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Abstract 29 

Carotenoids are among the best-known pigments in nature, confer color to plants and animals, 30 

and are mainly derived from photosynthetic bacteria, fungi, algae, plants. Mammals cannot 31 

synthesize carotenoids. Carotenoids’ source is only alimentary and after their assumption, they 32 

are mainly converted in retinal, retinol and retinoic acid, collectively known also as pro-vitamins 33 

and vitamin A, which play an essential role in tissue growth and regulate different aspects of the 34 

reproductive functions. However, their mechanisms of action and potential therapeutic effects are 35 

still unclear. This review aims to clarify the role of carotenoids in the male and female reproductive 36 

functions in species of veterinary interest. In female, carotenoids and their derivatives regulate 37 

not only folliculogenesis and oogenesis but also steroidogenesis. Moreover, they improve fertility 38 

by decreasing the risk of embryonic mortality. In male, retinol and retinoic acids activate molecular 39 

pathways related to spermatogenesis. Deficiencies of these vitamins have been correlated with 40 

degeneration of testis parenchyma with consequent absence of the mature sperm. Carotenoids 41 

have also been considered anti-antioxidants as they ameliorate the effect of free radicals. The 42 

mechanisms of action seem to be exerted by activating Kit and Stra8 pathways in both female 43 

and male. In conclusion, carotenoids have potentially beneficial effects for ameliorating ovarian 44 

and teste function. 45 
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1. Introduction 113 

Carotenoids are fat-soluble substances (Maurya et al., 2021) and are among the best-114 

known pigments in nature, confer color to plants and animals (Miyashita and Hosokawa, 2019). 115 

About 750 natural pigments are known in this class; they are derived from photosynthetic bacteria, 116 

fungi, algae, and plants (Wang, 2014). 117 

1.1. Biochemical characteristics 118 

The majority of carotenoids are characterized by a polyene structure with eight isoprene 119 

units and a carbonaceous skeleton of 40 atoms (Namitha and Negi, 2010) as shown in Figure 1 120 

(β -carotene as an example). This skeleton may be characterized by cyclic end-groups and may 121 

be complemented with oxygen-containing functional groups. 122 

Carotenoids are hydrophobic molecules with very low water solubility. Polar functional 123 

groups attached to the polyene chain can change the polarity of carotenoids, which affects their 124 

localization in biological membranes and their interactions with various molecules (Jomova and 125 

Valko, 2013). Their chemical structure divides carotenoids into hydrocarbons termed carotenes 126 

and oxygen derivatives of the hydrocarbons, called xanthophyll (Maoka, 2020). Among the 50 127 

kinds of carotenes present in nature (Britton et al., 2004) the best known are α-carotene, β-128 

carotene, ψ-carotene (γ-carotene), and lycopene (Figures 1 and 2); these latter contain only the 129 

original hydrocarbon chain with any functional group (Saini et al., 2015). 130 

1.2. Source, absorption, and metabolism 131 

β-carotene (trans-1,18-bio-[2,6,6-trimethyl-cyclohex1-en-1-yl]-3,7,12,16- 132 

tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaen) is considered as a precursor of vitamin A, 133 

belonging to the group of provitamins A, like α-carotene and β-cryptoxanthin (Stahl and Sies, 134 

2005). 135 

Mammals cannot synthesize carotenoids and obtain them from their diet (Walter et al., 136 

2010), for this reason, the main route of carotenoids intake for humans and animals is alimentary. 137 

Carotenoids are present in plant foods but various feed additives and dietary supplements 138 

containing synthesized carotenoids are also widely used (Hodge and Taylor, 2022).  139 

Currently, methods are known for the synthesis of carotenoids from bacteria (Escherichia 140 

coli) (Dong et al., 2017), algae (Spirulina or Arthrospira platensis) (Gutiérrez-Salmeán et al., 141 

2015), fungi (Blakeslea trispora) (Bindea et al., 2018), plants (Daucus carota, Cucurbita spp.) 142 

(Marcelino et al., 2020), as well as with the use of genetic engineering techniques (Walter and 143 

Strack, 2011).  144 

β-carotene is one of the most important sources of vitamin A, accounting for at least 30% 145 

of the dietary vitamin A human intake, for some populations it may represent the only provitamin 146 

resource (Weber and Grune, 2012). β-carotene is abundant in fresh and quality forages; however, 147 
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it is lacking in hay and corn silage (Kamimura et al., 1991). Cattle introduce vitamin A mainly as 148 

β-carotene from forages and as supplemented retinol ester in formula feed.  149 

Appreciable amounts of these molecules are destroyed in the rumen (Weiss, 1998), 150 

therefore the prevalent amount of β-carotene and retinol taken from the diet in this species comes 151 

from the intestine (Ikeda et al., 2005).  152 

Intestinal absorption and bioavailability of carotenoids is influenced by different types of 153 

matrix such as lipids and fibers (Borel, 2003; Mamatha and Baskaran, 2011; Pasquier et al., 1996; 154 

Tyssandier et al., 2001). The active ingredients contained in spices also influence the absorption 155 

and bioavailability of carotenoids. Recent findings showed the influence of spices active principles 156 

on intestinal uptake, bioconversion of retinol, and basolateral secretion of carotenoids at 157 

enterocyte level using Caco-2 cells (Shilpa et al., 2021). Eicosapentanoic acid inhibits intestinal 158 

β-carotene absorption by down-regulation of scavenger receptor class B, type I expression via 159 

peroxisome proliferator-activated receptor alpha (PPARα) dependent mechanism (Mashurabad 160 

et al., 2016). 161 

Yuan et al. (2020) reported that more than 40% migrates through the circulatory system 162 

into parenchymal organs, particularly liver and ovaries. 163 

The molecular structure of β-carotene determines its biological role: it protects cell 164 

structures from the transformation caused by aggressive factors such as toxins and oxidants 165 

(Gutiérrez-Salmeán et al., 2015) and from the altering effects of reactive oxygen species, 166 

contributing to membranes' integrity and functional stability (Aragona et al., 2021). 167 

β-carotene in mammals is transformed into retinal and other forms, such as retinol and 168 

retinoic acid (RA) (Figure 3).  169 

The retinol is esterified and transported to the liver where it is stored (Chew et al., 1984). 170 

