canonical resolution nor the minimal resolution is necessarily

minimal surface. In §§3.3 and 3.4, we construct both these resolutions if the singularities

of the branch locus are ordinary, and we observe that they are negligible (see Definition

2.15 and Proposition 2.16), which allows us to compute the numerical invariants not only

of X, see Proposition 3.12. Some other singularities in the branch locus are considered in

Theorem 4.12, and they are proved to be negligible too.
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Under mild conditions on the smoothness of some components of the branch locus, we

are often able to identify all the (−1)-curves that appear in the resolutions considered and

therefore to compute the numerical invariants of the minimal model of X (see Propositions

4.1, 4.11, and 4.6).

The main result of this part is a systematic classification of the Galois triple covers of S,

which can be summarized in the following theorem.

Theorem 1.2. Let f : X → S be a normal Galois triple cover of a K3 surface, whose

branch locus has n ≥ 1 connected components, D1, . . . ,Dn, and let ΛDi be the lattice

generated by the irreducible components of Di:

• k(X)= 0 if and only if all the lattices ΛDi are negative definite; in this case, ΛDi �A2(−1),

n= 6 or n= 9, and X has a trivial canonical bundle.

• k(X) = 2 if and only if there exists a lattice ΛDi whose signature is sgn(ΛDi) =

(1,rank(ΛDi)−1); in this case, all the others ΛDj are isometric to A2(−1).

• k(X) = 1 if and only if there are no lattices ΛDi which are indefinite and there exists

at least a lattice ΛDi which is degenerate. Since k(X) = 1 it admits an elliptic fibration

(whose fibre class is FX), there exists an elliptic fibration on S whose fibre class is FS,

such that f∗(FS) is a multiple of FX .

In particular, if there is a component D1 in the branch locus such that D1 is an irreducible

curve, then it holds:

• if D2
1 = 0, then k(X) = 1; and

• if D2
1 > 0, then k(X) = 2, n≤ 10, D2

1 =6d, for an integer d> 0, and there exists an integer

k such that d= n−1+3k and k ≥−2. If D1 is smooth and X◦ is the minimal model of

X, then

χ(X◦) = 5+n+5k, K2
X◦ = 8n−8+24k, e(X◦) = 67+5n+36k.

We construct two interesting kinds of examples: in Corollary 4.3, we construct Galois

triple covers f :X → S of K3 surfaces S which have pg(X) = 2. Hence, the transcendental

Hodge structure of the X is of type (2,�,2). Since the pullback of the transcendental Hodge

structure of S is of K3 type, that is, of type (1,�′,1), there is a splitting of the transcendental

Hodge structure of X in the sum of two Hodge structures of K3 type. One of them is of

course geometrically associated with a K3 surface, that is, to S. It would be interest to find

another K3 surface associated with the other Hodge structure of K3 type.

The second example of geometric interest is the construction of irregular triple covers

of a regular surface (see §4.10). If the Kodaira dimension of the surface X is 0, or 1, the

construction is well known: there are triple covers of K3 surfaces with abelian surfaces

(which are irregular and with Kodaira dimension 0); the base change on an elliptically

fibered K3 surface often produces elliptic fibrations (with Kodaira dimension equal to 1)

with a nonrational base curve (which forces the surface to be irregular). The situation is

more complicated if one requires that X is a surface of general type: such covers exist, but

are not very frequent. (In the case of double covers classified in [G2], there are very few

examples). Here, we provide an explicit construction in Theorems 4.16 and 4.17.

In §5, we briefly discuss the case of split non-Galois triple covers of K3 surfaces, and we

provide an example in any admissible Kodaira dimension. The construction are based on

the study of the Galois closure.
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942 A. GARBAGNATI AND M. PENEGINI

In §6, we consider the most general and complicated case, that is, the case where the

vector bundle E is indecomposable. In this case, we consider a vector bundle E defined by

the sequence

0→L→ E ∨ →M⊗IZ → 0,

where L and M are line bundles on S, and Z is a nonempty zero-dimensional scheme. Our

goal is to list reasonable conditions on L and M which assure the existence of the vector

bundle E and of a triple cover X → S whose Tschirnhausen is E .

Theorem 1.3. Let L and M be two line bundles on a K3 surface S such that

h0(S,L∨⊗M) = 0, h1(S,L∨⊗M)≥ 1, h0(S,L⊗2⊗M∨)≥ 1.

Let Z be a nonempty zero-dimensional scheme on S. Then there exists the triple cover

f : X → S whose Tschirnhausen bundle is any rank 2 indecomposable vector bundle E
obtained by a nonsplit extension

0→L→ E ∨ →M⊗IZ → 0.

Thanks to this theorem, the problem of finding a vector bundle E , which defines a nonsplit

triple cover, is reduced to the problem of finding certain line bundles on S, with required

properties. We apply this theorem to construct a nonsplit triple cover with positive Kodaira

dimension, and in particular, we perform all the computations in one case, obtaining a

surface of Kodaira dimension 1, pg = 6, and q = 3.

1.1 Notation and conventions.

We work over the field C of complex numbers.

For a,b ∈ Z, a≡n b means a≡ b mod n.

By surface, we mean a projective, nonsingular surface S, and for such a surface,

ωS = OS(KS) denotes the canonical class, pg(S) = h0(S, ωS) is the geometric genus,

q(S) = h1(S, ωS) is the irregularity, and χ(OS) = 1− q(S)+ pg(S) is the Euler–Poincaré

characteristic. If q(S) > 0, we call S an irregular surface. The minimal model of a surface

S is denoted by S◦; the minimal resolution of a singular surface S is denoted by S′.

Throughout the paper, we denote Cartier (or Weil) divisors on a variety by capital letters

and the corresponding line bundles by italic letters, so we write, for instance, L =OS(L).

Moreover, if d ∈H0(L), the corresponding Weil divisor is denoted by D.

Given Z a purely zero-dimensional subscheme of a variety, we often call Z a zero-cycle

and we denote by �(Z) its length.

For a locally free sheaf F , we denote its total Chern class by c(F) and its Chen Character

by ch(F).

§2. Triple covers in algebraic geometry

The case of triple covers of algebraic varieties differs sensibly from the double covers

case, above of all, because the cover might be not Galois. Therefore, a different approach

is needed. This theory of triple covers in algebraic geometry was started by Miranda in his

seminal paper [Mi1], and developed further by Casnati and Ekedahl in [CE] and Tan in [T]

(see also [FPV], [Pa2]). The main result of this theory is the following.
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Theorem 2.1 [Mi1, Th. 1.1]. A triple cover f : X → Y of an algebraic variety Y is

determined by a rank 2 vector bundle E on Y and by a global section η ∈ H0(Y, S3E ∨⊗∧2E ), and conversely.

The vector bundle E is called the Tschirnhausen bundle of the cover, and it satisfies

f∗OX =OY ⊕E . (2.1)

By [CE, Th. 1.5], if Y is smooth and the section η ∈H0(Y, S3E ∨⊗
∧2E ) is generic, then

X is Gorenstein.

Let D be a divisor such that OY (D) =
∧2E −2.

Proposition 2.2 [T, Th. 1.3]. Let f : X → Y be a triple cover and Y be a normal

variety. There exist two divisors D′ and D′′ such that D = 2D′ +D′′ and if f is totally

ramified, then D′′ = 0 and D′ is the branch divisor; otherwise, D is the branch divisor, and

D′ is the divisor over which f is totally ramified.

2.3

We observe that there exists a divisor D/2 such that OY (D/2)=
∧2E −1. By the previous

proposition,D′′ =D−2D′ is effective, and it is 2-divisible (i.e.,D′′ =2(D/2−D′)∈Pic(Y )).

Hence, there exists a double cover of Y branched on D′′. This double cover is used to get

the Galois closure of the triple cover whose Galois group is S3 (see [CP], [T]). We have the

following diagram:

Z

S3

��

2:1
α

�����
��
��
��
��

3:1

β2 ����
���

���
���

X

3:1

f

���
��

��
��

��
��

W ⊃ β−1
1 (D′)

2:1

β1

�����
���

���
��

D′∪D′′ ⊂ Y ⊃D′′.

(2.2)

We notice that the branch locus of β1 is D′′; β2 is a Galois triple cover branched along

β−1
1 (D′); and the triple cover f is totally branched on D′ and simply on D′′. Finally, it is

worth to notice that this is a special case of dihedral cover studied in [CP, T91, T94].

If Y is smooth, then f is smooth over Y −D; in other words, all the singularities of

X come from the singularities of the branch locus. More precisely, we have the following

proposition.

Proposition 2.4 [Pa1, Prop. 5.4], [T, Th. 3.2]. Let Y be a smooth variety. Let y ∈ Y ,

f−1(y) is a singular point of X if and only if y ∈ Sing(D), and one of the following conditions

holds:

(i) f in not totally ramified over y or

(ii) f is totally ramified over y and multy(D)≥ 3.

So—using the notation of Proposition 2.2—X is smooth if and only if:

(1) D′ is smooth;

(2) D′′ and D′ have no common points; and

(3) D′′ has only cusps as singular points where f is totally ramified.
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944 A. GARBAGNATI AND M. PENEGINI

We observe that (1) is due to the multiplicity 2 of the divisor D′ in the branch divisor

D and that even if D′′ is the divisor where f is simply branched, it could contain isolated

points of total branch.

Proposition 2.5 [T, Th. 4.1]. Let f : X → Y be a triple cover of a smooth surface Y,

with X normal. Then there are a finite number of blowups σ : Ỹ →Y of Y and a commutative

diagram

X̃

f̃
��

σ̃ �� X

f

��
Ỹ

σ �� Y,

(2.3)

where X̃ is the normalization of Ỹ ×Y X, such that f̃ is a triple cover with smooth branch

locus. In particular, X̃ is a resolution of the singularities of X (in general, this resolution

is neither the minimal resolution nor it gives a minimal model of X).

Following [T, Para. 4], we call X̃ the canonical resolution of X.

In the case of smooth surfaces, one has the following formulae.

Proposition 2.6 [Mi1, Props. 4.7 and 10.3]. Let f : X → Y be a triple cover of smooth

surfaces with Tschirnhausen bundle E . Then:

(i) hi(X,OX) = hi(Y,OY )+hi(Y, E ), for all i≥ 0.

(ii) χ(OX) = χ(OY )+χ(E ) = 3χ(OY )+
1
2c

2
1(E )− 1

2c1(E )KY − c2(E ).

(iii) K2
X = 3K2

Y −4c1(E )KY +2c21(E )−3c2(E ).

(iv) e(X) = 3e(Y )−2c1(E )KY +4c21(E )−9c2(E ).

2.7

Here, we analyze shortly the relation between the canonical bundle of the covering surface

and the base one. Let f : X −→Y be a triple cover with Tschirnhausen bundle E . We assume

that Y is smooth and X normal. Following [CE], we observe that, to each cover f :X → Y

of degree d, it is associated an exact sequence

0→OY → f∗OX → E ∨ → 0

whose dual sequence is

0→ E → f∗ωX|Y →OY → 0,

defining the relative dualizing sheaf ωX|Y .

If we assume that X is Gorenstein, by [CE, Th. 2.1], the ramification divisor R satisfies

OX(R) = ωX|Y where R is the set of the critical points of the map f : X → Y . Being X

normal, following [R], we define the canonical divisor KX of X as the Weil divisor whose

restriction to the smooth locus is the canonical divisor. Since X is assumed to be Gorenstein,

KX is a Cartier divisor as well.

The restriction of f to X0, the smooth locus of X, is a triple cover f0 :X0 → f(X0). By

the Hurwitz ramification formula,

KX0 = f∗
0 (Kf(X0))+(ωX|Y )|X0

.

https://doi.org/10.1017/nmj.2022.15 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2022.15


TRIPLE COVERS OF K3 SURFACES 945

Indeed, by the definition of the canonical divisor, we obtain the following equality:

KX = f∗(KY )+R. (2.4)

In the sequel, we shall be particularly interested in the case when Y is a K3 surface—or,

in general, when Y is a surface with a trivial canonical bundle. Then (2.4) simplifies to

KX = f∗(KY )+R=R. (2.5)

In addition, by (2.1) and by duality for finite flat morphisms, we obtain

f∗OX(KX)∼=
(
f∗OX

)∨⊗OY (KY )∼=OY (KY )⊕
(
E ∨⊗OY (KY )

)
,

which yields at once

h0(OX(KX))≥ h0(OY (KY )). (2.6)

The formula (2.5) is particularly useful to determine the Kodaira dimension of the

covering surface X ; indeed, it holds the following proposition.

Proposition 2.8. Let f : X −→ Y be a triple cover with Y smooth and X Gorenstein,

and let R be the ramification divisor. Write |R|= |M |+F with |M | the moving part and F

the fixed part of R. Suppose that O(KY ) ∼=OY , then the Kodaira dimension κ(X) of X is

greater than or equal to 0. Moreover, it holds:

κ(X) = 0 if and only if |M |= ∅ and either F is supported on rational curves or F = ∅.
Moreover, X cannot be neither an Enriques surface nor a bielliptic one.

κ(X) = 1 if and only if |M | �= ∅ and the general member of |M | is supported on elliptic

curves.

κ(X) = 2 if and only if |M | �= ∅ and the general member of |M | is supported on curves

of genus g ≥ 2.

Proof. Suppose, first, that f is étale of degree d, then κ(X) = d ·κ(Y ) = 0, and hence

we can assume that f is ramified.

Being f a triple cover of a surface Y with trivial canonical bundle by (2.6), we have

h0(O(KX)) ≥ 1, and hence the Kodaira dimension of X satisfies κ(X) ≥ 0. Moreover, if

κ(X) = 0, then X cannot be neither an Enriques surface nor a bielliptic one.

By the Hurwitz formula (2.5), the canonical divisor is KX = R. If the divisor R is

supported at least on a moving positive genus curve, then (2.5) implies thatKX is nontrivial,

and thus κ(X) > 0. Moreover, X is a properly elliptic surface if and only if its canonical

bundle is supported only on elliptic curves (see [Mi2, §III]), and thus, again by (2.5), we

have the second case of the proposition, whereas if the general member of |R| is supported
on a curve of genus g ≥ 2, then X is of general type.

