
 

 

FEATURE ARTICLE 

A System for Privacy-

Preserving Access 

Accountability in Critical 

Environments 

In this paper, we present a BeagleBone-based 

system to increase the security and safety level of 

critical environments by tracking people movements. 

Our solution is privacy aware, as it is possible to 

know who accessed a zone at a given time, with an 

uncertainty degree of accountability. 

The problem of accountability of people's access to physi-

cal environments is receiving great attention in recent 

times, also because of the emergent risk related to terror-

ism. Specifically, indoor tracking to allow a-posteriori identification of the authors of an illegal 

action is an important issue. 

Consider, for example, a security/safety incident occurred in a museum, which hosts thousands 

of visitors per day. Even though we have registered the entrance of all people and we are able to 

restrict the instant of the incident to a brief time interval, the number of suspects is so high that 

the adopted security measures are in fact ineffective. Besides video surveillance, an effective 

possibility of tracking people is based on the use of RFIDs, to have logs reporting people locali-

zation at any time and to restore precise information in a faster way than video surveillance. This 

kind of solution requires that people entrance in the surveillance environment is registered, but 

this is an acceptable (often already adopted) requirement in case of critical environments (e.g., 

government buildings, museums, safety-critical environments, tribunals). 

Unfortunately, in most cases, a similar solution is intolerable for privacy reasons, often not com-

pliant with law requirements.  

In this paper, we study this issue by considering a surveillant environment in which people inter-

nal accesses must be logged for security purposes. However, a certain degree of uncertainty has 

to be introduced for privacy reasons. Specifically, it is required that, given an instant of time τ 
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and a monitored location, it should be possible to guess who was the person inside this location 

at the time τ with a probability at most k−1, where k is a positive integer number representing a 

privacy requirement. 1 

OUR PROPOSAL 

This paper proposes an RFID/BeagleBone-based system to generate logs allowing us to trace 

people with a suitable degree of uncertainty, in such a way that privacy is fully preserved. Logs 

fulfill a k-anonymity property, 1 so that we are able to guess who accessed a place, at a given 

time, with probability at most k−1. Consequently, in case of a security/safety incident, we can re-

strict the pool of suspects from the whole population to k people.  

Our approach is based on the use of movement sensors, RFID tags and readers, a server, and a 

suitable communication infrastructure. Preliminarily, the environment is partitioned into two 

types of zones: monitored and non-monitored zones. Moreover, each visitor is identified and as-

sociated with a passive RFID tag, which is attached to something that the individual must keep 

with him (e.g., to the visitor pass in a government building). 

Each monitored zone is equipped with a movement sensor and a RFID reader to detect the pres-

ence of a tag (thus, of a person). Sensors are able to detect the physical movement of a person 

entering a zone in such a way that in case this movement is not associated with the reading of a 

RFID tag, an alert is triggered. When a person enters a monitored zone, the reader associated 

with this zone reads the identifier of the RFID tag (called EPC). Clearly, data received from 

readers allow the exact (i.e., with no uncertainty) tracking of people, provided that the associa-

tion between tag EPC and person identity is known and this can result in a breach of privacy. 

To avoid this, the received EPC is transformed into a new number in such a way that k people 

are associated with the same number (which we call qID – quasi identifier) and such a transfor-

mation is one way. All sensors are connected to a local network, so that the obtained qIDs can be 

sent to a server, which manages a log file. 

System architecture and implementation 

Our solution leverages two mechanisms: people identification and physical access monitoring. 

People identification is done by passive RFID tags that operate at a frequency of 865-868 MHz 

in Europe and 902-928 MHz in America, have a read range up to 10 meters and a cost of about 

0.15$. Readers are built by exploiting a BeagleBone Black 2 equipped with a single-board com-

puter equipped with the Texas Instrument’s TRF7970ATB multi-protocol RFID transceiver and 

a high resolution cam Logitech C920 (see Figure 1). 

As for physical access monitoring, typical solutions are based on turnstiles, which are too inva-

sive. In our design, we adopt video counting, which is the most enhanced and powerful solution. 

A BeagleBone board is installed at the entrance of each monitored zone: each time the cam ob-

serves the movement of a person by running a suitable image-recognition software, the reader of 

a RFID tag is expected. If this does not occur, the system sounds the alarm to notify the entrance 

of a person with no RFID tag. Otherwise, the BeagleBone sends to a server a privacy-preserving 

information related to this entrance. To reduce privacy issues related to the people images, our 

solution does not store any image. Both the RFID people identification and the physical access 

monitoring modules are installed on the same BeagleBone Black board. 

