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Simple Summary: In this study, we aim to shed light on a fascinating new aspect of cellular commu-
nication involving extracellular vesicles (EVs) and their cargo of microRNAs (EV-miRNAs). These
EVs were once thought of as cellular waste but are now known to play a crucial role in transferring
vital information between cells. We investigated how EV-miRNAs respond to various environmental
and lifestyle factors and how this might be linked to the development and progression of cancer. By
analyzing the associations between these factors and specific miRNAs related to common cancers
(oncomiRs), we aim to better understand the complex regulatory networks of miRNAs in response to
exogenous influences. The findings could revolutionize our understanding of cancer development
and have important implications for future exposome studies in the research community.

Abstract: Intercellular communication has been transformed by the discovery of extracellular vesicles
(EVs) and their cargo, including microRNAs (miRNAs), which play crucial roles in intercellular
signaling. These EVs were previously disregarded as cellular debris but are now recognized as vital
mediators of biological information transfer between cells. Furthermore, they respond not only to
internal stimuli but also to environmental and lifestyle factors. Identifying EV-borne oncomiRs, a
subset of miRNAs implicated in cancer development, could revolutionize our understanding of how
environmental and lifestyle exposures contribute to oncogenesis. To investigate this, we studied
the plasma levels of EV-borne oncomiRs in a population of 673 women and 238 men with a body
mass index > 25 kg/m2 (SPHERE population). The top fifty oncomiRs associated with the three most
common cancers in women (breast, colorectal, and lung carcinomas) and men (lung, prostate, and
colorectal carcinomas) were selected from the OncomiR database. Only oncomiRs expressed in more
than 20% of the population were considered for statistical analysis. Using a Multivariate Adaptive
Regression Splines (MARS) model, we explored the interactions between environmental/lifestyle
exposures and EV oncomiRs to develop optimized predictor combinations for each EV oncomiR.
This innovative approach allowed us to better understand miRNA regulation in response to multiple
environmental and lifestyle influences. By uncovering non-linear relationships among variables, we
gained valuable insights into the complexity of miRNA regulatory networks. Ultimately, this research
paves the way for comprehensive exposome studies in the future.
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1. Introduction

Environmental and lifestyle factors exert a profound influence on chronic diseases,
particularly in the context of cancer development and related clinical outcomes [1,2]. These
factors encompass diverse elements [3,4], ranging from exposure to environmental carcino-
gens and dietary habits [5] to physical activity levels [6], adiposity [7], smoking, alcohol
consumption [8], and socioeconomic status [9]. The intricate interplay between these
factors and cancer etiology underscores the necessity for a comprehensive approach to
cancer prevention and management. By addressing the environmental and lifestyle de-
terminants of cancer, we can implement targeted interventions and promote healthier
behaviors [10], aiming to reduce non-intrinsic cancer risks and enhance clinical outcomes
in a personalized way.

Individuals with pre-existing hypersusceptibility conditions, such as those associated
with adiposity (excessive body fat), might experience an amplified influence from the expo-
some, i.e., an accumulation of lifelong environmental exposures [11,12]. Adiposity-related
conditions, like being overweight/obesity and metabolic syndrome, foster a hormonally
dysregulated and pro-inflammatory environment both at systemic and tissue levels. This
inflamed host environment can synergize with external exposures, augmenting the vulner-
ability to cancer development and progression [11,13].

Extracellular vesicles (EVs), encompassing exosomes and microvesicles, are small
membrane-bound structures released by various cell types [14]. Once considered cellular
debris, EVs are now recognized as sophisticated carriers of cellular cargo, including proteins,
lipids, and nucleic acids [15]. Owing to their ability to traverse biological barriers, EVs serve
as conduits for intercellular communication and facilitate information exchanges between
cells, even across distant locations within the body [14]. These distinctive attributes render
EVs versatile entities with significant roles in diverse physiological processes and disease
contexts, including cancer [16,17].

MicroRNAs (miRNAs) are pivotal regulators of gene expression among the myriad
of molecules transported by EVs. MiRNAs, short non-coding RNA molecules, play a
critical role in post-transcriptional gene regulation by targeting messenger RNAs (mRNAs)
for degradation or translational inhibition [18]. Within this group, oncomiRs, a subset
of miRNAs, have garnered attention for their involvement in cancer-related processes,
including tumor initiation, growth, metastasis, and therapy resistance [19,20].

Understanding the mechanisms driving the selective packaging of oncomiRs into
EVs and their subsequent release into the extracellular space has become central in cancer
research. EVs enriched with oncomiRs can engage in cell-to-cell communication, delivering
functional oncomiRs to recipient cells—ranging from neighboring cancer cells to fibroblasts,
adipocytes, and immune cells. This transfer reshapes the gene expression profiles and
behavior of recipient cells, contributing to the ability of cancer cells to shape both local
and distant microenvironments. EVs containing miRNAs thus dynamically orchestrate
multidirectional communication, serving as the hubs of the intercellular network, ultimately
transforming the microenvironment in a pro-tumoral manner. This intriguing phenomenon
fuels interest in cancer biology as it may hold substantial implications for innovative
diagnostics and therapeutic strategies.