The biosynthetic steps leading to the biological transformation of β-carotene consist in the retinol 171 

being oxidized to retinaldehyde (constitutes the visual pigment rhodopsin) and subsequently in 172 

the synthesis of RA (Gottesman et al., 2001). RA is considered the active form of retinol (Jiang et 173 

al., 2018). 174 

Retinal is necessary for the functioning of the organs of vision while retinol and RA provide 175 

tissue growth and regulate the reproductive function (Sergeev et al., 2017).  176 

As a result of a complex biochemical synthesis, retinol is transported to the liver in the 177 

form of chylomicrons, binding with transthyretin and retinol-binding protein (RBP) and constituting 178 

a three elements complex. This complex is the main source of vitamin A that tissues need for 179 

their functions (Gottesman et al., 2001). The main distinguishing feature of β-carotene is its ability 180 

to accumulate into tissue depots. Further, under the influence of enzymes in the liver and 181 

intestines, it turns into vitamin A. This occurs only in the quantities necessary for the body at each 182 

physiological stage. It is important to note that β-carotene does not have the toxic effect 183 

characteristic of excess or overdose of vitamin A (Klyuchnikov, 2007). 184 
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RA is a hormone-like compound. It regulates gene expression by activating specific 185 

nuclear receptors (RARs), which are ligand-controlled transcription factors. RA and its isoforms 186 

are believed to interact with two separate subgroups of nuclear receptors, retinoic acid receptors 187 

(RARalpha, RARbeta, RARgamma) and retinoid X receptors (RXRalpha, RXRbeta, RXRgamma). 188 

They act as heterodimers with the retinoid X receptor (RXR), constituting RAR-RXR heterodimers. 189 

The formation of ligand-receptor complexes will either activate or repress specific target genes 190 

by binding to specific response elements present in the proximity of the promoter region (Mohan 191 

et al., 2002). 192 

There are also non-classical receptors that mediate RA function, namely the peroxisome 193 

proliferator-activated receptor beta/delta (Jiang et al., 2018).  194 

In particular, RA regulates the expression of genes for several growth factor receptors, 195 

including retinoic acid-stimulated receptor 6 (Stra6). Stra6 is a high-affinity membrane receptor 196 

for RBP and mediates the transport of vitamin A from the blood into cells (Eroglu and Harrison, 197 

2013). 198 

1.3. Effect on the reproductive system 199 

Recently, several reviews described the biotransformation of carotenoids in animals 200 

(Abdelnour et al., 2019; Meza-Herrera et al., 2013) and humans (Jamro et al., 2019; Li et al., 201 

2019; Palini et al., 2014). Hemken and Bremel (1981) highlighting the possible difference in the 202 

carotenoid’s metabolism between ruminants and monogastric animals. Another review 203 

(Damdimopoulou et al., 2019) summarized the current knowledge about retinoids in 204 

folliculogenesis and steroidogenesis in post-pubertal mammalian ovaries. D’Ambrosio et al. 205 

(2011) thoroughly described the interaction of retinoids with enzymes and carrier proteins, that 206 

determines the metabolism of retinoids.  Bhardwaj et al. (2021) described the role of natural 207 

antioxidant compounds in infertility problems, with a chapter dedicated to carotenoids and vitamin 208 

A, as well as how to use them safely. The role of retinoids in the endometrium are described by 209 

Jiang et al. (2018). 210 

Contrasting results exist on the β-carotene role on reproduction. Some authors (Akordor et 211 

al., 1986; Hye et al., 2020; Oliveira et al., 2015) reported the absence of effect on reproduction. 212 

Others, described an increase of 13-cis retinoic acid, a teratogenic metabolite for the fetus, 213 

following the administration in the mother of a 13-trans retinoic acid excess, a β-carotene 214 

derivative (Goldberg, 2011). These results suggested that the administration of these carotenoids, 215 

as a dietary supplement, should be monitored, especially in the first trimester of pregnancy 216 

(Goldberg, 2011). In contrast, many studies reported that β-carotenes improve reproduction rates 217 

(De Bie et al., 2016). Other studies demonstrated that the additional use of β-carotene decrease 218 

the number of abortions in sows (Spiegler et al., 2012) and cows (Ascarelli et al., 1985). In 219 

addition, there is evidence that the dietary administration of β-carotene was able to reduce 220 

embryonic mortality in the presence of vitamin A in gilts (Schweigert et al., 2002). β-carotene 221 
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improved fertility (Chen et al., 2021), stimulated estrus behavior (Meza-Herrera et al., 2013) and 222 

decreased the service period (Gossen and Hoedemaker, 2005), preserving the reserves of luteal 223 

retinol necessary to carry out the luteal steroidogenic activity (Schweigert, 2003).  224 

In the following sections we will summarize the information about the effect of carotenoids, on 225 

mammals’ reproductive function. In particular, the role of carotenoids in male and female 226 

reproductive processes in species of veterinary interest will be discussed. In particular, the role 227 

of the most relevant carotenoids will be discussed with respect to folliculogenesis, follicular and 228 

luteal steroidogenesis, oocyte maturation, corpus luteum, embryo and pregnancy for the female. 229 

Whereas, for the male, the impact of carotenoids on spermatogenesis and their antioxidant role 230 

on sperm quality and parameters will be discussed. 231 

2. Females 232 

2.1. Folliculogenesis  233 

Folliculogenesis is the development of follicles in the ovaries of the female, from primordial 234 

to preovulatory. The early stages of folliculogenesis involve molecular mechanisms that target 235 

molecules such as the mechanistic target of rapamycin (mTOR), phosphoinositide 3-kinase 236 

(PI3K), and those of the mammalian Hippo signaling pathway (Gershon and Dekel, 2020; Shah 237 

et al., 2018). The initial stages of folliculogenesis do not depend on gonadotropins. After the initial 238 

activation, the synthesis of growth factors, activins and anti-Müllerian hormone (AMH) begins in 239 

the follicles and can already act on them both locally and through the hypothalamic-pituitary 240 

system. These components are secreted by the ovarian granulosa cells. As the antral cavity 241 

forms, follicular growth becomes increasingly dependent on gonadotropins. 242 

Various studies proved that RA is involved in the processes of neuro-humoral regulation 243 

of the human reproductive cycle (Kawai et al., 2016) and that β-carotene supplementation 244 

reduced ovulation failure in bovine repeat breeders (Khemarach et al., 2021). Ikeda et al. (2005) 245 

reported that both β-carotene and retinol are present in bovine follicular fluid, with a ratio directly 246 

correlated to blood concentration.  247 

In contrast to vitamin A, β-carotene concentrations in plasma, corpus luteum and follicular 248 

fluid were significantly correlated with each other (Haliloglu et al., 2002) (Table 1).  249 