Finally, if R does not move in a linear system and it is supported only on rational curves,

then the minimal model of X must have trivial canonical bundle and so we get the case

(1).

Conversely, if |M | = ∅, κ(X) cannot be 1 or 2, and hence κ(X) = 0. If |M | �= ∅ and the

general member of |M | is supported on curves of genus g ≥ 2, κ(X) cannot be 0 or 1, and

hence it is 2.

If |M | �= ∅ and the general member of |M | is supported on elliptic curves, by adjunction,

M ·M = 0 and so X would have a genus 1 fibration, which is impossible for surfaces of

general type. Since |M | �= ∅, κ(X) �= 0.
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946 A. GARBAGNATI AND M. PENEGINI

Similar results work in case X is normal, but not necessarily Gorenstein. The main

problem here is that the canonical divisor is not Cartier, so we have to consider the canonical

resolution of X.

Proposition 2.9. The results of Proposition 2.8 hold even if X is normal (not

necessarily Gorenstein).

Proof. If X is normal, we consider the canonical resolution X̃, as in Proposition 2.5,

since κ(X) = κ(X̃). The map σ : Ỹ → Y is a blowup and introduces an exceptional divisor

E, which does not move in a linear system. The canonical bundle of Ỹ is KỸ =KY +E =E.

We apply the Hurwitz ramification formula to the triple cover f̃ : X̃ → Ỹ :

KX̃ = f̃∗E+Rf̃ ,

where Rf̃ is the ramification divisor of f̃ .

Let analyze both the summands: f̃∗E has negative self-intersection and is the exceptional

locus of σ̃ for the commutativity of the diagram in particular σ̃∗(B)f̃∗E = 0 for all B ∈
Pic(X). Hence, its movable part is trivial; otherwise, there would be at least one curve

in |f̃∗E| which is not contracted by σ̃, say D̃, so D̃f̃∗E > 0. Denoted by D the image of

this curve, σ̃∗(D)∼ D̃+kf̃∗E ∼ (k+1)f̃∗E, for a nonnegative k. However, this contradicts

σ∗(D)f̃∗E = 0.

We observe that Rf̃ are curves contained in the linear system of

σ̃∗R= σ̃∗(M +F ) = M̃ + F̃ +kf̃∗E,

where M̃ and F̃ are the strict transforms of M and F, respectively, using the notation of

Proposition 2.8. Since f̃∗E has no movable part, the movable part of Rf̃ is contained in M̃ .

Since σ is a blowup, |M | is isomorphic to |M̃ |.
To conclude, it suffices to apply Proposition 2.8 to the cover f̃ .

2.10

The situation becomes a little bit easier if we consider only the Galois case. Indeed, by

[T, Th. 2.1], a triple cover is Galois if and only if it is totally ramified over its branch locus.

Moreover, in this instance, the branch locus is exactly D′ =D/2 = B+C [T, Th. 1.3(2)].

In this case, X is smooth if and only if D is smooth [T, Th. 3.2]. A Galois triple cover

f :X → Y (with Y smooth) is first of all a cyclic Z/3Z-cover, and hence it can be treated

as a cyclic cover. Moreover, it is determined by two curves B and C in Y and by two

divisors L and M on Y such that B ∈ |2L−M | and C ∈ |2M −L|. As already remarked,

the branch locus of f is B+C and 3L≡ 2B+C,3M ≡B+2C. Thus, the class of the branch

locus is B+C =L+M . The surface X is normal if and only if B+C is reduced. Otherwise,

it is possible to consider the normalization, which is associated with another triple cover as

explained in [Mi1, Prop. 7.5]. The singularities of X lie over the singularities of D′ =B+C

(see Proposition 2.4).

If B+C is smooth, we have

χ(OX) = 3χ(OY )+
1

2

(
L2+KY L

)
+

1

2

(
M2+KY M

)
, (2.7)

K2
X = 3K2

Y +4
(
L2+KY L

)
+4

(
M2+KY M

)
−4LM, (2.8)
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q(X) = q(Y )+h1(Y,OY (KY +L))+h1(Y,OY (KY +M)), (2.9)

pg(X) = pg(Y )+h0(Y,OY (KY +L))+h0(Y,OY (KY +M)). (2.10)

Of course, one can apply Theorem 2.1 to the Galois case. For this, let ξ be a primitive cube

root of unity, generating Z/3Z, and we obtain the following proposition.

Proposition 2.11 [Mi1, Prop. 7.1], [T, Th. 1.3]. If f : X −→ Y is a Galois triple cover,

then:

(i) The sheaf f∗OX splits into eigenspaces as OY ⊕L−1⊕M−1 where OY , L−1, and M−1

are the eigenspaces for 1, ξ, and ξ2, respectively.

(ii) The Tschirnhausen bundle E for f is the sum of eigenspaces L−1⊕M−1.

(iii) The branch locus of f is the divisor D′ such that O(D′) = L⊗M.

Proof. (i) and (ii) are contained in [Mi1, Prop. 7.1]. Recall that, by [T, Th. 2.1], a triple

cover is Galois if and only if it is totally ramified over its branch locus. Moreover, in this

case, the branch locus is exactly D′ =D/2 =B+C [T, Th. 1.3(2)].

2.12

Being Galois triple cover cyclic, one can compare the previous result with the standard

theory of cyclic covers (see, e.g., [BHPV, Chap. I.17]). Both the line bundles M of

Proposition 2.11 and L2 correspond to the same eigenspace of f∗OX , the one relative to the

eigenvalue ξ2. Nevertheless, they can differ in the Picard group by a 3-torsion element and

an integer multiple of divisors supported on the codimension 1 subvarieties in the branch

locus (see also [T, §1.4]). The similar situation must occur for M2 and L.
Vice versa, given a Tschirnhausen bundle E and a section η ∈ H0(Y,S3E ∨⊗

∧2E ), it

determines a triple cover, and to see if it is Galois, one has to check that OY ⊕ E is a

representation of the group Z/3Z. In particular, E must split according to the two characters

ξ and ξ2. Therefore, E = L−1⊕M−1 where L2 differs from M by 3-torsion element and

integer multiple of divisors supported on the codimension 1 subvarieties in the branch locus

and M2 differs from L by 3-torsion element and integer multiple of divisors supported on

the codimension 1 subvarieties in the branch locus. The choice of η determines uniquely the

cover.

2.13

Finally, we call a Galois triple cover data over Y a pair of line bundles L and M on Y

and two sections

b ∈H0(L2⊗M−1), c ∈H0(L−1⊗M2).

To give a Galois triple cover data, we use alternatively the quadruple (b,c,L,M) or

(B,C,L,M) or even (B,C,L,M) with their clear meaning, that is, the different cases of

the letter give a different incarnation of the objects treated, once being a section, once a

divisor, and once a sheaf.

2.14

We assume that X is normal and denote by X ′ the minimal resolution of the singularities

of X. We observe that in general X ′ coincides neither with the minimal model X◦ nor

with the canonical resolution X̃. One cannot apply neither the formulae of Proposition 2.6
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nor (2.7)–(2.10) if X is singular and in particular for the last ones if the branch locus is

singular. We would like to define a class of singularities of f :X → Y such that the formulae

of Proposition 2.6 give the invariants of X ′(instead of the one of X ).

We follow [PP, Def. 1.5].

Definition 2.15. Let f : X → Y be a triple cover of a smooth algebraic surface Y, with

Tschirnhausen bundle E . We say that X has only negligible (or nonessential) singularities

if the invariants of the minimal resolution X ′ are given by the formulae in Proposition 2.6.

We also call negligible singularities the corresponding singularities of the branch locus.

Proposition 2.16 [PP, Exams. 1.6 and 1.8]. Let f : X → Y be a triple cover of a

smooth algebraic surface Y, with Tschirnhausen bundle E . If the singularities of X are only

of type 1
3(1,1) and

1
3(1,2), then X has only negligible singularities.

§3. Triple covers of K3 surfaces: The Galois Case

From this section onward, we always consider as the base of a triple cover a K3 surface

S. Unless otherwise stated, f :X → S is a triple cover such that X is a normal connected

surface.

3.1 Galois triple cover of K3 surface

Let S be a K3 surface, and let f :X → S be a Galois triple cover of S with branch locus∐n
i=1Di where Di are (possibly singular and reducible) curves and thus the Di’s are the

n connected components of the branch locus. Requiring that X is normal implies that the

Di’s are reduced. Up to reordering the components, we can always assume that D2
1 ≥D2

i

for every i= 1, . . . ,n. Since B+C is the branch locus (with the same notation of Paragraph

2.10), there exist curves Bi and Ci (not necessarily connected) such that Di =Bi+Ci and

B =
∑

iBi, C =
∑

iCi.

Lemma 3.1. Let (B,C,L,M) be the Galois triple cover data of a Galois triple cover

X → S. Let B =
∑n

i=1Bi, C =
∑n

i=1Ci, and Di =Bi+Ci. Then:

• BiBj = CiCj =BiCj = 0, if i �= j; and

• B2
i ≡3 BiCi ≡3 C

2
i ≡3 D

2
i .

Proof. Since Bi (resp., Ci) are contained in a connected component of the branch locus

and Bj (resp., Cj) in another one, we have BiBj = CiCj = BiCj = 0, if i �= j. Moreover,

the last part of the statement follows directly by the conditions (not all independent):

BiL=Bi(2B+C)/3 = (2B2
i +BiCi)/3∈Z. Analogously, CiL=Ci(2B+C)/3∈Z, L2 ∈ 2Z,

BiM =Bi(B+2C)/3 ∈ Z, CiM = Ci(B+2C)/3 ∈ Z, and M2 ∈ 2Z.

Proposition 3.2. If f :X → S is a smooth Galois triple cover, then the branch locus

is smooth. In particular:

• all the D′
is are irreducible smooth curves with positive genus;

• if moreover D2
1 > 0, then n = 1 (i.e., the branch locus is D1) and there exists a divisor

H ∈ Pic(S) such that D = 3H; and

• if at least one Di has genus 1, that is, D2
i = 0, then all the Di’s are smooth curves of

genus 1. In particular, ϕ|D1| : S → P
1 is an elliptic fibration, all the Di’s are smooth fibers

and f : X → S is obtained by a base change of order 3 branched on the n smooth fibers

Di’s.

https://doi.org/10.1017/nmj.2022.15 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2022.15


TRIPLE COVERS OF K3 SURFACES 949

Proof. The triple cover f :X → S is smooth if and only if the branch locus is smooth

(see Paragraph 2.10), and thus each Di is a smooth irreducible curve. In particular, either

Di = Bi or Di = Ci. In both the cases, one obtains D2
i ≡3 0, by Lemma 3.1. If Di is a

smooth irreducible rational curve, D2
i =−2 �≡3 0, which is not admissible. So, for every Di,

we have g(Di) ≥ 0. If D2
1 > 0, then, by the Hodge index theorem, D2

i < 0 for each i > 1,

which implies that Di are rational curves for each i > 1, contradicting the first assertion.

Therefore, if D2
1 > 0, there are no other components in the branch locus. This implies that

B =D1 and C = 0 (or vice versa). So L = B/3 ∈ Pic(S), that is, there exists a divisor H

such that 3H ≡D.

If D2
1 = 0 and it is a smooth irreducible curve, then it is a genus 1 curve on S and

ϕ|D1| : S → P
1 is a genus 1 fibration. In particular, any Dj orthogonal to Di is contained

in a fiber of ϕ|D1|, and thus it can be either a rational curve (component of a reducible

fiber) or a genus 1 curve. Since there are no rational curves contained in the branch locus,

we conclude that all the Di’s are smooth fibers of the same fibration and that the triple

cover X → S is branched over smooth fibers of the fibration S → P
1. This induces a genus

1 fibration X → C, where C is a smooth curve, such that there is a 3 : 1 map g : C → P
1

and X � S×g P
1.

Let us now consider the case of a singular branch locus: in order to construct X, we

first consider its canonical desingularization X̃. So we blow up S in such a way that the

strict transform of the branch locus becomes smooth and then we take the triple cover (see

Proposition 2.5). The surface X is a contraction of X̃. This gives information both on the

singularities of X and on the construction of a smooth model of it. So, now, we perform a

local analysis near the singularities of the branch locus. To simplify the treatment, we work

locally around a singular point P and we assume it is the unique singularity of the branch

locus.

3.3 Singularities of the branch locus of type 1.

Let f :X → S be a triple cover. Let W and V be two curves on S, meeting transversally

in the point P. Let W and V be contained in the branch locus, and assume that P is an

ordinary double point of the branch. Let us assume that locally the equation of the branch

locus of the triple cover near to P = (0,0) is xy. We blow up P obtaining β1 : S1 → S which

introduces an exceptional divisor EP . We denote by W1 and V1 the strict transforms of W

and V with respect to β1. The divisor EP appears with multiplicity 2, so it is still contained

in the branch locus of the triple cover and it intersects W1 and V1 in two points R and Q.