The SPHERE project [21], with its unique attributes, has enabled the investigation
of EVs and their miRNA content’s role in mediating the impact of air particulate matter
(PM) on cardiovascular health. The SPHERE study offers comprehensive insights into the
microRNA content of EVs within a population of over 2000 individuals characterized by a
body mass index (BMI) exceeding 25 and a well-defined exposome.
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In this paper, we delve into the captivating domain of EVs and oncomiRs, probing
the oncomiRs associated with specific cancer types based on their dependency on major
exposome factors in the SPHERE screening subpopulation of 911 non-oncological subjects
with assessed miRNome.

Given the complexity of analyzing these data, it is essential to consider the applica-
tion of inductive inference methods rooted in machine learning, extending multivariate
analysis and regression approaches. In this context, adopting automated methods for
variable selection and their preferably non-linear/non-additive effects on EV-contained
miRNA expression is pivotal. Within the realm of multiple regression models, the Mul-
tivariate Adaptive Regression Splines (MARS) methodology appears promising, given
its ability to automatically identify non-linear effects and interactions (effect modifiers)
among predictors.

2. Materials and Methods
2.1. Study Design and Participants

We recruited 911 subjects who were overweight/obese from the Center for Obesity
and Work at IRCCS Fondazione Ca’Granda—Ospedale Maggiore Policlinico, Milan, Italy,
between September 2010 and March 2015 (recruitment of the subset reported in the present
paper ended on January 2013). This was the screening subset of the cross-sectional study,
SPHERE (Susceptibility to Particle Health Effects, miRNAs, and Exosomes), funded by
the European Research Council (ERC); it focused on investigating the interplay between
particle health effects, miRNAs, and EVs [21,22]. Briefly, the eligibility criteria included
being over 18 years old, having a BMI ≥ 25 kg/m2, residing in the Lombardy region (Italy),
and providing informed consent and blood/urine samples. Exclusions were recent (i.e.,
in the last 5 years) cancer, heart disease, stroke, or other chronic conditions. This study
followed the Helsinki Declaration principles and received ethics committee approval from
the Fondazione IRCCS Ca’Granda Ospedale Maggiore Policlinico di Milano (approval
number 1425). The participation rate was 92%.

2.2. Isolation and Purification of EVs and miRNA-EVs from Plasma

EV preparation and miRNA analysis have been described elsewhere [22]. Briefly,
blood was collected in EDTA tubes in the morning and transported to the EPIGET Lab
(University of Milan) within 2 h. Blood was centrifuged at 1200× g for 15 min at room
temperature to obtain plasma, followed by additional centrifugation steps (1000, 2000, and
3000× g for 15 min at 4 ◦C) to remove debris. Plasma was ultracentrifuged (Beckman
Coulter Optima-MAX-XP, Brea, CA, USA) at 110,000× g for 75 min at 4 ◦C to obtain an
EV-rich pellet, which was resuspended in filtered PBS. MiRNAs were isolated from frozen
EV pellets using the miRNeasy Kit and RNeasy CleanUp Kit (Qiagen, Germantown, MD,
USA) and stored at −80 ◦C.

2.3. miRNA Analysis

For reverse transcription (RT), Megaplex™ RT Primers (Pool A v2.1 and Pool B v3.0)
and the TaqMan® Micro RNA Reverse Transcriptase Kit (Life Technologies, Foster City, CA,
USA) were used. Two reactions were performed to cover 754 target miRNAs, including
16 replicates of 4 internal controls (ath-miR159a, RNU48, RNU44, and U6). Each reaction
consisted of 0.75 µL of Megaplex RT Primers (Pool A or Pool B), 0.15 µL of dNTPs, 0.75 µL
of 10× RT Buffer, 0.90 µL of MgCl2, 0.1 µL of RNase Inhibitor, 1.5 µL of MultiScribe™
Reverse Transcriptase, and 3.3 µL of miRNAs. After incubation on ice for 5 min, the mixture
underwent a thermal protocol in a C1000 Thermal Cycler (Biorad, Hercules, CA, USA)
with specific temperature cycles. The resulting cDNA samples were stored at −20 ◦C
until further use. For preamplification, each cDNA requiring preamplification was loaded
onto a 96-well plate and combined with TaqMan® PreAmp Master Mix, nuclease-free
water, and Megaplex™ PreAmp Primers. The preamplification reaction involved specific
thermal conditions and the preamplified samples were stored at 4 ◦C until analysis with
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the OpenArray® System. The preamplified cDNA was diluted and mixed with TaqMan
OpenArray® Real-Time PCR Master Mix. The reaction mix was aliquoted into the wells
of a 384-well OpenArray® plate using the MicroLab STAR Let instrument (Hamilton
Robotics, Birmingham, UK). The plate was then loaded into a TaqMan™ OpenArray®

Human miRNA Panel using the QuantStudio™ AccuFill System Robot (Life Technologies,
Foster City, CA, USA). Finally, the mixture was analyzed with the QuantStudio™ 12K
Flex Real-Time PCR System and the OpenArray® Platform (QS12KFlex) following the
manufacturer’s instructions.

