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ABSTRACT

Synthetic defect generation is an important aid for advanced
manufacturing and production processes. Industrial scenar-
ios rely on automated image-based quality control methods
to avoid time-consuming manual inspections and promptly
identify products not complying with specific quality stan-
dards. However, these methods show poor performance in
the case of ill-posed low-data training regimes, and the lack
of defective samples, due to operational costs or privacy poli-
cies, strongly limits their large-scale applicability.

To overcome these limitations, we propose an innovative
architecture based on an unpaired image-to-image (121) trans-
lation model to guide a transformation from a defect-free to a
defective domain for common industrial products and propose
simultaneously localizing their synthesized defects through a
segmentation mask. As a performance evaluation, we mea-
sure image similarity and variability using standard metrics
employed for generative models. Finally, we demonstrate that
inspection networks, trained on synthesized samples, improve
their accuracy in spotting real defective products.

Index Terms— Synthetic defect generation, generative
adversarial network, defective mask, residual network

1. INTRODUCTION

In today’s competitive global market, industrial companies
are increasingly challenged to deliver high-quality products
and reliable services while complying with environmental
policies [1]. Some operational methods, e.g., green lean pro-
duction [2], aim to reduce waste and pollution, optimizing
resources and processes. Building automatic systems to be
used on real production lines represents an important bene-
fit in achieving these goals. Recent advancements in neural
networks for classification [3] and recognition [4, 5] have
found application in several academic and industrial fields.
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However, synthetic data generation in low data regimes still
remains a challenging task [6]. More specifically, synthetic
defect generation aims to create fake defects on products
resembling real damages or inaccurate production steps. Re-
gardless of its numerous applications, this topic suffers from
attention due to limited publicly available resources (codes
and datasets), and varieties of products and defects, making
it difficult to define a standard benchmark for performance
evaluation. Furthermore, designing a system able to automati-
cally localize defects in synthetic samples could be extremely
valuable in easily providing a visual cue on specific image
regions. These systems may be a precious support for both
humans and machines in pursuing advanced manufacturing.

Generative adversarial networks (GANs) [7] are cur-
rently employed for solving multiple tasks (e.g., super-
resolution [8 ] ,  domain adaptation [9 ] )  and demonstrated par-
tial efficacy in generating reasonable and diverse defects for
industrial products [10] for sufficiently large datasets, while
approaches able to transform a source domain into a target
domain appear to be more robust in low data regimes [11,
12, 10]. Previous methods partially address diversity and
scalability issues related to the number of domains and styles
considered. Choi et al. [13], for example, propose a single
framework with multiple branches using the style information
obtained from a latent code, or an input image, to generate
multiple outputs. Rippel et al. [14] define a semantic-aware
approach that employs a translation model to improve an
anomaly detection classifier with pseudo-images represent-
ing synthetic defective samples. To control spatial and cate-
gorical characteristics as well, Zhang et al. [10] introduce a
layer-wise composition into their encoder-decoder structure.

To handle products with different characteristics and
address the scarcity of  samples, we extend the CycleGAN
architecture [12, 15], creating an unpaired image-to-image
translation model. Our model transforms defect-free to defec-
tive domains and vice versa. In contrast to prior methods [10],
we incorporate an additional branch to localize defective re-
gions, extracting a segmentation mask that highlights defect
locations. We utilize the MVTec Anomaly Detection (MVTec
AD) dataset [16, 17], which offers high-quality images and
pixel-wise annotated masks of various products, making it
suitable for defect generation. Our approach accounts for
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Fig. 1: Our residual-based generator consists of  two connected up-samplingY branches for reconstructing defective samples and
corresponding segmentation masks. The inverse mapping F employs the same architecture.

diverse anomalies in shape, s ize,  and structure, mirroring
real-world industrial production scenarios. We validate our
method by training deep defect inspection networks using our
synthesized products, comparing it  with other image gener-
ation approaches. The contribution of our work is  two-fold.
First, we  build a novel residual-based convolutional neural
network to generate defective samples and introduce losses
capable of addressing imbalanced domains. Second, we
simultaneously extract a segmentation mask that identifies
defective regions. We demonstrate that our model is  able
to properly manage imbalanced domains and can be used to
generate realistic defects.