We further blow up R and Q, obtaining the map β2 : S2 → S1, the exceptional divisors ER

and EQ, and the strict transforms W2, V2, and ẼP of W1, V1, and EP , respectively. Denoted

by w=W 2 and v = V 2, the intersection properties on S2 are the following: E2
R =E2

Q =−1,

W 2
2 =w−2, V 2

2 = v−2, ẼP

2
=−3, and ERW2 =EQV2 =ERẼP =EQẼP = 1, and the other

intersections are trivial. The triple cover f2 :X2 → S2, induced by the one of S, is branched

on W2, V2, and ẼP , so the branch locus is smooth and X2 is the canonical resolution of

f :X → S. The self-intersections of the inverse image of some curves on S2 are the following:(
f−1
2 (ER)

)2
=
(
f−1
2 (EQ)

)2
=−3,

(
f−1
2 (W2)

)2
= (W 2−2)/3,(

f−1
2 (V2)

)2
= (V 2−2)/3,

(
f−1
2 (ẼP )

)2

=−1.
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To get X, we contract f−1
2 (ER), f

−1
2 (EQ), and f−1

2 (Ẽp). Since (f−1
2 (ẼP ))

2 = −1, the

contraction γ2 : X2 → X1 gives the minimal resolution X ′ = X1 of X. Moreover, X2

coincides with the canonical resolution X̃. Then one contracts the curves γ2(f
−1
2 (ER))

and γ2(f
−1
2 (EQ)) which are −2 curves meeting in a point (i.e., a Hirzebruch–Jung string

of type 1
3(1,2)). The contraction γ1 :X1 →X of these two curves produces the surface X

(triple cover of S ). The image of these two curves under γ1 is the point f−1(P ), and thus

f−1(P ) is a singular point on X of type A2, that is, of type
1
3(1,2). We have the following

diagram (see also Figure 1):

X

f

��

X1γ1

�� X2γ2

��

f2
��

S S1
β1

�� S2.
β2

��

3.4 Singularities of the branch locus of type 2.

Let f :X → S be a triple cover. Let W and V be two curves on S, meeting transversally

in the point P. Let W and V be contained in the branch locus, and assume that P is an

ordinary double point of the branch. Let us assume that locally the equation of the branch

locus of the triple cover near to P = (0,0) is xy2. We blow up P obtaining β1 : S1 → S which

introduces an exceptional divisor EP . We denote by W1 and V1 the strict transforms of W

and V with respect to β1. The divisor EP appears with multiplicity 3, so it is not contained

in the branch locus of the triple cover. The triple cover f1 :X1 → S1, induced by the one

of S, is branched on W1 ∪V1 and since the branch locus is smooth, X1 is the canonical

resolution X̃ of X. The intersection properties on S1 are the following: W 2
1 = W 2 − 1,

V 2
1 = V 2−1, E2

P =−1, and W1EP = V1EP = 1, and the other intersections are trivial. The

self-intersections of the inverse image of some curves on S1 are the following:(
f−1
1 (EP )

)2
=−3,

(
f−1
2 (W1)

)2
= (W 2−1)/3,

(
f−1
2 (V1)

)2
= (V 2−1)/3.

The contraction γ1 :X1 →X of EP produces the surface X (triple cover of S ). The image

of this curve under γ1 is the point f−1(P ), and thus f−1(P ) is a singular point on X of

type 1
3(1,1). In particular, X1 is also the minimal resolution X ′ of X, which coincides in

this case with X̃. We have the following diagram:

X

f

��

X1γ1

��

f1
��

S S1.
β1

��

We can summarize the above discussion with the following proposition.

Proposition 3.5. Let f :X → S be a Galois triple cover. Let P be a singular point of

the branch locus.

• If the local equation of the branch locus near P is xy, then f−1(P ) is a singularity of X

type 1
3(1,2).

• If the local equation of the branch locus near P is xy2, then f−1(P ) is a singularity of X

type 1
3(1,1).
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Figure 1.

In both the previous cases, f−1(P ) is a negligible singularity by Proposition 2.16.

Remark 3.6. Let f :X → S be a triple cover with Galois cover data (B,C,L,M).

Let V and W be two irreducible components of the branch locus, meeting in a point P.

If P is a singularity of type 1, then V and W are both components either of B or of C. If

P is a point of type 2, then, without loss of generality, V is a component of B and W is a

component of C.

We observe that the ordinary nodes of a curve (in the branch locus) are singularities of

type 1.

By considering the contraction γ1 described in Paragraphs 3.3 and 3.4, one obtains the

following.

Corollary 3.7. Let X → S be a Galois triple cover such that the branch locus contains

c singularities of type 1 and b singularities of type 2 and no other singular points. The

Picard number of the minimal resolution X ′ of X is ρ(X ′) = ρ(X)+2c+ b, and the one of

the canonical resolution X̃ is ρ(X̃) = ρ(X)+3c+ b (see also Figure 1).

In the following lemma and examples, we show that singularities, both of type 1 and of

type 2, appear as the branch locus of triple covers of K3 surfaces.

Lemma 3.8. Let N1 and N2 be two rational curves contained in the branch locus of a

Galois triple cover X → S such that any other curves contained in the branch locus are

disjoint from them. Let us assume that N1N2 = k. Then:

(i) k �≡3 0;

(ii) if k ≡3 1, the points of intersection of N1 and N2 are of type 2; and

(iii) if k ≡3 2, the points of intersection of N1 and N2 are of type 1.

Proof. Since N1 and N2 have trivial intersection with any other components of the

branch locus, the condition LNi ∈ Z restricts to the condition Ni(αN1+βN2)/3 ∈ Z, where

α ∈ {1,2} and β ∈ {1,2} and (αN1 + βN2)/3 is the summand of L in which N1 and N2

appear with a nontrivial coefficient. Up to replace possibly L with M, we can assume that

α = 1. So the condition is now Ni(N1+βN2)/3 ∈ Z, which implies that −2+βk ≡3 0 and

k− 2β ≡3 0. These conditions imply that k �≡3 0, k ≡3 1 if an only if β = 2, and k ≡3 2 if

and only if β = 1.

https://doi.org/10.1017/nmj.2022.15 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2022.15


952 A. GARBAGNATI AND M. PENEGINI

Figure 2.

Example 3.9. Let us consider an elliptic fibration E : S → P
1 with two fibers of type

I2 over the points p1 and p2. The base change of order 3 f : P1 → P
1 branched over the

points p1 and p2 induces a triple cover of S whose branch locus contains four singularities

of type 1. Indeed, the branch curves are rational curves meeting in two points, and then

the singularities are of type 1 by Lemma 3.8.

The following example contains singularities of type 2 and, moreover, shows that the

minimal resolution X ′ of X constructed above is not necessarily a minimal model.

Example 3.10. Let f : S → P
1 be an elliptic fibration with six fibers of type I3 and a 3-

torsion section. Generically, ρ(S) = 14 (see [GS2, §4.1]). Let Θ(j)
i , i= 0,1,2, and j = 1, . . . ,6,

be the irreducible components of the reducible fibers. There exists a 3 : 1 cover X → S

branched over Θ
(j)
1 , Θ

(j)
2 for j = 1, . . . ,6. The minimal model X◦ is a K3 surface (see [G1,

Prop. 4.1]). In particular, this triple cover is branched over six configurations of type A2 of

rational curves and the branch data are B =
∑6

j=1Θ
(j)
1 , C =

∑6
j=1Θ

(j)
2 , L = (2B+C)/3,

and M = (B+2C)/3.

The surface X◦ has Picard number equal to 14 (see [GS2, Prop. 4.1]), but the minimal

resolution of X ′ has Picard number ρ(X ′) = ρ(S)+6. In particular, this implies that X◦ �=
X ′, that is, the minimal resolution of X is not minimal.

The minimal resolution of X is not a minimal model if there is configuration of type A2

in the branch locus of X → S; indeed, in this case, one has to contract two (−1)-curves for

each of these configurations, as shown in Figure 2.

Remark 3.11. Let f : X → S be a triple cover, X ′ the minimal resolution of X, and

X◦ the smooth minimal model of X. By the above construction, one obtains that if a

singularity of type 2 lies on exactly one rational curve which contains no other singularities

of the branch locus, then its inverse image in X ′ is contractible and so K2
X◦ ≥ K2

X′ +1.

If the singularity of type 2 lies on the intersection of two rational curves which do not

contain other singularities of the branch locus, then, in X ′, there are three contractible

curves (this is the case of Figure 2) and so K2
X◦ ≥K2

X′ +3. We refer to the last situation

as A2-configuration in the branch locus.

In Theorem 4.12, we analyze other type of singularities which can appear in the branch

locus of a triple cover.
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Proposition 3.12. Let X be a normal variety which is a Galois triple cover of S,

whose branch locus has n connected components, that is, the n connected reducible curves

D1, . . . ,Dn. Then:

(1) Each curve Di is reduced.

(2) At most one Di is a curve with positive self-intersection.

(3) If the singularities of X are negligible, denoted by (B,C,L,M) the Galois triple cover

data, the invariants of the minimal resolution X ′, are

χ(OX′) =6+
1

2
(L2+M2),

K2
X′ =2L2+2M2+LM,

e(X ′) =72+4(L2+M2)−LM, h1,0(X ′) = h1(L)+h1(M).

Proof. Condition (1) is needed to obtain a normal cover X → S (see Paragraph 2.10).

Condition (2) follows by the Hodge index theorem.

Since the singularities are negligible, the numerical invariants for X ′ can be calculated

using the Tschirnhausen bundle E =L−1⊕M−1 =OS(−L)⊕OS(−M). It has the following

Chern classes:

c1(E ) =−L−M, c2(E ) = L ·M.

To have a connected covering, we have

0 = h0(E ) = h0(−L)+h0(−M) ⇒ h0(−L) = h0(−M) = 0.

In addition, by the Hirzebruch–Riemann–Roch theorem, we have

χ(E ) = h2(E )−h1(E ) = h0(L)+h0(M)−h1(E ) =

=

∫
S

Td(S) · ch(E ) =

∫
S

(1,0,2) ·
(
2,−L−M,

L2+M2

2

)
=

L2+M2

2
+4. (3.1)

So, by Proposition 2.6(ii), we have χ(OX′) = 6+ 1
2(L

2+M2), by Proposition 2.6(iii), we

have K2
X′ = 2L2 +2M2 +LM, and finally, by Proposition 2.6(iv), we have e(X ′) = 72+

4(L2+M2)−LM.

By (3.1) and the genus formula,

h1(E ) = h0(L)+h0(M)−χ(E ) =
(
χ(L)+h1(L)

)
+
(
χ(M)+h1(M)

)
−χ(E ) =

=

(
L2

2
+2+h1(L)

)
+

(
M2

2
+2+h1(M)

)
− L2+M2

2
−4 = h1(L)+h1(M), (3.2)

which allows to compute h1,0(X ′), by Proposition 2.6(i).

Remark 3.13. If the branch locus of the cover f :X → S is smooth, then BC = 0 and

so the formulae in Proposition 3.12 and (2.8), which compute the self-intersection of the

canonical divisor of X, coincide and give K2
X = 12(B2+C2).

Lemma 3.14. Let us consider a connected reducible reduced curve, C, on a K3 surface

S, whose irreducible components are rational curves (i.e., negative curves). If C2 ≤ 0, then

C2 =−2.

In particular, a reducible reduced negative curve D such that D2 <−2 has more than one

connected component.
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Proof. Let us call Ci the irreducible components of C. Then C =
∑n

i=1Ci and

(C)2 =−2n+2

n∑
i=1

n∑
j=i+1

CiCj .

The curve C is connected, so each curve Ci intersects at least one other curve, and one has∑n
i=1

∑n
j=i+1CiCj ≥ n−1. Hence, C2 ≥−2n+2(n−1) =−2. If C2 < 0, then C2 =−2.

Lemma 3.15. Let S be a K3 surface, and let Λ be a sublattice of NS(S). If Λ is generated

by irreducible curves and is degenerate, then all the curves represented by classes in Λ are

either fibers or components of fibers of a genus 1 fibration on S.

Proof. Since Λ is degenerate, there exists v ∈ Λ such that v2 = 0 and vw = 0 for every

w ∈ Λ. By the Riemann–Roch theorem, either v or −v is effective, so we assume that v is

effective and hence ϕ|v| is a fibration whose smooth fibers are genus 1 curve (cf., e.g., [K,

Proof of Lemma 2.1]). Since any other class w in Λ has a trivial intersection with v, if a

curve is represented by w, it is contracted by ϕ|v| and hence it is contained in a fiber of the

fibration ϕ|v|.

Let ΛDi be the lattice generated by the irreducible components of an effective divisor

Di.

Theorem 3.16. Let f : X → S be a normal Galois triple cover of a K3 surface, whose

branch locus has n ≥ 1 connected components, that is, the n connected possibly reducible

curves D1, . . . ,Dn.

(1) If κ(X) = 0, then all the lattices ΛDi are A2(−1) (in particular, negative definite).

(2) If κ(X) = 2, then there exists a lattice ΛDi such that sgn(ΛDi) = (1,rank(ΛDi)−1) and

all the other lattices ΛDj are negative definite.

(3) If κ(X) = 1, then there are no lattices ΛDi which are indefinite and there exists at least

on ΛDi which is degenerate.

Proof. (1) If κ(X) = 0, each component of Di is a negative curve, and thus by adjunction

a (−2)-curve, since the intersection with the canonical bundle is trivial for every curve on

X (if X is a K3 surface; see also Lemma 3.14). Therefore, the lattice ΛDi is a negative

definite root lattice, and thus ΛDi(−1) is an A–D–E lattice [BHPV, Lem. 2.12, Chap. I].

By [BHPV, Chap. I, §17], the existence of a triple cover branched in Di implies that a linear

combination of the components of the Di’s with noninteger coefficients in 1
3Z is contained

in the Picard group of S. So the discriminant group of ΛDi contains Z/3Z, which implies

that either ΛDi �A3k−1(−1) with k > 1 or ΛDi �E6(−1). In both the cases, Λ∨
Di

/ΛDi is a

cyclic group, generated by a class l (supported on the components of Di). The generators

of the subgroups Z/3Z in Λ∨
Di

/ΛDi are multiple of l, and they are always supported on a

disjoint A2-configuration of curves. So each Di is the sum Bi+Ci, where Bi and Ci are two

rational curves meeting in a point, that is, 〈Bi,Ci〉 �A2(−1).