In total, 545 miRNAs were included in the analysis after the exclusion of non-amplified
miRNAs. The application of the global mean was identified as the optimal normalization
method; miRNA expression levels were quantified using relative quantification, repre-
sented as 2−∆Ct. Leveraging the OncomiR database [23], we extracted the top 50 oncomiRs
for each of the 3 most prevalent cancers in both women (breast, colorectal, and lung carci-
nomas) and men (lung, prostate, and colorectal carcinomas) [24]. Notably, this selection
process was underpinned by stringent criteria, including a significance threshold of a p-
value < 0.0001 and a false discovery rate (FDR) < 0.0001. OncomiRs expressed at detectable
levels in more than 20% of our populations were considered for statistical analysis. This
threshold was chosen after looking at the distributions of the miRNA measures allowing for
the best compromise between the number of selected miRNAs and their detection preva-
lence in the population, thereby ensuring that our findings possess broader applicability.

2.4. Statistical Analysis

The data consisted of 911 records, including information about 75 EV oncomiR expres-
sions and exposome factors. The latter consisted of numerical variables: age, BMI, residence
PM10 exposure (annual average), C-reactive protein (CRP), homocysteine, coffee consump-
tion (cup/week), alcohol consumption (glass/week), number of previous pregnancies; and
categorical variables: education (primary school or less, secondary school, high school,
university or more), occupation (employee, unemployed, retired, housewife), residence
traffic exposure (mild, moderate, high), lifestyle (sedentary, active, sportive), smoking habit
(never, former smoker, current smoker), passive smoker (no, yes), menopausal status (no,
yes), use of antidepressants (no, yes), use of oral contraceptives (no, yes).

The strategy of analysis sketched in the following section was applied separately for
female and male data. In the first step, multivariate relationships among miRNA expres-
sions and exposure variables were investigated via a multivariate analysis approach using
Factor Analysis of Mixed Data (FAMD) methods [25,26]. In this context, exposure variables
were considered active variables and miRNA expressions were considered supplementary
(or passive) variables. According to FAMD methods, the following strategy of analysis
was adopted: (1) the number of relevant principal axes that summarize the active variables
was chosen by evaluating the indices of the explained inertia; (2) the relationships among
the exposure variables and principal axes were evaluated by a plot of squared correlation
coefficients; (3) finally, the relationships among the miRNA expressions and exposure
variables were evaluated by the plotting the orthogonal projections of the former ones onto
the principal axes (passive projections plot).

The “ggstatsplot” package [27] was used to perform Spearman correlation analysis
on miRNA expression and “ggplot2” was used to visualize the results by generating
a heatmap.

Multivariate Adaptive Regression Spline (MARS) models [28] were fitted to explore
non-linear and non-additive relationships between single miRNA expressions and expo-
sure variables. According to MARS methods, a regression model is built by performing
two automatic selection steps. In the former one, called the forward step, additive and
interaction effects, also including the non-linear effects of numerical variables, are included
in the model according to the reduction of a sum-of-squares residual error. Non-linear
effects are represented using linear splines called “hinge functions”. In the latter step,
called the backward step, the aim is to improve the generalizability of the model deter-
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mined at the end of the previous step. To such an end, the optimal number of variables
is selected using the Generalized Cross-Validation (GCV) statistic and the model is then
pruned according to this choice. It is worth noting that the forward step can be customized.
First, by specifying the “degree” option, one can choose the maximum order of interactions:
degree = 1 means no interactions (in other terms, only additive effects can be included in the
model), degree = 2 means order one interaction and so on. Second, in an analogous fashion,
it is possible to avoid the specification of the non-linear effects of numerical variables
(linearity constraints).

In the current study, miRNA expressions were considered dependent variables and
exposure factors were considered candidate predictors. For each EV oncomiR, several
models were fitted according to the order of interactions (degree = 1 and degree = 2) and
the presence/absence of the constraints on non-linear effects. According to the bias vs.
variance trade-off, it is important to acknowledge that linear relationships between response
variables and predictors may oversimplify the complexity of real-world relationships; but,
they do so with a gain in interpretability. Therefore, in exploratory analyses, we decided to
evaluate models with hinge functions along with models with linear effects because the
former could be unstable and too complex to be interpreted, despite reducing the bias.