The remainder of  this paper is  organized as follows. Sec-
tion 2 presents our method. Section 3 discusses our results.
Finally, Section 4 concludes the paper.

2. METHOD

Our goal is  to map defect-free samples 2:,- 6 X to unpaired
defective samples y,- E Y.  Since images of products without
defects can be  easily collected, our model can be  used to ob-
tain their corresponding defective counterparts. As  proposed
in Zhu e t  a l .  [12] ,  we  employ an adversarial loss  to match
the generated data distribution to the target domain and a cy-
cle consistency loss to perform an unpaired translation. More
in details, given two data distributions, x N pnormkc) and
y N pdef(y), two mappings are considered: G : X —> Y
and F : Y —> X .  A discriminator D X is  used to distinguish
between a: and F (3/) while a discriminator Dy between y and
G013).

An adversarial loss discems between real and synthesized
defects as follows:

£GAN : Exrvpnorm (:6) [ l og (1  _ DY (G($ ) ) ]+
Ey~p...<y>[logDY(y)]- (1)

A similar adversarial loss  i s  used to discriminate between
normal and synthesized defect-free samples. To restrict the
space of possible mapping functions [12], forward and back-

ward cycle consistency losses are employed:

£09616 = Ex~pnorm(m) [ l lF (G( -T) )  _ x l l l l ‘ l ‘

Ey~pde f (y ) [ l lG(F(y ) )  — y l l l l '  (2)

Fig. 1 depicts our residual-based convolutional neural net-
work. Each block consists of a convolutional layer followed
by instance normalization [18] and ReLU activation function.
We use nine residual blocks [19] and two down-sampling and
up-sampling blocks.

To reveal defective synthesized parts, we  use an additional
up-sampling branch, Bmask, coupled to the up-sampling im-
age branch, Bimg. More specifically, the output of each up-
sampling Bimg block is  concatenated to its Bmask counter-
part and followed by a 1x1  convolution to restore its previ-
ous features size. This embedding is  then fed to the next up-
sampling Bmask  block. In this way, the mask i s  influenced
by the corresponding defective synthesized image. To obtain
masks that are coherent with the corresponding images, i.e.,
masks reporting where a defect is  actually localized, we in-
troduce an additional consistency adversarial loss, based on
a discriminator DC,  acting on a 4 channels map, to discrim-
inate between real and synthesized concatenations of images
and corresponding masks as follows:

£0  = EfiNPnorm(m)  [ l og (1  — DC(Gimg  (x ) | |Gma . sk  ( x ) ) ] +

Epdef  (y) l logDC (yimg l lymask)]7 (3 )

where Gimg (x)  and Gmask (x)  denote the synthesized image
and mask, yimg and ymask the real image and mask, and H the
concatenation operator. Since our primary aim is to investi-
gate a mapping from a real to a defective domain, we  employ
the above loss only for the mapping G .  Furthermore, to gen-
erate images with non-defective parts that closely resemble
the source domain, we  introduce an additional MSE loss  LB.
Specifically, given a defective generated mask Gmask (ac), we
measure the distance between 0;, = a: Q (1  — Gmask(x))
and 6b = Gimg(m) Q (1  — Gmask(ar)) where (9 indicates
a pixel-wise multiplication. This penalizes modifications to
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Transistor Cut-lead 2 :3  620

Tile Cm 213:) 333

Wood Hole 2 :7  129

Table 1: Number of training/synthesized samples per product
and corresponding defects used for our analysis.

non-defective regions. Finally, we  include an identity loss, as
proposed in Zhu e t  a l .  [12].