(2) If κ(X) = 2, then there exists a curve C ∈ |R|, where R is the ramification of f such

that g(C) > 1 (see Proposition 2.9) and C2 ≥ 0. By the projection formula, (f(C))
2 ≥ 0

and so g(f(C)) ≥ 1. There exists a (possibly reducible) branch curve Γ linearly equivalent

to f(C) and contained in Di. If g(f(C)) > 1, then Γ2 > 0 and hence ΛDi satisfies the

hypothesis, by the Hodge index theorem.
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If g(f(C)) = 1, f(C) defines a genus 1 fibration E on S. Moreover, f(C) intersects the

branch locus, that is, f(C)∩ (∪iDi) �= ∅; otherwise, g(C) = 1. This implies that Γ in the

union of a fiber of E and some horizontal curves. In particular, Γ, and hence Di, contains

the class F of the fiber of the fibration E and at least a horizontal curve Δ. The class

αF +δΔ is contained in ΛDi , and it has a positive self-intersection for α sufficiently big. By

the Hodge index theorem, the signatures of all the other lattices ΛDi are the required ones.

(3) If κ(X) = 1, then there exists a curve C ∈ |R|, where R is the ramification of f such

that g(C) = 1 and C defines a genus 1 fibration on X. Hence, f(C) defines a genus 1

fibration on S. All the irreducible components of |f(C)| are genus 1 curve and f(C)2 = 0.

As above, there exists a (possibly reducible) branch curve Γ linearly equivalent to f(C) and

contained in Di. Then Γ ∈ |f(C)| and it is a fiber (irreducible or not), so it coincides with

Di for a certain i and ΛDi is degenerate. All the other Dj ’s are contained in (or coincides

with) fibers, so each ΛDj cannot contain a class with positive self-intersection.

Corollary 3.17. Let f : X → S be a normal Galois triple cover of a K3 surface, whose

branch locus has n≥ 1 connected components, that is, the n connected reducible and reduced

curves D1, . . . ,Dn.

(1) If all the ΛDi are negative definite, then κ(X) = 0, n = 6 or n = 9, and the minimal

model of X is either a K3 or an abelian surface.

(2) If sgn(ΛD1) = (1,rank(ΛD1)− 1), then κ(X) = 2, ΛDj � A2(−1) for all j �= 1, and

n≤ 10.

(3) If ΛD1 is degenerate, then ΛDj for j �= 1 is either degenerate or negative definite and

κ(X) = 1.

Proof. The assumption that the curve Di’s are reduced guarantees that X is normal. (1)

If all the ΛDi are negative definite, we already showed in Theorem 3.16 that ΛDi �A2(−1).

The sets of A2-configurations which are 3-divisible (and thus are in the branch locus of a

triple cover) necessarily contain either six or nine A2-configurations [Ba, Lem. 1]. In the

first case, the minimal model of the triple cover is a K3 surface, and in the latter case, it is

an abelian surface and in particular κ(X) = 0.

(2) If sgn(ΛD1) = (1,rank(ΛD1)−1), by the Hodge index theorem, the lattices ΛDj with

j �=1 are negative definite. As in proof of (1) of Theorem 3.16, this implies that ΛDj coincides

with A2(−1). The maximal number of disjoint A2-configurations of rational curves on a K3

surface is 9, and hence n ≤ 10. To show that κ(X) = 2, we observe that if κ(X) = 0, then

by Theorem 3.16, all ΛDi should be negative definite, which contradicts the hypothesis on

ΛD1 . If κ(X) = 1, then by Theorem 3.16, at least one ΛDi should be degenerate, which is

again impossible.

(3) If ΛD1 is degenerate, then D1 consists of a fiber of an elliptic fibration. So Dj , j �= 1,

are contained in fibers and then ΛDj cannot contain a positive class. In particular, κ(X)

cannot be 2, because there is no indefinite lattice ΛDi and cannot be 0, because not all the

lattices ΛDi are negative definite.

We now consider the case in which one connected component Di of the branch locus is

irreducible. The following corollary shows that if its self-intersection is nonnegative, we can

easily determine the Kodaira dimension of X.

Corollary 3.18. Let Di be an irreducible reduced curve in the branch locus of a Galois

triple cover f :X → S. If D2
i > 0, then κ(X) = 2. If D2

i = 0, then κ(X) = 1.
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If D2
i ≥ 0, then the minimal model X◦ of X is obtained by contracting on X ′ three curves

for each A2-configuration in the branch locus.

Proof. The first part of the statement follows directly by Corollary 3.17.

Let D1 be a smooth irreducible curve, then the singularities of the branch locus are of

type 2 and they are the singular points of each A2-configuration in the branch locus.

In this case,X◦ is obtained by contracting onX ′ three curves for each A2-configuration in

the branch locus. Indeed, by Remark 3.11, one has to contract at least three curves for each

A2-configuration, and we call the surface obtained by these contractions Xm. It remains to

prove that Xm and X◦ coincide, and so that there are no other possible contractions to a

smooth surface.

On Xm, there is an automorphism σm of order 3, induced by the Galois Z/3Z-cover

automorphism σ on X. The surface Sm := Xm/σm is the singular surface obtained by

S contracting all the A2-configurations in the branch locus. If there were a (−1)-curve

E on Xm, then there are two cases: either E is disjoint from the ramification locus of

fm :Xm → Sm, or E meets it (not being contained).

If E is disjoint from the ramification locus, then there exists a (−1)-curve, still denoted

by E, on X which is mapped to E (because we blow up and down points away from E ).

Hence, σ(E)∩E is empty, and therefore σ(E) and σ2(E) are other two (−1)-curves on

X. So f(E) = f(σ(E)) = f(σ2(E)) ⊂ S is a (−1)-curve. This is absurd because S is a K3

surface.

Hence, E meets the ramification locus Rm and σm(E) = E. Otherwise, there should be

different (−1)-curves (E and σm(E)) meeting in the point E∩Rm and this is impossible on

a surface with nonnegative Kodaira dimension. Moreover, σ is an automorphism of order 3

of the rational curve E, and then E∩Rm consists of two points.

Let β :Xm →X◦ be the contraction of E, and let σ◦ be the automorphism induced by σm

on X◦. This induces the contraction Sm → S◦ of the curve fm(E). Since E∩Rm consists of

two points, the contraction of fm(E) identifies two singular points on Sm and introduces a

singularity on the image of D1. By construction, the smooth X◦ is a triple cover of S◦ and

thus the singularities of S◦ cannot be worse than (C2,0)/Z/3Z, so two singularities of Sm

cannot be identified. Moreover, there cannot be a singularity on the branch curve image of

D1, and S◦ has to coincide with Sm. We conclude that Xm coincides with X◦.

§4. Examples of Galois covers of K3 surfaces

By Theorem 3.16 and Corollary 3.17, k(X) = 0 if and only if for all the components Di

of the branch locus, ΛDi is negative. In this case, the minimal model of X is either a K3

surface or an abelian surface, and these cases are well known (see, e.g., [Ba]).

We now provide examples for the other cases. First, we consider surfaces of general type:

in Propositions 4.1 and 4.6, we compute the invariants of X◦ if it is of general type and

we make specific assumption on the component D1 of the branch locus such that ΛD1

is indefinite; in Corollary 4.3, we provide an example of surface X◦ with pg = 2; and in

Theorems 4.16 and 4.17, examples of X◦ with q �= 0. Then we consider the case κ(X◦) = 1,

and we classify the invariants of X◦ in Proposition 4.11.

4.1 The covering surface X is of general type

Case (2) of Theorem 3.16 is the most general one, but under some assumptions, we are

able to give a more detailed description of these covers.
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We first assume to be in the hypothesis of Corollary 3.18.

Proposition 4.1. Let D1 be a connected component of the branch locus of a Galois

triple cover f :X → S, which is also irreducible, reduced, and of positive genus. Then D2
1 =

6d, for an integer d > 0; d≡3 n−1, and denoted by k the integer such that d= n−1+3k,

one has k ≥−2.

If D1 is moreover smooth, then

χ(X◦) = 5+n+5k, K2
X◦ = 8n−8+24k, e(X◦) = 68+4n+36k. (4.1)

Proof. By Corollary 3.17, the components Dj with j > 1 consist of two rational curves

meeting in a point. We denote by Aj
1 and Aj

2 the two components of Dj . Since D1 is

irreducible, it is a component of B (or equivalently of C ). Then the data of the triple cover

are

B =D1+

n−1∑
j=1

Aj
1, C =

n−1∑
j=1

Aj
2,

L=
D1+

∑n−1
j=1

(
Aj

1+2Aj
2

)
3

, M =
2D1+

∑n−1
j=1

(
2Aj

1+Aj
2

)
3

.

By LD1 ∈ Z and L2 ∈ 2Z, it follows that D2
1 ≡3 0 and d ≡3 n−1. Since n ≤ 10 and d > 0,

9+3k > 0, so k ≥ −2. The formula (4.1) follows by Proposition 3.12 since L2 = 2k, M2 =

2n+8k− 2, and LM = n− 1+4k, and X◦ is obtained by X contracting 3(n− 1) curves.

We conclude by Corollary 3.18.

4.2

In the situation of the previous corollary, if L2 ≥ −2, there exists a member of the

linear system |D1| which splits into the union of a curve G and the curves Aj
i , where

G� D1−
∑n−1

j=1 (A
j
1+2Aj

2)
3 and hence D1 � 3G+

∑n−1
j=1

(
Aj

1+2Aj
2

)
. We observe that GA

(j)
2 = 1

and GA
(j)
1 = 0. Since G2 = 2k, if G is an irreducible and smooth curve, then g(G) = k+1.

In particular, G is rational if k =−1. A limit case is the one with k =−1 and n= 3. It is

not an example of case (1) of the Theorem 3.16, because D2
1 = 0, but it is still instructive,

since the interpretations of the curves G, A
(j)
i in this situation are well known: D1 is a fiber

of type IV ∗ of an elliptic fibration and the curves G and A
(j)
i are its components.

Similarly, there is a member of |2D1| which splits in the union of a curve F and the union

of the curves Aj
i , where F � 2D1−

∑n−1
j=1 (2A

j
1+Aj

2)
3 , and hence 2D1 � 3F +

∑n−1
j=1

(
2Aj

1+Aj
2

)
.

Since F 2 = 2n+ 8k, if F is irreducible and smooth curve, then g(F ) = n+ 4k + 1. In

particular, F is rational if n+4k =−1 and elliptic if n=−4k.

Corollary 4.3. There exists a smooth Galois triple cover X of a K3 surface S whose

branch locus consists of a smooth curve of genus 4 and seven A2-configurations of rational

curves such that, denoted by Xo the minimal model of X, it holds

χ(X◦) = 3, q(X◦) = 0, pg(X
◦) = 2, K2

X◦ = 8.

Proof. Let S be a K3 surface with an elliptic fibration such that the reducible fibers are

I2+6I3 and the Mordell–Weil group is Z/3Z. The existence of a K3 surface with such an
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elliptic fibration is guaranteed by [Sh, Table 1, case 835]. We denote by F the class of the

fiber of this fibration, by O the class of the zero section, by A
(1)
2 the class of the irreducible

component of the fiber I2 which meet the section O, and by A
(j)
h , h= 1,2, j = 2, . . . ,7, the

classes of the two irreducible components not meeting the zero section of the j th reducible

fiber, which is a fiber of type I3. We observe that the class of the 3-torsion section P, which

generates the Mordell–Weil group, can be written in terms of the previous curves as

P = 2F +O− 1

3

⎛⎝ 7∑
j=2

A
(j)
1 +2A

(j)
2

⎞⎠ .

Moreover, we observe that there are seven disjoint A2-configurations on this surface, which

are given by O, A
(1)
2 , A

(j)
h , h= 1,2, j = 2, . . . ,7. Let us consider the divisor 3F +A

(1)
2 +2O=

D1, and we notice that D2
1 = 6, D1F = 2, D1A

(1)
2 = 0, and D1O= 0. One can check that D1

is a big and nef divisor, and hence in its linear system, there is a smooth irreducible curve

of genus 4, still denoted by D1. We claim that there exists a triple cover of S branched over

D1 and the seven A2-configurations O, A
(1)
2 , A

(j)
h , h= 1,2, j = 2, . . . ,7. Indeed, the divisor

L :=

⎛⎝D1+O+
7∑

i=2

A
(i)
1 +2

7∑
j=1

A
(j)
2

⎞⎠/3 = 3F +A
(1)
2 +2O−P

is contained in NS(S) and so

B :=D1+O+
7∑

i=2

A
(i)
1 , C :=

7∑
j=1

A
(j)
2 ,L= (B+2C)/3, M = (2B+C)/3

form triple cover data on S. So there exists a triple cover X →S which satisfies the condition

of Proposition 4.1 with k = −2, n = 8, and d = 1, and then we deduced the properties of

Xo.

Remark 4.4. If S is a K3 surface and pg(X) = 2, the cover f :X → S induces a splitting

of the Hodge structure on TX in a direct sum of two Hodge structures of K3 type (i.e., the

Hodge structure of weight 2 of type (1,�,1)); indeed,

TX = f∗(TS)⊕ (f∗(TS))
⊥
.

The Hodge structure of TX is of type (2,�,2), and the one of f∗(TS) is of type (1,�′,1)

since it is induced by the Hodge structure of the K3 surface S. Hence, both f∗(TS) and

(f∗(TS))
⊥

carry a K3-type Hodge structure.

The surfaces with pg =2 such that the transcendental Hodge structure splits in the direct

sum of two K3-type Hodge structures are studied in several context (see, e.g., [G3], [L1],

[L2], [Mo], [PZ]), and in general, it is interesting to look for K3 surfaces geometrically

associated with the K3-type Hodge structure. In the case of covers of K3 surfaces S (and in

particular in the setting of Corollary 4.3), at least one of the two K3-type Hodge structures

is of course geometrically associated with the K3 surface S ; indeed, it is the pull back of

the Hodge structure of S.

We give examples of case (2) of the Theorem 3.16 such that D1 is reduced and reducible.

In particular, we consider the case D2
1 = 0, but ΛD1 contains a class with a positive

https://doi.org/10.1017/nmj.2022.15 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2022.15


TRIPLE COVERS OF K3 SURFACES 959

self-intersection. In this case, the support of D1 consists of a certain number of fibers

Fi and some rational horizontal curves Pj such that

(D1)
2 =

⎛⎝r
∑
i

Fi+
∑
j

Pj

⎞⎠2

= 0.