For each of the fitted models, the goodness of fit was evaluated using R2 and gen-
eralized R2 coefficients. The importance of each predictor (i.e., exposure variables) was
evaluated by the nsubset [29]. All of the analyses were performed using the R software re-
lease 4.2.3 [30], with the packages FactoMineR [31] and Earth [32], and the Knime Analytic
Platform release 4.7.0 [33].

3. Results
3.1. Characteristics of the Study Population

For a total of 911 subjects, 238 males and 673 females were included in this study. A
description of the study participants is reported in Table 1.

Table 1. Description of the study population.

Males Females
(N = 238) (N = 673)

Age years, mean ± SD 50.9 ± 13.3 51.6 ± 13.4

BMI kg/m2, mean ± SD 33.9 ± 4.7 33.6 ± 5.7

Education

Primary school or less 21 (8.8%) 85 (12.6%)
Secondary school 61 (25.6%) 178 (26.4%)

High school 117 (49.2%) 315 (46.8%)
University or more 39 (16.4%) 95 (14.1%)

Occupation

Employee 166 (69.8%) 375 (55.7%)
Unemployed 15 (6.3%) 55 (8.2%)

Retired 57 (23.95%) 160 (23.8%)
Housewife - 83 (12.3%)

Residence traffic
exposure

Mild 53 (22.2%) 148 (22.0%)
Moderate 117 (49.2%) 329 (48.9%)

Heavy 68 (28.6%) 196 (29.1%)

PM10 annual average
from the ARPA

monitoring station
µg/m3, mean ± SD

43.0 ± 4.4 42.7 ± 4.7

Physical activity
Sedentary 148 (62.2%) 433 (64.4%)

Active 66 (27.7%) 206 (30.6%)
Sportive 24 (10.1%) 34 (5.0%)

Antidepressants Yes 15 (6.3%) 100 (14.9%)
No 223 (93.7%) 573 (85.1%)
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Table 1. Cont.

Males Females
(N = 238) (N = 673)

Smoking
Never 88 (37.0%) 377 (56.0%)

Ex 108 (45.4%) 198 (29.4%)
Current 42 (17.6%) 98 (14.5%)

Passive smoke
exposure

Yes 110 (46.2%) 293 (43.5%)
No 128 (53.8%) 380 (56.5%)

Alcohol weekly consumption,
median [Q1, Q3] 2 [0; 7] 0 [0; 2]

Coffee weekly consumption,
median [Q1, Q3] 9 [5; 20] 7 [3; 16]

C-reactive protein mg/L, median
[Q1, Q3] 0.22 [0.11; 0.45] 0.31 [0.14; 0.6]

Homocysteine µmol/L, median
[Q1, Q3] 12 [10.2; 14.2] 9.8 [8.3; 12.1]

Birth control pill Yes - 26 (3.9%)
No 647 (96.1%)

Number of previous
pregnancies median [Q1, Q3] - 2 [1; 3]

Menopause Yes - 355 (55.1%)
No 287 (44.9%)

Briefly, the study participants had mean ages of 50.9± 13.3 years and 51.6± 13.4 years
in males and females, respectively. The mean BMIs were equal to 33.9 ± 4.7 kg/m2 (males)
and 33.6 ± 5.7 kg/m2 (females). Study subjects were, for a large percentage, employed
(males 69.8%; females 55.7%), sedentary (males 62.2%; females 64.4%), and non-current
smokers (males 82.4%; females 85.5%). The association between the different continuous
predictors was assessed by Spearman’s rank correlation coefficients and is reported in
Figure 1A (females) and Figure 1B (males) together with scatter plots with smoothing trend
lines for continuous predictors.

Concerning females, no major monotonic associations were observed; although, mod-
erate (r > 0.1) correlations involved age with homocysteine, age and number of pregnan-
cies, BMI and CRP, BMI and number of pregnancies, and CRP and alcohol consumption
(Figure 1A). Similarly, in males, moderate positive correlations involved age with the
PM10 annual average and alcohol consumption, BMI and CRP, BMI and alcohol consump-
tion, CRP and homocysteine, alcohol and homocysteine, coffee consumption, and alcohol
consumption(Figure 1B).

Concerning the FAMD, the plot showing the joint contributions of each variable is
reported in Figure 2. In females, the first principal component, Dim1, is primarily related
to age, menopausal status, and working status variables. Dim2 is predominantly related to
BMI and PCR, with physical activity variables also contributing to a lesser extent. Lastly,
the third principal component, Dim3, mainly comprises the PM10 annual average.