The final objective function can be defined as follows:

£(G,F ,Dx ,Dy ,DC)  =

A1£GAN(G,Dy ,X ,Y)  + AQEGAN(F ,Dx ,KX)

+ Acyc le£cyc l e (GaF)  + Aid£ id (G ,F )

—|— AC£C(G,DC,X,Y)  + /\b.CB(Ob,6b), (4)

where different weights control the importance of each com-
ponent. Therefore, we  aim at solving:

G.  F = arg 1&1? 
”1,1153% £(G, F, Dx ,  Dy ,  Dc ) .  (5)

3. EXPERIMENTAL RESULTS

To test our architecture with real industrial products, we rely
on the MVTec AD dataset [16, 17]. Although intended for
anomaly detection tasks, this dataset contains images that re-
flect defects from real production lines. The dataset includes
15  different objects with pixel-level annotations. For each
product, a set of high-resolution defect-free training images
and a test set containing both defective and defect-free im-
ages are provided. For the sake of simplicity, we limit our
analysis to 3 products, as reported in Table 1.

Evaluation setting. To train our model,  we use  the train-
ing defect-free samples and 80% of defective samples. Our
test set contains the testing defect-free images and the remain-
ing defective samples. We limit our evaluation to the mapping
G,  i .e. ,  from a normal to a defective domain, as i t  i s  more im-
portant for real-world applications.

Evaluation metrics and baselines. Similarly to Sushko
et  al .  [20], average LPIPS [21] and average LPIPS to the near-
est image in the training set (Dist. to train) are evaluated. We
also consider the FID [22]  metric. We compare our model to
Cycle-GAN [12] ,  CUT [23]  and i t s  version without a regu-
larizer FastCUT, NEGCUT [24], and a simple convolutional
generative model, DCGAN [25], only trained on defective
samples to synthesize images from a latent code. Cycle-GAN
and DCGAN are modified to provide 4 channels output im-
ages (i.e., images plus masks). For the other models, we use
the original code as provided by the authors.

Training details. To train our model, we firstly down-
scale high-resolution input images and then randomly crop

an area of 256 X 256 pixels. We also apply several data aug-
mentation techniques (e.g., flipping, normalization and elastic
transformations) to both RGB images and masks. As  discrim-
inators, we  use 70 x 70 PatchGAN [11] networks. As  in  Zhu e t
al.  [12], the negative log likelihood objective is  replaced by a
least-squares loss .  For our experiments, we set  A1 = A2 = 1 ,
Acyde = 5, Aid 2 10, Ac 2 150 and Ab = 0.05 selected us-
ing a grid-search procedure. We use the Adam optimizer and
a learning rate of 0.0002. This value is  fixed for the first 100
epochs and linearly decays to zero over the next 200 epochs.

Results. We report our qualitative results in Fig. 2.  Our
model synthesizes realistic defects on different products more
effectively. Both objects and textures are modified to intro-
duce irregularities. Likewise, our segmentation masks high-
light regions affected by defects, demonstrating the effec—
tiveness in localizing these areas with a limited supervision.
Compared to the baselines, our model also produces more
high-quality images and less noisy segmentation masks. In
this regard, CycleGAN appears unable to synthesize realis-
tic defective masks, especially for textures, while DCGAN
introduces noisy artifacts without properly affecting the in-
put image. We note that our approach preserves the overall
st111cture of the source domain. In Table 2 we  provide a quan-
titative evaluation of these models. On average, our approach
outperforms the baselines, especially for the FID metric,
demonstrating higher fidelity in generating samples with sim-
ilar characteristics to the training set. By  contrast, low values
of the LPIPS metric reported by the models indicate their
limited capability in generating diverse samples.

We also conduct an ablation study to measure the impact
of each introduced component in our architecture. As  shown
in Table 3 ,  our complete architecture achieves the best  FID
metric. For each loss, we present a qualitative evaluation of
their impact in Fig. 3 .