Furthermore, these two forms of carotenoids would be trapped in the follicle by their carrier 250 

proteins, thereby explaining the different concentrations found in the follicle (Brown et al., 2003; 251 

Schweigert and Zucker, 1988). Moreover, retinol concentrations were higher in larger follicles 252 

than in small ones, with an intense immunoreaction in pre-antral follicles (Brown et al., 2003). In 253 

contrast, the intrafollicular β-carotene concentration was negatively correlated with the follicle 254 

diameter (Haliloglu et al., 2002). 255 

In a study of Hidalgo et al. (2005), cows, receiving vitamin A injections and showing normal 256 

vitamin A blood concentrations, developed follicles containing high follicular fluid. This study 257 
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suggested that the follicle is able to incorporate vitamin A, 4 days after its administration. The 258 

same authors stated that the volume of fluid collected is not influenced by retinoid treatment 259 

(Hidalgo et al., 2005), as reported in pigs (Whaley et al., 2000). In addition, β-carotene 260 

accumulated in the corpus luteum (Haliloglu et al., 2002) can be considered as a retinol source 261 

in the follicles (Bondi and Sclan, 1984). 262 

Kawashima et al. (2012) stated that β-carotene is one of the important nutritional factors for the 263 

resumption of reproductive function after parturition in dairy cows. 264 

In dairy cows, β-carotene has an immunomodulatory function and decreases the incidence 265 

of mastitis (Chew et al., 1982) and placental retention (Michal et al., 1994). 266 

Moreover, the conversion rate of β-carotene to vitamin A in granulosa cells is enhanced 267 

by follicular growth, and intrafollicular concentration of vitamin A correlated positively with 268 

estradiol concentration and follicle diameter (Schweigert and Zucker, 1988). 269 

Lower energy supply and plasma levels of β-carotene in the peripartum influence the 270 

resumption of ovarian follicular activity after delivery in dairy cows, leading to the ovulatory activity 271 

block (Kawashima et al., 2012).  272 

In dairy cows, an increased  administration of β-carotene in the close-up dry state led to 273 

follicles ovulation in the first follicular wave (Kawashima et al., 2012). 274 

In contrast, despite β-carotene supplementation (β-carotene 1g/d) and its increased 275 

plasma concentrations in the pre-partum period, other authors found no effects on the resumption 276 

of ovulatory activity in dairy cows (Kaewlamun et al., 2011). 277 

Fujihara et al. (2018) found that RA activated the growth of primordial follicles in cats 278 

during co-incubation with ovarian cell culture. However, it did not affect ovarian viability. RA 279 

regulates the development of the ovarian follicle, stimulates the proliferation of granulosa cells 280 

(Demczuk et al., 2016). 281 

The β-carotene addition to the diet of goats outside the reproductive season (50 282 

mg/goat/day, from April to May) promoted the active development of follicles (Lopez-Flores et al., 283 

2020). 284 

Overall, the general consensus is that the role of β-carotene and its derivatives appears 285 

to be positive with respect to follicular growth and maturation. 286 

2.2. Steroidogenesis 287 

Pituitary gonadotropic hormones interact with follicular components to stimulate follicle 288 

development and oogenesis. These hormones act both in an autocrine and paracrine manner 289 

(i.e., IGF-1 and 2) (Lopez-Flores et al., 2020). 290 

RA (10-10M) and retinol (10-8М) synergistically enhanced the function of follicle-stimulating 291 

hormone (FSH) in inducing luteinizing hormone (LH) receptors (Bagavandoss and Midgley, 292 

1988). In addition, the combination of these molecules stimulated the formation of cyclic 293 

adenosine-3',5'-monophosphate (cAMP) and progesterone (Bagavandoss and Midgley, 1988). 294 
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However, at higher concentrations, both retinoids suppressed these effects of FSH 295 

(Bagavandoss and Midgley, 1988). The endometrium secretes the retinol binding protein (RBP) 296 

under the action of progesterone (Trout et al., 1992). Moreover, in human ovarian surface 297 

epithelium-C2 cells, RA greatly increased 3β-hydroxysteroid dehydrogenase mRNA levels 298 

(Papacleovoulou et al., 2008). 299 

Vitamin A deficiency negatively affects steroidogenesis. The use of retinoids increases the 300 

synthesis of progesterone in vitro by luteal cells in cattle. A study on cattle luteal cells described 301 

that retinoids protect the cytochrome P450, the enzyme involved in the transformation of 302 

cholesterol, from free oxygen radicals damage (Brown et al., 2003). 303 

β-carotene improved bovine luteal cells steroidogenesis when present at low doses (0.1 304 

micromol/l), whereas it was inhibitory at higher concentrations (1 or 2 micromol/l) (Arikan and 305 

Rodway, 2000). Moreover, in the same experiment, the encapsulation of β-carotene in 306 

cyclodextrin was an efficacious method to provide this molecule to the cells (Arikan and Rodway, 307 

2000). 308 

Cumulus cells contained endogenously active retinoid receptors and participated to the 309 

RA synthesis using the precursor retinol. According to Mohan et al. (2003), retinoids previously 310 

administered in vivo or in vitro can have a receptor-mediated effect on cumulus-granulosa cells. 311 

Carotene can inhibit the activation of the estrogen receptors, so confirming its role in the 312 

neurohumoral regulation of the reproductive cycle. In cattle orally supplemented with carotene, it 313 

was found that this molecule increased the expression of genes involved both in the activity of 314 

cellular gonadotropes and in the regulation of gonadotropin-releasing hormone (GnRH) (Haliloglu 315 

et al., 2002). 316 

Supplementation with different β-carotene doses (0.4, 2, or 10 mg) in cats, during the 8 317 

weeks prior to estrus, increased plasma progesterone concentrations between day 6 and 10 after 318 

ovulation increasing until day 14 in cats fed a diet with the maximum β-carotene dose (10 mg) 319 