Trace Anonymization 

The notion of k-anonymity, introduced above, means that the probability of identifying a person 

by accessing the stored location traces is k−1, where k is a given privacy requirement. Our system 

reaches this goal by suitably transforming the received EPC into a new number, called qID (i.e., 

quasi identifier), belonging to a domain smaller than the number of people, so that more people 

are associated with the same qID. In particular, this domain is the interval [1, d], where d is a 

positive integer system parameter. 



 

 

  

 

Figure 1. The BeagleBone and the Logitech C920 webcam 

The log file stores four types of events, which are described in the following. 

1. Entering the building. When a person enters a government building, one RFID tag is 

associated with him and integrated into the document issued to permit the access to the 

building. Observe that, RFID tags used in our proposal have a life cycle. Indeed, in a 

real scenario, there must be a large number of RFID tags ready to be given to people. 

After a tag is associated with a person, it starts to work and we say it becomes working 

(active). Each BeagleBone stores the EPC of the currently working tags in a sorted set 

S. When a tag becomes working, a message containing the timestamp, the type of 

event (activation), and the assigned EPC is sent through the network. This way, each 

BeagleBone can add into S the new EPC. 

2. Leaving the building. When a person leaves the building and returns the tag, this tag 

ends its life becoming inactive. Also in this case, a message containing the timestamp, 

the type of event (deactivation), and the tag EPC is sent through the network and all 

BeagleBones remove from S this EPC. 

3. Entering a zone. When a person enters a controlled zone, the BeagleBone associated 

with this zone detects this entrance by the cam and reads the EPC of his tag, which is 

typically a 96-bit identifier. A privacy-preserving qID associated with this tag is com-

puted from the EPC by means of three transformations.  

The first transformation maps the 96-bit domain of EPCs, which is highly sparse (be-

cause the number of tags used is much smaller than 296) into the dense domain [1, |S|]. 

Specifically, the received EPC is mapped to the integer p, which is its position in the 

sorted set S, with 1 ≤  p ≤ |S|. 

The second transformation is done by  the random permutation function RPF called 

Algorithm 235, 3 an efficient method for generating a particular permutation of the set 

S.  

Algorithm 235 is very simply: 

 

      for i from |S| downto 1 do  

            exchange S[j] and S[i]  
 

where j = R mod i and R is a random integer picked from a PRNG whose seed is 

known only by the BeagleBones.  

Called S’ the set permuted by Algorithm 235, the position p is transformed into the 

permuted position p’=RPF(p)=S’[p]. As a consequence, the access done by the p-th 

user is logged as done by the p’-th user. This swap hides the real identity of the user 

accessing a zone to all parties that do not know the seed used by the PRNG. Observe 

that RPF −1(p’) can be done by searching for a p such that RPF(p)=p’ with 1 ≤ I ≤ |S|, 

thus in linear time w.r.t. the number of users. 

In the third transformation, a hash function H having domain [1,|S|] and codomain 

[1,d] is adopted, where d ≤ t. This function has the purpose of reducing the domain of 

the output (i.e., the stored qIDs) and generating the collisions among more qIDs neces-

sary to implement the k-anonymity approach. Consequently, it is important that every 

hash value in the output range is generated with roughly the same probability. Among 

the several implementations of this function, we used the simplest hash function qID = 

1 + (p’ mod d). 

When a user accesses a monitored zone, by these three transformations a new qID is 

generated for him and a message containing the timestamp, the type of event (en-

trance), the reference to the zone entered and this qID is sent through the network. 

Moreover, the BeagleBone involved in the reading adds into a local map T the pair 

(EPC, qID). This information is used in the next step. 
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4. Leaving a monitored zone. When a person exits a monitored zone, the involved Bea-

gleBone searches for the read EPC into the map T to obtain the qID previously associ-

ated with this EPC. If such a query does not give any result, an alarm is generated to 

report the fault situation. Otherwise, a message containing the timestamp, the type of 

event (leaving), the reference to the zone and this qID is sent through the network. 

Moreover, the pair (EPC, qID) is deleted from T. 

All the messages sent through the network are appended to the log file stored by a server. The 

log is encoded by XML format and does not include the information necessary to associate a per-

son with a tag, which is expected to be stored elsewhere. Each log event is mapped into an ele-

ment LogInfo. The attribute type specifies the typology of event, which can be activation or 

deactivation of a tag, or the reading of a tag when a person enters or leaves a zone. LogInfo sub-

elements are: the timestamp of the event, the read EPC, the identifier of the involved zone and 

the generated qID. 