Defect inspection analysis. Similarly to Zhang e t  a l .  [10] ,
we also train two binary classifiers to demonstrate their effec-
tiveness in spotting anomalies in real products by exploiting
synthetic defective samples. Only real defect-free and syn-
thetic defective images are used at training time. More specif-
ically, we consider the following data split (train/val/test) for
each experiment: 60/20/20 for defect-free samples, 80/  20 / 0
for synthetic defective samples and 0 /0 /  100 for real de-
fects. Table 4 confirms that synthetic samples significantly
contribute to the identification of real defective samples.

4. CONCLUSION AND FUTURE WORK

Our approach synthesizes industrial defects with binary seg-
mentation masks, mitigating the need for data collection. By
extending an unpaired I2I translation framework with multi-
branch generators and coherency loss, our model ensures
compatibility between images and masks. It demonstrates
superior effectiveness over conventional generative models,
with improved metrics. Future work will explore applying it
to scenarios with multiple defects and diverse domains.
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Fig. 2: Qualitative results for different input images of some baselines and our model. Our method provides better results and
more robust segmentation masks.

Method Product (Defect) FID t LPIPS T Dist .  to train
Transistor (Cut  lead) 7 .39  0.03 0.18

Tile (Crack) 5.82 0.02 0.16
DCGAN [25] Wood (Hole) 4.56 0.00 0.16

Avg 5.92 0.02 0.17
Transistor (Cut  lead) 0 .22  0.10 0.11

Tile (Crack) 1.80 0.20 0.23
CYCICGAN “21 Wood (Hole) 5.78 0.11 0.18

Avg w 0.14 0.17 Input image
Transistor (Cut  lead) 0.54 0.13 0.09

Tile (Crack) 2.55 0.14 0.26
CUT [23] Wood (Hole) 8.24 0.06 0.21

Avg 3.78 0.11 0.19 _ . . . .
Transistor (Cut lead) 1.36 0.17 0.13 Fig. 3: Qualltatlve results for the ablatlon study reported 1n

FastCUT [23] T116 (030k) 5‘06 020 0‘24 Table 3 where each loss is added to our model. For visualiza-Wood (Hole) 1037 0.19 0.19 . . .
tlon purposes, we show the output of  the Slnld layer o f  theAvg 5.60 0.19 0.19

Transistor (Cut lead) 0.80 0.13 0.10 mask branch.
Tile (Crack) 2.81 0.26 0.28

NEGCUT [24] Wood (Hole) 6.90 0.06 0.20
Avg 3.50 0.15 0.19

Transistor (Cl-1t lead) 0 -17  0 -12  0 -11  Backbone Product (Defect) Accuracy (%)  Precision Recall

Proposed approach 57:37:51?) 3; :  3 :2  33 :  Transistor (cut lead) 84.61 0.42 0.50
' ' ' _ Wood (hole) 84.37 0.42 0.50

Avg 1 .39  E 0.19 Tile (crack) 75.71 0.38 0.50

Avg 81.56 0.41 0.50
Table 2: Quantitative results. Our method reports more fi- Transistor (cut lead) 90.77 0.95 0.70

- - - - - - _ Wood (hole) 93.75 0.88 0.88dellty 1n synthe81z1ng 1ndustr1a1 defects compared to the base ResNet-IS [ 19 ]  Tile (crack) 8750 094 0.60

hnes. Avg 88.60 M m
Transistor (cut lead) 95.38 0.97 0.85

Wood (hole) 90.62 0.95 0.70
Transistor (cm lead) DenseNet'm [26] Tile (crack) 89.06 0.94 0.65

Model LGAN + Loyde  + Lid  [:0 LB  FID J, LPIPS T Dist. to train Avg 91-69  0 -95  0 .73
(a) ./ x x 0.80 m 0.10
(b) I l x 0.73 0.11 0.12 , .
(c) I x .I w 013 0.10 Table 4: Defect inspectlon results. The first group denotes
(d) .I ./ ./ 0.17 w 0.11 a classifier that outputs a defect-free class regardless of its

input. Both networks increase their accuracy using our syn-
Table 3: Ablation study for our losses. Our complete model thesized samples.
achieves the best performance.
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