We denote by F the class of the fiber, and therefore FiPj = FPj for all i. Since (D1)
2 =∑s

k=1D1Pk+ rFPk, D
2
1 = 0 and FPk > 0, it follows that

∃j such that D1Pj < 0.

In particular, D1 is not nef.

The following lemma shows that each curve Pj such that D1Pj < 0 is a section orthogonal

to all the other horizontal curves in D1.

Lemma 4.5. Let F be the class of the fiber of an elliptic fibration and Pj’s irreducible

horizontal curves. Let D1 = rF +
∑k

j=1Pj be such that D2
1 = 0 and D1 is reduced.

There exists j such that D1Pj < 0 if and only if FPj = 1, PjPi = 0 for every j �= i and

r = 1

Proof. We already observed that D1 intersects negatively at least one of its components,

say Pj . Hence, Pj is a fixed component of a non-nef divisor and P 2
j =−2. So

D1Pj = rFPj +
∑
i �=j

PiPj −2< 0.

So rFPj +
∑

i �=j PiPj ≤ 1. We observe that Pj is horizontal, so FPj > 0, and PjPi ≥ 0

because Pi are irreducible effective curves. Hence, the only possibility is r = 1, FPj = 1,

and PiPj = 0.

We recall that by (2) of Corollary 3.17, if D1 is as above, in the branch locus, there are

n−1 components Dh, n≥ 1 which are A2-configurations of curves. We denote by A
(h)
1 , A

(h)
2

the components of such configurations.

Proposition 4.6. Let S be a K3 surface admitting an elliptic fibration with k disjoint

sections Pj and whose class of the fiber is F, and let D1 = F +
∑

j Pj. There exists a triple

cover X → S branched on D1 and other n−1 irreducible components Dh if and only if

D1 = F +
k∑

j=1

Pj , k ≡3 0, n≡3 1+
k

3
, (4.2)

and the data of the triple cover are determined by

B = F +
n−1∑
h=1

A
(h)
1 , C =

k∑
i=1

Pi+
n−1∑
h=1

A
(h)
2 .

The surface X◦ is of general type, and its numerical invariants are

χ(OX◦) =
60−6n−k

9
, K2

X◦ =
2k

3
.
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Proof. Since L= (B+2C)/3 and LPi ∈ Z, it follows that if F is a component of B, the

Pi’s must be components of C. The divisor

L=
F +2

∑k
j=1Pj +

∑n−1
h=1

(
A

(h)
1 +2A

(h)
2

)
3

has to be contained in NS(S), LF ∈ Z, LPi ∈ Z, for every i= 1, . . . ,h, and L2 ∈ 2Z. These

conditions imply

2k

3
∈ Z, −1 ∈ Z, and

−4k−6(n−1)

9
= 2

−2k−3n+3

9
∈ 2Z.

Recall that

M =
2F +

∑k
j=1Pj +

∑n−1
h=1

(
2A

(h)
1 +A

(h)
2

)
3

,

so

L2 =
6−4k−6n

9
, M2 =

2k+6−6n

9
, and LM =

k+3−3n

9
,

which gives χ(X) andK2
X . Since the singularities of X are negligible, these are the invariants

of the minimal resolution of the cover. To obtain a minimal model, one has to contract the

(−1)-curves. Each A2-configuration produces three (−1)-curves in the minimal resolution of

triple cover, and each curve Pj produces one (−1)-curve, by Remark 3.11. So one contracts

at least 3(n−1)+k curves to obtain the minimal model from the minimal resolution and

so KX◦ ≥K2
X +3(n−1)+k = 2k/3.

As in the proof of Corollary 3.18, if there were other (−1)-curves, they have to intersect

the ramification locus, and we already excluded the cases coming from rational curves

intersecting the components Dj , j ≥ 2. We consider the canonical resolution of the triple

cover f̃ : X̃ → S̃ as in the diagram (2.3). Thanks to the particular configuration of curves in

D1, one checks that the only (−1)-curves on X̃ mapped to σ−1(D1) are the strict transforms

of the triple cover of the curves Pi. After their contraction, there are no other (−1)-curves

in the strict transform of σ−1(D1).

Consider a rational curve C ⊂ S with CD1 > 0 and observe that C is not mapped to

σ−1(D1). We denote by C̃ the strict transform of C. If f̃−1(C̃) is an irreducible rational

curve, it intersects the ramification locus in at most two points. Moreover, (f̃−1(C̃))2 =

3C̃2 ≤ −6. Since we can contract at most two curves meeting f̃−1(C̃), we cannot obtain

a (−1)-curve. If f̃−1(C̃) splits in three curves and they meet, then they cannot be (−1)-

curves (because X is of general type). If f̃−1(C̃) splits in three curves, these cannot meet,

f̃−1(C̃) does not meet the ramification locus, and (f̃−1(C̃))2 = (C̃2). In particular, they are

not (−1)-curves. The (−1)-curves on X̃ are contained in the ramification locus, and thus

f̃−1(C̃) does not meet these curves.

In the previous proposition, we do not discuss the existence of the K3 surfaces considered,

so a priori it is possible that the hypothesis of the proposition are empty. This is not the

case, by the following corollary.

Corollary 4.7. Let k and n be two positive integers such that k+2n− 1 ≤ 11. Then

there exists a K3 surface S with an elliptic fibration with k disjoint sections Pj and n− 1

fibers of type I3 such that the sections Pj all meet the same component of each I3-fiber.

https://doi.org/10.1017/nmj.2022.15 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2022.15


TRIPLE COVERS OF K3 SURFACES 961

In particular, there exists a triple cover X → S as in Proposition 4.6 if (k,n) =

(3,2),(6,3),(9,1) and in these cases χ(X) = 5,4,5 and K2
X◦ = 2,4,6, respectively.

Proof. Let Λ be a lattice generated by the following classes:

F, Pj , (j = 1, . . . ,k), A
(h)
1 , A

(h)
2 ,

F +2
∑j

i=1Pj +
∑n−1

h=1

(
A

(h)
1 +2A

(h)
2

)
3

= L,

where the intersections which are not zero are

FPj =A
(h)
1 A

(h)
2 = 1, P 2

j =
(
A

(h)
i

)2

=−2.

The lattice Λ is even and hyperbolic. If the rank of the lattice Λ is less than 12, then it

admits a primitive embedding ΛK3 and there exists a projective K3 surface S such that

NS(S) = Λ (by the surjectivity of the period map). If (k,n) is such that rank(Λ)≤ 12 and

satisfies the condition (4.2), then (k,n) = (3,2),(6,3),(9,1). The classes F and F +Pj span

a copy of U inside Λ, then there exists a negative definite lattice K such that U⊕K �Λ. In

[K, Proof of Lem. 2.1], it is proved that if NS(S)�Λ is as described, there exists an elliptic

fibration. The 2(n−1)(−2)-curves A
(h)
i , which are roots in K, are contained in singular fibers

as in the statement. By the Shioda–Tate formula, the rank of the Mordell–Weil group of the

elliptic fibration is the Picard number of the surface minus the rank of the trivial lattice.

The latter is spanned by U and the roots contained in K. Hence, the Mordell–Weil group

has rank k−1, and hence there are k independent sections, which corresponds to the classes

Pj (see [SS, Cor. 6.13]).

4.8

We observe that the K3 surface associated with the values (9,1) corresponds to a

K3 surface with an elliptic fibration with nine disjoint sections and, generically, without

reducible fibers. This K3 surface is obtained as base change of order 2 on a generic rational

elliptic surface R. One can directly check this fact by considering the Néron–Severi group

of S, which is generated by L and by the classes P1, . . . ,P9 and it is isometric to U⊕E8(−2)

which is the Néron–Severi group of a K3 surface corresponding to the double cover of a

generic rational elliptic surfaces [GS1]. In particular, the rational elliptic surface is a blowup

of P2 in the base locus of a generic pencil of cubics, and hence the K3 surface S can be

described as double cover of P2 branched on two specific cubics of the pencil (see, e.g.,

[GS1]). The triple cover X → S defines a 6 : 1 Galois cover X → P
2 whose Galois group

is S3. In particular, the rational surface R admits a non-Galois triple cover W and by

construction X is a double cover of W.

In Lemma 4.5 and hence in Proposition 4.6, we assume that the fibers appearing in

the component D1 of the branch locus are smooth. However, of course, this is not the

only possibility. Indeed, one can also consider reducible fibers. This gives many ways to

construct the data of the triple cover. For example, let F be a reducible fiber with two

components G0 and G1, then either both G0 and G1 are contained in B or one is contained

in B and the other in C. These choices produce different covers, and the situation can be

easily generalized with fibers with many components.

We now describe one case where the fiber is of type I2 (and then it has two components),

one component is contained in B and the other in C. Moreover, in the branch locus, there
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Figure 3.

are four sections and other two A2-configurations of rational curves. This means that n= 3

with the notation of case (2) of Theorem 3.16.

Example 4.9. Let us consider a K3 surface S and the configuration of (−2)-curves as

in Figure 2. The existence of a K3 surface with the required fibration is guaranteed by the

surjectivity of the period map as in Corollary 4.7.

We then consider the triple cover such that

D1 =G0+G1+P0+P1+P2+P3, D2 =A
(1)
1 +A

(1)
2 , D3 =A

(2)
1 +A

(2)
2 .

The triple cover data are

B=G0+P1+P3+A
(1)
1 +A

(2)
1 , C=G1+P0+P2+A

(1)
2 +A

(2)
2 , L=

B+2C

3
, M =

2B+C

3
.

We observe that ΛD1 is indefinite (e.g., 2(G0+G1)+P0 has a positive self-intersection) and

X is of general type by Theorem 3.16.

A straight forward calculation shows that B2 = −10, C2 = −10, and BC = 8, which

yields L2 = −2, M2 = −2, and ML = 0. Since all the singularities in the branch locus are

of type 2, and in particular negligible, by Proposition 3.12, we obtain

χ(X ′) = 4, K2
X′ =−8.

Moreover, since L2 =M2 =−2, it follows that h1(S,L) = h1(S,M) = 0, and then q(X ′) = 0.

Therefore, pg(X
′)= 3. The surfaceX ′ is smooth but not minimal. Indeed, each configuration

of type A2 in the branch locus corresponds to three (−1)-curves on the minimal resolution

X ′ of the cover and each curve Pj corresponds to a (−1)-curve on X ′ (see Remark 3.11). So

we have to contract at least 3 ·2+4 = 10 curves on X ′, and we denote by Xm the surfaces

obtained contracting these 10 curves on X ′. Then K2
Xm

= −8+10 = 2. The surface Xm

is minimal, to prove that directly it is not straightforward. Nevertheless, it is possible to

see it using a different construction of Xm. In [BP], Penegini and Bini introduce a Calabi–

Yau threefold Y6 with Hodge numbers (10, 10). To some extent, this is special. In fact, its

group of automorphisms contains a subgroup G isomorphic to Z/6. Moreover, this Calabi–
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Yau threefold can be described as a small resolution of a (3, 3) complete intersection Y

in P
5 with 72 ordinary double points. Furthermore, the group G extends to a group of

automorphisms of P5. Thus, there are six invariant hyperplane sections corresponding to

irreducible characters of the abelian group Z/6. Since the intersections of Y with these

sections are invariant with respect to this group, it was natural to investigate them and their

quotients. Out of the six invariant sections mentioned before, three of them are irreducible.

These are singular surfaces of general type; on the minimal model Σ of one of them, let act

Z/2≤G, then it is not hard to prove that the minimal resolution of Σ/(Z/2) is a minimal

surface and is isomorphic to Xm. Hence, Xm is the minimal model of X, that is, it is X◦.

4.9 Examples of case (3) of Theorem 3.16

Case (3) of Theorem 3.16 implies that D1 is a fiber of an elliptic fibration. So Dj , j > 1, is

necessarily contained in a fiber, and this naturally gives two cases: either, for all j =1, . . . ,n,

Dj is a full fiber or at least one of the Dj is supported on rational components of a fiber,

but it does not coincide with the full fiber. Both cases are possible, and we now discuss

them.

Proposition 4.10. Let X → S be a triple cover as in case (3) of Theorem 3.16. This

implies that ϕ|D1| : S → P
1 is an elliptic fibration. Suppose that all the Dj are linearly

equivalent to D1, then X is obtained by a base change of order 3.

Proof. By the proof of Corollary 3.17, D1 is the fiber of an elliptic fibration ϕ|D1| : S →
P
1. By hypothesis, the Dj ’s are fibers of the fibration ϕ|D1| too. The 3 : 1 cover X → S

induces a 3 : 1 cover C → P
1 where C is a smooth curve. The branch locus of C → P

1 is the

image of the branch locus of X → S and so it is ϕ|D1|(
⋃

jDj).

Proposition 4.11. Let S be a K3 surface endowed with an elliptic fibration ϕ|F | : S →
P
1. Let us consider p1, . . . ,pn points in P

1 and a triple Galois cover g : W → P
1 totally

branched on p1, . . . ,pn. The fiber product X := S×g P
1 is a triple cover of S branched on

n fibers. If the fibers over the points pi are reduced, X is also normal. Denoted by X◦ the

minimal model of X, if X◦ is not a product, then

h1,0(X◦) = g(W ) = n−2 and K2
X◦ = 0.

If X◦ is a product, then h1,0(X◦) = g(W )+1 = n−1.

If all the branch fibers are reduced and not of type IV , then

e(X◦) = 72, χ(X◦) = 6, and pg(X
◦) = 3+n.

Proof. The cover automorphism of g : W → P
1 acts as ζ3 locally near the first b1

ramification points and as ζ23 locally near the other b2 = n− b1 ramification points. Notice

that b1 +2b2 ≡3 0. Let us consider the fiber product S×g P
1. It is the triple cover X of

S branched over the fibers Fpi = ϕ−1
|F |(pi). So we have a Galois triple cover X → S. If

all the fibers Fpi are reduced, the cover X is normal, and we can apply the previous

theory. The branching data are B =
∑b1

i=1Fpi , C =
∑n

j=b1+1Fpj , L � (b1 +2b2)F/3, and

M � (2b1+ b2)F/3.