An example of this file, concerning events occurred in the morning of 15 June 2018, is reported 

in Figure 2. The first two LogInfo elements show that two people accessed the building at about 

9 and the tags with EPC 119 and 182 (again, for simplicity, we represent an EPC by 3 digits) 

were assigned to them. The next fragment of the log reports four entries into the zones Z3, Z8, 

Z4 and again Z3, occurred at about 10. Observe that the last information is the qID generated 

according to the procedure described at Step 3. Then, the log registered the leaving from zone Z3 

of a person associated with the qID=1. Finally, the last LogInfo element shows that the person, 

to whom the tag with EPC=119 has been assigned, has left the building at 13:00. 

 

Figure 2. A partial representation of a log file. 

We conclude this section by observing that there exist some attacks on privacy based on tem-

poral correlation and knowledge of the building map. For instance, suppose that the reader of 

zone far from the building exit registers the entrance of a qID corresponding to Alice or Bob and 

that after few seconds, the system registers that Alice leaves the building. This allows an adver-

sary to guess that Bob was in that zone. The solution we applied to prevent this attacks is based 

on temporal cloaking: 4 exact timestamps are perturbed and stored with an approximation time 

error e such that e · v ≥ d, where d is the distance between the building exit and the considered 

room and v is the user velocity (typically, v is assumed to be about 5 km/h). 4 Consequently, the 

timestamps considered so far have to be considered approximate timestamps. 



 

 

  

Log Analysis 

In case of need, it is possible to elaborate the log file to find the set of the users who could have 

entered a given zone at a given time T. We say “could” because this operation returns a set of k 

possible users, in order to comply with the privacy requirement. For example, consider the third 

LogInfo item of the log file fragment reported in Figure 2, we could be interested in knowing 

(with uncertainty) who is the person entered with qID=2 the zone Z3 at T =10:00:05. 

  

Figure 3. Algorithm EPSRestoring 

In Figure 3, the algorithm solving this problem is presented. It receives three inputs. The first 

one is the index n of the log line to analyze. The other two inputs (i.e., T and S) are optional and 

have as default value T=0 and S={} (their use will be clarified later). The algorithm computes the 

set S of active tags at time T (Lines 1-11). This is done by elaborating log files from the begin-

ning and adding to (Line 6) or removing from (Line 8) S an EPC each time an event of tag acti-

vation or deactivation is found. The optional inputs are used to speed up this computation: it is 

possible to create periodically a check point, i.e., to save the set S of the active tags at a given 

timestamp T. In this case, giving as optional inputs S and T, then the algorithm skips all log lines 

related to the events occurred before T (Line 3). Consequently, it is possible to start the construc-

tion of the set of active tags from this point instead of the beginning of the file. Then, the inver-

sion of the 3rd (Line 12) and 2nd (Line 14) transformation return the position p of the considered 

EPC in S. Finally, this EPC is added to the output. Concerning the complexity of Algorithm 1, it 

is linear in the input parameter n (Lines 1-11) and linear in the number of users |S| (Line 15), 

since we observed that RPF −1 is O(|S|). 

For example, with reference to the log reported in Figure 2, suppose we want to know (with un-

certainty) who is the person referred by the third LogInfo item. The first operation to do is to 

find the numbers x ∈ [1, 6] such that 1 + x mod d = 2. As d = 3, we have two candidates, x1 = 4 

and x2 = 1. Then, by inverting the random permutation function, we find that x1 and x2 derives 

from 1 and 2. Thus, the requested EPCs are the first and the second tags of S, which are 119 and 

182. We gather that at 10:00:05 of 2018-06-15, the person associated with the EPC equal to 119 

or 182 was in the zone Z3. 

EXPERIMENTAL STUDY 

In this section, we describe some experiments carried out to show how our system behaves and 

to test its performance. We observe that in the literature no real-world dataset of human traces 

exists to be used in our experiments: indeed, as stressed in this paper, such data are sensitive, 
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thus their storing, elaboration, and sharing result in an important privacy issue. Consequently, in 

this study, we used traces generated by a simulator.  