(Chew et al., 2001). 320 

In mares, synthetic β-carotene supplementation (1 g/d) for 15 days, starting from 321 

parturition, enhanced steroidogenesis, leading to a better resumption of cyclicity (Trombetta et 322 

al., 2010). In contrast, Watson et al. (1996) showed that ponies did not absorb synthetic β-323 

carotene , with a consequent deficit of ovarian response. 324 

The data summarized above indicate the β-carotene and its derivatives exert a positive 325 

but dose-dependent role with respect to ovarian steroidogenesis (Figure 4). 326 

2.3. Oocyte maturation 327 

Various studies reported that vitamin A  improved developmental competence of oocytes 328 

in cow (Shaw et al., 1995), gilt (Whaley et al., 2000), ewe (Eberhardt et al., 1999) and rabbit 329 

(Besenfelder et al., 1993, 1996), even if the latter is a species with physiologically high blood 330 

levels of this carotenoid.  331 
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The oocyte is rich in vitamin A, through its cellular derivative RA (Mohan et al., 2001). 332 

Indeed, transcripts of retinoid binding proteins and other RA receptors have been described in 333 

bovine oocytes and embryos from the early stages of their development (Mohan et al., 2002, 334 

2003). The presence of retinoid nuclear receptor mRNA indicates the existence of a retinoid 335 

signaling mechanism in the oocyte (Figure 5). The RA receptors alpha (RARα), beta (RARβ), and 336 

g2 (RARg2) were immune-evidenced in bovine blastocysts (Mohan et al., 2001, 2002), 337 

demonstrating that  transcripts are translated into proteins. 338 

An active RA signaling pathway is fundamental for the onset of oogenesis (Spiller et al., 339 

2012; Teletin et al., 2017). RA is an essential chemical involved in germ cell division, which can 340 

initiate meiosis in two ways: the first is RA stimulation of the retinoic acid 8 (Stra8) factor 341 

transcription (Damdimopoulou et al., 2019) (Figure 5). Another possible route of meiosis initiation 342 

is the activation by RA of the meiotic recombination protein (Rec8) transcription,  necessary for 343 

the replication of meiotic DNA and, thus, to the successful course of meiotic prophase, 344 

(Damdimopoulou et al., 2019).  345 

A study (Nasiri et al., 2011) reported that RA increased the rate of oocytes maturation in 346 

mice. A 2 to 4 μM of physiological RA form (all trans RA) improved in vitro maturation and 347 

development rates of mouse immature oocytes. However, despite these positive effect, the use 348 

of higher doses (6-8 μM) significantly reduced the rate of development and the quality of oocytes 349 

(Tahaei et al., 2011). 350 

Saadeldin et al. (2019) studied the effect of trans-RA in dromedary cumulus-oocyte 351 

complex on in vitro maturation. The dose of 20 μM trans-RA significantly reduced the proportion 352 

of degenerated oocytes. There was a significant improvement in the process of oocyte meiosis 353 

and extrusion of the first polar body in comparison with both control and experimental groups. 354 

Vitamin A plays a unique role in the maturation of the oocyte cytoplasm, in fact, β-carotene 355 

can enhance cytoplasmic maturation due to its antioxidant properties (Ikeda et al., 2005). RA also 356 

promoted the maturation of the bovine oocytes cytoplasm due to its modulating effect on genes 357 

expression for gonadotropin receptors, midkine, cyclooxygenase-2, and nitric oxide synthase in 358 

cumulus-granulosa cells (Ikeda et al., 2005). RA via the inhibition of RARα and inducible nitric 359 

oxide synthase (iNOS) expression, activated the nitrous oxide system (NO/NOS) in cumulus-360 

granulosa cells affecting the cytoplasmic maturation of bovine oocytes (Sirsjö et al., 2000) (Figure 361 

5). Moreover, RA massively inhibited the expression of iNOS mRNA and NO production in porcine 362 

immature oocytes (Hattori et al., 2002).  363 

Duque et al. (2002) evaluated the effect of 5 nmol/L RA on in vitro pre-maturation and 364 

maturation of bovine oocyte-cumulus complexes. Pre-maturation in the presence of RA improved 365 

the cytoplasmic competence of in vitro matured bovine oocytes. 366 

After in vitro fertilization and culture, the rate of bovine blastocyst development and 367 

hatching was increased in samples matured in the presence of 9-cis-RA (Deb et al., 2011). RA 368 

increased the developmental capacity of the oocyte and positively influenced the development 369 
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and differentiation of the trophectoderm and the maturation of embryos in vitro (Hidalgo et al., 370 

2003). 371 

In conclusion, the carotenoids exert a positive effect on oocyte maturation, but this effect 372 

appears to be dose dependent. 373 

2.4. Corpus luteum 374 

The yellowish color of the corpus luteum has always been associated with the high 375 

presence of β-carotene (Bruggemann and Niesar, 1957; Kirsche et al., 1987) and represents a 376 

target of this molecule and its derivatives (Schweigert and Zucker, 1988). 377 

In a study conducted in bovine corpora lutea at different stages of the ovarian cycle the 378 

authors demonstrated that of β-carotene concentration, but not of retinol, increased with luteal 379 

development (Schweigert, 2003). This would be explained by the high metabolic activity of this 380 

endocrine gland, in particular, of lipoproteins (lipoprotein bound-cholesterol) involved in 381 

steroidogenesis which retain β-carotene (Crociati et al., 2017). 382 

Moreover, in cattle, the low concentrations of retinol observed during active 383 

steroidogenesis of the corpus luteum suggested a significant role for this molecule in the 384 

steroidogenic process. Schweigert et al., (2003) asserted that the dietary β-carotene 385 

supplementation in cows helps the corpus luteum to have sufficient retinol reserves to perform 386 

steroidogenic activity. 387 

High β-carotene concentration is found in the luteal tissue and follicular fluid in cattle 388 