Now, let us compute the triple cover invariants. The surface X is endowed with the

elliptic fibration. Let us denote by X◦ the minimal model of X, which is a smooth surface,

admitting a relatively minimal elliptic fibration E :X◦ →W . Assume that it admits at least

one singular fiber (which is surely true if there exists a singular fiber of S which is not in
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the branch locus). Then X◦ is not a product and h1,0(X◦) = g(W ) = n−2. Moreover, since

X◦ admits an elliptic fibration K2
X◦ = 0. We recall that if a branch fiber is of type IV , the

corresponding ramification fiber on X◦ is smooth, and hence it is possible that after the

base change the fibration X◦ →W has no singular fibers and it may be a product.

If the branch fibers are reduced and different from IV , the Euler characteristic of their

strict transform is three times their Euler characteristic (see [Mi1, VI.4.1]), then e(X◦) =

3e(S) = 72, so χ(X◦) = e(X◦)/12 = 3χ(S) = 6.

We observe that even if there are nonreduced fibers Fpi in the branch locus, the invariants

of the minimal model of a normalization can be computed by the theory of the base change

of elliptic fibrations (see [Mi1, VI.4.1]).

Theorem 4.12. The singularities in the branch locus of a Galois triple cover are

negligible (see Definition 2.15) if the local equation of the branch locus is in the following

list:

• xy (type 1);

• xy2 (type 2);

• xy(x+y) (simple triple point);

• x2−y3 (cusp); and

• x(y−x2).

Proof. The singularities of types 1 and 2 were considered in [PP, Exams. 1.6 and

1.8] (see also Proposition 2.16). For the other cases, we use the results of Proposition

4.11, where we computed the invariants of X◦ directly by considering the geometry of

the elliptic fibration. We compare them with the ones obtained by applying point (3) of

Proposition 3.12. If they coincide, this means that all the singularities which can appear

in the branch locus are negligible. Since L2 = M2 = LM = 0, one obtains χ(X ′) = 6,

e(X ′) = 72, and K2
X′ = 0. Moreover, h1(L) = h1( b1+2b2

3 F ) = b1+2b2
3 − 1 = b1+2b2−3

3 and

h1(M) = h1(2b1+b2
3 F ) = 2b1+b2

3 −1 = 2b1+b2−3
3 so that h1(L)+h1(M) = b1+ b2−2 = n−2.

So all the singularities appearing in the singular reduced fibers are negligible.

For example, a branch fiber of type III in S consists of two tangent rational curves. We

deduce that the singularities in the branch locus obtained by tangency of two components

are negligible singularities. More precisely, if there is a branch fiber of type III on S, it

induces a fiber of type IV ∗ (whose dual graph of curves is Ẽ6) of E :X ′ →W . We deduce

that if the branch locus of a totally ramified triple cover contains two tangent curves, the

triple cover has a singularities of type E6 (see Figure 4).

If a branch fiber on S is singular, then the corresponding fiber on X◦ is obtained by a

base change of order 3; [Mi2, Table VI.4.1] shows that effect of a base change on singular

fibers of an elliptic fibration.

By [Mi2, Table VI.4.1], one immediately obtains that, if the branch contains a cusp, the

cover has a singularity of type D4, and if the branch has a simple triple point, the cover has

an elliptic singularity. Notice that one recovers the singularities of type 1 by considering

fibers of type Im in the branch locus.

Note that the list of Theorem 4.12 is not necessarily complete.

We now consider the other possibility of case (3) of Theorem 3.16, and hence we assume

that D1 is a fiber, but at least one of the other components of the branch locus is strictly

contained in a fiber.
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Figure 4.

In this case, the effect of the triple cover on the fibers strictly containing Dj is not the

one of a base change of order 3. In the following proposition, we describe how the fibers

change under a triple cover of this type.

Corollary 4.13. Let D1 be a connected reducible (possibly nonreduced) component of

the branch locus of a Galois triple cover f :X → S. Let ϕ|D1| : S → P
1 be the induced elliptic

fibration (see the proof of Theorem 3.16). Let Dj ⊂ (FS)j, and we assume that Dj = (FS)j
iff j ≤ k. Given a fiber FS, we denote by FX′ the corresponding fiber in the minimal model

of the normalization of X. Then we have the following tables of types of singular fibers:

j ≤ k

type FS type FX′

Im I3m
I∗m I∗3m
II∗ I∗0
III∗ III

II I∗0
III III∗

IV I0

j > k

type FS type FX′

I3m Im
IV IV

IV ∗ I0

Proof. If j ≤ k, then Dj = (FS)j , the fibers (FS)j are branch fibers, and the type of

(FX)j is given in [Mi1]. We already observed that if Di is properly contained in a fiber FS ,

i≥ k and Di is supported on an A2-configuration.

Let us suppose that FS properly contains r connected components Di, i≥ k. These are

A2-configurations, whose components are denoted by A
(1)
1 , A

(1)
2 , A

(2)
1 , A

(2)
2 , . . ., A

(r)
1 , A

(r)
2 .
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Figure 5.

Moreover,
∑r

h=1(A
(h)
1 + 2A

(h)
2 )/3 necessarily has an integer intersection with all the

components of FS , and hence it is contained in the discriminant group of lattice associated

with FS . We conclude that FS is necessarily one of the following: I3m, with r=m, IV with

r = 1, and IV ∗ with r = 2.

There are mA2-configurations contained in I3m, and the birational inverse image of each

of them in the minimal model X◦ is a point. The remaining curves form an Im fiber.

To obtain the minimal model in case IV ∗, one first contracts the inverse image of the

curves in the A2-configurations each to a point. These three points lie on a (−1)-curve

(which is the inverse image of the unique remaining curve in IV ∗). Contracting this curve,

we obtain an I0 fiber.

The case IV is shown in Figure 5.

4.10 Irregular covers of K3 surfaces

Even if a K3 surface is a regular surface, it is of course possible to construct triple covers

of K3 surfaces which are irregular surfaces. The easiest examples are provided by cases (1)

and (3) of Theorem 3.16. Indeed, by case (1) of Theorem 3.16, the Galois triple cover of a

K3 surface branched on nine A2-configurations is an abelian surface. This case is effective,

since it is known that there exist abelian surfaces admitting a symplectic automorphism of

order 3 such that their quotient by this automorphism is birational to a K3 surface [Fu]. In

Proposition 4.11, the irregularity of a surface X obtained as base change of order 3 on an

elliptic fibration on a K3 surface S is computed. One checks that if n > 2, then the surface

X is irregular. Once again, it is clear that there exist explicit examples of this situation;

indeed, it suffices to construct a curve W (with the notation of Proposition 4.11) which is

a Galois triple cover of P1 branched on more than two points.

We observe that the previous constructions produce surfaces X whose Kodaira dimension

is either 0 or 1. It is more complicated to construct examples of irregular covers of K3

surfaces which are surfaces of general type. This is essentially due to the difficulties in

finding branch divisors on a K3 surface which are not supported on rational or elliptic

curves, but such that the associated triple cover is irregular. Indeed, if X → S is a

triple cover of a K3 surface, then X is irregular if and only if at least one between L

and M satisfies h1(L) > 0 or h1(M) > 0, and there are not so many divisors with this

property.

Lemma 4.14. Let D be a divisor on a K3 surface S such that −D is not effective. If

h1(D) �= 0, then one of the following holds:
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• if D2 < 0, then D2 ≤−4, and if D2 =−4, then D is effective;

• if D2 = 0 and D is nef, then D = nE where E is a genus 1 curve, n > 1, and h1(S,D) =

n−1; if D2 = 0 and D is not nef, D =M +F where M is its moving part and F is its fix

part, and

F (F −2D)> 0; and

• if D2 > 0, then D is not nef. In this case, D =M +F where M is its moving part and F

is its fix part, and

F (F −2D)> 0.

Proof. If D2 < 0, then h0(S,D) ≤ 1. If D2 = −2, then χ(D) = 1, which would imply

h1(S,D) = 0.

If D2 > 0 and D is nef, then D is big and nef, and by the Kawamata–Viehweg vanishing

theorem, h1(S,D) = 0. Therefore, if D2 > 0 and h1(D) �= 0, then D is not nef. In particular,

there is a fixed part F in |D| such that D = M +F with F 2 < 0 and DF < 0. Moreover

h0(S,D) = h0(S,D−F ). By the Riemann–Roch theorem,

1

2
(D−F )2+2 = h0(S,D−F ) = h0(S,D) =

1

2
D2+2+h1(S,D).

Finally, if D2 = 0 and D is not nef, the proof is the same as the case above. If D is

nef, then D = nE, where E is a genus 1 curve. We recall the well-known fact h1(S,nE) =

n−1. To recover this, note that L2 = 0 implies h0(S,L)≥ 2, as by Serre duality h2(S,L) =

h0(S,L−1) = 0 for the nontrivial nef line bundle L (intersect with an ample curve). It is

enough to use the Riemann–Roch theorem for a K3 surface to compute χ(OS(nE)) = 2 and

then use inductively the exact sequence in cohomology associated with the fundamental

sequence of E tensorized with OS(nE):

0→OS

(
(n−1)E

)
→OS(nE)→OE(nE|E)→ 0.

4.15

In view of Lemma 4.14, we consider divisors on a K3 surface with very low self-

intersection. In Theorems 4.16 and 4.17, we construct specific irregular surfaces of general

type which are covers of K3 surfaces, and some notation are needed.

We denote by M(Z/2Z)4 a specific overlattice of ⊕15
1 A1, constructed as follows: denoted

by Ni, the 15 orthogonal classes with self-intersection −2 which generate ⊕15
1 A1, we add to

the lattice 〈Ni〉 the vectors

v1 :=
(∑8

i=1Ni

)
/2,v2 :=

(∑4
i=1Ni+

∑12
j=9Nj

)
/2,

v3 := (N1+N2+N5+N6+N9+N10+N13+N14)/2, v4 :=
(∑7

i=0N2i+1

)
/2.

The lattice M(Z/2Z)4 = 〈N1, . . . ,N15, v1, . . . ,v4〉 is an even negative definite lattice of

discriminant (Z/2Z)7.

Similarly, we define M(Z/2Z)3 the overlattice of ⊕A14
1 obtained as above starting with

14 divisors Ni and adding the classes v1, v2, v3. The lattice M(Z/2Z)3 is an even negative

definite lattice of discriminant (Z/2Z)8.

Let us consider the rank 16 lattice R16 := 〈6〉⊕M(Z/2Z)4 , and let us denote by H the

generator of 〈6〉. By [GS3, Th. 8.3], there exists an even overlattice R′
16 of index 2 of R16
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obtained by adding to the lattice R16 the class
(
H+

∑15
i=1Ni

)
/2. The discriminant group

of R′
16 is Z/6Z× (Z/2Z)5. By [N, Th. 1.14.4 and Rem. 1.14.5], R′

16 admits a primitive

embedding in ΛK3. So there is a K3 surface (indeed, a four-dimensional family of K3

surfaces) whose Néron–Severi group is isometric to R′
16 lattice. Observe that this K3 surface

has a model (given by the map ϕ|H|) as the complete intersection of a quadric and a cubic

in P
4 with 15 nodes.

Theorem 4.16. Let S16 be a K3 surface such that NS(S16)�R′
16. On the surface S16,

there are a smooth curve G of genus 4 and 15 disjoint rational curves Ni, i = 1, . . . ,15,

such that GNi = 1, i= 1, . . . ,15. There exists a Galois triple cover π :X → S16 branched on

G
⋃
∪iNi. The invariants of minimal model X◦ of X are:

pg(X
◦) = 6, q(X◦) = 1, c1(X

◦)2 = 18.

Proof. By [GS3, Prop. 8.5], the divisors H and
(
H−

∑15
i=1Ni

)
/2 ∈NS(S16) are pseu-

doample. So (3H−
∑15

i=1Ni)/2 ∈NS(S16) is a pseudoample divisor whose self-intersection

is 6. Hence, there is a smooth curve of genus 4, denoted by G, in
∣∣∣(3H−

∑15
i=1Ni

)
/2
∣∣∣.

Moreover, one can assume that the divisors Ni are supported on irreducible rational curves

(see [G2, Props. 2.3 and 5.1]). So, there are a smooth genus 4 curve G and 15 disjoint

rational curves Ni on S such that GNi = 1, for i= 1, . . . ,15. Set

B :=G, C :=

15∑
i=1

Ni, L :=
2B+C

3
=H, M :=

B+2C

3
=

(
H+

15∑
i=1

Ni

)
/2.

The divisors B, C, L, and M satisfy the conditions in 2.10 and thus determine a triple cover

of S16. The branch locus is not smooth, and we consider the minimal resolution X ′ of X.

The singularities of the branch locus are negligible, since they are transversal intersection

of smooth curves, and thus the invariants of X ′ are obtained applying the formulae given in

Proposition 3.12. Since L2 = 6, M2 =−6, and LM = 3, one obtains χ(OX′) = 6, K2
X′ = 3,

and e(X ′) = 69. The surface X ′ is nonminimal, and the inverse images on X of the curves Ni

are 15 disjoint exceptional curves Ei. We now prove that these are the unique (−1)-curves

also even after their contraction. Indeed, suppose that there is a (−1)-curve on a contraction

of X ′ which is mapped to a curve I on S16 with I �= Ni. Then I is a rational curve, and

in the triple cover, it has to split and intersect the exceptional curves Ei. Otherwise, the

self-intersection of the inverse image of I is lower than −1 (cf. the proof of Proposition

4.6). By direct inspection, one also sees that this case is not possible, since I has to split in

three (−1)-curves which meet. So the minimal model X◦ is obtained by X ′ contracting the

curves Ei. So one obtains K2
X◦ = 18 and e(X◦) = 54 and χ(X) = χ(X◦). Moreover, one has

h1,0(X◦) = h1,0(X) = 0+h1(S,L)+h1(S,M).