Conversely, for males, the first principal component, Dim1, is predominantly related
to age and working status variables, with smoking also contributing significantly. Dim2 is
mainly related to PCR and coffee consumption, where these variables show opposition in
their influence, along with traffic and physical activity variables playing a secondary role.
Finally, the third principal component, Dim3, is primarily composed of BMI.
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Figure 1. Correlation among numerical variables. (Panel A) Female data. (Panel B) Male data. On
the lower panels, scatterplots for each variable pair are reported. The red curves were obtained by the
non-parametric regression method (lowess smoother). On the upper panel are the reported Spearman
correlation coefficients for each variable pair.
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Figure 2. Multivariate analysis of miRNA expressions and exposure variables. Factor Analysis of
Mixed Data (FAMD) was used to investigate the joint contributions of various variables in females
and males. Continuous variables are reported in red and categorical variables are in black. Labels of
variables with minor contributions were omitted.

3.2. miRNA Selection and Expression Levels in the Study Subjects

Supplementary Table S1 presents a comprehensive list of miRNAs identified from
the OncomiR database that were ranked in the top 50 based on their association with
specific cancer types. Table S1 includes the percentage of expression in females and
males regarding the SPHERE study along with an indication of their recorded average
up-regulation/downregulation in cancer tissues. Spearman’s correlation coefficients were
calculated and presented in a correlation matrix heatmap, based on the average correlation
values for each column and row, and are displayed in Supplementary Figure S1 for females
(Panel A) and males (Panel B).

In Figure 3A, the overlapping miRNAs across various cancer types are displayed. In
Panel B, we present the miRNAs observed in female cancers, expressed in at least 20% of
the women included in this study. Similarly, Panel C reports the equivalent selection of
miRNAs for male cancers.

Additionally, Figures 4 and 5 report (in females and males, respectively) the relation-
ships of the miRNA subsets for each cancer type as supplementary (or passive) variables
and continuous predictors (active variables). Only major associations are reported because
the small observed correlations between the sets of active and passive variables lead to
most of the miRNA projections that tend to gather very close to the centroid of the axes.



Cancers 2023, 15, 4317 9 of 18

Cancers 2023, 15, x FOR PEER REVIEW 9 of 18 
 

 

3.2. miRNA Selection and Expression Levels in the Study Subjects 
Supplementary Table S1 presents a comprehensive list of miRNAs identified from 

the OncomiR database that were ranked in the top 50 based on their association with 
specific cancer types. Table S1 includes the percentage of expression in females and males 
regarding the SPHERE study along with an indication of their recorded average 
up-regulation/downregulation in cancer tissues. Spearman’s correlation coefficients were 
calculated and presented in a correlation matrix heatmap, based on the average correla-
tion values for each column and row, and are displayed in Supplementary Figure S1 for 
females (Panel A) and males (Panel B). 

In Figure 3A, the overlapping miRNAs across various cancer types are displayed. In 
Panel B, we present the miRNAs observed in female cancers, expressed in at least 20% of 
the women included in this study. Similarly, Panel C reports the equivalent selection of 
miRNAs for male cancers. 

 
Figure 3. miRNA expression patterns in different cancer types. (Panel A) illustrates overlapping 
miRNAs across various cancer types (females AND males). (Panel B) displays miRNAs observed in 
female cancers, expressed in at least 20% of the women in this study. (Panel C) presents the equiv-
alent selection of miRNAs for male cancers. 

Additionally, Figures 4 and 5 report (in females and males, respectively) the rela-
tionships of the miRNA subsets for each cancer type as supplementary (or passive) var-
iables and continuous predictors (active variables). Only major associations are reported 
because the small observed correlations between the sets of active and passive variables 
lead to most of the miRNA projections that tend to gather very close to the centroid of the 
axes. 

Figure 3. miRNA expression patterns in different cancer types. (Panel A) illustrates overlapping
miRNAs across various cancer types (females AND males). (Panel B) displays miRNAs observed
in female cancers, expressed in at least 20% of the women in this study. (Panel C) presents the
equivalent selection of miRNAs for male cancers.

3.3. Multivariate Adaptive Regression Splines

The MARS algorithm was applied to explore the non-linear and non-additive rela-
tionships between miRNA expression and the selected risk factors in order to evaluate the
importance of the explanatory variables we considered. Supplementary Table S2 reports
the results of the models we applied in the female group of subjects while the models for
the male group are reported in Supplementary Table S3. In addition, both of the above
tables include additional results obtained by fitting models with continuous predictors
constrained to linear effects. Finally, the goodness of fit of each model, evaluated using R2
and generalized R2 coefficients, is described in Supplementary Tables S4 (females) and S5
(males).