(Schweigert, 2003), therefore, β-carotene deficiency negatively affected the sexual cycle: the 389 

follicular phase (nymphomania) increased and the luteolysis processes was disrupted (Yuan et 390 

al., 2020). 391 

The intracellular luteal RA concentrations are mostly controlled by cellular retinoic acid-392 

binding proteins (CRABPs). Within the corpus luteum, RBP and CRABPs were observed in large 393 

luteal cells, but only RBP was observed in small luteal cells (Brown et al., 2003). In the pig, the 394 

CRABPs presence was cycle stage-dependent, the luteal cells in dioestrus expressed CRABP I 395 

(Schweigert and Siegling, 2001). 396 

Carotenoid metabolites are found in the microsomal membrane and in different subcellular 397 

fractions including nuclear, mitochondrial, cytosolic, and floating lipid of the corpus luteum; in 398 

particular, retinal and retinol were found in the corpus luteum of cows (O’fallon and Chew, 1984). 399 

It is assumed that β-carotene in the corpus luteum tissues may be in the form of a retinol depot 400 

(O’fallon and Chew, 1984). Therefore, it is metabolized during periods when the retinol necessary 401 

for the corpus luteum activities is insufficient. In this context, it is interesting to observe that 402 

progesterone synthesis was reduced in rats with vitamin A deficiency (Hurley and Doane, 1989).  403 

The levels of retinol, retinyl esters and β-carotene in bovine follicular fluid and blood 404 

plasma were reported to be closely correlated (Hidalgo et al., 2005); however, the correlation 405 

between bovine plasma and corpus luteum was negligible, with the exception of retinol. This 406 
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molecule was closely correlated with plasma and follicular fluid in pigs, while the correlation 407 

between plasma and corpus luteum retinol, retinyl esters and β-carotene was negligible (Chew et 408 

al., 1984). 409 

Arellano-Rodriguez et al. (2009) evaluated the effect of β-carotene supplementation on 410 

luteal activity, in particular on goat progesterone synthesis. Feeding animals with 50 mg/d of β-411 

carotene for 35 days before and 17 days after ovulation, increased the synthesis and secretion 412 

of progesterone by the luteal tissue. 413 

Ultimately, carotenoids are important in luteal steroidogenesis and in the correct 414 

succession of ovarian phases, including the luteal one. All this is also evidenced by the typical 415 

yellowish color of the corpus luteum, determined by the presence of carotenoids in this endocrine 416 

gland. 417 

2.5. Embryos and pregnancy: beneficial effect and overdose 418 

For several years, vitamin A has been associated to reproductive organs function (Eskild and 419 

Hansson, 1994), embryos development and pregnancy (De Souza Mesquita et al., 2021; Quadro 420 

et al., 2020; Quadro and Spiegler, 2020; Trainor, 2022). The importance of this vitamin in 421 

embryonic development is demonstrated by specific offspring malformations induced by the 422 

vitamin A deficiencies during gestation (Draghici et al., 2021; Gutierrez-Mazariegos et al., 2011). 423 

Various studies showed the efficacy of β-carotene in increasing pregnancy rates in dairy cow 424 

(Aréchiga et al., 1998) and in reducing retained placenta (Michal et al., 1994; Oliveira et al., 2015). 425 

Chew et al. (1982) reported that β-carotene, has antioxidant effects, especially in the ovaries and 426 

uterus of cows, enhances host defense mechanisms by lymphocyte and phagocyte, and 427 

decreases mastitis. Some studies (Ozaki et al., 2017; Vermot et al., 2000; Zheng et al., 2000) 428 

evidenced that RA is involved in endometrial development and renewal, being important in the 429 

cyclic change during the ovarian phases and also at the time of blastocyst implantation. 430 

As pregnancy progresses, uterine vitamin A concentrations decrease and  this was related 431 

to a supply of this vitamin by the placenta (Groothuis et al., 2002; Schweigert et al., 1999) or to 432 

an increasing demand of the vitamin A by the uterus and embryo (Maden, 1994). 433 

In dairy cows, deficiency of vitamin A or its natural precursor, β-carotene, resulted in 434 

reduced conception rates (Hurley and Doane, 1989). The major reproductive problems in dairy 435 

cows take place during late gestation, as indicated by increased rates of abortion and retained 436 

placenta and the birth of dead, weak, or blind calves (Hurley and Doane, 1989). Continuous 437 

feeding of β-carotene low rations reduced reproductive efficiency and had deleterious effects on 438 

pituitary and ovarian function (Hurley and Doane, 1989).  439 

β-carotene injections in combination with tocopherol improved the quality of embryos in  440 

Holstein cows with induced superovulation (Sales et al., 2008). The addition of β-carotene to the 441 

diet increased the concentration of this molecule in plasma, colostrum, and milk of mares and 442 
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also in the plasma of their foals (Kuhl et al., 2012). However, no positive effect on female fertility 443 

was noted (Kuhl et al., 2012). 444 

Pharmacological concentrations of RA lead to embryo toxicity, when administered shortly 445 

after implantation (Huang et al., 2001; Piersma et al., 2017). 446 

In pigs, retinol and RBP, were abundantly produced by the uterus, so there was a high presence 447 

of these molecules in the uterine fluid (Schweigert et al., 1999). These studies evidenced a 448 

noteworthy role of retinol and RBP on the early embryo trophism, as confirmed in the ewe (Doré 449 

et al., 1994), and gilt (Schweigert et al., 1999).  450 

In particular, the RBP synthesis was active in uterine glands and uterine surface epithelium 451 

as demonstrated in different species: sows (Adams et al., 1981; Harney et al., 1994; Wang et al., 452 

2012), baboon (Fazleabas and Verhage, 1994), mares (McDowell et al., 1995), goat (Liu et al., 453 

1995), mouse (Ma et al., 2012), rat (Itoh et al., 2009), cow (Costello et al., 2010; Mullen et al., 454 

2012). The expression of the RBP is hormonally regulated and ovarian cycle dependent. In fact, 455 

Schweigert and Siegling, (2001) described the localization of RBP, CRABPI, and RXR in the sow 456 

genital organs, during different stages of the estrous cycle. In particular, the highest concentration 457 

of RBP and RXR were observed during estrus. In the endometrium and myometrium, RXR was 458 

present throughout the entire cycle. Its highest concentration was recorded during diestrus, 459 

whereas RBP and CRABPI were found in endometrial cells only during diestrus. Moreover, 460 