We simulate the application of our approach to a real Italian government building, namely the 

Ariano Irpino law court, which consists of 2 floors and 56 rooms (zones). Concerning the setting 

of RFID readers, we assume that there is a reader at the entrance of each monitored room of the 

building and that the adjustable range of the RFID readers is set to detect tags which are at a 

maximum distance of 50 cm (about half the size of a door) from the reader. Each time a person 

crosses the entrance of a room, a reader reads the EPC from the RFID tag and triggers the execu-

tion of our technique for creating privacy preserving logs.  

To simulate people movements inside the building, we built a java prototype implementing a 

mobility model based on the Random Waypoint Model, 5 which has been largely used in the lit-

erature. In this model, at the beginning of the simulation, each person randomly selects a destina-

tion room inside the building. Then, he moves towards it with a velocity selected uniformly at 

random in the interval (Smin, Smax). After the end-point is reached, he stops for a time period that 

varies in the interval (Pmin, Pmax). Then, he chooses another room and starts moving towards it. In 

our simulation, we set Smin=0.1 m/s, Smax = 2.1 m/s, Pmin = 0.0 seconds and Pmax = 1 hour. 

Setting the system parameter 

The first experiment aims at discussing about how to set the value of the parameter d in such a 

way to obtain the desired privacy requirement. Observe that the trivial setting d=1 always solves 

the problem because all people are associated with the same qID but no meaningful information 

is provided. Thus, we should find the greatest d satisfying the above property. In Figure 4.(a), we 

measure the greatest value of d guaranteeing k-anonymity for different values of k, depending on 

the (changing) number of people. 

We observe that all the curves have similar growing trend, because the number of collisions in-

creases as the number of people increases, so that a higher value of d can be selected. The oscil-

lations from the exactly-linear trend are due to the non-ideal behavior of the hash functions and 

the collisions of people with the same qID in the same room. The analysis of this figure allows 

us to fix the parameter d on the basis of the current number of users in the environment to guar-

antee a given privacy requirement. For example, to guarantee k=6 with 200 people, we set d=20. 

Moreover, we can derive the upper bound for the anonymity degree as the fraction between the 

number of people and the parameter d. For example, setting as lower bound k=6, with 200 peo-

ple and d=20, the upper bound is k=10, this means that we guarantee k-anonimity with k ranging 

from 6 to 10. 

Impact of d 

Now, we want to measure the impact of the size of the domain of possible qIDs on the capability 

of our approach of guaranteeing the privacy requirements. For this purpose, we consider the 

same four values of the parameter k as done in the previous experiment, we set the number of 

people in the building to 200 and we measure the number of times, called Violation, in which the 

privacy requirement has not been satisfied. Observe that, this metrics takes also into account the 

situation in which two users with the same qID are in the same room. Indeed, this event does not 

generate uncertainty and reduces the chances to satisfy the privacy requirement. Figure 4.(b) 

shows the obtained results. We observe that a small variation of the parameter d may result in 

high performance variations. For instance, consider the curve k=10: we have that d=8 is the 

value guaranteeing the privacy requirement when the number of people is 200. By means of this 

experiment, we find that by varying d from 8 to 22 the level of privacy given by the system 

quickly decreases and reach the lowest value, as people are uniquely identified in all cases. 

Impact of the number of monitored zones 

In this experiment, we study the effect of the percentage of monitored zones w.r.t. the total num-

ber of monitored zones in the building, assuming to have 200 people and k=4. We vary the per-

centage of monitored zones MZ from 25% to 100% and we measure the value of Violation, 

against different values of the parameter d (see Figure 4.(c)). We observe that the number of 



 

 

  

monitored zones slightly influences the capability of our approach to guarantee the privacy re-

quirement. Indeed, only when MZ assumes the lowest value (i.e., 25%) it is necessary to reduce 

the optimal value d=35 (estimated in the previous experiments) to d=28. In all the other cases, 

the variation of the number of monitored zones has negligible impact. In conclusion, this experi-

ment shows that in the setting of the system parameters it is sufficient to consider only the geom-

etry of the building and not the number of monitored zones.

 

Figure 4. Experiment results. 