In females, as we considered MARS models with Degree 1 (i.e., MARS model using
only additive terms to fit the data), the higher R-squared value for the model was observed
for hsa-miR-136-5p, indicating that 25% of the variance in this miRNA expression could
be explained by the selected risk factors (PM10, BMI, passive smoke, working status, and
homocysteine). This association is coherent with the projections of continuous variables
from the FAMD analysis of Figure 5 showing the major role of hsa-miR-136-5p as a passive
variable. As we considered MARS models with Degree 2 (i.e., MARS model considering
also interactions among predictors to fit the data), the higher R-squared value for the model
was observed for hsa-miR-301a-3p, indicating that 29% of the variance in this miRNA
expression could be explained by a complex combination of selected risk factors (age:
alcohol, PM10 with antidepressants, PCR, working status and alcohol, antidepressants
with education, PCR, homocysteine, birth control, number of pregnancies, consumption of
coffee, PCR with smoking status and alcohol consumption, and alcohol consumption with
physical activity.



Cancers 2023, 15, 4317 10 of 18
Cancers 2023, 15, x FOR PEER REVIEW 10 of 18 
 

 

 
Figure 4. Relationships of miRNA subsets for each cancer type in females (Colon cancer—COAD, 
Lung cancer—LOAD, Breast cancer—BRCA). The miRNA subsets are presented as supplementary 
(passive) variables while continuous predictors are represented as active variables. 

Figure 4. Relationships of miRNA subsets for each cancer type in females (Colon cancer—COAD,
Lung cancer—LOAD, Breast cancer—BRCA). The miRNA subsets are presented as supplementary
(passive) variables while continuous predictors are represented as active variables.



Cancers 2023, 15, 4317 11 of 18
Cancers 2023, 15, x FOR PEER REVIEW 11 of 18 
 

 

 
Figure 5. Relationships of miRNA subsets for each cancer type in males (COAD, LOAD, PRAD). 
The miRNA subsets are presented as supplementary (passive) variables while continuous predic-
tors are represented as active variables. 

  

Figure 5. Relationships of miRNA subsets for each cancer type in males (COAD, LOAD, PRAD). The
miRNA subsets are presented as supplementary (passive) variables while continuous predictors are
represented as active variables.



Cancers 2023, 15, 4317 12 of 18

As we considered MARS models with Degree 1 and hinges, in males, the higher
R-squared value for the model was observed for hsa-miR-136-5p, indicating that 37% of the
variance in this miRNA expression could be explained by the selected risk factors (PM10
annual average, age, and alcohol). As we considered MARS models with Degree 2, the
higher R-squared value for the model was observed for hsa-miR-338-5p, indicating that 61%
of the variance in this miRNA expression could be explained by a complex combination of
selected risk factors (AgexCoffee; BMIxCoffee, PM10xCoffee; EducationxHomocysteine;
PCRxCoffee; HomocysteinexCoffee; SmokingxCoffee; Physical ActivityxCoffee; Working
statusxCoffee; and AlcoholxCoffee).

Intriguingly, the PM10 annual average emerged as the top-ranked variable in terms
of its importance for numerous miRNAs, both in females (Supplementary Table S2) and
males (Supplementary Table S3).

Given the complexity of the results, we here provide detailed descriptions for the
associations involving predictors with a top-ranking priority (i.e., 1st). Individual raw
outputs are reported in the Supplementary File “Material S1” M1.

Age was identified as a robust predictor of miRNA expression in females with hsa-miR-
324-3p, hsa-miR-671-3p, hsa-miR-7-1-3p, and hsa-miR-9-5p, for which the predictor showed
maximum importance. In males, age was similarly found to be a key predictor, correlating
with hsa-miR-574-3p, hsa-miR-125a-5p, and hsa-miR-126-3p. Notably, a distinctive link be-
tween age and hsa-miR-125a-5p was observed exclusively in males; meanwhile, in females,
age ranked as the second most important factor influencing miR-125a-5p expression.

Furthermore, BMI showed notable associations with miRNA expression, specifically
hsa-miR-378a-3p and hsa-miR-708-5p in females and hsa-miR-9-5p, hsa-miR-103a-3p, and
hsa-miR-140-5p in males. Interestingly, hsa-miR-378a-3p displayed a remarkable associa-
tion with BMI, ranking fourth among the associated predictors for males.

Regarding biochemical parameters, CRP emerged as the top factor associated with
the modulation of hsa-miR-338-5p in both females and males. In addition, homocysteine
exhibited significant associations with hsa-miR-590-5p, ranking as the primary predictor in
females and the secondary predictor in males.

The consumption of coffee demonstrated a significant correlation with miRNA expres-
sion in both females (hsa-miR-144-5p, hsa-miR-130b-3p, and hsa-miR-7-1-3p) and males
(hsa-miR-139-3p, hsa-miR-378a-3p, and hsa-miR-148a-3p).

Lastly, hsa-miR-26b-3p exhibited a strong association with physical activity in females
(as related to BRCA) but was not included in the male oncomiRNA list we selected a priori;
thus, it was not further investigated.