CRABPI expression in oviductal tissues appeared to depend on estrogen. In contrast, in the 461 

uterus, RBP and CRABPI expression was influenced by progesterone (Schweigert et al., 1999).  462 

In the endometrium, gene expression for RBP was sensitive to small fluctuations in 463 

progesterone concentration on the 7th day of the sexual cycle. However, the authors did not find 464 

a significant correlation between progesterone concentration in the blood plasma and uterine fluid 465 

and that of RBP on day 7 of the cycle (Costello et al., 2010). 466 

Vitamin A deficiencies found in developing countries during pregnancy lead to alterations 467 

in embryogenesis (Hovdenak and Haram, 2012), however, overdose is often found in developed 468 

countries, causing a teratogenic effect. Since 1954, Cohlan described the teratogenic effects of 469 

an overdose of vitamin A during pregnancy in the rat (Cohlan, 1954). The teratogenic effects of 470 

carotenoid intake were subsequently confirmed in other animals and in humans (Geelen and 471 

Peters, 1979; Rosa, 1987). Moreover, pharmacological concentrations of RA lead to embryo 472 

toxicity, when administered shortly after implantation (Huang et al., 2001; Piersma et al., 2017).  473 

During pregnancy, it must not be exceeded the 5000 IU/day of retinol supplementation to 474 

avoid the overdose effect (Duerbeck and Dowling, 2012). 475 

3. Male 476 
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3.1. Impact of carotenoids on male reproductive function and spermatogenesis 477 

Several studies reported that deficiencies of vitamins A, RA and retinol have been 478 

correlated with degeneration of testis parenchyma and spermatogonia with consequent loss of 479 

the reproductive function. In bulls, β-carotene deficiency negatively affected sperm motility and 480 

induced morphological alterations of the head and cytoplasmatic droplet in middle piece, 481 

suggesting that these alterations were likely due to retarded spermatogenesis and spermatic 482 

maturation disturbances in the epididymis (Weiss et al., 1979). In another study on dairy bulls, 483 

low vitamin A diet determined not only weight loss and vision alteration, but also decreased the 484 

number of mature spermatozoa in the ejaculate as well as testicular atrophy (Erb et al., 1947). 485 

Vitamin A deficiency caused bad semen quality and consequent low fertility. However, as 486 

observed in many studies, the loss of functional germ cells is reversible, suggesting that vitamin 487 

A actively participates in molecular pathways controlling spermatogenesis. The mechanism 488 

underlying this phenomenon has been clarified in mouse. When male mice are knock-out to be 489 

deficient of vitamin A, terminally differentiated germ cells are not present in the seminiferous 490 

epithelium, where only type A spermatogonia and Sertoli cells can be found (Hogarth and 491 

Griswold, 2010). Many studies have shown that administration of RA into these knock-out male 492 

mouse activate the molecular pathways controlling spermatogonial differentiation to mature 493 

spermatozoa (Agrimson and Hogarth, 2016; Griswold et al., 1989; Hogarth et al., 2015; Hogarth 494 

and Griswold, 2010; Van Pelt and De Rooij, 1990). 495 

3.1.1. Mechanism of action of Stra8 and Kit 496 

 The supplementation of RA to the culture of neonatal testes and undifferentiated 497 

spermatogonia was correlated with higher expression of Stra8 and receptor tyrosine kinase (Kit) 498 

transcripts (Pellegrini et al., 2008; Zhou et al., 2008). These genes are established markers of 499 

differentiating spermatogonia and are important in increasing the number of cells containing 500 

nuclei reminiscent of leptotene and zygotene spermatocytes (Pellegrini et al., 2008). Consistent 501 

with these results, in another study, the injection of RA in newborn and adult mice induced higher 502 

expression of Stra8 transcript (Snyder et al., 2010; Zhou et al., 2008), once again demonstrating 503 

the activity of RA to control genes related to spermatogenesis. Overall, these results support the 504 

theory that RA is synthesized from retinol in situ and degraded or stored with specific enzymes in 505 

testes (Hogarth et al., 2015). In particular, the concentration of RA seems to continuously change 506 

in the seminiferous epithelium resulting in a cyclic content variation of these enzymes (Sugimoto 507 

et al., 2012). RA level is relatively low in stages II–VI and high from stage VII spermatogonia 508 

(Hogarth et al., 2015). Whereas, in stages VII–VIII spermatogonia, RA level is high (Endo et al., 509 

2015). The high concentration seems to drive the progenitor-to-A1 transition and meiosis entry, 510 

simultaneously. In conclusion, it clearly appears that RA regulates different stages of 511 

spermatogenesis and is involved not only in spermatogonia differentiation but also in the 512 
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regulation of progenitor self-renewal of spermatogonia. Among the regulated genes, Kit (Koli et 513 

al., 2017) and Stra8 (Raverdeau et al., 2012) (Figure 6) are direct targets of RA. To further support 514 

these findings, it has also been observed that RA can inhibit Pou5f1 (Okazawa et al., 1991) and 515 

Ngn3 (Hao et al., 2016) (Figure 6) which are markers of spermatogonia progenitors. Moreover, 516 

RA administration in spermatogonia inhibited the expression of Gfrα1, Id4, Zbtb16, Nanos2, and 517 

Nanos3 (Hao et al., 2016; Koli et al., 2017) (Figure 6). Therefore, RA has the ability to 518 

simultaneously down-regulate certain self-renewal and progenitor genes and up-regulate several 519 

differentiating actors. However, further studies are necessary to clarify the mechanisms of action.  520 

3.1.2. Regulation of Retinoic Acid Induced 14 on spermatogenesis 521 

The use of WIN 18,446 has helped explaining the mechanisms of RA signaling in 522 

spermatogenesis. This molecule inhibits the conversion of retinol to RA in the postnatal testis and 523 

in the embryonic gonad. This makes WIN 18,446 an excellent factor to use to continue the 524 

research into how RA regulates germ cell development in testes. Until now, RA signaling has 525 

been controlled by inhibiting the receptors, using gene knockout studies or receptor antagonists. 526 

However, these methods can be only applied to a particular receptor expressed in a specific cell 527 

type making difficult the elimination of functional redundancy that may occur between receptors. 528 