Since L = H is a pseudoample divisor, h1(S,L) = 0. Since M2 = −6 and M is not

effective, it follows h1(S,M) = 1. One concludes that q(X◦) = q(X) = 1 and pg(X
◦) =

pg(X) = χ(X◦) = 6.

Let us now consider the rank 15 lattice R15 := 〈4〉⊕M(Z/2Z)3 with H the generators of

〈4〉. Let R′
15 be the overlattice of R15 constructed by adding the class v = (H−

∑14
i=1Ni)/2.
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The lattice R′
15 admits a primitive embedding in ΛK3, and thus there exists a K3 surface

S15 whose Néron–Severi group is isometric to R′
15.

Theorem 4.17. Let S15 be a K3 surface such that NS(S15)�R′
15. On the surface S15,

there are a smooth curve G of genus 2 and 14 disjoint rational curves Ni, i = 1, . . . ,14,

such that GNi = 1, i= 1, . . . ,14. There exists a Galois triple cover π :X → S15 branched on

G
⋃
∪iNi. The invariants of the minimal model X◦ of X are:

pg(X
◦) = 4, q(X◦) = 1, c1(X

◦)2 = 12.

Proof. The proof is analogous to the one of the previous proposition, but one has to

choose G in the linear system
∣∣∣(3H−

∑14
i=1Ni)/2

∣∣∣. So one finds

B :=G, C :=
14∑
i=1

Ni, L :=
2B+C

3
=H, M :=

B+2C

3
=

(
H+

14∑
i=1

Ni

)
/2,

and thus

L2 = 4, M2 =−6, LM = 2,

and one has to contract 14 curves to obtain X◦ from the minimal resolution X ′ of X. So

K2
X◦ =K2

X′ +14=−2+14 = 12 and χ(X◦) = χ(X ′) = 5. As in the previous proof, one finds

q(X◦) = 1.

A different idea for finding irregular triple cover is to exploit the Albanese morphism and

the Kummer construction, but the following remark shows that this approach is too naive.

Remark 4.18. Due to the relation of an abelian surface A and its Kummer surface

Km(A), it is possible that a Galois triple cover Y →A defines a triple cover X →Km(A).

In particular, this happens if the involution ι : a→−a on A induces an involution on Y. In

this case, one has the following diagram:

Y
3:1 ��

2:1
���
�
� A

2:1
���
�
�

X
3:1�� Km(A).

Since q(A) = 2, it is easier to find cover Y such that q(Y ) �= 0. Nevertheless, let Y be a

surface such that the Albanese variety Alb(Y ) coincides with A (so, in particular, it has

dimension 2 and the Albanese map is 3 : 1), then it holds

if ι lifts to an involution ιY of Y, the quotient X := Y/ιY is a regular surface.

Indeed, the Albanese surface A is defined as H0(Y,Ω1)
∨/H1(Y,Z), and ι acts on the

space H0(Y,Ω1) as −1. Thus, ιY does not preserve the 1-holomorphic form of Y.

§5. Triple cover of K3 surfaces: The split non-Galois case

Now, we analyze the non-Galois triple covers f : X → S of a K3 surface under the

assumption that the Tschirnhausen bundle E splits. We provide an example of such a

triple cover for all possible Kodaira dimensions. Let E be a direct sum of two line bundles

L−1 and M−1 so that E ∨ = L⊕M. We have already observed in diagram (2.2) that the

triple cover f is totally branched over D′ and simply branched over D′′. All the other covers

in the diagram are Galois covers.
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Since E ∨ = L⊕M, we have that

2L+2M = 2D′+D′′ is the branch locus of the triple coverf :X → S,

with D′′ �= 0, and there exist four effective divisors B′, C ′, B′′, and C ′′ such that

L=
2B′+C ′

3
+

B′′

2
, M =

B′+2C ′

3
+

C ′′

2
.

So L+M = B′+C ′+(B′′+C ′′)/2 is the branching data of an S3 cover of S, that is, the

line bundle OS(L+M) returns the geometric line bundle L of [CP, Th. 6.1]. This S3-cover

is the Galois closure of the non-Galois triple cover X → S. Notice that in [CP, Th. 6.1], one

assumes the branch locus to be smooth, but the results extend also to the nonsmooth case.

5.1 A split non-Galois triple cover of a K3 surface with a K3 surface.

We construct a split but not Galois triple cover f :X → S such that S is a K3 surface

and X is a singular surface whose minimal resolution is still a K3 surface. We refer to the

diagram (2.2) for the notation.

Let Z be a K3 surface such that S3 ⊂ Aut(Z) and S3 acts symplectically on Z. Then

the quotient surface Z/S3 has three singularities of type A2 and eight singularities of type

A1 (see [X, p. 78, case 6]).

The resolution of Z/S3 is a K3 surface S, which admits a Galois S3 cover, branched

on the Jung–Hirzebruch strings which resolve the singularities. Let us denote by Bi ∪Ci,

i= 1,2,3, the ith A2 configuration and by Nj , j = 1, . . . ,8, the j th A1 configuration. Then

L =
(∑3

i=1 2Bi+Ci

)
/3+

∑4
j=1 (Nj)/2 and M =

(∑3
i=1Bi+2Ci

)
/3+

∑8
j=4 (Nj)/2. The

K3 surface S admits a 2 : 1 cover branched along ∪8
j=1Nj , which is the nonminimal surface

W, whose minimal model is a K3 surface W ◦. There are six A2-configurations on W ◦,

inverse image of the three A2-configurations in S. These six A2-configurations form a 3-

divisible set. The Galois triple cover of W ◦ branched on these six A2-configurations is a

nonminimal surface, whose minimal model is Z. The quotient of Z by an involution in S3 is

the singular surface X, whose minimal resolution is another K3 surface, X◦. The surface X

is by construction the non-Galois triple cover of S associated with E∨ = L−1⊗M−1. The

total ramification of S is on D′ =
∑3

i=1(Bi+Ci), and the simple one is on D′′ =
∑8

i=1Ni.

5.2 A split non-Galois triple cover of a K3 surface with a properly elliptic

surface.

Let us consider a K3 surface S endowed with an elliptic fibration E : S → P
1. Let us

consider g : C → P
1 a split non-Galois triple cover of P

1. This can be constructed by

considering 2k points Pi, i= 1, . . . ,k, and 2h points Qj , j = 1, . . . ,2h.

Then one uses, as triple cover data, B′ =
∑k

i=1Pi, C ′ =
∑2k

i=k+1Pi, B′′ =
∑2r

j=1Qj ,

and C ′′ =
∑2h

j=2r+1Qj with r ≤ h. So L =
∑k

i=1 2Pi+Pi+k

3 +
∑2r

j=1Qj

2 , M =
∑k

i=1Pi+2Pi+k

3 +
∑2h

j=2r+1Qj

2 , and there exists a split non-Galois triple cover of P
1 totally branched on

∪2k
i=1Pi and simply branched on ∪2h

j=1Qj . The genus of the curve C is given by 2g(C)−2 =

−6+2(2k)+2h, so g(C) = 2k+h−2≥ 1.
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Now, we consider the fiber product

S×P1 C ��

��

S

E
��

C
g �� P1.

If the fibers of E over the points Pi and Qj are smooth, the surface X := S×P1 C is smooth

and it is a triple non-Galois cover of S totally branched over ∪iE−1(Pi) and simply branched

over ∪jE−1(Qj). The fibration E induces a fibration EX : X → C whose generic fiber is a

smooth genus 1 curve and which has 2h fibers with multiplicity 2.

It holds h1,0(X)≥ g(C)≥ 1. The surface X is necessarily proper elliptic, that is, κ(X) = 1

(cf. Proposition 2.9 and [Mi2, Lem. III.4.6]).

5.3 A split non-Galois triple cover of a K3 surface with a surface of general

type.

Let S be a K3 surface which admits an even set of k disjoint rational curves Ni,

so either k = 8 or k = 16. There exists a pseudoample divisor H which is contained in

〈N1, . . . ,Nk〉⊥NS(S) with H2 = 2h for a positive number h.

Then, putting C ′ = 3H,B′ = 0, B′′ =
∑

iNi, and C ′′ = 0, one obtains the data of a split

non-Galois triple cover:

L=
C ′

3
+

B′′

2
=H+

(
k∑

i=1

Ni

)
/2, M =

2C ′

3
= 2H.

We consider the rank 2 vector bundle E = O(−L)⊕O(−M). Since S3(E ∨)⊗
∧2E =

O(2L−M)⊕O(2M −L)⊕O(L)⊕O(M) admits global sections, E is the Tschirnhausen

bundle of a triple cover (see Theorem 2.1).

This triple cover, denoted by f :X→S, is totally ramified on C ′ (i.e., on a curve contained

in the linear system |3H|) and simply ramified on ∪iNi.

With the notation of (2.2), one has that W is a nonminimal surface and its minimal

model is obtained by contracting k(−1)-curves. The minimal model of W is a K3 surface

or an abelian surface according to the fact that k = 8 or k = 16. In particular, denoted by

Ei the (−1)-curves on W, one has

KW =−
k∑

i=1

Ei, KWKW =−k, χ(OW ) =
16−k

4
, h1,0(W ) =

k−8

4
, e(W ) = 48−2k.

The Galois triple cover β2 :Z →W is branched on a curve in the linear system |β∗
1(3H)|.

Let us assume that the branch locus is a smooth curve in this linear system. Hence, β2 :

Z →W is a smooth Galois triple cover, whose data are (B,C,L,M) = (0,β∗
1C

′,β∗
1H,2β∗

1H)

and whose invariant are

χ(OZ) = 3χ(OW )+ 1
2(β

∗
1H)2+ 1

2(2β
∗
1H)2 = 48−3k

4 +10h,

K2
Z = 3K2

W +2(β∗
1H)2+2(2β∗

1H)2+2(β∗
1H)2 = −3k+48h,

hi(Z,OZ) = h1(W,OW )+h1(W,β∗
1H)+h1(W,2β∗

1H) = k−8
4 ,

e(Z) = 3e(W )+4((β∗
1H)2+(2β∗

1H)2)−2(β∗
1H)2 = 144−6k+72h.
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We used that β∗
1Dβ∗

1D = 2D2 for every divisor D ∈ Pic(S) and that H is big and nef, so

that β∗
1H is big and nef, and hence the vanishing theorems hold. Moreover, one obtains

h2,0(Z) = χ(Z)−1+h1,0(Z) = 9− k

2
+10h.

We want to apply the formulae [BHPV, Chap. 5, §22] to the double cover, branched on

k rational curves Z →X. The branch locus J is such that −2k= (KX +J)J by adjunction.

This implies that −k =KXI+2I2 where I is a divisor such that 2I = J .

By construction, f−1(Ni) =Mi∪M ′
i , where both Mi and M ′

i are isomorphic to Ni, one

of them has multiplicity 2 (because Ni is contained in the simple ramification), and Mi and

M ′
i are disjoint. So f∗(Ni) =Mi+2M ′

i .

Since f is a 1 : 1 map restricted to Mi and M ′
i , one obtains f∗(Mi) = f∗(M

′
i) =Ni and,

by the projection formula,

M2
i = (Mi+2M ′

i)Mi = f∗(Ni)Mi =Nif∗(Mi) =N2
i =−2⇒M2

i =−2,

2(M ′
i)

2 = (Mi+2M ′
i)M

′
i = f∗(Ni)M

′
i =Nif∗(M

′
i) =N2

i =−2⇒ (M ′
i)

2 =−1.

The branch locus of the cover α consists of the curvesMi, that is, with the previous notation

J =
k∑

i=1

Mi so I =

(
k∑

i=1

Mi

)
/2 and I2 =−k

2
.

By −k =KXI+2I2, it follows that KXI = 0.

Hence,

χ(Z) =
48−3k

4
+10h= 2χ(X)+

1

2
KXI+

1

2
I2 = 2χ(X)− k

4
,

K2
Z =−3k+48h= 2K2

X +4KXI+2I2 = 2K2
x−k,

e(Z) = 144−6k+72h= 2e(X)+2KXI+4I2 = 2e(X)−2k.

So the invariants of the surface X are

e(X) = 72+36h−2k, K2
X =−k+24h, χ(X) = (24−k)/4+5h.

The surface X is nonminimal, since it contains at least k(−1)-curves. We observe that

in any case K2
X > 0 and κ(X)≥ 0, and hence X is of general type.

We notice that h2,0(Z) ≥ 11 and by choosing h big enough h2,0(Z) and h2,0(X) are

arbitrarily big.

§6. Triple covers of K3 surfaces: The nonsplit case

The most general situation for a triple cover f : X → S is when the Tschirnhausen bundle

E is indecomposable, in particular the cover is non-Galois. The main question that one has

to address is the existence of the Tschirnhausen bundle E ; and this boils down to the

study of rank 2 indecomposable vector bundle E on a K3 surface which satisfies the further

condition H0(Y, S3E ∨⊗
∧2E ) �= 0 given in Theorem 2.1.
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A standard approach (see, e.g., [PP, §2]) is to construct the Tschirnhausen bundle E
exploiting the Cayley–Bacharach property (CB) of some zero-subscheme (see also [Fr], p. 36

and [Ca]), which we recall for simplicity.

Theorem 6.1 [HL, Th. 5.1.1]. Let Z ⊂S be a local complete intersection of codimension

2, and let L and M be line bundles on S. Then there exists an extension

0→L→ E ∨ →M⊗IZ → 0

such that E is locally free if and only if the pair (L−1 ⊗M⊗KS ,Z) has the Cayley–

Bacharach property.

(CB) If Z ′ ⊂Z is a subscheme with �(Z ′) = �(Z)−1 and s ∈H0(S,L−1⊗M⊗KS) with

s|Z′ = 0, then s|Z = 0.

We consider

0→L→ E ∨ →M⊗IZ → 0, (6.1)

where L and M are line bundles on a K3 surface S and Z a zero-cycle.

Notice that if Z = ∅ and the sequence (6.1) splits, then E ∨ = L⊕M and we are back to

the cases treated in the previous sections. Therefore, we would like to assume that Z �= ∅
and that the sequence (6.1) does not split.