4. Discussion

The present study investigated the association between selected oncomiRNAs and
various factors, including age, BMI, biochemical parameters, and coffee consumption,
shedding light on potential regulatory mechanisms and their relevance in the context of
exposome research. Moreover, we investigated the gender-specific patterns observed in the
associations, emphasizing the importance of considering this variable in miRNA-related
research. Our objective is to enhance the comprehension of the complex association de-
pendence of miRNAs with diverse factors. This highlights the importance of developing
multivariable methodological approaches for overcoming the analysis of one exposure at a
time, as is conventionally performed in exposome research. Emphasizing the relevance of
considering non-linear relationships among variables, we seek to advance the understand-
ing of miRNA regulation in response to multiple environmental influences. By exploring
the broader context of miRNA regulation, our findings could offer valuable insights into
the complexity of molecular interactions and pave the way for more comprehensive and
robust exposome studies in the future.

In our investigation, age emerged as a robust and influential predictor of miRNA
expression in both female and male subjects. Specifically, we observed major associations
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between age and the expression levels of miR-324-3p, miR-671-3p, miR-7-1-3p, and miR-9-
5p in females and miR-574-3p, miR-125a-5p, and miR-126-3p in males.

An intriguing finding in our study was the gender-specific association of age with
miR-125a-5p. Age significantly influenced miR-125a-5p expression in both females and
males, providing robust evidence for the role of this association in two independent sets
of subjects. In males, however, age was the single selected predictor of miR-125a-5p
while a more complex pattern of modulation was observed in females. Namely, the hinge
model showed the role of PM10, age, BMI, and PCR ranked by importance; the same
variables (plus coffee consumption) were observed in Degree 2 models with interactions.
Under linear constraint age, PM10, menopause, and BMI were showing their ranked
importance. Considering linear interactions, the selected models showed the major role
of being retired and post-menopause. The difference between linear and hinge models
could be related to underlying non-linear and non-additive dependence relations on the
considered continuous variables possibly surrogated by the associated categorical factors
of menopause and working status.

These results suggest that age plays a central role in shaping miRNA expression
profiles in both genders. Furthermore, the gender-specific associations underscore the
importance of considering sex as a biological variable in miRNA-related studies as it may
uncover unique regulatory patterns and provide insights into gender-specific molecular
mechanisms associated with age-related processes.

Additionally, miR-125a-5p has been extensively studied in the context of cancer [34,35].
It acts as a tumor suppressor in various cancers by targeting oncogenes or genes involved
in cell proliferation, invasion, and metastasis [36,37]. Its down-regulation in cancer cells
can contribute to tumor progression [38,39]. Our findings confirm the age-dependent
down-regulation in the expression of miR-125a-5p, which has been previously reported in
mouse models [40].

We further observed significant associations between BMI and miRNA expression,
with gender-specific patterns present. In females, miR-378a-3p and miR-708-5p showed
an association with BMI; meanwhile, in males, miR-9-5p, miR-103a-3p, and miR-140-5p
were found to be associated. These results suggest distinct miRNA regulatory patterns in
relation to BMI in females and males, reflecting potential gender-specific molecular mecha-
nisms linked to adiposity and metabolic processes. The SPHERE population consisted of
individuals with high BMIs and previous studies have emphasized the significant role of
BMI in modulating EV-miRNA expression [21]. Specifically, miR-378a has been implicated
in adipogenesis and obesity [41–44] while miR-708-5p was found to be up-regulated in
individuals with obesity and metabolic syndrome [45].

In the context of obesity, miR-9-5p has been frequently reported as dysregulated in
adipose tissue and serum, pointing to its potential involvement in the pathogenesis of
obesity [46]. It is known to influence adipocyte differentiation by targeting key genes
in adipogenesis [47]. Moreover, miR-9-5p has been associated with the regulation of
inflammatory processes [48,49]; given that obesity is characterized by chronic low-grade
inflammation in adipose tissue [50], the dysregulation of miR-9-5p in obesity may contribute
to adipose tissue inflammation and insulin resistance. Similarly, miR-103a-3p has been
found to be down-regulated in blood samples of individuals with obesity [51,52] and its
role in modulating insulin sensitivity is well-established [52]. Additionally, miR-140-5p has
been reported to be up-regulated in the plasma of obese or diabetic patients and its levels
can be influenced by treatment with metformin or bariatric surgery, indicating a potential
correlation with insulin sensitivity [52,53]. Moreover, miR-140-5p overexpression has been
positively correlated with BMI and waist-to-hip ratio [53].