Impact of time 

So far, we have tested the capability of our system to guarantee the privacy requirements by ana-

lyzing a single log item. Now we provide a further study aiming at measuring the uncertainty in 

the identification of a person who entered a zone over time. As a matter of fact, at each access, k 

possible candidates are determined. Clearly, when more people enter a zone over time, the num-

ber of candidates grows. In this experiment, we focus on a given zone and measure the number 

of candidates (as fraction of the total number of people inside the building) who access it over 

time. Clearly, the result of this experiment is strongly influenced by the access frequency of this 

zone. Therefore, we consider four typologies of zone, each characterized by a different bias of 

access probability (PB, for short). In particular, when PB=0 we mean that all building zones 

have the same probability of being accessed, whereas PB>0 means that the probability of access-

ing this zone is increased by PB w.r.t. the uniform probability. The analysis is conducted by con-

sidering a time window from 9.00 AM to 01.00 PM and fixing the number of people in the 

building to 200 and d=35. The results of this experiment are reported in Figure 4.(d). We ob-

serve that, at 01.00 PM, the set of people who could have accessed a zone with no bias (PB=0) is 

about 47%, whereas when the zone access frequency is higher (PB=0.3), the set of candidates 

coincides with the whole population at about 12.00 AM. Thus, given an acceptable uncertainty 

level, this experiment allows us to estimate at which time this level of uncertainty is reached, 

thus allowing to perform suitable countermeasures. For example, to limit to 15% the possible 

suspects of a malicious action with PB=0, we should schedule an inspection per hour to detect 

damages. 
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RELATED WORK 

The general idea of k-anonymity location may be implemented by means of a trusted third-party. 
6,7 The performance of these approaches strongly depends on the user density, so that many users 

have to use this service, otherwise the user’s locations are given with a too high approximation 

in order to guarantee their privacy. Moreover, such approaches are ineffective when the number 

of malicious users is not negligible. Our proposal does not suffer from these issues: indeed, RFID 

readers independently generate quasi-IDs. We remark that the distributed fashion of our method-

ology is the basis of its effectiveness from the point of view of privacy. Indeed, any centralized 

solution would not be able to protect data from attacks in which we assume that the adversary 

accesses the server. 

In the approaches based on location cloaking 6–7 location data are perturbed by introducing ran-

dom noise. However, a spectral filter exploiting the theoretical properties of random matrices can 

be used to estimate the actual positions. 

The idea of deleting identifiers from location data is not effective and several techniques 8–9 have 

been presented to guess the home location and the identity of a person. However, a spectral filter 

exploiting the theoretical properties of random matrices 10 can be used to estimate the actual po-

sitions. 

In Location-Based-Service applications, GPS is used to continuously track the node’s location. 
11–13 Differently, in our proposal the use of RFID does not allow continuous tracking. 

Some proposals use encryption to address the privacy issues in the data collection phase. 16-18 In 

some sense our approach is more general than an encryption-based approach. Basically, what we 

do is to implement a random permutation function with compression in such a way that k actual 

IDs are mapped to 1 virtual ID. Without the knowledge of the seed of the PRNG, the probability 

to guess the mapping between an actual ID and a virtual ID is 1/n (if n is the number of actual 

IDs), while, by knowing the seed, this probability increases to 1/k. If we encrypt actual IDs, 

without the knowledge of the secret key, the probability to guess the mapping between an actual 

ID and a virtual ID is still 1/n, and the probability to guess this mapping once the key is known is 

1, obviously. Therefore, our method is equivalent to that based on encryption if k is set to 1, thus 

in the case we disable the feature of privacy against honest-but-curious providers. 

In a recent paper 19 the authors propose a technique to localize patients of assisted living facili-

ties by preserving their privacy. This solution addresses a problem different from the one dealt 

with in our case and is based on the use of active RFID. 

Finally, we observe that a very preliminary version of the approach described in this paper has 

been presented. 20 In the current work, the original idea has been extended by a detailed and 

effective implementation of the approach, through a deep hardware-software-system design ex-

perience. Moreover, this implementation adds to the approach a number of security features rely-

ing on technological components to make the system resistant to misbehaving attacks (for 

example, decoupling of user and RFID tag positions). Also log analysis is enhanced and now it is 

presented in a complete and detailed way. Finally, the experimental analysis (only sketched in 

the original paper) has been deepened also by applying our approach to a real-life environment to 

effectively validate the proposal. 

 

CONCLUSION 

The main contribution of this paper concerns the solution of the trade-off between privacy and 

security/safety requirements, which is a relevant problem in the context of physical control of the 

territory. Importantly, the model is translated into a concrete system whose technological compo-

nents play a significant role in guaranteeing the correct working and the security of the approach. 

As a consequence, the hardware-software-system design experience is inherently part of the nov-

elty and significance of the proposal. Moreover, it demonstrates the technical and economic fea-

sibility of the model, providing its validation by a number of experiments, which show that 

privacy and security requirements can be reached by suitably setting the system parameters and 

that the system appears robust against the possible attacks. 
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