First, we discuss some criteria which assure the existence of the triple cover associated

with (6.2), then we apply them to some possible choices of the triple (L,M,Z).

The following proposition gives a conditions on L∨⊗M which assure the existence of

the sequence (6.1).

Proposition 6.2. If h0(S,L∨ ⊗M) = 0 and h1(S,L∨ ⊗M) �= 0, then Ext1(M⊗
IZ ,L) �= 0 and the extension (6.1) exists. In particular, if h1(S,L∨⊗M) = 1, the extension

is unique.

Proof. Let G :=L and F =L∨⊗M⊗IZ . We want to prove that Ext1(F⊗G,G) �= 0. By

Serre duality, we have

Ext1(F ⊗G,G) = Ext1(F ,O) =H1(F) =H1(L∨⊗M⊗IZ).

Now, consider the fundamental exact sequence of the scheme Z

0→IZ →OS →OZ → 0.

Tensorized by L∨⊗M, we get

0→IZ ⊗L∨⊗M→L∨⊗M→OZ ⊗L∨⊗M→ 0.

Since H0(S,L∨⊗M) = 0, one obtains h0(Z,OZ ⊗L∨⊗M) = 0, and subsequently the long

exact sequence in cohomology gives

0→H1(IZ ⊗L∨⊗M)→H1(L∨⊗M)→ 0.

So,

dimExt1(F ⊗G,G) = h1(IZ ⊗L∨⊗M) = h1(L∨⊗M),

and the claim follows.
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We observe that by Serre duality, on a K3 surface,

h1(S,L∨⊗M) = h1(S,L⊗M∨),

so one can substitute the hypothesis h1(L∨⊗M) �= 0 with h1(L⊗M∨) �= 0.

Theorem 6.3. Let S be a K3 surface, let Z be a nonempty zero-dimensional scheme on

S, and let L, M be two line bundles such that:

• h0(S,L∨⊗M) = 0;

• h1(S,L∨⊗M) = h1(S,L⊗M∨) �= 0; and

• h0(S,L⊗2⊗M∨)≥ 1.

Then there exists a triple cover X → S with Tschirnhausen E, defined by (6.1) for any

possible choice of Z.

Proof. The condition (CB) is automatically satisfied if h0(L∨ ⊗M) = 0 (see [Fr, Th.

12]), and by Proposition 6.2, E exists and is locally free, and its dual as well. To assure the

existence of the triple cover, we have to prove that

h0(S, S3E ∨⊗
2∧

E ) �= 0.

We apply the Eagon–Northcott complex (see, e.g., [E, Appendix 2] and [CT, Lem. 4.7])

to the sequence (6.1), and we obtain

0→L⊗S2E ∨ → S3E ∨ →M3⊗I3
Z → 0.

Now, let us tensorize the previous sequence by Λ2E ∼= L−1⊗M−1, and we get

0→ S2E ∨⊗M−1 → S3E ∨⊗Λ2E →M2⊗L−1⊗I3
Z → 0.

So, if we prove that S2E ∨⊗M−1 has global section, we are done. To do so, we apply the

Eagon–Northcott complex to the sequence (6.1), and we tensorize it by M−1. We have

0→L⊗E ∨⊗M−1 → S2E ∨⊗M−1 →M⊗I2
Z → 0.

As a last step, we show that L⊗E ∨⊗M−1 has global section. This is true by hypothesis

and by the short exact sequence

0→L2⊗M−1 → E ∨⊗L⊗M−1 →L⊗IZ → 0

obtained tensorizing the sequence (6.1) by L⊗M−1.

Therefore, we have h0(S3E ∨⊗
∧2E )≥ 1.

Now, we give some explicit examples, choosing the line bundles L and M. Let C be a

smooth genus 1 curve on S, and hence a fiber of an elliptic fibration on S. We pose

L=OS(nC), M=OS(mC).

If −n+m< 0, then h0(L∨⊗M) = 0.

If n−m ≥ 2, then h1(L⊗M∨) �= 0 and h0(L⊗2 ⊗M) ≥ 1. Hence is n ≥ m+ 2 the

hypothesis of Theorem 6.3 are satisfied and hence there exists the triple cover X → S.

If n=m+2, then the extension given by (6.1) is unique.
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So we now discuss the triple cover associated with the sequence

0→OS(nC)→ E →IZ(mC)→ 0 n≥m+2, (6.2)

and in particular, we analyze it according to the choice of zero-scheme Z.

Lemma 6.4. Let S be an elliptic K3 surface with elliptic fibration ϕ|C| : S → P
1. Let us

assume that Z is a zero-cycle on S such that �(Z) = 1.

• If m≥ 2, then h0
(
IZ(mC)

)
�= 0 and h1

(
IZ(mC)

)
�= 0.

• If m= 1, then h0
(
IZ(C)

)
= 1, and h1

(
IZ(C)

)
= 0.

Proof. Since �(Z) = 1, the subscheme Z consists in a single point p. By

0→Ip
(
mC

)
→OS

(
mC

)
→Op

(
mC

)
→ 0,

one obtains the long exact sequence

0→H0 (Ip(mC))→H0 (OS(mC))→H0
(
Op(mC)

)
→

→H1(Ip
(
mC

)
)→H1(OS

(
mC

)
)→ 0, (6.3)

which is

0→H0 (Ip(mC))→ C
m+1 → C→H1(Ip

(
mC

)
)→ C

m−1 → 0.

This yields at once the first statement. For the second one, let us insert the value m= 1 in

(6.3) and get

0→H0 (Ip(C))→H0 (O(C))
ψ→H0

(
Op(C)

)∼= C→H1(Ip
(
C
)
)→ 0.

By [H, Prop. 3.10], the linear system |C| is base-point-free, and hence ψ, which is an

evaluation map, is not the zero map, and we have to conclude the proof.

Lemma 6.5. Let S be an elliptic K3 surface with elliptic fibration ϕ|C| : S → P
1. Let us

assume that Z is a zero-cycle on S such that �(Z) = 2.

• If m≥ 2, then h0
(
IZ(mC)

)
�= 0 and h1

(
IZ(mC)

)
�= 0.

• If m= 1, then h0
(
IZ(C)

)
= h1

(
IZ(C)

)
= 0 if Z consists of two distinct smooth points z1

and z2 which do not lie on the same fiber of the fibration.

• If m= 1, then h0
(
IZ(C)

)
= h1

(
IZ(C)

)
= 1 if Z consists of two distinct smooth points z1

and z2 which lie on the same fiber of the fibration or Z is a single point.

Proof. The first statement is proved exactly in the same way as in Lemma 6.4.

Let m= 1, then H0(OS(C))∼=C
2 and also H0

(
OZ(C)

)∼=C
2. In the long exact sequence

0→H0 (IZ(C))→H0 (OS(C))
ψ→H0

(
OZ(C)

)
→H1(IZ

(
C
)
)→H1(OS

(
C
)
) = 0,

the map ψ is the evaluation map ev : s �→ s(x) with x∈Z, which is the zero map if and only

if Z is not the base locus of |C|. By [H, Prop. 3.10], the linear system |C| is base-point-free.
This yields that h0(IZ(C))≤ 1.

There are two cases:

(1) There is a section s ∈H0(OS(C)) which passes through Z, and in this case, Z consists

either of two distinct smooth points z1 and z2 which lie on the same fiber of ϕ|C| or Z
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is a single double point. In this case,

H0 (IZ(C))∼=< s > .

(2) No single section passes through Z, and in this case, Z consists of two distinct smooth

points z1 and z2 which do not lie on the same fiber of the fibration and H0 (IZ(C)) = 0.

Lemma 6.6. The total Chern classes of the vector bundle E, determined by the extension

(6.2), is c(E ) = (1,(n+m)C,�(Z)).

Proof. We use ch(C⊗IZ) = ch(C)ch(IZ).
Recalling that

ch(V ) = (rk(V ), c1(V ),
1

2

(
c21(V )−2c2(V )

)
,

one has ch(C) = (1,C,0), ch(IZ) = (1,0,−�(Z)), and thus

ch(C⊗IZ) = (1,C,−�(Z)), so c(C⊗IZ) = (1,C,�(Z)).

Since c(E ) = c(nC)c(mC⊗IZ) (see, e.g., [HL, §5]), one obtains

c(E ) = (1,nC,0)(1,mC,�(Z)) = (1,(n+m)C,�(Z)).

Lemma 6.7. Let S be an elliptic K3 surface with elliptic fibration ϕ|C| : S → P
1.

Let (n,m,�(Z)) = (3,1,2).

If Z is supported on two points z1 and z2 which do not lie on the same fiber of the fibration

ϕ|C| : S → P
1, then h0(E ) = 4 and h1(E ) = 2.

Proof. Suppose (n,m,�(Z)) = (3,1,2). The computation of hi(E ) is based on the

sequence

0→H0(3C)∼= C
4 →H0(E )→H0(IZ(C))→H1(3C)∼= C

2 →H1(E )→H1(IZ(C))→ 0.

If Z consists of two distinct smooth points z1 and z2 which do not lie on the same fiber

of the fibration, then by Lemma 6.5, we have H0
(
IZ(C)

)
=H1

(
IZ(C)

)
= 0 and we have(

h0(E ),h1(E )
)
= (4,2).

Proposition 6.8. Let us suppose that S is an elliptic K3 surface with elliptic fibration

ϕ|C| : S→ P
1 and that (n,m,�(Z)) = (3,1,2). Moreover, let us assume that Z is supported on

two points z1 and z2 which do not lie on the same fiber of the fibration ϕ|C| : S → P
1. Then

there exists a properly elliptic surface X which is a non-Galois triple cover of an elliptic K3

surface such that (h1,0(X),h2,0(X)) = (3,6).

Proof. The existence of the triple cover follows by Theorem 6.3, and hence the surface

X exists. Moreover, the birational numerical invariants of X are given by Proposition 2.6(i)

with the information given in Lemma 6.7.

By Proposition 2.2, the branch divisor of f : X → S is given by Λ2E −2 �OS(8C). Finally,

by Proposition 2.9, X is a properly elliptic surface.

Remark 6.9. The triple cover X → S is not induced by a base change g : C → P
1 (for

a certain curve C ) as in §5.2 and in Proposition 4.11 because otherwise E would split.
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Another possible choice of L and M in the sequence (6.1) is presented in the following

corollary.

Corollary 6.10. Let S be a K3 surface with an irreducible curve C of self-intersection

2d > 0 such that there exist h disjoint rational curves Ri’s, which are disjoint also from C.

If h≤ 10, a K3 surface with this configuration of curves exists.

If 2≤ h≤ 10 and (9h−1)/4≤ d≤ 4h−3, there exists a non-Galois triple cover f : S →X

whose Tschirnhausen is determined by the sequence

0→OS

(
C−

h∑
i=1

Ri

)
→ E ∨ →IZ

(
h∑

i=1

Rj

)
→ 0.

The surface X is a surface of general type.

Proof. The existence of S depends on the existence of a primitive embedding of the

lattice spanned by C and the Ri in the K3 lattice, which is guaranteed if h≤ 10, because

in this case the lattice has rank at most 11.

The genus of the curve C is g(C) = d+1> 1, by hypothesis. We pose

L=OS

(
C−

h∑
i=1

Ri

)
, M=OS

(
h∑

i=1

Ri

)
.

Since L∨⊗M=OS

(
−C+2

∑h
i=hRi

)
, one has h0(L∨⊗M) = 0. Indeed, C is an irreducible

divisor with positive self-intersection, and hence it would intersect nonnegatively every

effective divisor, but (−C+2
∑h

i=hRi)C =−CC < 0.

Moreover, (−C+2
∑h

i=hRi)
2 = 2d−8h, and if d ≤ 4h−3, (−C+2

∑h
i=hRi)

2 ≤ −6. By

the Riemann–Roch theorem, one obtains h1(L∨⊗M) �= 0. Moreover,

L⊗2⊗M∨ =OS

(
2C−3

h∑
i=1

Ri

)
.

If d≥ (9h−1)/4,
(
2C−3

∑h
i=1Ri

)2

= 8d−18h≥−2, and since
(
2C−3

∑h
i=1Ri

)
C > 0,

one has h0(L⊗2⊗M∨)≥ 1. We conclude that the triple cover exists by Theorem 6.3.

Since the branch divisor is ∧2E −2 = (L⊗M)⊗2 =OS(2C), if the branch locus was not

reduced, it would be two times Cq where Cq is a specific curve in |C|. Moreover, every global

section of S3E ⊗
∧2E ∨ should vanish along Cq. In particular, also every global section of

L2⊗M∨ would vanish along Cq. However, this implies that

H0(OS(2C−3
∑

Ri)) =H0(L2⊗M∨) =H0(L2⊗M∨⊗OS(−Cq))

=H0(OS(C−3
∑

Ri)),

which is not the case.

In particular, X is normal and the branch locus contains curves with positive genus, so

X is of general type.
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[SS] M. Schütt and T. Shioda, “Elliptic surfaces” in Algebraic Geometry in East Asia—Seoul 2008 ,

Adv. Stud. Pure Math. 60, Math. Soc. Japan, Tokyo, 2010, 51–160.
[Sh] I. Shimada, On elliptic K3 surfaces, Michigan Math. J. 47 (2000), 423–446.
[T] S. L. Tan, “Triple covers on smooth algebraic surfaces” in Geometry and Nonlinear Partial

Differential Equations (Hangzhou, 2001), AMS/IP Stud. Adv. Math. 29, Amer. Math. Soc.,
Providence, RI, 2002.

[T91] H. Tokunaga, Triple coverings of algebraic surfaces according to the Cardano formula. J. Math.
Kyoto Univ. 31, 1991, no. 2, 359–375.

[T94] H. Tokunaga, On dihedral Galois coverings. Canad. J. Math. 46, 1994, no. 6, 1299–1317.
[X] G. Xiao, Galois covers between K3 surfaces, Ann. Inst. Fourier (Grenoble) 46 (1996), 73–88.

Alice Garbagnati

Dipartimento di Matematica “Federigo Enriques”
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