In our investigation of biochemical parameters, we identified CRP as the most influ-
ential factor regulating miR-338-5p expression in both females and males. Furthermore,
homocysteine showed significant associations with miR-590-5p, ranking as the primary
predictor in females and the secondary predictor in males. To the best of our knowledge,
no previous studies have reported an association between CRP and miR-338-5p. However,
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a recent paper demonstrated that overexpressed miR-338-5p effectively suppressed IL-6 ex-
pression at both the mRNA and protein levels, both in vitro and in vivo, and vice versa [54].
Additionally, luciferase reporter assays confirmed that miR-338-5p directly regulated IL-6
expression by binding to its mRNA 3′ untranslated region [55]. Given that IL-6 is a known
inducer of hepatic C-reactive protein (CRP) synthesis, this discovery suggests a potential
link between miR-338-5p and CRP [54]. These findings shed light on a novel regulatory
mechanism that may have implications for our understanding of the interplay between
miRNAs and inflammatory pathways and could provide insights into the molecular basis
of miR-338-5p modulation by CRP.

MiR-590-5p plays a crucial role in cellular homeostasis, including cancer, with re-
cent evidence showing its dual function as both an oncogene and a tumor suppressor,
depending on the specific cancer context [56]. Although the link between miR-590-5p and
homocysteine is not clear, miR-590-5p has been implicated in processes related to vascular
endothelial function [57] and inflammation [58], which are pathways closely connected to
homocysteine metabolism. However, it is important to note that the relationship between
miR-590-5p and homocysteine is likely to be influenced by various factors related to the
cellular context, including other molecular interactions. More comprehensive studies are
needed to elucidate the specific mechanisms underlying this potential link and its functional
consequences in health and disease.

The significant correlation we found between coffee consumption and miRNA ex-
pression in both females and males is a fascinating finding. Coffee contains numerous
bioactive compounds, such as caffeine and polyphenols, which have been shown to exert
protective effects against cancer by acting as antioxidants and modulating various cellular
pathways [59]. Numerous epidemiological studies have explored the association between
coffee consumption and cancer risk, revealing intriguing findings. Overall, the evidence
suggests that moderate coffee consumption is associated with a potentially reduced risk
of certain cancers. Some studies have shown an inverse relationship between coffee con-
sumption and the risk of developing cancers, such as liver, colorectal, and endometrial
cancer [60]. Moreover, coffee consumption has been linked to a lower risk of certain types
of hormone-related cancers, like estrogen-receptor-negative breast cancer [61]. In the lit-
erature, we have not found any possible associations between coffee consumption and
the expression of the microRNAs we identified (miR-144-5p, miR-130b-3p, miR-7-1-3p,
miR-139-3p, miR-378a-3p, and miR-148a-3p). This field of study is still in its very early
stages and further research is required to assess the effect of these dietary compounds.

The intriguing link between miR-26b-3p and physical activity sheds light on the com-
plex regulatory network of microRNAs in response to both exercise and everyday physical
behaviors. It emphasizes miR-26b-3p’s potential role as a significant player in processes re-
lated to physical activity. Notably, in this context, “physical activity” encompasses habitual
behaviors beyond structured exercise. However, to fully comprehend the functional signifi-
cance and implications of miR-26b-3p in relation to physical activity, further comprehensive
studies are warranted.

One of the major advantages of a machine learning method like MARS is its ability to
automatically select relevant variables from a large set of predictors and their interactions,
also considering non-linear relationships under their hinge function representation. This
provides an additional level of information with respect to multivariate projection tech-
niques like FAMD and simple univariable linear regression. Whereas the MARS method
can capture non-linear and non-additive relationships, the resulting models are still rel-
atively interpretable, providing relevant exploratory information for setting biological
hypotheses and building refined models with optimal control of the bias vs. variance
tradeoff and enhanced predictive capability. Therefore, we are aware of the limitations as
well as the advantages of the applied MARS method; more sophisticated modeling, rather
than multivariable regression, is requested by the integrative analysis of multi-omics data in
order to infer about regulatory/causal networks. This is outside of the scope of the present
paper but lays the ground for future developments of our analyses of the SPHERE data.
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5. Conclusions

This study not only enhances our understanding of miRNA regulation in response
to multiple environmental and lifestyle influences but also underscores the critical role
of methodology in unraveling the complexities of cancer risk factors. By uncovering
non-linear relationships among variables, we gain valuable insights into the complexity
of miRNA regulatory networks. Furthermore, our adoption of the MARS methodology,
with its inherent capacity to automatically identify non-linear and non-additive effects
(interactions) among predictors, exemplifies the power of computational techniques in
elucidating the interplay between multifaceted variables. This innovation approach not
only advances our comprehension of EV oncomiR network regulation but also serves as
a model for future studies seeking to decipher complex molecular systems. As we move
forward, we envisage a horizon of comprehensive exposome studies that will further define
the dynamic relationships between our environment, our genetic makeup, and the complex
landscape of cancer development.
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