Following the research on WIN 18,446, another gene developmentally regulated by RA is Retinoic 529 

Acid Induced 14 (RAI14). RAI14 was originally identified in human retinal pigment epithelial cells 530 

(Kutty et al., 2001). However, in humans, RAI14 is also expressed in placenta and testes (Kutty 531 

et al., 2006). RAI14 protein is composed by six ankyrin repeats and a long coiled-coil domain 532 

which is at the N-terminal region and at the C-terminus, respectively, which are domains involved 533 

in protein-protein interactions (Kutty et al., 2006). In rat testes, RAI14 is expressed in germinative 534 

epithelium, in both the Sertoli and germ cells (Qian et al., 2013a). In the same study, it was also 535 

demonstrated that RAI14 localizes at both the basal and the apical ectoplasmic specialization, 536 

demonstrating that RAI1 regulates F-actin organization at this level. These results were consistent 537 

with those of another study, where the knock down of RAI14 in Sertoli cells in vitro mediated by 538 

small interfering RNA in Sertoli altered cell junction functionality as well as F-actin distribution 539 

(Qian et al., 2013a). Furthermore, in the same study, it was demonstrated, that the inactivation of 540 

Rai14 affected spermatid polarity, adhesion and spermatid movement (Figure 6), because of the 541 

disruption of the apical ectoplasmic specialization (Qian et al., 2013b). Finally, RAI14 has also 542 

been found to be predominantly expressed in mouse testis (Kutty et al., 2006). However, further 543 

work will be necessary to elucidate these findings as little is still known about its RAI14 function 544 

during mouse spermatogenesis. 545 

3.1.3. Involvement of Dmrt1 into the regulation of RA signaling pathway  546 

Recently, the mechanisms underlying the role of RA signaling pathway have been clarified 547 

in goat. In particular, the researchers discussed a possible role of Doublesex and mab-3 related 548 
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transcription factor 1 (Dmrt1) in the RA signaling pathway (Figure 6). As discussed earlier, Stra8 549 

and RA are regulators of meiosis, which one of the principal mechanisms characterizing 550 

spermatogenesis (Matson et al., 2010; Raverdeau et al., 2012). While, in female fetal gonads, RA 551 

activates transcription of Stra8 which allows the beginning of meiosis. In the fetal male gonad, 552 

these mechanisms are inhibited by Cytochrome P450 Family 26 Subfamily B Member 1 553 

(CYP26B1) (Feng et al., 2014). 554 

Dmrt1 has two main functions: 1) it activates spermatogonia proliferation and 555 

differentiation before meiosis initiation and promotes expression of spermatogenesis and 556 

oogenesis-specific basic helix–loop–helix 1 (Sohlh1) (Matson and Zarkower, 2012); 2) it 557 

coordinates mitosis and meiosis by repressing RA signaling and inhibiting Stra8 transcription 558 

(Matson et al., 2010). In male gonad of dairy goat, Dmrt1 expression was significantly higher than 559 

in other tissues (Wei et al., 2018). Recent evidences have shown that RA inhibits Dmrt1 560 

expression with negative impact on spermatogonia differentiation (Wang et al., 2016). On the 561 

contrary, overexpression of Dmrt1 in vitro was associated with down-regulation of Stra8 and 562 

Synaptonemal Complex Protein 3 (Scp3) and enhancement of differentiation and proliferation of 563 

male goat germ cells. Therefore, these results indicate that Dmrt1 exhibits a significant effect in 564 

spermatogenesis and maintenance of mammalian spermatogonia (Wei et al., 2018). 565 

3.1.4. Correlation of retinoic acid with gut-testis axis  566 

Deficiency of RA could be also caused by altered diet and in particular there is a correlation 567 

between RA absorption and gut health. In sheep, it has been proposed that the mechanisms of 568 

vitamin deficiency could be due to a gut–testis axis alternations. Zhang et al. (2022) showed that 569 

the use of induced excessive energy diet model altered spermatogenesis. This seems to be 570 

dependent on reduced bile acid levels, which further influenced RA absorption. Overall, these 571 

findings demonstrated that modification of gut microbiota and alteration of RA metabolism have 572 

potential as treatments for male infertility induced by excessive-energy diet-induced metabolic 573 

syndrome (Zhang et al., 2022). 574 

3.2. Antioxidant effect of carotenoids 575 

Carotenoids are known to exert an antioxidant effect on testicular cells thus ameliorating 576 

the impact of free radicals. In rat, β-carotene decreased the negative effect of methotrexate 577 

induced testicular injury thanks to the anti-oxidant and anti-apoptotic effects (Vardi et al., 2009). 578 

In another study, β-carotene ameliorated the effect of ethanol on hepatic cells (Peng et al., 2010). 579 

This seemed to occur through the inhibition of caspase-9 and caspase-3 expression which 580 

determined an apoptotic effect on the treated animals (Peng et al., 2010), once again showing a 581 

potential role of β-carotene as anti-oxidant.  582 

Amongst the beneficial effects, it has been observed that carotenoids administration 583 

improves critical semen parameters including sperm motility, membrane and DNA integrity since, 584 
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in vivo, they protect spermatozoa from reactive oxygen species (ROS) produced by leukocytes, 585 

reduce cryodamage to spermatozoa, block premature sperm maturation and provide an overall 586 

stimulation to the male gamete (Bansal and Bilaspuri, 2011; Sheweita et al., 2005; Twigg et al., 587 

1998). Moreover, an increasing number of reports are emphasizing on the beneficial antioxidant 588 

role of carotenoid on frozen semen (Bucak et al., 2015).  This effect increases when carotenoids 589 

are used in combination with other antioxidant compounds such as curcumin (Reddy and Lokesh, 590 

1994). Curcumin acts as antioxidant thanks to the phenolic groups which eliminate oxygen-591 

derived free radicals and superoxide anions (Piper et al., 1998; Reddy and Lokesh, 1994). The 592 

action of curcumin on markers of oxidative stress is correlated with its properties able to determine 593 

the removal of reactive oxygen and nitrogen, metal chelation, and regulation of numerous 594 

enzymes. In particular, curcumin increases the activity of glutathione peroxidase (GSH-Px), 595 

catalase and superoxide dismutase (SOD) enzymes that neutralize free radicals, it inhibits 596 

enzymes (lipoxygenase, cyclooxygenase, xanthine oxidase) that produce ROS (Lin et al., 2000; 597 

Piper et al., 1998) The use of curcumin improved spermatogenic disorders induced by scrotal 598 

heat stress in mice (Lin et al., 2015). In this study, co-treatment with β-carotene or curcumin led 599 

to repair activity, as indicated by the presence of many spermatogenic cells. In particular, the 600 

combined treatment with β-carotene and curcumin resulted in recovery to almost normal testicular 601 

morphology. Therefore, β-carotene and curcumin could be natural protective candidates to 602 

protect against male infertility induced by various environmental stressors.  603 

However, although many studies have demonstrated the possible use of carotenoids as 604 

antioxidants, further work is necessary to clarify their mechanisms of action. 605 

 606 

4. Conclusions 607 

Carotenoids are a class of natural pigments synthetized by plants, algae, and photosynthetic 608 

bacteria. Mammals are not able to synthetize carotenoids and they have to take them from the 609 

diet. It is well-known that carotenoids are important in regulating tissue growth and act in 610 

promoting the reproductive function of female and male. In the present work, we summarize the 611 

findings on the mechanisms of action of carotenoids and its derivates in controlling 612 

folliculogenesis and oogenesis and have a steroidogenic function in the females. Carotenoids can 613 

be potentially used alone or in combination with other hormones for its moderate estrogenic effect. 614 

Whereas, in the males, carotenoids activate the molecular pathways related to spermatogenesis. 615 

Several studies have also shown that deficiency of these vitamins can alter the processes of 616 

spermatogonia development and induce infertility with consequent absence of mature 617 

spermatozoa. Carotenoids have an antioxidant effect which seems to be exerted by ameliorating 618 

the activity of free radicals. The mechanisms of action seem to be exerted by activating KIT and 619 

STRA8 pathways in both female and male. 620 
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 Overall, in the present review, we show that carotenoids can be potentially supplemented in 621 

the animal diet to favor the reproductive function. However, although considerable research 622 

supports the positive impact of carotenoids on animal reproduction, further studies are necessary 623 

to consolidate the knowledge on the properties of carotenoids and their role in the reproductive 624 

functions including the determination of the beneficial dose which should not be exceeded to 625 

avoid a toxic effect. 626 
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Figure legends 1237 

 1238 

 1239 

Figure 1. Schematic representation of the chemical structure of β-carotene. From Saini et al. 1240 

(2015). 1241 

 1242 

Figure 2. Characteristic end groups of carotenoids (names of carotenoids written in bracket are 1243 

examples of carotenoids). From Namitha and Negi (2010). 1244 

 1245 

Figure 3. β-Carotene metabolism. Enzymatic activities in italics 1246 

 1247 

Figure 4. Schematic representation of the mechanisms related to RA and retinol and (A) and β-1248 

carotene (B) on steroidogenesis  1249 

 1250 

Figure 5. Schematic representation of RA signaling pathways involved in oogenesis. 1251 

 1252 

Figure 6. Schematic representation of the RA mechanisms of action in the male reproduction 1253 

function.  1254 
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Figure 1 1257 
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Figure 2 1262 
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Figure 3 1266 
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Figure 4 1270 
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Figure 5 1274 
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Figure 6 1279 
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Species 

Plasma/Serum Follicular fluid Corpus luteum 

Retinol 
beta-

carotene 
Retinol 

beta-

carotene 
Retinol 

beta-

carotene 

Cow 

0.1 to 0.6 

µg/ml 

(Nozièr

e et al., 

2006, 

plasma) 

1 to 16 µ 

g/ml 

(Nozière et 

al., 2006, 

plasma) 

0.25 µ g/ml 

(De Bie et 

al., 2016); 

0.1 µ g/ml 

(Chew et 

al., 1984) 

0.21 µ g/ml 

(De Bie et 

al., 2016); 

0.37 µ g/ml 

(Chew et 

al., 1984); 

0.41 µ g/ml 

(Haliloglu 

et al., 

2002) 

0.7 µ g/g 

wet-weight 

(Chew et 

al., 1984) 

14.2 µ /g 

wet-weight 

(Chew et 

al., 1984) 

Ewe 

0.21 µ g/ml 

(Aytekin 

and Aypak, 

2011, 

serum) 

0.20 µ g/ml 

(Aytekin 

and Aypak, 

2011, 

serum) 

- - - - - - - - - - - - 

Goat 

0.35 µ g/ml 

(Yang et 

al., 1992, 

plasma) 

30.84 

µmol/l 

(Mora et 

al., 2000, 

plasma) 

N.D. (Yang 

et al., 

1992, 

plasma; 

Mora et al., 

2000, 

plasma) 

- - - - - - - - - - - - 

Mare 

6.58 µ g/ml 

(Álvarez et 

al., 2015, 

plasma) 

0.67 µ g/ml 

(Álvarez et 

al., 2015, 

plasma) 

- - - - - - - - - - - - 

Gilt 

0.34 µ g/ml 

(Anderson 

et al., 

1995, 

serum) 

N.D. (Brief 

and Chew, 

1985, 

serum); 

0.03 µ g/ml 

(Chew et 

0.18 µ g/ml 

(Chew et 

al., 1984) 

N.D. (Chew 

et al., 

1984) 

0.7 µ g/g 

wet-weight 

(Chew et 

al., 1984) 

0.1 µ g/g 

wet-weight 

(Chew et 

al., 1984) 
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al., 1984, 

plasma) 

Bitch 

6-209 pg/dl 

(Pérez 

Alenza et 

al., 1998, 

serum) 

N.D. (Chew 

et al., 

2000, 

serum) 

- - - - - - - - - - - - 

Cat 

0.21-0.96 µ 

g/ml 

(Crissey et 

al., 2003, 

serum) 

0.011 µ 

g/ml 

(Crissey et 

al., 2003, 

serum) 

- - - - - - - - - - - - 

 1281 

Table 1. Retinol and β-carotene concentration in plasma/serum, follicular fluid and corpus luteum 1282 

of mammalian.N.D.: not determined. 1283 


